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Abstract Boggio’s formula in balls is known for integer-polyharmonic Dirichlet problems
and for fractional Dirichlet problems with fractional parameter less than 1. We give here a
consistent formulation for fractional polyharmonic Dirichlet problems such that Boggio’s
formula in balls yields solutions also for the general fractional case.

Mathematics Subject Classification 35J40

1 Introduction

Goal of this paper is to extend Boggio’s classical formula [4, p. 126] for solutions to Dirichlet
problems in the unit ball B := B1(0) of Rn to “polyharmonic” operators of any fractional
order s > 0. In this context, we give a consistent definition for (−�)s when applied to
functions which are merely in Hs(Rn) ∩ H2s(B). For operators of order s ∈ N, the formula
of Boggio is a classical tool to construct solutions of the s-polyharmonic equation with
right-hand side equal to f and subject to homogeneous boundary data.

More precisely, Boggio’s formula (see also [14, p. 51]) states that the polyharmonic Green
function with s ∈ N in the unit ball B = B1(0) ⊂ R

n is given by
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1328 S. Dipierro, H.-C. Grunau

Gs(x, y) := ks,n |x − y|2s−n
∫ ∣∣∣|x |y− x

|x |
∣∣∣/|x−y|

1

(
v2 − 1

)s−1
v1−n dv, (1)

with ks,n := 1

nen4s−1�(s)2
, and en := πn/2

�(1 + n/2)
(2)

for x, y ∈ B, x �= y. This formula showed up also in potential theory (see [20,24]) for
s ∈ (0, 1). For a probabilistic point of view, see [3,19]. Recently, the Dirichlet problem for
the fractional Laplacian attracted quite some attention (see, e.g., [5,6,9,28] and the references
therein), and it was shown in Theorems 3.1 and 3.3 in [5] that Boggio’s formula remains
valid also for s ∈ (0, 1). It is a quite remarkable fact that such Gs has a rather explicit
expression, in terms of the fundamental solution and a weighted integral containing a Kelvin
transformation.

To sum up, this means that, defining

u(x) :=
∫
B
Gs(x, y) f (y) dy,

one obtains the unique solution u of the s-polyharmonic Dirichlet problem in the unit ball
B, provided that

• s ∈ N, see [4];
• s ∈ (0, 1), see [5] and the references therein.

We shall show that Boggio’s formula holds true for any s ∈ (0,∞) and n ∈ N. To this end,
we only need to consider s > 1. We write

s = m + σ, with m ∈ N and σ ∈ (0, 1), (3)

and define for u ∈ Hs(Rn) ∩ H2s(B)

(−�)su := (−�)m(−�)σ u. (4)

Here, (−�)σ u is the so-called fractional Laplacian, for which we use the usual nonlocal
definition given, for instance, in [5,6,9,10]:

(−�)σ u(x) := C(n, σ ) lim
ε↘0

∫
Rn\Bε(x)

u(x) − u(y)

|x − y|n+2σ ,

where C(n, σ ) := 4σ �
( n
2 + σ

)
−�(−σ) πn/2 . (5)

The operator (−�)m has to be understood in the classical pointwise sense. In this regularity
class, the order of applying (−�)σ and (−�)m in (4) is quite essential.

For functions u, which are even in H2s(Rn), the operator (−�)s may be equivalently
defined by using the Fourier transform, that is, for any ξ ∈ R

n ,

F
(
(−�)su

)
(ξ) = |ξ |2s û(ξ), (6)

where

(Fu)(ξ) = û(ξ) := 1

(2π)n

∫
Rn

e−iξ ·xu(x) dx

denotes the Fourier transform of u (see [9, Prop. 3.3] and also [26]).
In order to state our main result, we denote by α = (α1, . . . , αn) ∈ N

n a multi-index and
by |α| = α1 + · · · + αn the length of α.
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Boggio’s formula for fractional polyharmonic Dirichlet problems 1329

We will show that the Green function introduced in (1) can be used to get a solution u to
the s-polyharmonic Dirichlet problem in the following sense:

(−�)su = f in B, u ∈ Hs(Rn).

More precisely, the main result that we prove in this paper is as follows:

Theorem 1 Let s ∈ (0,∞) and f ∈ C∞
0 (B). Set

u(x) :=
⎧⎨
⎩
∫
B Gs(x, y) f (y) dy for x ∈ B,

0 for x /∈ B.

(7)

Then, u ∈ Hs(Rn) is the unique solution to{
(−�)su = f in B,

u = 0 in R
n \ B.

(8)

In addition, u ∈ Cm,σ (B) ∩ C∞(B) and

u(x) = (1 − |x |2)s+ũ(x) (9)

with some ũ ∈ C∞(Rn).

Once Boggio’s solution is proved to belong to a unique class, then it coincides with
any solution obtained by variational or functional analytic methods and the abstract theory
developed by [26,28] applies.

We emphasize that in order to interpret (8) in a strong sense, the order of differentiation
as defined in (4) is essential, i.e., (−�)m((−�)σ u) = f in B. Indeed, Theorem 1 shows the
consistency of this definition: The fractional polyharmonic operator should be defined such
that the function given by Boggio’s formula yields the unique solution of the corresponding
Dirichlet problem.

As a by-product of Theorem 1 and the strict positivity of Boggio’s Green function, we
have the following positivity preserving property:

Let f and u be as in Theorem 1. Then, f ≥ 0, f �≡ 0 implies that u > 0 in B.

