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Abstract In this paper, we define a space h! (M) of Hardy—Goldberg type on a measured
metric space satisfying some mild conditions. We prove that the dual of §'(M) may be
identified with bmo(M), a space of functions with “local” bounded mean oscillation, and
that if p is in (1, 2), then L”(M) is a complex interpolation space between hl(M ) and
LZ(M). This extends previous results of Strichartz, Carbonaro, Mauceri and Meda, and
Taylor. Applications to singular integral operators on Riemannian manifolds are given.
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1 Introduction

This paper focuses on the study of spaces of Hardy—Goldberg type on certain measured
metric spaces and is based on previous results of the second-named author [28]. Our goal is
twofold: On the one hand, we aim at extending previous work on the subject by Strichartz [25],
Carbonaro et al. [7,8], and Taylor [27]. On the other hand, our results pave the way to further
developments concerning Riesz transforms on a certain class of noncompact Riemannian
manifolds that will appear in a forthcoming paper.

Strichartz worked on compact Lie groups; some of his far-reaching ideas have been sub-
sequently developed by Taylor to successfully extend Strichartz’s results to the setting of
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Riemannian manifolds with strongly bounded geometry. A comparison between the results
contained in [7] and [27] may help understanding our motivations and contributions. Before
coming to this, we mention that in [29,30], the authors established a quite complete the-
ory of local Hardy spaces on RD-spaces, i.e., on spaces of homogenous type in the sense
of Coifman and Weiss where a reverse doubling property holds. See also [16] for results
concerning Triebel-Lizorkin spaces on RD-spaces and their relationships with local Hardy
spaces. In particular, note that if M is an RD-space, then our space h! (M) reduces to the
space H, 51’2(M ) of [29]. However, we emphasise the fact that though our theory works also
on spaces of homogeneous type in the sense of Coifman and Weiss (without assuming the
RD-property), our main goal is to develop a theory that works on a certain class of manifolds
with exponential growth, where the doubling property fails.

Coming back to the comparison between the results in [7] and [27], observe that in [7]
the authors consider a metric measured space (M, u, d) satisfying three conditions: the
approximate midpoint property (AMP), the local doubling condition (LDC), and Cheeger’s
isoperimetric property (IP) (see Sect. 2 for the definitions). The AMP is a very mild assump-
tion, very often satisfied, the LDC is a very natural assumption for the applications we have
in mind to Riemannian manifolds, whereas the IP is a comparatively restrictive assumption,
for it implies that the volume growth of M be at least exponential [18, Proposition 3.1 (i)]. In
this setting, the authors introduce an atomic Hardy space H'(M), identify the dual space of
HY(M) with BM O (M) (suitably defined), and prove that if p is in (2, co), then L? (M) is
an interpolation space between L%(M) and BM O(M). Also, applications to spectral multi-
pliers and Riesz transforms are given. It is important to keep in mind that atoms are functions
in L2(M), with support contained in balls of radius at most 1, say, satisfying the standard
size estimate and cancellation property (the same as those satisfied by atoms in the classical
Hardy space H'(R")).

In [27], Taylor works on a Riemannian manifold M of bounded geometry in a very
strong sense, which requires a uniform local control of all derivatives of the metric tensor
in exponential co-ordinates around each point, but a mild control on the volume growth of
the manifold. He defines a local Hardy space h' (M), which is a direct generalisation of the
classical local Hardy space b (R"), introduced by Goldberg [13], and of the extension thereof
to compact Lie groups by Strichartz. Taylor defines §' (M) via a suitable grand maximal
function, identifies the dual space of h'(M) with bmo(M) (suitably defined), and proves
that if p is in (2, 00), then LP (M) is an interpolation space between L2(M) and bmo(M).
Applications to a wide class of pseudo-differential operators are provided. Taylor also proves
that h! (M) has an atomic decomposition, whose atoms are either atoms in H'(M) (in the
sense of [7]), or functions in LZ(M), supported in a ball of radius exactly equal to 1 and
satisfying the standard size condition, but possibly not the cancellation condition. One of the
limitations of this approach is that the geometric assumptions on the Riemannian manifolds
are, as mentioned above, quite stringent. One of its advantages is that it reduces any estimate
involving h' (M) to corresponding local estimates for h! (R").

It is worth observing that each of the spaces H L(M) and §'(M) has its own advan-
tages and range of applications. Clearly h'(M) is a flexible space that is preserved by the
action of suitable classes of pseudo-differential operators [13,25,27]. However, it is not apt
to obtain endpoint estimates for certain singular integral operators like, for instance, the
purely imaginary powers of the translated Ornstein—Uhlenbeck operator [9], where H'! (M)
functions perfectly.

As mentioned above, one of the motivations of our work is to extend considerably the range
of applicability of the approach of Strichartz and Taylor. Our ambient space is a measured
metric space possessing AMP and LDP. It is well known that the assumptions above are
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satisfied whenever M is a Riemannian manifold with Ricci curvature bounded from below
(without assuming that M has positive injectivity radius), a condition that does not require any
control on the derivatives of the metric tensor. Note that such manifolds may have exponential
volume growth, so that they may not be homogeneous spaces in the sense of Coifman—Weiss.
Note that we do not assume that M possesses the so-called uniform ball size condition, i.e., it
may happen that inf {i(B) : rp =r} = 0 and sup {u(B) : rp = r} = oo foreachr > 0.

We emphasise the fact that our methods are quite different from those of Taylor, for we
cannot reduce the analysis to that of Goldberg on Euclidean spaces. We give an atomic
definition of h'(M): When M is a manifold of strongly bounded geometry, h! (M) agrees
with the space defined by Taylor. We prove that the topological dual of h! (M) may be iden-
tified with a local space bmo (M) of functions of bounded mean oscillation in an appropriate
sense (see Sects. 5 and 6), and that if p € (1, 2), then L” (M) is a complex interpolation
space between h(M) and L2(M) (see Sect. 8). Applications to the study of the translated
Riesz transform and of spectral multipliers of the Laplace—Beltrami operator on manifolds
with Ricci curvature bounded from below will be given in Sect. 10.

