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Abstract We present a fixed point theorem on topological cylinders in normed linear spaces
for maps satisfying a property of stretching a space along paths. This result is a generalization
of a similar theorem obtained by D. Papini and F. Zanolin. In view of the main result, we
discuss the existence of fixed points for maps defined on different types of domains and
we propose alternative proofs for classical fixed point theorems, as Brouwer, Schauder and
Krasnosel’skiı̆ ones.
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1 Introduction

Fixed point theorems in finite and infinite dimensional spaces have recently received a lot of
attention and frequently classical results has been reinterpreted in a new perspective, even
with the purpose to obtain new useful tools for the study of nonlinear differential and integral
equations. As an example, in [12,13] the author dealt with Krasnosel’skiı̆ cone fixed point
theorem, and he discussed more general results in cones and cylinders. Or still, the paper
[15] is devoted to an application of a general version of the classical Poincaré–Miranda
zeros theorem, which is equivalent to Brouwer fixed point theorem, as well known. As a last
example, we mention [18], where the author proposed elementary proofs of generalization
in R

n of classical fixed point theorems for expansive-compressive mappings.
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1442 G. Feltrin

The present paper deals with the search and the localization of fixed points for compact
maps defined on “cylindrical” domains of a normed linear space. The starting point and
motivation for the present paper is the interesting work [21] by Papini and Zanolin. The
two authors have studied fixed point theorems for maps satisfying a property of stretching a
space along paths connecting two of its own disjoint subsets. In [21], they have considered
cylinders of the form

[a, b] × B[0, R],
so with “base” a ball in R

n , while our goal is to work with domains of the form

[a, b] × A,

where A is an absolute retract. Afterwards, we prove that the existence of fixed points remains
valid under homeomorphic transformation of the cylinder.

The plan of the paper is the following. In Sect. 2, we present our main results. First of all,
we generalize [21, Theorem 6] by considering a cylinder with an absolute retract as “base”
and a compact map defined over it. Under the assumption of “stretching along the paths”,
we obtain an existence result for fixed points in a particular region of the cylinder, using the
fixed point index and in the same spirit of [21]. Subsequently, we discuss further possible
generalization of the theorem and we verify that the property of “stretching along the paths”
is preserved under homeomorphisms.

In Sect. 3, we review some classical fixed point theorems, as Brouwer and Schauder
theorems, from the perspective of the main result. Using simple tricks, we show that these
results are direct consequences of our main theorem.

Section 4 is devoted to the study of maps defined on domains of different type. In more
detail, we consider particular region of cones in normed linear spaces, as in Krasnosel’skiı̆’s
cone fixed point theorem. As we shall see, the hypotheses of our main result are clearly
of expansive type, hence it allows us to analyse only the expansive form of Krasnosel’skiı̆
theorem. For this reason, in that section we introduce a corollary useful to demonstrate
Krasnosel’skiı̆’s compressive formandother compressive-typefixedpoint results. In addition,
we explore other fixed point theorems related to the main result.

We conclude our work with an appendix dedicated to the fixed point index. We recall the
main properties and we enunciate the Leray–Schauder continuation principle. This tools are
used during the proof of the main theorem in Sect. 2.

Now we introduce some symbols and some notations. We denote by Q and R the usual
numerical sets and let R+ := [0,+∞[.

Given a topological space (X, τ ) and a subset A ⊆ X , we denote by A its closure, with
int(A) its inner part and with ∂ A its boundary. If A, B ⊆ X , with A\B we mean the relative
complement of B in A.

What is dealt in the article takes place in the class of metrizable spaces. Usually, we denote
by (X, ‖ · ‖) or simply by X a normed linear space, where ‖ · ‖ is its norm. The symbols
B(x0, r) and B[x0, r ], where x0 ∈ X and r > 0, represent the open and closed ball of centre
x0 and radius r , respectively, i.e.

B(x0, r) := {
x ∈ X : ‖x − x0‖ < r

}
, B[x0, r ] := {

x ∈ X : ‖x − x0‖ ≤ r
}
.

We indicate with

dist(A, B) := inf
x∈A, y∈B

‖x − y‖

the usual distance between two sets A, B ⊆ X .
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A note on a fixed point theorem on topological cylinders 1443

We denote by I d or I dX the identity map on the space X . Given a function f , f |D

represents the restriction of the function f in D, where D is a subset of the domain of f .

2 Main results

In this section we present our main result (Theorem 1) which deals with cylinders having a
topological retract as “base”. Then we prove the validity of the same theorem for other type
of domains.

Let (X, ‖ · ‖) be a normed linear space and let D be a subset of R × X . Consider a map

φ = (φ1, φ2) : D → R × X.

Our main goal is to provide an existence result for fixed points of φ. In other words, we want
to prove the existence of elements z̃ = (t̃, x̃) ∈ D such that

{
t̃ = φ1

(
t̃, x̃

)

x̃ = φ2
(
t̃, x̃

)
.

Now we introduce some preliminary definitions and notations. First of all we recall that
a nonempty subset A of a topological space Y is a retract of Y if there exists a continuous
map r : Y → A (called retraction), such that r |A = I dA.

Let A be a retract of X and fix a, b ∈ R with a < b. We denote by

C := [a, b] × A

the cylinder with “base” the retract A and “height” the interval [a, b]. We also set

Cl := {a} × A and Cr := {b} × A

the cylinder’s left base and the cylinder’s right base, respectively.
In the following, we will put our attention on paths contained in C or in other subsets of

R× X . With the term path we mean an element (σ, σ ), where σ is a continuous map defined
on a compact interval I ⊆ R (usually we take I = [0, 1]) and with values on the normed
linear space R × X , and σ := σ(I ) ⊆ R × X is the support (image) of σ . Furthermore we
say that (γ, γ ) is a sub-path of the path (σ, σ ) (defined on I ) if γ : [s0, s1](⊆ I ) → R × X
and γ = σ |[s0,s1]. In order to avoid too heavy notation, we simply employ σ to denote the
path (σ, σ ). In addition, we often use the symbol σ meaning its support; for example, if
Z ⊆ R × X , we write σ ⊆ Z instead of σ ⊆ Z , σ ∩ Z 	= ∅ in place of σ ∩ Z 	= ∅ and so
on. Moreover if σ and γ are two paths, the notation γ ⊆ σ means that γ is a sub-path of σ .

As usual, a map f : X → Y between two metric spaces is compact if it is continuous and
the closure of f (X) is a compact subset of Y .

We now state and prove the main result (see also Fig. 1).