It is known that such a property fails in general domains for integer s ≥ 2, see the discus-
sion and the references in [14]. While the present paper was submitted and under review,
Abatangelo et al. [1] sent us their preprint where precisely this question is studied for s > 1.
Independently and (almost) simultaneously, they achieved among others the same result as
in our Theorem 1, but their approach is quite different.

This type of fractional higher-order operators plays an important role in analysis, see [8,
12,16,18,22,27,29,30], in geometry, see [7,15,17], and in some applications, see [21,31].
See in particular [26], where Pohozhaev identities for higher-order fractional Laplacians have
been obtained.

The Boggio-type formula obtained in Theorem 1 is in perfect agreement with the cases s ∈
(0, 1) ∪ N, which were already known, but the extension to the whole interval s ∈ (0,+∞)

is based on appropriate series expansions and analytic continuation.
The paper is organized as follows. In Sect. 2, we show the covariance under Möbius

transformations of the operator introduced in (4). In Sect. 3, we provide an expression for
the fractional Laplacian of order σ ∈ (0, 1) of the Green function as given by formula (1)
with pole at the origin. This will imply that the function in (1) is the Green function for the
operator (−�)s with pole at the origin. Here, we strongly rely on fractional differentiation
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1330 S. Dipierro, H.-C. Grunau

results due to Dyda [10], which were developed further by him, Kuznetsov, and Kwaśnicki
in the recent work [11].

Then, by the covariance under Möbius transformations, we will obtain the Green function
for the fractional Laplacian of any order s ∈ (0,∞) at any pole.

In Sect. 4, we complete the proof of Theorem 1.

2 Covariance under Möbius transformations

In this section, we show that the operator introduced in (4) is covariant under Möbius trans-
formations. This property holds true for polyharmonic operators, see, e.g., Lemma 6.14
in [14], and for the fractional Laplacian, see, e.g., Lemma 2.2 and Corollary 2.3 in [13] and
Proposition A.1 in [25].

The extension of these covariance properties to operators of any fractional powers was
not available in the literature (to the best of our knowledge), and we obtain it by using
complex analysis methods and unique continuation of analytic functions, given that the
desired formulas hold in a nontrivial interval in the reals. To this aim, we use the notation S
to denote the Schwartz space of smooth and rapidly decreasing functions, and we have the
following result:

Lemma 2 Fix x ∈ R
n and v ∈ S. Then, the map

Tv,x (s) := (−�)sv(x)

is analytic for s ∈ (0,+∞).

Proof We use complex analysis, so we will take s ∈ C, with �s > 0. We define

w(s) :=
∫
Rn

ei x ·ξ |ξ |2s v̂(ξ) dξ. (10)

We observe that, for any z ∈ C,

|ez − 1 − z| =
∣∣∣∣∣
+∞∑
k=2

zk

k!

∣∣∣∣∣ ≤
+∞∑
k=2

|z|k
k! = |z|2

+∞∑
k=2

|z|k−2

k!

≤ |z|2
+∞∑
k=2

|z|k−2

(k − 2)! = |z|2e|z|.

So, for any h ∈ C, we use this formula with z := 2h log |ξ |, and we obtain∣∣∣|ξ |2(s+h) − |ξ |2s − 2h|ξ |2s log |ξ |
∣∣∣ = |ξ |2�s

∣∣∣|ξ |2h − 1 − 2h log |ξ |
∣∣∣

= |ξ |2�s
∣∣∣e2h log |ξ | − 1 − 2h log |ξ |

∣∣∣
≤ 4|h|2|ξ |2�s log2 |ξ | e2|h| | log |ξ | |.

Now, we observe that

e| log |ξ | | =
{

|ξ | if |ξ | ≥ 1,

|ξ |−1 if |ξ | < 1,

and so, if |h| < �s/2,

e2|h| | log |ξ | | ≤ |ξ |�s + |ξ |−�s .
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Boggio’s formula for fractional polyharmonic Dirichlet problems 1331

Hence, we have found that∣∣∣|ξ |2(s+h) − |ξ |2s − 2h|ξ |2s log |ξ |
∣∣∣ ≤ 4|h|2 (|ξ |3�s + |ξ |�s) log2 |ξ |.

In consequence of this, for any h ∈ C with 0 < |h| < �s/2,∣∣∣∣w(s + h) − w(s)

h
− 2

∫
Rn

ei x ·ξ |ξ |2s log |ξ | v̂(ξ) dξ

∣∣∣∣
=
∣∣∣∣ 1h

∫
Rn

ei x ·ξ v̂(ξ)
(
|ξ |2(s+h) − |ξ |2s − 2h|ξ |2s log |ξ |

)
dξ

∣∣∣∣
≤ 4|h|

∫
Rn

|v̂(ξ)| (|ξ |3�s + |ξ |�s) log2 |ξ | dξ ≤ C |h|,
for some C > 0 (possibly depending on n, s, and v). By sending h → 0, we then obtain
that w is differentiable in the complex sense, and so analytic in {�s > 0}, which gives the
desired result by comparing (6) and (10). ��

With the aid of the latter result, we can now prove the desired covariance under Möbius
transformations:

Lemma 3 Let φ be a smooth Möbius transformation in Rn \ {x0}, and let Jφ be the modulus
of the Jacobian determinant.