Finally, a few words concerning our second goal. A basic question concerning the Riesz
transform Z = V.2~ 1/2 (here . denotes the Laplace-Beltrami operator on M) is to char-
acterise the space ngi(M) of all functions f in LY (M) such that ’%f’ is in LY(M). In
many cases, for instance in R”, such space is just the Hardy space H'!(R"). Recent results
of Mauceri et al. [21] show that if D denotes the hyperbolic disc, then H, glz, (D) is not H (D).
The analysis of h' (M) performed in this paper will be the key to provide a characterisation
of H}Z(M ) for a comparatively large class of Riemannian manifolds.

We will use the “variable constant convention” and denote by C, possibly with sub- or
superscripts, a constant that may vary from place to place and may depend on any fac-
tor quantified (implicitly or explicitly) before its occurrence, but not on factors quantified
afterwards.

For each p in [1, oo], we denote by p’ the index conjugate to p,i.e., p’ = p/(p — 1).

2 Notation, terminology, and geometric assumptions

Suppose that (M, d, i) is a measured metric space, and denote by % the family of all balls
on M. We assume that (M) > 0 and that every ball has finite measure. For each B in %,
we denote by c¢p and rp the centre and the radius of B, respectively. Furthermore, we denote
by kB the ball with centre cp and radius krp. For each s in R, we denote by %, the family
of all balls B in % such that rg <'s.

We say that M possesses the local doubling property (LDP) if for every s in RT, there
exists a constant D, such that

n(2B) < Dyu(B) VB € %;.

Remark 1 The LDP implies that foreach > 1 and foreach s in R, there exists a constant C
such that

w(B') < C u(B) ()

for each pair of balls B and B’, with B C B’, B in %y, and rpr < 7 rg. We shall denote
by D. s the smallest constant for which (1) holds. In particular, if (1) holds (with the same
constant) for all balls B in #, then u is doubling and we shall denote by D. ~ the smallest
constant for which (1) holds.
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We say that M possesses the approximate midpoint property (AMP) if there exist R in
[0, o0) and B in [1/2, 1) such that for every pair of points x and y in M with d(x, y) > Ry,
there exists a point z in M such that d(x,z) < Bd(x,y) and d(y,z) < Bd(x,y). This is
clearly equivalent to the requirement that there exists a ball B containing x and y such that
rg < Bd(x,y).

If M is a measured metric space for which Ry = 0 and each segment has a midpoint, then
we say that M possesses the midpoint property (MP). Typically graphs enjoy the AMP, but
quite often a “segment” in a graph has not a midpoint. On the other hand, every connected
Riemannian manifold possesses the MP, and the constant Ry is equal to 0.

All the results in this paper hold under the assumption that M possesses the local dou-
bling property LDP and the approximate midpoint property AMP. However, for the sake of
simplicity, hereafter we assume that M possesses the local doubling property LDP and
the midpoint property MP (with Ry = 0). This leads to cleaner statements and allows us to
avoid certain annoying technicalities, which makes the reading more difficult. The interested
reader may easily fill the additional details and come to prove our results under the assump-
tion that M satisfies the AMP only. To this end, [7] may serve as a guide, for the details of
proofs therein are done under the assumption that M possesses the AMP only.

Given a positive number 7, a set 9t of points in M is a n-discretisation of M if it is
maximal with respect to the following property:

min{d(z, w) : z,w € M,z #w} >n and dON,x) <n VxeM.

It is straightforward to show that n-discretisations exist for every n. For each subset E of M,
we set

Mg :={z € M: Byy(z) NE # 0},

and denote by Mg its cardinality. If x is a point in M, we write 9, instead of M1y},
for simplicity. Note that #9t, is the number of balls of the covering {Bgn(z) 1z € sm} that
contain x.

Lemma 1 Suppose that M possesses the LDP and the MP (with Ry = 0, see, however, the
remark before the definition of discretisations). Assume that c is a positive number and that
M is a c/2-discretisation. The following hold:

(i) the family {B.(z) : z € M} is a locally uniformly finite covering of M, and there exists
a constant C, depending on c, such that sup, cp, 90, < C;

(ii) foreveryb > c there exists a constant C, which depends on b and c, such that #9p < C
for every ball B of radius b.

Proof First we prove (i). Since 9 is a c¢/2-discretisation, d(9t, x) < c/2 for every x in
M, so that {B.(z) : z € M} is a covering of M. Observe that if z is in 9, then B.(z) C
By(x) C B3.(z). This and the LDP (1) imply that

©(Bae(x)) < n(B3c(2)) < Diz,cja it(Beja(2)).

Since Bc/4(z) C Ba(x) and the balls of the family {Bc/4(z) : z € M} are pairwise disjoint,

1(Bae () = pu( | Bepa)

z€My

= Z 1 (Beja(2))

7€My
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> g,
Di2,c/a

12 (BZC (x)) )

whence #1901, < D13 /4, as required.

Now we prove (ii). Denote by B’ the ball with centre ¢p and radius b + 2c. Observe that
if z is in M g, and x belongs to B.(z), then d(x, cg) < b + 2c¢. Therefore, x is in B’. This
and (i) imply that

> 1) < Dizesalp.
zeMp
By integrating both sides of this inequality, we see that
Z w(Beja(z)) < Z 1(Be(2)) < Dia,cja n(B).
z€Mp zeMp
Recall that the balls B./4(z), z € Mg, are pairwise disjoint, and that ,u(B(-/4(Z)) >
D;(}?/C)Jrg w(B’) by the LDP, so that
£ Dy ey g W(B) < Din,ca (B,

from which the required estimate follows directly. O

Remark 2 A careful examination of the proof of Lemma 1 reveals that, in fact, we have
proved the following: sup, ¢, #9 < D12,¢/4 and 89Mp < Dap/c)+8D12,c/4 (see Remark 1
for the definition of D ;). We have made here the choice not to keep track of the precise
dependence of the constants appearing in the statement from the various parameters. We shall

do the same in all the subsequent sections.