Theorem 1 Let (X, ‖ · ‖), D, A, C and φ be as above. Suppose that there exists a closed set
W ⊆ D ∩ C such that

(i) φ is compact on W ;
(i i) for every path σ ⊆ C with σ ∩Cl 	= ∅ and σ ∩Cr 	= ∅ there exists a sub-path γ ⊆ σ ∩ W

with φ(γ ) ⊆ C, φ(γ ) ∩ Cl 	= ∅ and φ(γ ) ∩ Cr 	= ∅.

Then there exists z̃ ∈ W such that φ(z̃) = z̃.
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Fig. 1 Figure shows a possible situation satisfying conditions (i) and (i i) of Theorem 1. In the picture, it is
assumed that D = C

Proof Consider the compact operator

φ : W → R × X.

As a first step, we extend φ to R × X via a compact map

φ̃ : R × X → R × X,

i.e. φ̃|W = φ|W . The existence of φ̃ compact is guaranteed by an application of Urysohn
embedding theorem (see, for instance, [6, Theorem B.11, p. 597]) and Dugundji extension
theorem (cf. [3] and [6, Theorem 7.4, pp. 163–164]) together with the results in [6, § 6.2,
pp. 116–118].

Let r : X → A be a retraction. We introduce the operator

ψ = (ψ1, ψ2) : R × X → R × A,

defined as follows

ψ1(t, x) := φ̃1(t, x), ψ2(t, x) := r(φ̃2(t, x)).

We observe that ψ is a compact map (by the compactness of φ̃ and the continuity of r ). We
define

Â := ψ2(R × X).

The set Â is nonempty, compact and contained in A (since A is closed, by [8, Theorem 5.1,
p. 18]).

We also note that if z̃ = (t̃, x̃) is a fixed point of ψ with z̃ ∈ W and φ2(z̃) ∈ A, then

t̃ = ψ1(z̃) = φ̃1(z̃) = φ1(z̃)
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A note on a fixed point theorem on topological cylinders 1445

and

x̃ = ψ2(z̃) = r(φ̃2(z̃)) = r(φ2(z̃)) = φ2(z̃),

hence z̃ ∈ W is a fixed point of φ.
Now we study the fixed point problem

x = ψ2(t, x), x ∈ X,

where t is treated as a parameter in [a, b]. From the definition of Â, it is obvious that
ψ2(t, x) ∈ Â ⊆ A for all (t, x) ∈ [a, b] × X . We fix r > 0 such that the open ball B(0, r)

contains the closed and bounded set Â. It follows that, for all t ∈ [a, b],
x − ψ2(t, x) 	= 0, ∀ x ∈ ∂ B(0, r).

Consequently, the fixed point index iX (ψ2(t, ·), B(0, r)) is well defined and constant, for t ∈
[a, b]. Consider now the compact homotopy h : [0, 1] × B[0, r ] → X , hλ(x) := λψ2(t, x).
For every t ∈ [a, b] we have that

x − λψ2(t, x) 	= 0, ∀ λ ∈ [0, 1], ∀ x ∈ ∂ B(0, r),

since λψ2(t, x) ∈ λ Â ⊆ B(0, r) for every λ ∈ [0, 1] and x ∈ X .
By the homotopy invariance property, the integer iX (hλ, B(0, r)) is constant with respect

to λ ∈ [0, 1]. In particular, for every t ∈ [a, b],
iX (ψ2(t, ·), B(0, r)) = iX (0, B(0, r)) = 1.

Therefore we can apply the Leray–Schauder continuation principle (Theorem 11), which
ensures that the nonempty set

	 := {
(t, x) ∈ [a, b] × B(0, r) : x = ψ2(t, x)

}

contains a compact and connected (continuum) set S such that

S ∩ Cl 	= ∅ and S ∩ Cr 	= ∅.

As consequence, p1(S) = [a, b], where p1 : R × X → R, p1(t, x) = t , and for every open
Ã containing Â

p2(S) ⊆ Â ⊆ Ã,

where p2 : R × X → X, p2(t, x) = x .
Fix an open and bounded set Ã such that Â ⊆ Ã (for example Ã = B(0, r), as before)

and fix ε ∈ R such that 0 < ε < dist( Â, X\ Ã) < +∞. By the continuity of the retraction r ,
for every x ∈ X we can find a positive number δx = δx (ε), with 0 < δx < ε, such that for
every y ∈ X with ‖y − x‖ < δx it holds that ‖r(y) − r(x)‖ < ε.

Consider the open covering of S defined as
{ ]t − ε, t + ε[ × B(x, δx ) : (t, x) ∈ S

}
.

Since S is compact, we can extract a finite sub-covering
{ ]ti − ε, ti + ε[ × B(xi , δxi ) : i = 1, . . . , m

}
,

where (ti , xi ) ∈ S, so ti ∈ [a, b] and xi ∈ Â ⊆ A, for all i ∈ {1, . . . , m}.
Now we set

Uε :=
m⋃

i=1

]ti − ε, ti + ε[ × B(xi , δxi ),
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1446 G. Feltrin

which is contained in ]a − ε, b + ε[ × Ã, because 0 < δxi < ε < dist( Â, X\ Ã), for all
i = 1, . . . , m. The set Uε is open and connected (because S ⊆ Uε and (ti , xi ) ∈ S ∩ (]ti −
ε, ti + ε[ × B(xi , δxi )) 	= ∅ for all i ∈ {1, . . . , m}). Hence Uε is also arcwise connected.
Consequently there exists a continuous map ϑ : [0, 1] → Uε such that ϑ(0) ∈ Cl and
ϑ(1) ∈ Cr . Passing, if necessary, to a sub-path inside the cylinder and reparameterizing the
curve, we can also assume that, for all s ∈ [0, 1],

ϑ1(s) := p1(ϑ(s)) ∈ [a, b].
Then we define a second curve ζ(s) := (ζ1(s), ζ2(s)), s ∈ [0, 1], as follows

ζ1(s) := p1(ϑ(s)) = ϑ1(s), ζ2(s) := r(p2(ϑ(s))) = r(ϑ2(s)).

We claim that the curve ζ satisfies

– ζ(s) ∈ Vε ∩ C, for all s ∈ [0, 1];
– ζ(0) ∈ Cl and ζ(1) ∈ Cr ;

where

Vε :=
m⋃

i=1

]ti − ε, ti + ε[ × B(xi , ε).