Then, for any s ∈ (0,∞) and any u ∈ C∞
0 (Rn \ {x0}),

(−�)s
(
J

1
2− s

n
φ u ◦ φ

)
= J

1
2+ s

n
φ

(
(−�)su

) ◦ φ. (11)

Proof We recall that any Möbius transform φ can be seen as a finite combination of similar-
ities and inversions. In particular, from Corollary 4 on page 39 of [23], we have that we can
write φ = φ1 ◦ j ◦φ2, where j is an inversion, i.e., j (x) = |x |−2x , and φ1, φ2 are similarities,
i.e., φi (x) = ai + ci Fi x , for i = 1, 2, with ci > 0, ai ∈ R

n and Fi an orthogonal matrix.
Therefore,

it suffices to show (11) for translations, rotations and inversions. (12)

Notice that formula (11) is easily verified if φ is a translation or a rotation, since in these
cases the Jacobian is equal to 1, and therefore, using the invariance under translations and
rotations of polyharmonic operators and fractional Laplacians,

(−�)s (u ◦ φ) = (−�)m
[
(−�)σ (u ◦ φ)

] = (−�)m
[(

(−�)σ u
) ◦ φ

]
= [

(−�)m(−�)σ u
] ◦ φ

= (
(−�)su

) ◦ φ,

as desired.
Now, we focus on the case in which φ is the inversion with respect to the unit sphere.

Namely, we consider the transformation that associates with any x ∈ R
n \{0} the point x∗ :=

x/|x |2 ∈ R
n \ {0}, and we observe that Jφ(x) = |x |−2n . Hence, we set

u∗(x) := J
1
2− s

n
φ (x) u(x∗) = 1

|x |n−2s u(x∗),

and we have that, according to our assumption, u∗ ∈ C∞
0 (Rn \ {0}). With this notation, we

claim that

(−�)su∗(x) = 1

|x |n+2s (−�)su(x∗). (13)
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1332 S. Dipierro, H.-C. Grunau

To prove this, use the notation introduced in Lemma 2 to say that (13) is equivalent to

F(s) := Tu∗,x (s) − 1

|x |n+2s Tu,x∗(s) = 0.

We remark first that, thanks to our smoothness and compact support assumptions,

v̂(s, ξ) := 1

(2π)n

∫
Rn

e−iξ ·x |x |2s−nu

(
x

|x |2
)

dx

depends holomorphically on s in �s > 0. The smoothness and fast decay of ξ �→ v̂(s, ξ) is
locally uniformwith respect to s. Hence, F is analyticwhen s ∈ (0,+∞), thanks toLemma2.
Also, F(s) = 0 for any s ∈ (0, 1], since (13) is known for this range of parameters s (see
Lemma 2.2 and Corollary 2.3 in [13] and Proposition A.1 in [25]). Then, by analytic unique
continuation, we conclude that F vanishes identically in (0,+∞), which proves (13). Then,
the proof of Lemma 3 is also completed, thanks to (12). ��

3 Green function with pole at the origin

In this section, we focus on the case in which the pole for the Green function is the origin.
For this, we define, for r ∈ (0,∞),

G̃s(r) :=
{
r2s−n

∫ 1/r
1 (v2 − 1)s−1v1−n dv if r ∈ (0, 1],

0 if r ∈ (1,∞)
(14)

so that

Gs(0, y) = ks,nG̃s(|y|), y ∈ B \ {0}.
We will prove that G̃s (suitably renormalized) is the Green function for (−�)s with pole at
the origin. More precisely, we prove that:

Proposition 4 For r = |y| ∈ (0, 1), we have that

(−�)s G̃s(|y|) = (
ks,n

)−1
δ0(y), (15)

where ks,n is given by formula (2).

Then, the general case (i.e., when the pole is not the origin) will follow from the covariance
under Möbius transformation of the operator (−�)s , as stated in Sect. 2. Proposition 4 gives
a precise statement of what is outlined in a recent work of Dyda et al., see [11, Remark
1]. One should, however, observe that the Green’s functions mentioned there were obtained
before only for s ∈ (0, 1).

In order to prove Proposition 4, we shall deduce a series expansion for G̃s , where we can
rely on calculations by Dyda [10] in order to compute (−�)σy Gs(0, y). For this purpose, we
recall the definition of the Pochhammer symbols:

(a)k :=
k−1∏
j=0

(a + j), a ∈ R, k ∈ N0. (16)

In what follows, we perform calculations with hypergeometric series which are related to
those by Bucur [5, Section 3] and by Dyda et al. [11]. We start by writing G̃s in a useful way
for our computations.

123



Boggio’s formula for fractional polyharmonic Dirichlet problems 1333

Lemma 5 For r ∈ (0,∞), we have that

G̃s(r) =
∞∑
k=0

( n
2

)
k

2(s)k+1
(1 − r2)k+s+ . (17)

This claim could also be deduced from [11, Remark 1].

Proof of Lemma 5 Differentiating G̃s yields for r ∈ (0, 1]:

G̃ ′
s(r) = (2s − n)r2s−n−1

∫ 1/r

1
(v2 − 1)s−1v1−n dv − r2s−n−2

(
1

r2
− 1

)s−1

rn−1

= (2s − n)

r
G̃s(r) − 1

r
(1 − r2)s−1.