3 The local Hardy space h1(M)

Definition 1 Suppose that p isin (1, oo] and let p” denote the index conjugate to p. Suppose
that b is a positive number. A standard p-atom at scale b is a function a in L' (M) supported
in a ball B in %, satisfying the following conditions:

(i) size condition:

lallse < u(B)~Vif p =ocoand [lall, < u(B)~V/P"if p € (1, 00);
(ii) cancellation condition:

J adu =0.

B

A global p-atom at scale b is a function a in L' (M) supported in a ball B of radius exactly
equal to b satisfying the size condition above (but possibly not the cancellation condition).

Standard and global p-atoms will be referred to simply as p-atoms.

Definition 2 Let b be a positive number. The local atomic Hardy space h;’p (M) is the space
of all functions f in L' (M) that admit a decomposition of the form

f=%aj, @)
j=1
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where the a;’s are p-atoms at scale b and Zjozl |Aj| < oo. The norm ||f||b1,,, of f is the
X ’ b

infimum of Z;’il |2.j| over all decompositions (2) of f.

We shall prove that h,i’p (M) is independent of p and b, and later the space b}’p (M) will
be denoted simply by b (M).

The following lemma produces an economical decomposition of atoms supported in “big”
balls as finite linear combinations of atoms supported in smaller balls. This result extends to
global atoms the economical decomposition for standard atoms proved in [20, Lemma 6.1];
see also [7, Prop. 4.3 (i)] for a “less economical” decomposition. It is worth observing that
our proof does not require the uniform ball size condition, which, instead, is used in [20,
Lemma 6.1]. Furthermore, the proof of the following lemma is somewhat simpler than the
proof of [20, Lemma 6.1], for we can decompose atoms supported in “big” balls as finite
linear combinations of global atoms supported in smaller balls, so that we need not care
about cancellations.

Lemma 2 Suppose that p is in (1, oo] and that b > ¢ > 0. Then, each p-atom a at scale b
may be written as a finite linear combination of global p-atoms at scale c, and there exists
a constant C, independent of the atom a, such that ||a||h1,p <C.

Proof Suppose that a is a p-atom at scale b (either standard or global), supported in the ball
B, and denote by 9t a c¢/2-discretisation of M. We denote by By, ..., By the balls with
centre at points in 9tp and radius ¢, and define

_ 15
- <N ¢

Zk:l 1p,

Clearly 33", ¥} is equal to 1 on B. Set A; = |lay;ll, u(B))"/?, bj := ay; 27", and
write a = 29;1 Via= Z?/:l Ajbj.Clearly b; is a global p-atom at scale ¢, whence

N
lall1p < Zl ;1
=

Y

N
=D llayll, w(B)'”
j=1
1/p 1/p'

N N
< | D llawlip Doy
j=1 j=1

we have used Holder’s inequality with exponents p and p’ in the last inequality. Observe that
the balls B; are contained in the ball with centre cp and radius b + 2c. Since, by Lemma 1 (i)
each point in By 2.(cp) is covered by at most C balls B, with C depending only on c,

N
ZM(BJ-) < C u(Bpsac(cp)).
j=1

Similarly,

=z

N
S llav; 1 = j Sy fal? du
j=1 M

j=1
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< llall;
< u(B)Y

we have used the fact that 0 < ¢; < 1, that p > 1, and that 211:]:1 Y¥; = 1 on B in the first
inequality above and the size condition of the p-atom a in the second. By combining the
preceding estimates, we obtain that there exists a constant C, depending on ¢ and on p, such
that

lallyr < € B 1(Byracten) "
Since B and Bp42.(cp) have the same centre,
w(Bpy2c(cB)) < Ditacesn),b L(B),
whence ”a”hi"’ <C Dllig/(c/b),b’ as required. ]
Proposition 1 Suppose that p is in (1, ool and that b > ¢ > 0. A function f is in hcl.’p(M) if

andonlyif f isinh ,lj’p (M). Furthermore, there exist positive constants C1 and Ca, depending
on b, ¢ and p, such that

L,
Cullfllytr < I flye < Callflgro YF €627 (M).

Proof We begin by showing that bi’p (M) Ch ,17”’ (M), and that the left-hand inequality holds.

1/p
u(B) .
) 1S a p-atom

If a is a p-atom at scale ¢ with support contained in B, thena | ————
n((b/e)B

at scale b, and

n(B)

1/p
= Db/c,c‘

ol [u((b/)m}/
hb.p —

This implies that if f belongs to b (M), then f isin b, ” (M) and 1l < D;jf’c Il
b ’ c

The reverse inclusion follows directly from Lemma 2. O

Remark 3 Suppose that p is in (1, oo]. Then, for every b and c such that b > ¢ > 0 the
spaces h ;’p (M) and bi’p (M) are isomorphic (in fact, they contain the same functions) by

Proposition 1. Hereafter, we denote the space h%’p (M), endowed with any of the equivalent
norms defined above, simply by b7 (M).

In Sect. 6, we shall prove that h!:” (M) does not depend on the parameter p in (1, 00),
and then we shall denote all the spaces h'7 (M) simply by h1(M).

4 The local ionic space [)} (M)

In this section, we show that h! (M) admits a “ionic decomposition”. Specifically, we shall
define a “ionic” Hardy space h} (M). The space h}(M ) is defined much as h! (M), but with
ions in place of atoms. It will be clear from the definition that every atom is an ion, but
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not conversely. In fact, we shall consider a one-parameter family of different types of ions.
When this parameter is equal to one, and M is a Riemannian manifold with strongly bounded
geometry, then b} (M) is the local Hardy space introduced by Taylor in [27].

Definition 3 Suppose that p is in (1, co] and that « is a positive real number. A (p, o)-ion
is a function g in L' (M) supported in a ball B with the following properties:

@) liglloo < w(B)"if p = oo and [lgll, < u(B)~/7"if p € (1, 00);
i) || gdu| <.
B
A (p, 1)-ion will be simply called a p-ion.
Note that Taylor considered co-ions only.