From the definition, we derive immediately that ζ(s) ∈ C and ζ1(s) = ϑ1(s) ∈ [a, b] ⊆
p1(Vε), for every s ∈ [0, 1]. Consequently, to prove the first property it is sufficient to
verify that there exists j ∈ {1, . . . , m} such that ζ2(s) ∈ B(x j , ε). Fix s ∈ [0, 1]. Let
k ∈ {1, . . . , m} be such that ϑ2(s) ∈ B(xk, δxk ). We distinguish two cases. If ϑ2(s) ∈ A,
then ζ2(s) = ϑ2(s) ∈ B(xk, δxk ) ⊆ B(xk, ε). If ϑ2(s) /∈ A, then

‖ζ2(s) − xk‖ = ‖r(ϑ2(s)) − r(xk)‖ < ε,

by the choice of δx = δx (ε) and by the fact that xk ∈ A (hence r(xk) = xk). In each case, we
conclude that ζ(s) ∈ Vε for all s ∈ [0, 1]. The second property is obvious from the definition
of ζ . Thus our claim is proved.

From the two properties it follows that the path ζ is contained in the cylinder C and it has a
nonempty intersection with the left and the right bases. Thus, taking σ := ζ , hypothesis (i i)
implies that there must be a sub-path γ of σ such that γ ⊆ W with φ(γ ) ⊆ C, φ(γ )∩Cl 	= ∅
and φ(γ ) ∩ Cr 	= ∅. Let

ξ = (ξ1, ξ2) : [0, 1] → R × X

be a continuous map such that the path (ξ, ξ) is the reparametrization to [0, 1] of the sub-path
(γ, γ ). By the assumptions, it follows that

– ξ(s) ∈ Vε ∩ W , for all s ∈ [0, 1];
– φ(ξ(s)) ∈ C, for all s ∈ [0, 1];
– φ(ξ(0)) ∈ Cl and φ(ξ(1)) ∈ Cr .

We consider now the continuous map g : [0, 1] → R × X defined by g(s) = ξ1(s) −
φ1(ξ(s)). Since ξ(s) ∈ γ ⊆ σ ⊆ C for all s ∈ [0, 1], we obtain that ξ1(0) ≥ a, so
g(0) ≥ a − a = 0. Similarly g(1) ≤ 0. By Bolzano’s theorem, we derive that there exists
ŝ = ŝε ∈ [0, 1] such that g(ŝ) = ξ1(ŝ) − φ1(ξ(ŝ)) = 0. Setting

t̂ = t̂ε := ξ1(ŝ), x̂ = x̂ε := ξ2(ŝ), ẑ = ẑε := (t̂, x̂),

it follows that

ẑ = ξ(ŝ) ∈ Vε ∩ W, t̂ = ξ1(ŝ) = φ1(ẑ), φ2(ẑ) = φ2(ξ(ŝ)) ∈ A.
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A note on a fixed point theorem on topological cylinders 1447

From the definition of ψ , we obtain that

ẑ ∈ Vε ∩ W, t̂ = ψ1(ẑ), φ2(ẑ) ∈ A. (1)

Furthermore, since ẑ ∈ Vε, there is an index i ∈ {1, . . . , m} such that ‖ẑ − (ti , xi )‖ < ε.
Hence we conclude that, for every 0 < ε < dist( Â, X\ Ã), there exists a point ẑ = ẑε

satisfying (2) and, moreover, there exists ŷε ∈ S such that ‖ẑε − ŷε‖ < ε.
Setting ε = εn = 1/n, we derive that, for n > 1/dist( Â, X\ Ã), there exists an element

ẑn ∈ V1/n ∩ W with the characteristics listed above. In addition, for each ẑn there exists a
ŷn ∈ S such that ‖ẑn − ŷn‖ < 1/n. Since S is compact, possibly passing to a subsequence,
the sequence (ŷn)n converges to an element z̃ = (t̃, x̃) ∈ S. Passing to the corresponding
subsequence of (ẑn)n , we also obtain that (ẑn)n converges to z̃ ∈ S. By the continuity of φ

and ψ and using the fact that W and A are closed, we have

z̃ ∈ S ∩ W, t̃ = ψ1(z̃), φ2(z̃) ∈ A.

Being S contained in the set 	, we find that

x̃ = ψ2(t̃, x̃)

and consequently z̃ = (t̃, x̃) ∈ W is a fixed point of ψ . As shown at the beginning of the
proof and since φ2(z̃) ∈ A, we get that z̃ ∈ W is a fixed point of φ. The theorem follows. �
Remark 1 Weobserve that in Theorem1 it is not restrictive to suppose thatφ(D∩C) ⊆ R×A.
In fact, if φ(D ∩ C) ⊆ R × X , we define

D̂ := {z ∈ D ∩ C : φ2(z) ∈ A} ⊆ C
and we consider the restriction φ̂ := φ|D̂ : D̂ → R × A. Now we prove that φ̂ satisfies the

two conditions of the theorem with respect to a suitable closed set Ŵ ⊆ D̂. Setting

Ŵ := {z ∈ W : φ(z) ∈ C} ⊆ D̂,

clearly condition (i) is satisfied (as Ŵ ⊆ W ). We prove (i i). Suppose to have a path σ ⊆ C
with σ ∩ Cl 	= ∅ and σ ∩ Cr 	= ∅. We know that there exists a sub-path γ ⊆ σ ∩ W with
φ(γ ) ⊆ C, φ(γ ) ∩ Cl 	= ∅ and φ(γ ) ∩ Cr 	= ∅. Obviously γ ⊆ Ŵ . Hence (i i) follows.

Remark 2 We note that in condition (i i) of Theorem 1 we can replace the term path with
the concept of continuum (i.e. compact and connected set). Following the proof of [21,
Theorem 7], we obtain the same thesis in the case of retracts.

Our next aim is to give an existence result with respect to a cylinder having an absolute
retract as a “base”. For reader’s convenience, we recall that a space A is an absolute retract
(or simply an AR) if A is metrizable and for any metrizable Y and every closed M ⊆ Y
each continuous function f : M → A is continuously extendable over Y . We also recall that
a space A is an absolute neighbourhood retract (or simply an ANR) if A is metrizable and
for any metrizable Y , every closed M ⊆ Y and each continuous function f : M → A there
exists a neighbourhood U of M and a continuous extension of f over U . Clearly an AR is
an ANR. For properties and characterization of ARs and ANRs, we refer to [6,8].

The next corollary deals with the case of a cylinder with base an AR.

Corollary 1 Let A be an AR and a, b ∈ R with a < b. We denote by

C := [a, b] × A
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1448 G. Feltrin

the cylinder with “base” the absolute retract A and “height” the interval [a, b]. We indicate
with

Cl := {a} × A and Cr := {b} × A

the cylinder’s left base and the cylinder’s right base, respectively.
Let D ⊆ C. Consider the operator

φ = (φ1, φ2) : D → R × A

and suppose that there exists a closed set W ⊆ D such that

(i) φ is compact on W ;
(i i) for every path σ ⊆ C with σ ∩Cl 	= ∅ and σ ∩Cr 	= ∅ there exists a sub-path γ ⊆ σ ∩ W

with φ(γ ) ⊆ C, φ(γ ) ∩ Cl 	= ∅ and φ(γ ) ∩ Cr 	= ∅.