Hence, G̃s solves the following initial value problem:

{
G̃ ′

s(r) − (2s−n)
r G̃s(r) = − 1

r (1 − r2)s−1, r ∈ (0, 1],
G̃s(1) = 0.

(18)

A direct calculation shows that the unique solution of (18) is given by the right-hand side of
(17), and this finishes the proof of Lemma 5. ��

Now, we employ Lemma 5 and Theorem 1 in [10] to find an expression of (−�)σy G̃s(0, y)

(extended by 0 outside B) in terms of an auxiliary function G�
s (given in (19)).

Lemma 6 For r ∈ (0, 1), we have that

(−�)σ G̃s(r) = 4σ− 1
2 �( n2 + σ)�(s)

�( n2 ) · m! G�
s(r),

with

G�
s(r) =

∞∑
k=0

( n
2

)
k

(m + 1)k
2F1

(n
2

+ σ,−k − m; n
2
; r2

)
. (19)

Here, 2F1 denotes Gauß’s hypergeometric function.

Proof Werecall Euler’s beta-function B(p, q) := �(p)�(q)
�(p+q)

.When applyingDyda’s fractional
differentiation result [10, Theorem 1], one should observe that he uses �σ = −(−�)σ . This
yields immediately:
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1334 S. Dipierro, H.-C. Grunau

(−�)σ G̃s(r) = 4σ− 1
2 �( n2 + σ)

�( n2 ) �(−σ)

·
∞∑
k=0

( n
2

)
k B(−σ, k + m + σ + 1)

(s)k+1
2F1

(n
2

+ σ,−k − m; n
2
; r2

)

= 4σ− 1
2 �( n2 + σ)

�( n2 )

∞∑
k=0

( n
2

)
k �(k + m + σ + 1)

(s)k+1�(k + m + 1)
2F1

(n
2

+ σ,−k − m; n
2
; r2

)

= 4σ− 1
2 �( n2 +σ)

�( n2 )

∞∑
k=0

( n
2

)
k �(k+s+1)

(s)k+1(m + 1)k�(m + 1)
2F1

(n
2

+σ,−k − m; n
2
; r2

)

= 4σ− 1
2 �( n2 + σ)

�( n2 ) · m!
∞∑
k=0

( n
2

)
k (s)k+1�(s)

(s)k+1(m + 1)k
2F1

(n
2

+ σ,−k − m; n
2
; r2

)

= 4σ− 1
2 �( n2 + σ)�(s)

�( n2 ) · m!
∞∑
k=0

( n
2

)
k

(m + 1)k
2F1

(n
2

+ σ,−k − m; n
2
; r2

)
,

which gives the desired result. ��
Finally, we provide an expression for the function G�

s , also in terms of the Green function
for (−�)m . Indeed, we have the following result:

Lemma 7 There exist real numbers a0, . . . , am−1 such that, for r ∈ (0, 1), we have that

G�
s(r) =

m−1∑
k=0

ak(1 − r2)k + 2m
�(m + σ)�( n2 )

�( n2 + σ)�(m)
G̃m(r). (20)

Proof If we directly insert the definition of 2F1
( n
2 + σ,−k − m; n

2 ; r2) into (19), we would
come up with polynomials with terms of alternating sign. The whole series would then not
be absolutely convergent, and one could not rearrange the order of summation. In order to
bypass this difficulty, we use [2, Corollary 2.3.3]. Here, it is quite important that σ is not an
integer. We first notice that

2F1
(n
2

+σ,−k − m; n
2
; r2

)
= (−σ)k+m

( n2 )k+m
2F1

(n
2

+σ,−k − m; σ + 1 − k − m; 1 − r2
)

,

where

2F1
(n
2

+ σ,−k − m; σ + 1 − k − m; 1 − r2
)

=
k+m∑
�=0

( n
2 + σ

)
�
(−k − m)�

�! (σ + 1 − k − m)�
(1 − r2)�

=
k+m∑
�=0

( n
2 + σ

)
�
(m + k) · . . . · (m + k − � + 1)

�! (m + k − σ − 1) · . . . · (m + k − σ − �)
(1 − r2)�

=
k+m∑
�=0

( n
2 + σ

)
�

(m + k − � + 1)�
�! (m + k − σ − �)�

(1 − r2)�.

Here, one has that all summands but for � = k + m are positive. This means that in what
follows, we have absolute convergence and may rearrange the order of summation. In view
of Lemma 6, we obtain that, for suitable real numbers a�,

123



Boggio’s formula for fractional polyharmonic Dirichlet problems 1335

G�
s(r) =

∞∑
k=0

( n2 )k (−σ)k+m

(m + 1)k ( n2 )k+m

k+m∑
�=0

( n2 + σ)� (m + k − � + 1)�
�! (m + k − σ − �)�

(1 − r2)�

=
∞∑
k=0

(−σ)k+m

(m + 1)k ( n2 + k)m

k+m∑
�=0

( n2 + σ)� (m + k − � + 1)�
�! (m + k − σ − �)�

(1 − r2)�

=
∞∑

k=m

(−σ)k

(m + 1)k−m ( n2 + k − m)m

k∑
�=0

( n2 + σ)� (k + 1 − �)�

�! (k − σ − �)�
(1 − r2)�

=
m−1∑
�=0

a� (1 − r2)�

+
∞∑

�=m

( n2 + σ)�

�! (1 − r2)�
∞∑
k=�

(−σ)k (k + 1 − �)�

(m + 1)k−m ( n2 + k − m)m (k − σ − �)�
.