Definition 4 Suppose that b and « are positive real numbers. The local ionic Hardy space

f)}:f "*(M) is the space of all functions f in LY(M) that admit a decomposition of the form

f=> njgj 3)
j=1

where the g;’s are (p, a)-ions supported in balls of radius at most b and Ziozl |l < oo.
The norm || f ||hl.p.a of f is the infimum of Z(j’il |1 j| over all decompositions (3) of f.
I,b

If « = 1, then we denote h}j,’;’“ (M) simply by h}f (M).

We shall prove that the spaces hi Z "*(M) do not depend on «. Indeed, we shall show that all

these spaces coincide with the atomic spaces b,i’p (M) and that the corresponding norms are
equivalent. We shall make use of the following remark.

Remark 4 If « > 1, then it is easy to show that h}’,’j*“(M) C h}’{;(M) and || fll,1p <
’ ’ 1,b

171l g For every f im by} (M.
Lb ,
Indeed, consider a (p, a)-ion g supported in a ball B. If rg > 1, then the size condition
implies that

| sau] <ty w7 <1 <ra.
If rg < 1, then
U gdu‘ <rg=<rp.
B

Hence, g is a p-ion. The inclusion h}jg (M) C b}’f (M) and the desired norm inequality

follow.

Theorem 1 Suppose that p € (1, 00], @« > 0and b > 0. The spaces h}:l’:'a (M) and h;’p(M)
coincide. Furthermore, there exist a constant C1, depending on b and «, and a constant C»,
depending on b, a and p, such that

Ol lyppe = 1 gy = ol ¥5 <5700,
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Proof First we prove that bh (M) c bl "% (M), by showing that each p-atom at scale b is
a multiple of a (p, a)-ion supported in the same ball. Indeed, clearly each standard p-atom
is a (p, o)-ion. Now, suppose that a is a global p-atom supported in a ball B of radius b.
Then, the size condition implies that

| adu] < laf, ney 7 <1. @
B

If b > 1, then H a d,u‘< b* and a is a (p, a)-ion at scale b. If b < 1, then it is clear that

B

b%aisa (p, a)-ion at Lpa < 1/b6%. Thus, b, " (M) C by (M)

and
[ £ lgrpe < max (L67) [ VF €07 00).

To prove the reverse inclusion, let g be a (p, a)-ion with support contained in B, with
rp < b. We write g = a + h, where

XB
=g— ——— d d h= du.
=8 (B)J gdu  an w(B) J.Bg H

Observe that a is a multiple of a standard p-atom at scale b. Indeed, [z adp = 0 and

lxsl,
lall, < el + ] sa| =

< uB M g )
< (14+5%) u(B)~17,

so that ||a”h1.p <1+ b*. Now, if rg = b, then
b

h| = u(B 4“”” du|
|2], = nB) L edu
< u(B) b,
so that b~ h is a global p-atom at scale b, whence Hh”hl_,, < b*, and ”thLp <1+ 2b%.
b b

If, instead, rp < b, then we decompose / as a finite combination of ,i‘p -atoms as follows.
Set N := [log, (b/rp)] and write h = 342 h;, where

X2i-1p X2iB .
[ el d — 1, N+1
‘ [M@HB) M(le)] (Lg “) ! +

and hyyp = % (JB g d,u). A straightforward computation shows that for all i =
I,...,N+1,
Xai-1p X2ip |P 7 (ZiB\Zi_lB) n (Zi_lB)
’ ' - — ’ du < — ——
m!u@='B) 1 (2'B) w(2!B) w(2'-1B)
S \1- ) 1-
" (2’3) " (2’*13) !
i1 1-p
<24 (2'— B) .
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956 S. Meda, S. Volpi

Therefore,

. -1/p’
1l =27 (2"B)
anl/p nl/p i\
=2y n(2B) s
the last inequality follows from the estimate ,u(2i B) < D22 M(Zi _IB). Since 2'B € A,

foralli =1,..., N, hi/[21/1’ D;/bp/; rg] is a standard p-atom, so that ”hi ”f;"” < 2l/p
’ b

1/p’
Dy B

Furthermore, the functions 44 and &y are supported in the ball 2N+ B which has
radius < 2b. Denote by B’ the ball with the same centre as B and radius 2b. Then,

~1/p
N <2Pryu
”h +1||p <9l/p @ (ZNHB)
u(BHP
M (2N+1B)1/1”

1/p —1/p
< D)}, 217 v (BT,

<2y w(B)~"

1/p 1/
hN+2Hp = D2{217b r% w(B)~Y/7". Thus,

and, similarly,
1 ’
RN I N D,/ (27 + 1) r8.
Then, by Proposition 1, there exists a constant C, depending on b and p, such that

AN + Ay plr = Crg.

By combining these estimates, we see that there exists a constant C, which depends on b and
p such that

N+2
HhHh})vﬂ = Z ”hi”h;,p <Cri[N+1].
i=1

Now, observe that
rg N <rg log,(b/rg) <rg [log2 b —log, rB] <rg log, b < b log, b.

< C, where the

Hence, h”b],p < C, so that each («, p)-ion g is in h;’p(M) and ||g
b

H pl.r
constant C depends only on b, « and p, as required. O

We have already mentioned that the spaces b }1),p (M) will be proved to be independent of

the parameters p and b. Then, by Theorem 1, for p in (1, 0], 5 > 0 and « in RY, the spaces
1,p,a

b, (M) coincide with equivalence of the norms.

Remark 5 We shall denote by h} (M) all the spaces h}f "*(M), endowed with any of the

equivalent norms defined above.
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5 The space bmo(M)

Suppose that g is in [1, c0) and b is in RT. For each locally integrable function f, define the
local sharp maximal function fg 4 py

1 1/q
4@ = sup (7[ |f—fB|qu) Vx e M,
Bez,(x) \M(B) JB

where fp denotes the average of f over B and %) (x) denotes the family of all balls in %),
centred at the point x. Define also the modified local sharp maximal function N, bq (f) by

1/q
NICHG) = F29 ) + [ Ll du} Ve M,

o |
w(Bp(x)) JBy(x)

where By (x) denotes the ball with centre x and radius b. Denote by bmag (M) the space of
all locally integrable functions f such that N, Z (f) isin L®° (M), endowed with the norm

[ lomer = 185 (5 -

The space bmoz (M) is related to the space BM OZ (M), introduced in [7]. The latter is
the Banach space of all locally integrable functions f (modulo constants) such that

[ 0 saog = 1751 < o0

As shown in [7], the spaces BM OZ (M) do not depend on the parameters ¢ and b and we
denote them all by BM O (M).