Then there exists z̃ ∈ W such that φ(z̃) = z̃.

Proof Given the absolute retract A, we can fix a normed linear space X where A is a retract
(cf. [6, Theorem 7.6, p. 164]). Finally we use Theorem 1 to conclude.

The following example shows that completely continuity is not sufficient for the claim of
Theorem 1. We recall that a map f : X → Y between normed linear spaces is completely
continuous, if f is continuous and the closure of f (B) is a compact subset of Y , for each
bounded subset B ⊆ X .

Example 1 Consider the map φ : [0, 1] × R → [0, 1] × R, φ(t, x) = (t, x + 1), and set
W = [0, 1] × R. Clearly R is a retract (of R) and W is closed. We note that the map φ is
completely continuous, but it is not compact on W , since φ(W ) = [0, 1] × R. Moreover
condition (i i) is satisfied, but φ has not fixed points.

With the following example we point out that, if we have an ANR at the place of the AR,
the assertion under the same hypotheses is not true.

Example 2 Let Sn−1 := {x ∈ R
n : ‖x‖ = 1} be the unit sphere in R

n . It is known that Sn−1

is an ANR but not an AR (see [6, Theorem 1.5, p. 280] and [8, pp. 20–21]). Fix α ∈ ]0, 2π[
(α/2π /∈ Q) and consider the map φ : [0, 1] × S1 → [0, 1] × S1, φ(t, x) = (t, xeiα), which
represents the rotation around zero of angle α. Clearly φ is continuous (hence compact), but
it has not fixed points (or periodic points).

In almost all the applications to differential equations we cannot work with a cylinder.
Thus our new goal is to present an existence result for fixed points of maps defined in more
general domains.

We recall that a topological space X satisfies the fixed point property if any continuous
function f : X → X has a fixed point. From classical results, we know that an homeo-
morphism preserves the fixed point property. In the following result, we show that also our
property is preserved under homeomorphisms.

Corollary 2 Let Y be a metric space and M ⊆ Y a closed subset homeomorphic to the
cylinder C := [a, b] × A, where A is an AR and a, b ∈ R with a < b. Call

h : M → [a, b] × A

the homeomorphism onto its image and

Ml := h−1({a} × A) and Mr := h−1({b} × A)
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A note on a fixed point theorem on topological cylinders 1449

the “left base” and the “right base” of M, respectively.
Let N ⊆ Y . Consider the operator φ : N → Y and suppose that there exists a closed set

V ⊆ M ∩ N such that

(i) φ is compact on V ;
(i i) for every path σ ⊆ M with σ ∩ Ml 	= ∅ and σ ∩ Mr 	= ∅ there exists a sub-path

γ ⊆ σ ∩ V with φ(γ ) ⊆ M, φ(γ ) ∩ Ml 	= ∅ and φ(γ ) ∩ Mr 	= ∅.

Then there exists z̃ ∈ V such that φ(z̃) = z̃.

Proof Define
H := {z ∈ V : φ(z) ∈ M}

and observe that H = φ−1(M)∩V is closed (since M and V are closed), φ̂ := φ|H : H → Y
is compact and φ(H) ⊆ M . Set D := h(H), which is closed and contained in h(M) = C.

Consider this diagram

H(⊆ V )
φ̂

M

h

h(H) = D
ψ̂

h−1

h(M) = C

where
ψ̂ := h ◦ φ̂ ◦ h−1 : D → C = [a, b] × A.

We claim that ψ̂ is a compact map. Suppose to have a sequence (yn)n contained in ψ̂(D),
i.e. yn = ψ̂(xn) = h(φ̂(h−1(xn))) with xn ∈ D. By the compactness of φ̂, the clo-
sure of φ̂(h−1(D)) = φ̂(H) is compact. Then there exists a subsequence (xkn ) such that
φ̂(h−1(xkn )) → x̄ ∈ M (since M closed). By the continuity of h, we conclude that
ykn = ψ̂(xkn ) = h(φ̂(h−1(xkn ))) → h(x̄) ∈ h(M) = C. Hence the compactness of ψ̂ .

Consider a path σ̂ ⊆ C with σ̂ ∩Cl 	= ∅ and σ̂ ∩Cr 	= ∅. Consequently σ := h−1(σ̂ ) ⊆ M ,
σ ∩ Ml 	= ∅ and σ ∩ Mr 	= ∅. Then there exists a sub-path γ ⊆ σ ∩ V with φ(γ ) ⊆ M ,
φ(γ )∩Ml 	= ∅ andφ(γ )∩Mr 	= ∅. Hence γ̂ := h(γ ) is a sub-path of σ̂ such that γ̂ ⊆ σ̂ ∩D,
ψ̂(γ̂ ) ⊆ C, ψ̂(γ̂ ) ∩ Cl 	= ∅ and ψ̂(γ̂ ) ∩ Cr 	= ∅.

Setting W = D, every hypothesis of Corollary 1 is satisfied. Then there exists z̄ ∈ D =
h(H) such that ψ̂(z̄) = z̄. We conclude that the point z̃ = h−1(z̄) ∈ V is a fixed point of φ.

�

3 Some classical theorems

In this section we present three classical results of fixed point theory revised in view of
Theorem 1. In other words, we check that our main theorem is a generalization of these
results.

CertainlyBrouwer fixed point theorem is one of themost famous. In the proposed proof, we
note that a simple trick allows us to put ourselves in the hypotheses (i) and (i i) of Theorem 1.

Theorem 2 (Brouwer fixed point theorem) Let B = B[0, 1] ⊆ R
n be the unit closed ball.

Any continuous function f : B → B has a fixed point in B.
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1450 G. Feltrin

Proof First of all, we observe that B is a retract of Rn and f is compact (by the finite
dimension of the space). Consider the application φ = (φ1, φ2) : [0, 1] × B → [0, 1] × B
defined as

φ1(t, x) := t, φ2(t, x) := f (x).

By the hypothesis, φ is well defined and satisfies conditions (i) and (i i) of Theorem 1
(with W = [0, 1] × B). Then there exists z̃ = (t̃, x̃) ∈ [0, 1] × B such that φ(z̃) = z̃,
i.e. (t̃, x̃) = (t̃, f (x̃)). We conclude that x̃ ∈ B is a fixed point of f .

The second classical result we look over is Schauder fixed point theorem.

Theorem 3 (Schauder fixed point theorem) Let C be a closed, convex and nonempty subset
of a normed linear space X. Any compact map ϕ : C → C has a fixed point in C.