Interchanging k and � leads us to

G�
s(r) =

m−1∑
k=0

ak (1 − r2)k

+
∞∑

k=m

( n2 + σ)k

k! (1 − r2)k
∞∑

�=k

(−σ)� (� + 1 − k)k
(m + 1)�−m ( n2 + � − m)m (� − σ − k)k

=
m−1∑
k=0

ak (1 − r2)k

+
∞∑

k=m

( n2 + σ)k

k! (1 − r2)k
∞∑

�=0

(−σ)�+k (� + 1)k
(m + 1)�+k−m ( n2 + � + k − m)m (� − σ)k

=
m−1∑
k=0

ak (1 − r2)k

+
∞∑

k=m

( n2 + σ)k

k! (m + 1)k−m
(1 − r2)k

∞∑
�=0

(−σ)� (� + 1)k · �!
(k + 1)� ( n2 + � + k − m)m · �!

=
m−1∑
k=0

ak (1 − r2)k +
∞∑

k=m

( n2 + σ)k

(m + 1)k−m
(1 − r2)k

∞∑
�=0

(−σ)�

�!( n2 + � + k − m)m
.

(21)
We show now that for k ≥ m

( n2 + k − m)�

( n2 + k)�
= ( n2 + k − m)m

( n2 + k + � − m)m
. (22)

Indeed, the claim is obvious for � = m, while for � > m terms cancel as follows:

( n2 + k − m)�

( n2 + k)�
= ( n2 + k − m) · . . . · ( n2 + k) · . . . · ( n2 + k + � − m − 1)

( n2 + k) · . . . · ( n2 + k + � − 1)

= ( n2 + k − m)m

( n2 + k + � − m)m
.
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1336 S. Dipierro, H.-C. Grunau

On the other hand, if � < m, we see that

( n2 + k − m)m

( n2 + k + � − m)m
= ( n2 + k − m) · . . . · ( n2 + k − 1)

( n2 + k + � − m) · . . . · ( n2 + k) · . . . · ( n2 + k + � − 1)
.

= ( n2 + k − m)�

( n2 + k)�
.

This completes the proof of (22).
Combining (21) and (22), we conclude further that

G�
s(r) =

m−1∑
k=0

ak (1 − r2)k

+
∞∑

k=m

( n2 + σ)k

(m + 1)k−m ( n2 + k − m)m
(1 − r2)k

∞∑
�=0

(−σ)� ( n2 + k − m)�

�! ( n2 + k)�

=
m−1∑
k=0

ak (1 − r2)k

+
∞∑

k=m

( n2 + σ)k

(m + 1)k−m ( n2 + k − m)m
(1 − r2)k 2F1(−σ,

n

2
+ k − m; n

2
+ k; 1).

We apply now Gauß’s summation theorem, see [2, Theorem 2.2.2], and obtain further:

G�
s(r) =

m−1∑
k=0

ak (1 − r2)k +
∞∑

k=m

( n2 + σ)k�( n2 + k) �(m + σ)

(m + 1)k−m ( n2 + k − m)m�( n2 + k + σ) �(m)
(1 − r2)k

=
m−1∑
k=0

ak (1 − r2)k + �(m + σ)�( n2 )

�( n2 + σ)�(m)

∞∑
k=m

( n2 )k

(m + 1)k−m ( n2 + k − m)m
(1 − r2)k

=
m−1∑
k=0

ak (1 − r2)k + �(m + σ)�( n2 )

�( n2 + σ)�(m)

∞∑
k=m

( n2 )k−m

(m + 1)k−m
(1 − r2)k

=
m−1∑
k=0

ak (1 − r2)k + 2m
�(m + σ)�( n2 )

�( n2 + σ)�(m)

∞∑
k=0

( n2 )k

2(m)k+1
(1 − r2)k+m .

Thus, we recall Lemma 5 and end up with

G�
s(r) =

m−1∑
k=0

ak (1 − r2)k + 2m
�(m + σ)�( n2 )

�( n2 + σ)�(m)
G̃m(r).

This concludes the proof of Lemma 7. ��

With all this in hand, we are able to complete the proof of Proposition 4.

Proof of Proposition 4 Recalling the definition of (−�)s in (4) and combining Lemmata 6
and 7, we obtain by writing r = |y| that
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(−�)s G̃s(r) = (−�)m (−�)σ G̃s(r)

= 4σ− 1
2 �( n2 + σ)�(s)

�( n2 ) · m! (−�)mG�
s(r)

= 4σ− 1
2 �( n2 + σ)�(s)

�( n2 ) · m! · 2m �(m + σ)�( n2 )

�( n2 + σ)�(m)
(−�)mG̃m(r)

= 4σ− 1
2 �( n2 + σ)�(s)

�( n2 ) · m! · 2m �(m + σ)�( n2 )

�( n2 + σ)�(m)
·
(
nen4

m−1�(m)2
)

δ0(y).

Now, we recall that s = m + σ and that �(m) = (m − 1)!, therefore
(−�)s G̃s(|y|) = nen4

s−1�(s)2δ0(y),

which gives the desired result, thanks to (2). ��

4 Proof of Theorem 1

In this section, we complete the proof of Theorem 1, with the aid of the results on the
Green function obtained in Sects. 2 and 3. To this aim, in the following result, we show, by
straightening the boundary of the unit ball, that x �→ (1 − |x |2)σ+ ∈ Hσ (Rn) (from this, in
Corollary 9, we will obtain that x �→ (1 − |x |2)s+ ∈ Hs(Rn)).