Remark 6 Given f in bmoz (M), we have
175 oo < INF O g = 17 Dot

Denote by [ f] the equivalence class in BM OZ (M) which contains f. By the estimate above,
the linear map ¢ : bmoz (M) — BMOZ (M), defined by ¢(f) = [f], is continuous, i.e.,

1N gpog =1 flomos VF € bmof (M), 5)

In the following proposition, we show that the space bmoZ(M ) does not depend on the
parameters b and ¢ in the appropriate ranges.

Proposition 2 Suppose that q is in [1, 00) and that b > ¢ > 0. The following hold:
(i) bmoz (M) and bmol (M) coincide and their norms are equivalent;

(ii) bmolf (M) and hmo% (M) coincide and their norms are equivalent.

Proof First we prove (i). Suppose that f is in bmoZ (M). Since ¢ < b, fcﬁ’q(x) < f,f’q(x).
Moreover, for each x € M

1
QIdy < — a4
1] usMBc(x))JBb(x)|f| "

n(By() 1 \
_ d
1(Bo)) 1(By)) ng,m 1 due

Lf17dp,

1(Bc(x)) JBC(x)

Dh/c,c

1(Bp(x)) JB;,(X)
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(see (1)). Therefore, NZ (f)(x) < D,{jg{c Ny (f)(x). Thus, fisin bmoZ (M) and || f [l ee <

1/q
Db/cc ”f”bmoZ'

To prove the reverse inequality, observe that, by [7, Prop. 5.1], there exists a constant C1,
depending only on b, ¢ and M, such that

15 oo < CLIE oo VF € bmof (M)
Now suppose that B, is a ball of radius b. Then,

1 1/q 1
|F19 dﬂ] = —— su
[M(Bb) JBb ! (B4 g P <1
L9 (B

where g’ is the exponent conjugate to g. If ¢ is a function in L9 (By) satisfying ”¢ H L4 (By) =

)

JBb fodu

1, then w(By)~1/4¢ is a ¢’-global atom at scale b. Therefore, by Lemma 2, there exist ¢’-global
atoms ay, ..., ay atscale c supported in balls B; such that M(Bb)‘l/qu = Zﬁ‘v:l Ajaj,with

> l=c,
J

where C depends only on b, ¢ and p. Thus, by Holder’s inequality,

N
il ol = (X ], sase

1/q
D Iflqdu} a1y
1/q
94
> |:M(BJJ 171 u}

1/ [emo-

The above estimates imply that ||f|| bmo! <(Ci+CN) ||f|| bmod> 35 required to conclude

IA

IA

S

IA
Q \.

the proof of (i).

Next we prove (ii). Recall that the spaces BM O (M) and BM 09 (M) agree (with equiv-
alence of norms) for all ¢ in (1, co) [7, Corollary 5.5]. Therefore, there exists a constant C
such that

l«Hgror =€ 1eHlgyor =€ I f lgmer ¥ € bmo' (M),
where the last inequality follows from (5). Thus,

1 1/q
[@Lv_fqu“] <C|fllomer VS €bmo' (M) VBe .

Now suppose that Bj is a ball of radius 1. By the triangle inequality
1 1/q 1 1/q
— |f|qdu] s[ | 1= I"du] 1/l
[M(Bl) JBl w(B1) Jp, : :

1
= Cllflomor + 55 J Ifldu

= (C+DIlfllomo!-
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These estimates imply that

1 lomos < RC+ Dl fllgmet VS € bmo' (M),

whence bmo! (M) C bmo?(M).
To prove the reverse containment, observe that, by Holder’s inequality,

NI(Hx) < NI(HEx)  VYreM,

50 that || f | ymot < IIf llemo¢, and bmo? (M) € bmo' (M).
The proof of (ii) is complete. O

Remark 7 In view of the observation above, all the spaces bmoZ (M),b > 0, g in [1,00),
coincide. We shall denote them simply by bmo(M), endowed with any of the equivalent
norms ||-{| ol This remark will be important in the proof of the duality between h!'(M) and
bmo(M).

6 Duality

In this section, we shall prove that the topological dual of hhr(M)is isomorphic to bmo?’ (M),
where p’ denotes the index conjugate to p. In view of Remark 7, we consider bmo?’ (M)
endowed with the norm ||N lp ,(-) ||oo Similarly, in view of Remark 3, we may, and shall,
consider hl’P (M), endowed with the b}’p (M)-norm.

We need more notation and some preliminary observations. Suppose that p is in [1, 00).
For each closed ball B in M, we denote by L? (B) the space of all functions in L? (M) which
are supported in B. The union of all spaces L”(B) as B varies over all balls coincides with
the space LY (M) of all functions in L? (M) with compact support. Fix a reference point o
in M and for each positive integer k denote by By the ball centred at o with radius k. A
convenient way of topologising L2 (M) is to interpret LY (M) as the strict inductive limit of
the spaces L2(By) (see [2,11, p. 33] for the definition of the strict inductive limit topology).
We denote by X7 the space LY (M) with this topology and write X1 for LZ (By).

We denote by btli’np (M) the subspace of §!-” (M) consisting of all finite linear combina-
tions of p-atoms. Clearly, h}i’np(M) is dense in b7 (M) with respect to the norm of L.