Nowwe prove directly a more general theorem, of which one can find an alternative proof
in [6, Theorem 7.9, p. 165].

Theorem 4 (Generalized Schauder theorem) Let Z be an AR. Any compact map ϕ : Z → Z
has a fixed point in Z.

Proof Consider the application φ = (φ1, φ2) : [0, 1] × Z → [0, 1] × Z defined as

φ1(t, x) := t, φ2(t, x) := ϕ(x).

By the hypothesis, φ is well defined and satisfies conditions (i) and (i i) of Corollary 1
(with W = [0, 1] × Z ). Then there exists z̃ = (t̃, x̃) ∈ [0, 1] × Z such that φ(z̃) = z̃,
i.e. (t̃, x̃) = (t̃, ϕ(x̃)). We conclude that x̃ ∈ Z is a fixed point of ϕ. �

It is well known that Brouwer fixed point theorem is equivalent to the classical Poinca-
ré–Miranda zeros theorem. Now we present a theorem that is the “fixed point version” of
Poincaré–Miranda result, alternatively it can be viewed as a n-dimensional generalization of
Bolzano’s theorem. Our aim is to provide a direct proof in the light of the main theorem,
without using previous classical results.

The theorem we state below has been proposed in some recent works, in this or in other
versions. As examples, see [4,9,12,13,15,17,18,22].

Theorem 5 (Poincaré–Miranda) Let R = ∏n
i=1[ai , bi ] be a n-dimensional rectangle. We

denote by I −
i = {x ∈ R : xi = ai } and I +

i = {x ∈ R : xi = bi } its i -faces. Let g =
(g1, . . . , gn) : R → R

n be a continuous vector field such that for each i ∈ {1, . . . , n} one of
the two following possibilities is true:

(ei ) gi (x) ≤ ai , ∀ x ∈ I −
i , gi (x) ≥ bi , ∀ x ∈ I +

i ;
(ci ) gi (x) ≥ ai , ∀ x ∈ I −

i , gi (x) ≤ bi , ∀ x ∈ I +
i .

Then there exists z ∈ R such that g(z) = z.

Proof First of all, we introduce a useful notation. Let I := {1, . . . , n}, Ie := {i ∈
I : (ei ) is valid} and Ic := {i ∈ I : (ci ) is valid}. By the hypotheses, I = Ie ∪ Ic and
Ie ∩ Ic = ∅.

We first assume that ∅ 	= Ie = {k}. We define

Rk := [a1, b1] × · · · × [ak−1, bk−1] × [ak+1, bk+1] × · · · × [an, bn]
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and we observe thatRk is a retract of Rn−1, hence [ak, bk] ×Rk is a cylinder where we can
apply Theorem 1. Without loss of generality and for simplicity, we assume k = 1. Consider
the operator

g̃ : [a1, b1] × R1 = R → R
n = R × R

n−1

defined as
g̃(x) := (g1(x), p2(g2(x)), . . . , pn(gn(x))),

where pi (x) := min{bi ,max{xi , ai }} is the projection on [ai , bi ], for all i ∈ Ic. We claim
that g̃ and W = R satisfy conditions (i) and (i i) of Theorem 1. Clearly g̃ is continuous
(hence compact). Suppose that the path (σ, σ ), with σ : [0, 1] → R, is such that σ(0) ∈ I −

1
and σ(1) ∈ I +

1 . Hypothesis (e1) implies that g1(σ (0)) ≤ a1 and g1(σ (1)) ≥ b1. Then, by the
continuity of g1 and σ , there exists a subinterval [s0, s1] ⊆ [0, 1] such that g1(σ ([s0, s1])) =
[a1, b1]. In particular the sub-path γ := σ |[s0,s1] is such that g̃(γ ) ⊆ R, g̃(γ ) ∩ I −

1 	= ∅ and
g̃(γ ) ∩ I +

1 	= ∅. We deduce the validity of (i i).
By Theorem 1, there exists an element z = (z1, z2, . . . , zn) ∈ R such that g̃(z) = z. We

claim that z ∈ R is a fixed point of g. We have to prove that gi (z) ∈ [ai , bi ] for all i ∈ Ic.
Suppose that there is an index i ∈ Ic such that gi (z) < ai or gi (z) > bi . Consider the first
case. Then zi = pi (gi (z)) = ai , so gi (z) ≥ ai , by (ci ). This is a contradiction. Similarly one
can prove that gi (z) > bi does not occur. We have the assertion.

Now suppose that ∅ 	= Ie = {1, . . . , j}. Define ĝ : R → R
n as follows

ĝ(x) := (g1(x), 2x2 − g2(x), . . . , 2x j − g j (x), g j+1(x), . . . , gn(x)).

It is easy to see that ĝ satisfies (e1) and also (ci ) for all i ∈ {2, . . . , n}. Consequently we can
apply the first case and observe that a fixed point of ĝ is also a fixed point of g.

The last case is Ie = ∅. We proceed as in the second case, defining ĝ : R → R
n as

ĝ(x) := (2x1 − g1(x), g2(x), . . . , gn(x)).

The theorem is thus proved. �

4 Other consequences of the main theorem

We conclude our work by explore other fixed point theorems available in the literature. The
final aim is to relate Krasnosel’skiı̆ theorems on cones to our main result.

First of all, we analyse still a fixed point theorem on cylinders: Kwong’s theorem. We state
and prove a more general version compared to [12, Theorem 3.2] and [13, Theorem 3].

Theorem 6 Let A be an AR and C, Cl , Cr as in Corollary 1. Consider a compact map
T = (T1, T2) : C → R × A.

– (Expansive form) T has at least a fixed point in C if

(Ea) T1(z) ≤ a, ∀ z ∈ Cl ;
(Eb) T1(z) ≥ b, ∀ z ∈ Cr .

– (Compressive form) T has at least a fixed point in C if

(Ca) T1(z) ≥ a, ∀ z ∈ Cl ;
(Cb) T1(z) ≤ b, ∀ z ∈ Cr .
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Proof Expansive form. We are going to prove that conditions (i) and (i i) of Corollary 1 hold,
with respect to W = C. By the compactness hypothesis, (i) follows. Now suppose that the
path (σ, σ ), with σ : [0, 1] → C, is such that σ(0) ∈ Cl and σ(1) ∈ Cr . By hypotheses (Ea)

and (Eb), T1(σ (0)) ≤ a and T1(σ (1)) ≥ b. Then, by the continuity of T1 and σ , there exists
a subinterval [s0, s1] ⊆ [0, 1] such that T1(σ ([s0, s1])) = [a, b]. In particular the sub-path
γ := σ |[s0,s1] is such that T (γ ) ⊆ C, T (γ ) ∩ Cl 	= ∅ and T (γ ) ∩ Cr 	= ∅. We deduce the
validity of (i i). By Corollary 1 we have the assertion.
Compressive form. We reduce this case to the expansive form. Define a new operator S =
(S1, S2) : C → R × A as follows

S1(t, x) := 2t − T1(t, x), S2(t, x) := T2(t, x).