Lemma 8 For any σ ∈ (0, 1), the function R
n � x �→ (1 − |x |2)σ+ belongs to Hσ (Rn).

Proof With a covering argument, we may focus on proving that u(x) := (1−|x |2)σ+ belongs
to Hσ (B1/10(−en)). We use the notation x = (x ′, xn) ∈ R

n−1 × R and, for any |x | ≤ 1, we
define

y = (y′, yn) = (x) := (
x ′, xn +

√
1 − |x ′|2).

Notice that this map sends the unit ball B into R
n−1 × (0,+∞), and we can consider the

inverse map

x = �(y) := (
y′, yn −

√
1 − |y′|2).

Notice that is smooth in B1/10(−en); hence,� is also smooth on the image of B1/10(−en),
which is in turn contained in D := Bn−1

1/10 × [− 11
10 ,

11
10

]
, where the index n − 1 indicates that

this is an (n − 1)-dimensional ball. Hence, we define

v(y) := u(�(y)) = (2yn

√
1 − |y′|2 − y2n )

σ+,

and we aim at showing that v ∈ Hσ (D). Notice also that, if y ∈ D,

√
1 − |y′|2 ∈

[√
99

100
, 1

]
,

and so

2
√
1 − |y′|2 − yn ≥ 2

√
99

100
− 11

10
> 0.
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Consequently, v(y) = 0 for y ∈ D if and only if yn < 0, and so we can write

v(y) = (2yn

√
1 − |y′|2 − y2n )

σ+ = (yn)
σ+ (2

√
1 − |y′|2 − yn)

σ = (yn)
σ+ w(y),

with w smooth in D.
As a consequence, we only need to show that ζ(y) := (yn)σ+ belongs to Hσ (D). This

follows from the computation below:

∫
Bn−1
1/10

dx ′
∫ 11/10

−11/10
dxn

∫
Bn−1
1/10

dy′
∫ 11/10

−11/10
dyn

|ζ(x) − ζ(y)|2
|x − y|n+2σ

= 2
∫
Bn−1
1/10

dx ′
∫ 11/10

−11/10
dxn

∫
Bn−1
1/10

dy′
∫ xn

−11/10
dyn

|(xn)σ+ − (yn)σ+|2
|x − y|n+2σ

= 2
∫
Bn−1
1/10

dx ′
∫ 11/10

−11/10
dxn

∫
Bn−1
1/10

dy′
∫ xn

−11/10
dyn

|(xn)σ+ − (yn)σ+|2

|xn − yn |n+2σ
(
1 + |x ′−y′|2

|xn−yn |2
) n+2σ

2

≤ 2
∫
Bn−1
1/10

dx ′
∫ 11/10

−11/10
dxn

∫
Rn−1

dμ′
∫ xn

−11/10
dyn

|(xn)σ+ − (yn)σ+|2
|xn − yn |1+2σ

(
1 + |μ′|2) n+2σ

2

≤ C
∫ 11/10

−11/10
dxn

∫ xn

−11/10
dyn

|(xn)σ+ − (yn)σ+|2
|xn − yn |1+2σ

= C
∫ 11/10

0
dxn

∫ 0

−11/10
dyn

x2σn
|xn − yn |1+2σ + C

∫ 11/10

0
dxn

∫ xn

0
dyn

|xσ
n − yσ

n |2
|xn − yn |1+2σ

= C + C
∫ 11/10

0
dxn

∫ 1

0
dτ xn

x2σn (1 − τσ )2

x1+2σ
n (1 − τ)1+2σ

= C,

for some C > 0, possibly varying from line to line. ��

As a consequence of Lemma 8, we obtain

Corollary 9 For any m ∈ N and σ ∈ (0, 1), the function R
n � x �→ (1− |x |2)m+σ+ belongs

to Hm+σ (Rn).

Proof Let u(x) := (1−|x |2)m+σ+ and α ∈ N
n with α1+· · ·+αn = m. By iterating Lemma 8,

we obtain that Dαu ∈ Hσ (Rn). That is, using the equivalent norm in Fourier space,

+∞ >

∫
Rn

|ξ |2σ ∣∣F(Dαu) (ξ)
∣∣2 dξ = (2π)m

∫
Rn

|ξ |2σ |ξ1|2α1 . . . |ξn |2αn |û(ξ)|2 dξ.