A natural norm on bflihp (M) is defined as follows:

N N
1f1ly1p = inf > lejl: f =Y cjaj, ajisap-atom, N e N* ¢ (6)
j=1 j=1

Note that the infimum is taken over finife linear combinations of atoms. Obviously,

I lyre < WflgLr Vf € b (M), (M

Remark 8 Observe also that bflihp (M) and LE (M) agree as vector spaces. Indeed, on the one
hand, each function in héhp (M) has finite LP-norm and is compactly supported; hence, it
belongs to LZ (M). On the other hand, suppose that g is in L (M) and denote by B a ball of
radius > 1 that contains the support of g. Then, a := ||g ||;1/L(B)_1/P’g is a global p-atom at
scale rp, which, by Lemma 2, may be written as a finite linear combination of global p-atoms
at scale 1. Therefore, a is in f):{np (M), whence so is g.
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Define

fP4(x):= sup inf |:7
BeB) (x) c€C L u(B)

It is straightforward to check that f59(x) < f*4(x) <2 f$4(x) for all x in M. Thus,

1/q
J If—clqdu] Vx e M.
B

1
1o + sup [7J
0 e Li(Bi(x) VB o

is an equivalent norm on bmo? (M). We shall write f*, instead of f*!.

1/q
|f14 du]

Lemma 3 If f € bmo? (M), then | f| € bmo? (M) and || £, 00 < 2] f] gmos-
Proof Indeed,
LFP700 <21 f17 ()

<2 swp [M(IB)JB‘IfI—IfBI‘quTM

Be%(x)

1 1/q

<2 sup [7J |f_fB|qu]
Be (x) LL(B) JB

=2 f*1(),

whence

1/q
Nq(lfl)(x)ZIfIﬁ’q(x)Jr[ Iflqdu]

(B (x)) JB](X)
1/q
<2 M) + [ |f14 du}

< 2N,

o |
u(B1(x)) JBy(x)

as required.

m}

Next we identify the dual of b1 (M) with bmo(M). The proof follows the lines of the classical

result of Coifman and Weiss [10] in the case of spaces of homogeneous type, and of [7].

Theorem 2 Suppose that p is in (1, 00) and let p’ be the index conjugate to p. The following

hold:
(i) forevery g in bmo?’ (M) the functional F, initially defined on h:{np (M) by the rule

F(f) = jM Fedu.

has a unique bounded extension to b'-P (M). Furthermore,
IFI <418l mor

where || F|| denotes the norm of F as a continuous linear functional on hl-r(Mm).

(ii) for every continuous linear functional F on hP(M), there exists a function gp in

bmo? (M) such that I8F Nl ymor = 3WFIl and

F(f) = jM ferdu Yf e,
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Proof The proof of (i) is a straightforward adaptation of the original proof of Coifman and
Weiss in the case of spaces of homogeneous type. The argument makes use of Lemma 3
above. We omit the details.

Next we prove (ii). Since F is a continuous linear functional on bl”’ (M), for every p-atom

[Fal < IFNallgry < IFI,
because each p-atom has b1 (M)-norm at most 1. Thus,
sup {|Fal : aisahP-atom} < ||F].

If fisin L?(B), and rg > 1, then ||f||;1M(B)—‘/P’f is a global p-atom at scale rg. Then,
by Lemma 2, there exists a constant C, independent of f, such that

[£lgrr = C® | 1|

»
whence

[FfL< CIFN B | 1],

Hence, the restriction of F to X ,f is a bounded linear functional on X ,’: for each k. Therefore,
/
F is a continuous linear functional on X?. Since the dual of X7 is the space Lf;c (M), there

’
exists a function g in Lf;c (M) such that

Ff=jMngdu Vf e XP. ®)

In particular, this holds whenever f is a p-atom.
To conclude the proof, it suffices to prove that gy belongs to bmo” (M) and that

lgrllgmer = 3NFI- (€))

Recall that we consider h!7 (M) endowed with the h}’p (M) norm (see the beginning of this
section). Thus, we need to consider only atoms with support in balls of radius < 1. Suppose
that B is a ball of radius at most 1, and observe that

, 1/p’
U lgr — (gr)Bl” du] = sup U o (er — (gF)B)dM’-
B lelizpy=1"B

But

JB ¢ (¢r — (gr)B) du JB (¢ —vB) (g7 — (gr)p) du

= JB (¢ — ¢B) grdu,

and since ||¢|lzrp) =1

1 1/p 1

¢B S[*J Icalpdu} < w(B) '’
03] nw(B) JB

Moreover,

e — el < l@lrs) + lesl w(B)P

527
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so that the function (¢ — ¢p)/(2 w(B)!/ 1’/) is a standard p-atom. Therefore,

| @—vm grau] <20F1 )7

By combining the estimates above, we conclude that for every ball B of radius at most 1

1/p'
— — P <2|IF
o |, er = @on au] " <2um,

Now take a ball B of radius exactly equal to 1. We have

r , 1/p'
J lgrl? du] = sup U gongu’.
L) B el =178

The function w/u(B)l/”, is a global p-atom at scale 1, thus

| o erau] <urrum'.

Therefore, for every ball B of radius 1
1 .o
[E | 1grtr du} < IFI.
Combining these estimates, (9) follows. This concludes the proof of (ii) and of the theorem.
O

In view of the last result, we are now able to prove that all the spaces h? (M), with p in
(1, 00), coincide. Indeed, suppose that 1 < r < p < oo. Then, h1" (M)* = {17 (M)*, since
bmo’/(M ) = bmo?’ (M). Moreover, the identity is a continuous injection of b7 (M) into
hL7 (M) and §1-P (M) is a dense subspace of 1" (M); therefore, the Hahn—Banach theorem
implies that b1 (M) = p1P (M).

7 Estimates for the operator N

The purpose of this section is to establish a basic L” (M) estimate for the operator N, which
acts on a locally integrable function f by

Nf(x) = f(x)+ Nof(x) VxeM,

where f? is the local centred sharp maximal function given by the formula

1
f(x) = —_ — fsld 10
frx) BEZI;?(X) 2(B) JBIf Sfeldp (10)

and

Nof(x) = | fldu.

n(Bi(x)) Lﬁ(x)

Note that f* = fln ‘I'in the notation of Sect. 5. The main result of this section, Theorem 3
below, will be the key to prove a basic interpolation results for ' (M) in the next section.
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For each locally integrable function f, define the local centred Hardy-Littlewood maximal
Sfunction A  as

1
M = _ du.
@) oilr“; m(B,(x)) JB,(x) |fldu

The operator .# is bounded on L” (M) for every p € (1, oo] and of weak type 1 (for the
weak-type estimate, just follows the lines of the proof of the maximal inequality in [23]).
Clearly Nf (x) < 3 .# f(x), so that the L”-boundedness of .# implies that for | < p < oo

Ifllp = CINfll, VfeLl(M).
In the next theorem, we prove a reverse inequality.
Theorem 3 Suppose that p is in (1, 00). Then, there exists a constant C such that

£, <CINFllp
forevery f € LY (M) such that Nf € LP(M).

loc

We recall [7, Thm. 7.3] that if M possesses the isoperimetric property IP, then for each p
in (1, co) there exists a constant C such that

Ifll, <Clf* N, VfeLl(M). (11)

Observe that this estimate may fail if M does not possess the isoperimetric property. For
instance, (11) is false for M = R”", as shown in [17]. The inequality in Theorem 3 is weaker
than (11), but it does not require the IP.