Weobserve that the operator S is compact, since T is compact.Moreover, if t = a, T1(t, x) ≥
a by (Ca), then S1(t, x) ≤ 2a − a = a. Similarly S2(t, x) ≥ b if t = b, using (Cb). Then
S satisfies the expansive form conditions. Consequently there is z̃ = (t̃, x̃) ∈ C such that
S(z̃) = z̃. Hence

t̃ = S1(t̃, x̃) = 2t̃ − T1(t̃, x̃), x̃ = S2(t̃, x̃) = T2(t̃, x̃).

We conclude that z̃ ∈ C is also a fixed point of T . �
Remark 3 In the second part of the proof of Theorem 6, we bring back the compressive
form to the expansive framework employing the same trick that Kwong employed in [12] to
transform an expansive operator into a compressive one.

An alternative way to prove the compressive form is to use directly the generalized
Schauder fixed point theorem that, as already noted, is a direct consequence of our main
result.

Till now, we have always considered fixed point theorems of expansive type or we have
reduced the problem to them. In view of Corollary 2, we present a result of compressive type
that allows us to easily prove Krasnosel’skiı̆ fixed point theorems.

Corollary 3 Let Y be a metric space and M ′ ⊆ Y a closed subset homeomorphic to the
cylinder C′ := [a′, b′] × A, where A is an AR and a′, b′ ∈ R with a′ < b′. Call h : M ′ → C′
the homeomorphism onto its image. Let M ⊆ M ′ and suppose there exist a, b ∈ R with
a′ < a < b < b′ such that h(M) = C := [a, b] × A. We define

Ml := h−1({a} × A) and Mr := h−1({b} × A)

the left base and the right base of M, respectively.
Consider the operator φ : M → Y and suppose that

(i) φ is compact on M;
(i i) φ(Ml) ⊆ h−1([a, b′] × A) and φ(Mr ) ⊆ h−1([a′, b] × A).

Then there exists z̃ ∈ M such that φ(z̃) = z̃.

Proof First of all, we observe that condition (i i) is equivalent to require that ψ({a} × A) ⊆
[a, b′]× A and ψ({b}× A) ⊆ [a′, b]× A, where ψ := h ◦φ ◦ h−1. Secondly, as in the proof
of Corollary 2, we consider the homeomorphism h|M between M and C. Finally, we apply
the compressive form in Theorem 6 to T = ψ and C. Hence we obtain the assertion. �
Remark 4 As we shall see in the sequel, Corollary 3 is a useful tool to prove compressive
forms. However we can also note that, unlike Corollary 2, we do not have a localization of
fixed points (for example inside a closed subset of M).
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Hereafter we deal with cones in normed linear spaces. Let (X, ‖ · ‖) be a normed linear
space. We recall that a subset K ⊆ X is a cone if the following conditions are satisfied:

– K is closed;
– αu + βv ∈ K , ∀ u, v ∈ K , ∀ α, β ∈ R

+;
– K ∩ (−K ) = {0}, i.e. if u ∈ K and −u ∈ K then u = 0.

In the following example, we analyse some subsets of a cone in a normed space. What
we observe allows us to define a homeomorphism between a region inside the cone and a
suitable cylinder.

Example 3 Let (X, ‖·‖) be a normed linear space and K ⊆ X a cone. ByDugundji extension
theorem, K is an AR, since K is convex.

Consider the subset Ka := {x ∈ K : ‖x‖ = a}, with a ∈ R
+. We claim that Ka is a

retract of K ; therefore, it is an AR (cf. [6, Proposition 7.2, p. 162]). If a = 0, we consider
the retraction ra ≡ 0. If a 	= 0, we fix an element y ∈ K\{0} and we define the retraction
ra : K → Ka as follows

ra(x) := a
x + (a − ‖x‖)2y

‖x + (a − ‖x‖)2y‖ , x ∈ K .

Themap ra is well defined, because x +(a−‖x‖)2y ∈ K\{0}, ∀ x ∈ K .Moreover ra(x) ∈ K
and ‖ra(x)‖ = a, ∀ x ∈ K . Clearly ra is continuous and r |Ka = I dKa .

Let l : X → R be a continuous functional, positive (i.e. l(x) ≥ 0, ∀ x ∈ K ) and positively
homogeneous. Consider the set K l

a := {x ∈ K : l(x) = a}, with a ∈ R
+. If the functional

l is also strictly positive (i.e. l(x) > 0, ∀ x ∈ K\{0}), using the previous retractions (where
we replace ‖ · ‖ with l(·)), we obtain that K l

a is a retract of K , therefore an AR.
Suppose that l is not strictly positive and assume that l is linear and l 	≡ 0 on K (otherwise

K l
a is the whole cone K or the empty set). Fix an element y ∈ K with l(y) 	= 0. Fix a 	= 0.

Define the retraction ra : K → K l
a as follows

ra(x) := a
x + (a − l(x))2y

l(x + (a − l(x))2y)
, x ∈ K .

The map ra is well defined, because l(x + (a − l(x))2y) = l(x) + (a − l(x))2l(y) > 0,
∀ x ∈ K . Moreover ra(x) ∈ K and l(ra(x)) = a, ∀ x ∈ K . Clearly ra is continuous and
ra |K l

a
= I dK l

a
. If a = 0, K l

a is closed, convex (by the linearity of l) and nonempty (0 ∈ K l
a).

By Dugundji extension theorem, we conclude that K l
0 is a retract of X , so it is an AR.

We note that we can alternatively suppose that l : K → R
+ is defined only on K , is

positively homogeneous and is such that

l (αx1 + βx2) ≥ αl(x1) + βl(x2), ∀ x1, x2 ∈ K , ∀ α, β ≥ 0.

In the case of positively homogeneous functionals, we stress that this hypothesis is equivalent
to assume that l is concave on K .

Furthermore we also remark that the assumption of positive homogeneity is necessary for
our definition of the retractions ra .

For definitions, properties and characterizations of functionals defined on cones, we refer
to [7].

Now we have all the tools to enunciate and prove Krasnosel’skiı̆ fixed point theorem. The
original version and the original proof are located in [10,11]. Alternative proofs can be found
in [6,7,23].
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Theorem 7 (Krasnosel’skiı̆) Let (X, ‖ · ‖) be a normed linear space and K a cone in X.
Fix a, b ∈ R

+ with 0 < a < b. Define Ka,b := {x ∈ K : a ≤ ‖x‖ ≤ b} and Kd := {x ∈
K : ‖x‖ = d}, for all d ∈ R

+.
Consider a compact map T : K → K .