Choosing α = me j , with j ∈ {1, . . . , N }, we find that

+∞ >

n∑
j=1

∫
Rn

|ξ |2σ |ξ j |2m |û(ξ)|2 dξ ≥ 1

nm

∫
Rn

|ξ |2σ |ξ |2m |û(ξ)|2 dξ,

that is the desired result. ��

With this, we are now in the position of completing the proof of Theorem 1.
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Proof of Theorem 1 We observe that

(−�)syGs(x, y) = δx (y), (−�)sxGs(x, y) = δy(x), for any x, y ∈ B, (23)

in the distributional sense. To prove this, one can focus on the proof of the first claim, since the
second is equivalent to that, due to the symmetry of Gs under the exchange of x and y. Also,
the case x = 0 has already been considered in Proposition 4, so we can suppose that x �= 0.
Hence, we can consider the Möbius transformation

φx : B → B, φx (y) := 1

|x |2

⎛
⎜⎝x + (1 − |x |2)

y − x
|x |2∣∣∣y − x
|x |2

∣∣∣2
⎞
⎟⎠ ,

which is an automorphism of B and satisfies φx (0) = x , φx (x) = 0 and φx ◦ φx = idB . Let
also η ∈ C∞

0 (B) and

η̃(y) := J
1
2− s

n
φx

(y) η(φx (y)),

where

Jφx (y) = (1 − |x |2)n
∣∣∣∣|x |y − x

|x |
∣∣∣∣
−2n

is the modulus of the Jacobian determinant of φx . Hence,

η̃(y) = (1 − |x |2)(n−2s)/2
∣∣∣∣|x |y − x

|x |
∣∣∣∣
2s−n

η(φx (y)).

We point out that the center of inversion x/|x |2 is outside B, hence φx ∈ C∞(B), and
therefore η̃ ∈ C∞

0 (B). Proposition 4 shows that

η̃(0) =
∫
B
Gs(0, y)(−�)s η̃(y) dy.

Therefore, using Lemma 3 and the fact that Jφx (φx (y)) = 1
Jφx (y) , we find that

(1 − |x |2)(n−2s)/2η(x) = η̃(0)

=
∫
B
Gs(0, y) J

n+2s
2n

φx
(y)

(
(−�)sη

)
(φx (y)) dy

=
∫
B
Gs(0, φx (y)) J

n+2s
2n

φx
(φx (y)) Jφx (y)

(
(−�)sη

)
(y) dy

=
∫
B
Gs(0, φx (y)) J

n−2s
2n

φx
(y)

(
(−�)sη

)
(y) dy

= (1 − |x |2)(n−2s)/2
∫
B

∣∣∣∣|x |y − x

|x |
∣∣∣∣
2s−n

×Gs(0, φx (y))
(
(−�)sη

)
(y) dy,

hence

η(x) =
∫
B

∣∣∣∣|x |y − x

|x |
∣∣∣∣
2s−n

Gs(0, φx (y))
(
(−�)sη

)
(y) dy. (24)
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Now, using that

|φx (y)| = |x − y|∣∣∣|x |y − x
|x |
∣∣∣

and

Gs(0, φx (y)) = ks,n |φx (y)|2s−n
∫ 1/|φx (y)|

1
(v2 − 1)s−1v1−n dv,

we find that
∣∣∣∣|x |y − x

|x |
∣∣∣∣
2s−n

Gs(0, φx (y)) = ks,n |x − y|2s−n
∫ ∣∣∣|x |y− x

|x |
∣∣∣/|x−y|

1
(v2 − 1)s−1v1−n dv

= Gs(x, y).

This, together with (24), implies that, for any η ∈ C∞
0 (B) and any x ∈ B,

η(x) =
∫
B
Gs(x, y)

(
(−�)sη

)
(y) dy.

This completes the proof of (23).
Now, we take f ∈ C∞

0 (B) and u as in (7). We show first that

u is a weak solution to(8). (25)

To this end, let ϕ ∈ C∞
0 (B) and observe that

(−�)sϕ = (−�)m(−�)σ ϕ = (−�)σ (−�)mϕ.

With the help of this and (23), we conclude that∫
B
u(x)(−�)sϕ(x) dx =

∫
B

∫
B
Gs(x, y) f (y)(−�)σx (−�)mx ϕ(x) dy dx

=
∫
B

(∫
B
(−�)σx Gs(x, y) (−�)mx ϕ(x) dx

)
f (y) dy

=
∫
B

(∫
B

δy(x)ϕ(x) dx

)
f (y) dy

=
∫
B
f (y)ϕ(y) dy,

which proves (25).
We next show that u, extended outside B by 0, satisfies

u ∈ Hs(Rn) ∩ Cm,σ (Rn) ∩ C∞(B) (26)

and so, in particular, u vanishes of order m on ∂B.
To prove (26), we observe that Boggio’s formula can be written as

Gs(x, y) = ks,n |x − y|2s−n · (h ◦ g)(x, y) (27)

with

g(x, y) :=
∣∣∣|x |y − x

|x |
∣∣∣

|x − y| =
√
1 + (1 − |x |2)(1 − |y|2)

|x − y|2 (28)
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and

h(t) :=
∫ t

0
(v2 − 1)s−1+ v1−n dv. (29)

Notice that

h(t) = 1

2
(t2 − 1)s+

∫ 1

0
τ s−1 (1 + (t2 − 1)τ )−n/2) dτ

where

(0,∞) � t �→ 1

2

∫ 1

0
τ s−1 (1 + (t2 − 1)τ )−n/2) dτ

is smooth and can be modified on [0, 1) to a C∞-smooth function which is identically 0 for
t close to 0. Hence, we may write

h(t) = (t2 − 1)s+ · h̃(t), with h̃ ∈ C∞([0,∞)) and h̃|[0,1/2] = 0. (30)

Furthermore, since we assume that f ∈ C∞
0 (B), we may find some δ > 0 such that

f ∈ C∞
0 (B1−δ(0)). Hence, from now on, we take

y ∈ B1−δ(0).