The proof of Theorem 3, which occupies the rest of this section, will make use of the
so-called dyadic cubes introduced by David and Christ [6,12] on spaces of homogeneous
type. In fact, Christ’s construction requires only the local doubling property, as remarked in
[7]. For the reader’s convenience, we recall the main properties of dyadic cubes.

Theorem 4 ([7, Thm. 3.2]) There exist constants 8 in (0, 1), ag, a; in RY and a collection
2= {Q{; 1k € Z,a € It} of open subsets of M such that

(i) foreach k in Z, the set |, Q’g[ is of full measure in M;

(ii) if € > k, then either Q,Zs C QX or Q,Zs N ok =g;

(iii) for each (k, o) and each £ < k, there is a unique 8 such that Q(]; - Qf;;
. . k .

(iv) diam(Qk) < af;

(v) there exists a point zf; in Q such that

Bao(gk (Z{;) C Q]g( C Ba15k (Zlé) .

We shall denote by 2% the class of all dyadic cubes of “resolution” k, i.c., the family of
cubes {Q{; :a € Ii}. We shall need the following additional properties of dyadic cubes.

Proposition 3 ([7, Prop. 3.4]) Suppose that b € RY, v € Z, and let §, ay and a; be as in
Theorem 4. The following hold:

(i) suppose that Q is in 2F for some k > v, and that B is a ball such that cg € Q. If
rg > a; 8, then

w(B N Q)= u(Q); (12)

ifrp <ap 8%, then
—1 .
w(BN Q)= DY s s m(B): (13)
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964 S. Meda, S. Volpi

(ii) supposethat T isin[2, o0). Foreach Q in 2, the space (Q, dg, M|Q) is of homogeneous
type. Denote by ng its doubling constant (see Remark 1 for the definition). Then,

00
sup [DrQ,oo : Q € U gk} = Dr,a18“ Da|/(a06),8”;
k=v

(iii) for each ball B in By, let k be the integer such that sk <rp< 81 and let B denote
the ball with centre cg and radius (1 + al) rp. Then, B contains all dyadic cubes in
9 that intersect B and

1t (B) < Ditayp 1(B);

(iv) suppose that B is in By, and that k is an integer such that 8 < rg < 8¥~'. Then, there
are at most D(1a;)/(aps).» dyadic cubes in 2% that intersect B.

In particular, property (ii) states that, for fixed , all the cubes in 2% are spaces of homoge-
neous type with doubling constants uniformly bounded from above. More precisely, for each
cube Q in 2%

D2 < Crx where Crp:=D, 5 Dy, /ags) s (14)

For each locally integrable function f and each dyadic cube Q, the noncentred Hardy—
Littlewood maximal function .42 f is defined by

1
Ny As = _ d V. ,
S = Sy W(BAO) JBnQ fldp Vx <0

where each B is a ball in % whose centre belongs to Q. The operator .# € is bounded on
L?(Q) for every p in (1, oo] and of weak type 1. Furthermore, there exists a constant Cy,
depending only on the doubling constant of (Q, d|g, i|@), such that for all Q in (J;~, 9k

C
n(txe @ #2f(x)> 1) < 70 £l - (15)

For each locally integrable function f and each dyadic cube Q, we define the noncentred
sharp maximal function f%€ by

1
s w(BNQ) — fenold  Vx € Q. 16
£420) B;BSESMMBmQ)JBmQ'f fanoldu  Vxe© 16

where B is a ball in & whose centre belongs to Q and

1
fBrnop = ——— J fdu
¢ BN 0 o
We split the proof of Theorem 3 into a series of lemmas. For each A > 0, we define

E, = {x cQ: #%f(x)> A}, F = {x c0: fHon) < A}

and Gf’y = EﬂA N Fy)L.

Lemma 4 Suppose that k is in Z. Then, there exists a constant A such that for every B >
2Cok, vy >0, fin L} (M), and Q in 2

loc
Y

n(EgrNFy) <A B w(E»)
for every A > %”f”LI(Q), where Cy is as in (15).

@ Springer



Spaces of Goldberg type on certain measured metric spaces 965

We observe that the constant A in the statement above may very well depend on the resolution
k. This will be no problem, for in the sequel we shall mainly work with cubes with a fixed
resolution.

Proof Set Ap := %HfHU(Q). Since A > Ao, u(E;) < n(Q), so that E) is a proper subset
in Q. Since E) is open and Q is a space of homogeneous type, we can apply a Whitney-type
covering lemma [10, Thm. 3.2] (with 1 in place of C and K therein), and obtain a sequence
{B; N Q} of balls in Q, where B; € 4, such that:

(i) Ex=U;(BiNQ);
(ii) there exists a constant Ko = Ko(k) such that no point of E; belongs to more than Ko
balls B; N Q;

(i) BB N Q)N (EN N Q) # 0.

Note that K does not depend on the particular cube Q in 2* because Ko depends only on the
doubling constant of the space of homogeneous type, and for cubes of the same resolution,
the doubling constants are uniformly bounded from above (see (14) above).

By assumption, 8 > 2C2 > 2. Then, Gf’y C Eg) C E;, so that

w(Gl7) = [Gf’y n(Usin Q))}
= u [U (Gl B»}

i
< > w(G N By.