– (Expansive form) T has at least a fixed point in Ka,b if

(Ea) ‖T (x)‖ ≤ ‖x‖, ∀ x ∈ Ka;
(Eb) ‖T (x)‖ ≥ ‖x‖, ∀ x ∈ Kb.

– (Compressive form) T has at least a fixed point in Ka,b if

(Ca) ‖T (x)‖ ≥ ‖x‖, ∀ x ∈ Ka;
(Cb) ‖T (x)‖ ≤ ‖x‖, ∀ x ∈ Kb.

Proof Consider the cylinder C = [a, b] × K1. As observed in Example 3, the set K1 is a
retract of K (hence of X ). Now we define an homeomorphism h between Ka,b and C as
follows

h(x) :=
(

‖x‖, x

‖x‖
)

, x ∈ Ka,b.

Clearly h is a continuous bijection with continuous inverse h−1 : (α, z) �→ αz. Moreover we
note that Ka = h−1({a} × K1) and Kb = h−1({b} × K1).
Expansive form. We use Corollary 2 with Y = X , N = K and M = V = Ka,b. Condition
(i) is obvious. We prove (i i). Suppose that the path (σ, σ ), with σ : [0, 1] → Ka,b, is such
that σ(0) ∈ Ka and σ(1) ∈ Kb. From (Ea) and (Eb) we derive that ‖T (σ (0))‖ ≤ a and
‖T (σ (1))‖ ≥ b. By the continuity of ‖T (σ (·))‖, there exists a subinterval [s0, s1] ⊆ [0, 1]
such that ‖T (σ ([s0, s1])‖ = [a, b]. In particular, the sub-path γ := σ |[s0,s1] is such that
T (γ ) ⊆ Ka,b, T (γ )∩ Ka 	= ∅ and T (γ )∩ Kb 	= ∅. We deduce the validity of (i i) and hence
the claim.
Compressive form. Fix ε > 0 such that a − ε > 0. Define a′ = a − ε and b′ = b + ε. Set
M ′ = Ka′,b′ and φ := r ◦ T |M , where r : K → K is defined as follows

r(z) =

⎧
⎪⎨

⎪⎩

ra′(z), if z ∈ K0,a′ ;
z, if z ∈ Ka′,b′ ;
rb′(z), if z ∈ K\K0,b′ ;

and ra′ , rb′ are the retractions defined in Example 3. Using Corollary 3 we obtain the thesis.
�

From what has been discussed in Example 3, one can easily generalize Theorem 7 by
the following result. For other versions of Krasnosel’skiı̆ fixed point theorem, we refer to
[7,14,23].

Theorem 8 Let (X, ‖ · ‖) be a normed linear space and K a cone in X. Let l : X → R be
a continuous functional, strictly positive and positively homogeneous. Fix a, b ∈ R

+ with
a < b. Define K l

a,b := {x ∈ K : a ≤ l(x) ≤ b} and K l
d := {x ∈ K : l(x) = d}, for all

d ∈ R
+.

Consider a compact map T : K → K .

– (Expansive form) T has at least a fixed point in K l
a,b if

(El
a) l(T (x)) ≤ a, ∀ x ∈ K l

a;
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(El
b) l(T (x)) ≥ b, ∀ x ∈ K l

b.

– (Compressive form) T has at least a fixed point in K l
a,b if

(Cl
a) l(T (x)) ≥ a, ∀ x ∈ K l

a;
(Cl

b) l(T (x)) ≤ b, ∀ x ∈ K l
b.

Proof The proof is the same of Theorem 8, replacing ‖ · ‖ with l(·).
Remark 5 Wenote that usually Krasnosel’skiı̆ fixed point theorems are set on Banach spaces,
while our versions are also valid on normed spaces. Furthermore it is typically required that
the neighbourhoods of the origin are bounded and that the operator is completely continuous
(which is equivalent to the compactness, if the neighbourhoods are bounded). We remark
that hypotheses of Theorem 7 and Theorem 8 do not require the boundedness of the set
{x ∈ K : l(x) ≤ b}, but we demand the compactness of the operator T .

We end this section by considering other forms for the domain of the operator T . We start
with the following theorem, still presented in [12,13] in the framework of a Banach space. It
was originally stated and proved in [2] (using Lefschetz theory). See also [6, Corollary 6.3,
p. 452] and [15, § 4].

Theorem 9 Let (X, ‖ · ‖) be a normed linear space and (B[xi , ri ])i a collection of 2n
closed balls pairwise disjoint contained in B[0, R]. Define L := B[0, R]\ ⋃2n

i=1 B(xi , ri )

and consider a compact map T : L → B[0, R] such that T (∂ B(xi , ri )) ⊆ B[xi , ri ] for all
i ∈ {1, . . . , n}. Then T has at least a fixed point in L.

Using the fixed point index, the proof is quite straightforward: assuming that there are no
fixed points on ∂L , it is proved that iX (T, int(L)) = 1− 2n, using the additivity property of
the fixed point index.

From the computation of iX (T, int(L)) = 1−2n, we immediately see that the assumptions
of the theorem are very restrictive; in fact, to have a fixed point in L , it is sufficient to assume
that the number of holes is different from 1. Moreover, if we suppose that this number is
equal to 1, the constant map T ≡ x1 defines a possible counterexample: clearly T satisfies
every hypothesis, but it has no fixed points in L .

The following result shows a possible solution for the case of a ball with a single hole in
an infinite dimensional normed space. Assuming in addition to the hypotheses of Theorem 9
that ∂ B(0, R) is invariant (i.e. T (∂ B(0, R)) ⊆ ∂ B(0, R)), the assertion with a single hole is
valid, as shown in the expansive form of this theorem.

Theorem 10 Let (X, ‖ · ‖) be an infinite dimensional normed linear space. Fix r1, r2 ∈ R

such that 0 < r1 < r2 and define the annulus

A := {x ∈ X : r1 ≤ ‖x‖ ≤ r2}
and Ad := ∂ B(0, d) = {x ∈ X : ‖x‖ = d}, for all d ∈ R

+. Consider a compact map
T : A → X.

– (Expansive form) T has at least a fixed point in A if

(Ea) ‖T (x)‖ ≤ ‖x‖, ∀ x ∈ Ar1 ;
(Eb) ‖T (x)‖ ≥ ‖x‖, ∀ x ∈ Ar2 .