As in [14, Lemma 4.4], we consider the sets

A := B × B1−δ(0), C := B × B, D := {(x, x) : x ∈ B},
F := C ∩

{∣∣∣∣|x |y − x

|x |
∣∣∣∣ ≤ 3|x − y|

}
, J := C ∩

{∣∣∣∣|x |y − x

|x |
∣∣∣∣ ≥ 2|x − y|

}
,

and we define d(x) := dist(x, ∂B).
We take into account first the case in which (x, y) ∈ A ∩ F . According to [14, Lemma

4.4], we have that

d(x) = 1 − |x | ≤ c|x − y| and d(y) ≤ c|x − y|,
for some c ≥ 1. Since d(y) ≥ δ, it follows here that

|x − y| ≥ δ

c
. (31)

Accordingly, by (28), we see that

g ∈ C∞(A ∩ F), (32)

and all its derivatives are bounded in A ∩ F . Analogously,

the function A ∩ F � (x, y) �→ |x − y|2s−n belongs to C∞(A ∩ F). (33)

Using this and (30), we can write in A ∩ F

Gs(x, y) = ks,n |x − y|2s−n h(g(x, y))

= ks,n |x − y|2s−n
(
(1 − |x |2)s+(1 − |y|2)s |x − y|−2s · h̃(g(x, y))

)

= (1 − |x |2)s+ g�(x, y),

(34)

with some g� ∈ C∞(A ∩ F).
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We consider next the case in which (x, y) ∈ A ∩ (J \ D). Here, we have that 1
c d(y) ≤

d(x) ≤ cd(y), for some c ≥ 1, so that in particular

d(x) ≥ δ

c
> 0 (35)

and
∣∣∣|x |y − x

|x |
∣∣∣ ≥ 1− |x | |y| ≥ 1

c . As a consequence, in this case we may rewrite Boggio’s

formula as follows:

Gs(x, y) = ks,n |x − y|2s−n
∫ 2

1

(
v2 − 1

)s−1
v1−n dv

+ ks,n |x − y|2s−n
∫ ∣∣∣|x |y− x

|x |
∣∣∣/|x−y|

2

(
v2 − 1

)s−1
v1−n dv

= c1|x − y|2s−n + ks,n |x − y|2s−n
∫ ∣∣∣|x |y− x

|x |
∣∣∣/|x−y|

2
v2s−1−n

(
1 − 1

v2

)s−1

dv

= c1|x − y|2s−n + ks,n |x − y|2s−n
∞∑
k=0

∫ ∣∣∣|x |y− x
|x |
∣∣∣/|x−y|

2
(−1)k

×
(
s − 1
k

)
v2s−2k−1−n dv,

for some c1 > 0. Observe that on A ∩ J , one has local uniform convergence of the second
summand and all its derivatives, and this justifies the exchange in the order of integration and
summation that we have performed here above. Hence, we can integrate the powers of v in
the previous formula and end up with

Gs(x, y) = c2|x − y|2s−n

+ c3

∞∑
k=0

(−1)k
(
s − 1
k

)
1

2s − n − 2k

∣∣∣∣|x |y − x

|x |
∣∣∣∣
2s−2k−n

|x − y|2k,

for some c2, c3 ∈ R. Only in case that 2s−2k−n = 0 (whichmay occur only if s is amultiple

of 1
2 ), the corresponding summand has to be replaced by a multiple of log

(∣∣∣|x |y− x
|x |
∣∣∣

|x−y|

)
|x −

y|2k . In consequence of this, we conclude that in this case,Gs(x, y) is the sumof c2|x−y|2s−n

and an analytic function that we denote by H �(x, y), provided that s − n
2 /∈ N0. Notice that

if s − n
2 ∈ N0, we have a logarithmic singularity instead, which is treated analogously.

That is, we can write

Gs(x, y) = c2|x − y|2s−n + H �(x, y), (36)

with H �(x, y) ∈ C∞(A ∩ J ).
We also set

D1,x := {y ∈ B1−δ(0) s.t. (x, y) ∈ A ∩ F}
and D2,x := {y ∈ B1−δ(0) s.t. (x, y) /∈ A ∩ F}.

With the help of (35), we see that D2,x = ∅ for d(x) close to 0.
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Using this notation, we have that
∫
D2,x

|x − y|2s−n f (y) dy

=
∫
B1−δ(0)

|x − y|2s−n f (y) dy −
∫
B1−δ(0)\D2,x

|x − y|2s−n f (y) dy

=
∫
Rn

|x − y|2s−n f (y) dy + Z(x)

=
∫
Rn

|y|2s−n f (x − y) dy + Z(x)

= Z�(x),

for suitable Z , Z� ∈ C∞(Rn), thanks to (33).
From this, (34) and (36), we find that

u(x) =
∫
D1,x

Gs(x, y) f (y) dy +
∫
D2,x

Gs(x, y) f (y) dy

= (1 − |x |2)s+
∫
D1,x

g�(x, y) f (y) dy

+ c2

∫
D2,x

|x − y|2s−n f (y) dy +
∫
D2,x

H �(x, y) f (y) dy

= (1 − |x |2)s+ ũ(x),

with some suitable ũ ∈ C∞(B). This shows that u ∈ Cm,σ (B) ∩C∞(B) and also, recalling
Corollary 9, that u ∈ Hs(Rn), which completes the proof of (26), and in turn of Theorem 1.
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