– (Compressive form) T has at least a fixed point in A if
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(Ca) ‖T (x)‖ ≥ ‖x‖, ∀ x ∈ Ar1 ;
(Cb) ‖T (x)‖ ≤ ‖x‖, ∀ x ∈ Ar2 .

Proof The proof is the same of Theorem 7, observing that A1 is an AR in an infinite dimen-
sional normed linear space (cf. [3, Theorem 6.2] or [6, Theorem 7.7, pp. 164–165]). �

The statement is false in finite dimension. For example, it is sufficient to consider a
nontrivial rotation ϑ of centre 0 in R

2. Clearly ϑ is continuous (hence compact) and it has
no fixed points.

Remark 6 We underline that Theorem 9 remains valid if we consider sets homeomorphic to
the ball at the place of B(0, R) and B(xi , ri ) and, moreover, we could also set Theorem 9 in
the context of ARs, as in [2].

Remark 7 ConcerningTheorem9set in infinite dimensional spaces, ifwe replace the assump-
tion T (∂ B(xi , ri )) ⊆ B[xi , ri ], for all i ∈ {1, . . . , n}, with T (∂ B(xi , ri )) ⊆ L , for all
i ∈ {1, . . . , n}, we obtain the same thesis by applying Generalized Schauder Theorem (notice
that L is an AR, see [3, Theorem 6.2] or [6, Theorem 7.7, pp. 164–165]).

Appendix

In this final section, we present the fixed point index defined on sets contained in ANRs. In
particular, we list the axioms and the main properties which are relevant for this paper. For
more details and proofs, we refer to [1,5,6,16,19,20] and the references therein.

Let X be an ANR and U ⊆ X an open subset. Consider a continuous map f : U → X
such that Fix( f ) := {x ∈ U : f (x) = x} is a compact set (possibly empty) and such that
there exists an open neighbourhood V of Fix( f ) with V ⊆ U such that f |V is compact. If
all the previous assumptions are satisfied, the triplet (X, U, f ) is said to be admissible.

To an admissible triplet (X, U, f ) we associate an integer

iX ( f, U ),

called the fixed point index of f on U relatively to X, satisfying the following properties.

(a) Additivity. If U1, U2 ⊆ U are open and disjoint subsets and Fix( f ) ⊆ U1 ∪ U2, then

iX ( f, U ) = iX ( f, U1) + iX ( f, U2).

(b) Homotopy invariance. Let h : [0, 1] × U → X , hλ(x) := h(λ, x), be a continuous
homotopy such that 	 := ⋃

λ∈[0,1]{x ∈ U : x − hλ(x) = 0} is a compact set and there

exists an open neighbourhood V of 	 such that V ⊆ U and h|[0,1]×V is a compact map.
Then iX (hλ, U ) is constant with respect to λ ∈ [0, 1].

(c) Weak normalization. Let f (x) = p, ∀ x ∈ U , then

iX ( f, U ) :=
{
1, if p ∈ U ;
0, if p /∈ U.

(d) Strong normalization. If U = X and the map f is compact, then the Lefschetz number
of f is defined and

iX ( f, U ) = �( f ).

(e) Fixed point property. If iX ( f, U ) 	= 0, then Fix( f ) 	= ∅, i.e. f has a fixed point.
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( f ) Excision. Let U0 be an open subset of U such that Fix( f ) ⊆ U0. Then

iX ( f, U ) = iX ( f, U0).

(g) Multiplicativity. If the triplets (X1, U1, f1), (X2, U2, f2) are admissible, then

iX1×X2( f1 × f2, U1 × U2) = iX1( f1, U1) · iX2( f2, U2),

where f1 × f2 : U1 × U2 → X1 × X2, ( f1 × f2)(u, v) := ( f1(u), f2(v)).
(h) Commutativity. Let U1, U2 be open subsets of the ANRs X1, X2, respectively. Sup-

pose that f1 : U1 → X2, f2 : U2 → X1 are continuous maps and f1 is compact in a
neighbourhood of {x ∈ U1 : f2 f1(x) = x} (or f2 is compact in a neighbourhood of
{x ∈ U2 : f1 f2(x) = x}), where f2 f1 : f −1

1 (U2) → X1 and f1 f2 : f −1
2 (U1) → X2. If

the triplets ( f −1
1 (U2), U1, f2 f1), ( f −1

2 (U1), U2, f1 f2) are admissible, then

iX1( f2 f1, f −1
1 (U2)) = iX2( f1 f2, f −1

2 (U1)).

(i) Contraction. Let Y ⊆ X be an ANR such that the inclusion j : Y → X is continuous
and f (U ) ⊆ Y . Then

iX ( f, U ) = iY ( f, U ∩ Y ).

( j) Localization. Let U1, U2 ⊆ U be open and disjoint subsets and Fix( f ) ⊆ U1 ∪ U2. If
iX ( f, U ) 	= 0 and iX ( f, U1) = 0, then Fix( f |U2) 	= ∅.

(k) Multiplicity. Let U1, U2 ⊆ U be open and disjoint subsets and Fix( f ) ⊆ U1 ∪ U2. If
iX ( f, U ) = 0 and iX ( f, U1) 	= 0, then Fix( f |U1) 	= ∅ and Fix( f |U2) 	= ∅.

Remark 8 It is obvious to observe that the axioms listed above are not independent. For
example, properties ( j) and (k) are direct consequence of axioms (a) and (e), or further (h)

implies (i).

Remark 9 For the applications shown in this paper, it is sufficient to give the axioms of the
fixed point index in a less abstract framework. If we just assume that U is an open subset
of X and f : U → X is a compact map which has no fixed points on ∂U , then the triplet
(X, U, f ) is admissible.

In that framework, the homotopy property can be written in this easier way. Let X be
an ANR and U ⊆ X an open subset. Let h : [a, b] × U → X be a compact map such that
Fix(hλ) ∩ ∂U = ∅, for all λ ∈ [a, b]. Then iX (hλ, U ) is constant with respect to λ ∈ [a, b].
The remaining axioms remain almost unchanged.

We conclude the appendix with a theorem which is crucial in the proof of the main result.
It is stated in a less general framework than the one in which we have defined the fixed point
index.

Theorem 11 (Leray–Schauder continuation principle) Let X be an ANR, U an open subset
of [a, b] × X, and let ψ : U → X be a compact map such that

(i) the sets ∂U and 	 := {
(t, x) ∈ U : ψ(t, x) = x

}
are disjoint;

(i i) iX (ψ(a, ·), Ua) 	= 0, where Ua = {x ∈ X : (a, x) ∈ U }.
Then there exists a continuum S ⊆ 	 joining the sets

A = (X × {a}) ∩ 	 and B = (X × {b}) ∩ 	.
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