]

If Gf Y N B; = @ for some index i, we simply ignore the ball B;; otherwise, there exists at

least a point y; € Gf’y N B;, whence 52 (y;) < yA.
We claim that

0 B2
Eg, N B; € [x € Q : M*(fxs5B;)(x) > a] VB > Co.

The claim will imply that
(Gﬂv}’ ) . 0 ,3)\.
uwlGy" NB; SM(EﬁAmBz)fﬂ M (fXSBi)>a .

To prove the claim, we consider the centred Hardy—Littlewood maximal function on the cube
Q defined by

1
AP F)=sup J
JE =5 B N0 Jswno

Since the restriction of p to each cube Q is a doubling measure with doubling constant
bounded above by C; i,

[fldw  Vx e Q.

MOef(x) < Coy M2f(x) VxeQ.

Suppose that x € Eg; N B; and B > C3 x. We need to prove that

0 B
M (fxsp) (x) > oo
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Clearly, 2 f(x) > BA/Ca, so that there exists a ball B, (x) such that
1 B

—_—— d —_—
1 (Br(x) N Q) JB,WQ >

Condition (iii) above implies that there exists a point x; in 3B; N Q such that
MO f(xi) < .
Since we have assumed that 8 > Ca i, x; ¢ B, (x), for otherwise

B

MO f(x;) > |fldu > = > a.
Cox

w(Br(x)N Q) JB,(x)nQ
Since x; is in 3B;\ B, (x), r < 4rp;. Hence, B,(x) C 5B; and
BA 1
Cog S LB N0 JBr(me

This concludes the proof of the claim.
Now we observe that

A2 (fxs) ) <42 ((f = fsm.no) xs8;,) () + | Fsmnol-
Since x; is in 38; N Q and .#2 f(x;) < A by (17),

Ifldu < 49 f(x;) < h

| f5B; |§7J
Fsmnel = 7587 0) bssno

| flxss dpn < 42 (fxsB;) (x).

a7

Therefore, if B > 2 C i, then | fsp,no| < 25%)». This estimate, together with the weak type

1 inequality for .#€ and the assumption that f*2(y;) < y2, implies that, if 8 > 2 Cak,

then

n (’L///Q(f)(sgi) > %]) <u (l///Q((f — f5B:nQ) X5B;) >

2C2k
<o j \f = fsmnolxss du
Br Jo
2Co 1 "
< Co B w8 N Q) 42 (y)

< Co 262,% W(5B;i N Q).
Thus, we have proved that

p (G170 B) = o2 G BN Q).

which, together with the doubling property on Q and condition (ii) above, implies that

u(Gl7) =20 Co% > uGBN0)
1
=2C1 Co CS,k% D w(BiNQ)
i

Y
<2C 1 CoCsi KOE u(Ey),

as required (with A =2 C; x Co Cs x Kop).
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Lemma 5 For each integer k, there exists a constant C = C (k) such that for each cube Q
in 2% and every locally integrable function f

1710700y = € (17521 0 gy + (D 11710 )-
Proof Since .#2 f > | f| almost everywhere, it suffices to show that
122 F17 00 < C (||fﬂ~Q||2’,,(Q) + Q) ? ||f||§1(Q)),

Weset E, ={x e Q : .#2f(x) > A}and Ao = %HfHLl(Q), as in Lemma 4. Note that
foreach 8 > 0

o0
10 W gy = p | 27 (Er) 0

S
o [ e

ro “+00
=p/3pJO )LP_IM(EﬂA) d)»—i—pﬂpj APl /L(Eﬂ)h)d)\.

Ao
Denote by I and I the first and the second integral in the last line above, respectively. Since
the maximal operator .2 € is of weak type 1,

A0
I < CoB M flipico Jo AP=2da

= S gy
= oo Loy

Now, we choose 8 > 2C3 . Given y > 0, we write I, as

+00 | ) +00 .
L MU (Eg N {52 < ya))da+ L AU (Eg N {52 > ya)) di.
0 0
Then, by Lemma 4,
Ay +00 : +o00 |
L < &5 L AP (E) da + L AT u((f52 > ya))da
0 0
A)/ +00 o1 1 +0o0o ool 40
= py M(Ek)dxju—p M ({59 > a)) da
B U Y5 Jyko
Ay Q P 1 80P
By combining the estimates above, we see that
_ cip ., _ B?
A= AP o) = 27 B D IS gy + 517 Clior
Now, we choose y = 1/(2A gP~!) and obtain
2ctp _ 2
142 Fzng) < 2 BT QIS gy + 277 A7 BTSN g

= C (/%20 gy + (D111 )

where C = max (2C} % pr-1, artl Ap ﬂ”z), as required. ]
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Lemma 6 For all integers k large enough and for each cube Q in 2F
11210y = Patrarssysapst.aost [ Nof |11 0)-

Proof For the sake of definiteness, suppose that Q is the dyadic cube Q’g[. Then, Q is contained
in B, s (z’&) by Theorem 4 (v). Denote by B the ball By gt (z’;). Then, Bi(x) C B for
each x in Q. Furthermore, if k is large enough, then Bj(x) D Q for every x in Q. so that
n(B1(x)) < M(E). Then, by Tonelli’s theorem,

du(x)
0 n(B1(x))

du(x) jQ F O du(y)

INof 1o =J JB L TONdR0)
1(x

%

1
w(B) JQ
n(Q)
—= d .
R MECIEC
Recall that O contains B, s (z%), so that
n(Q) > p-l

wB) ~ a +a18%) /aos* .agsk

%

and the required estimate follows. O

Lemma 7 Suppose that k is an integer > [loga(l/(2a1))], where § and ay are as in Theo-
rem 4. Then, there exists a constant C, depending on k, such that for each cube Q in 9k

AP =Cffa) YreQ
(see (16) and (10) for the definitions of f*2 and f¥, respectively).

Proof For each b > 0, we define the noncentred sharp function f; of a locally integrable
function f as

4
To ) =sub By

where the supremum is taken over all balls in %), that contain x.

We first show that there exists a constant C, depending on k, such that f j’Q(x) <
C f:fl s (x) for each cube Q in 2% and for any x in Q. (see Theorem 4 for the definition
of a; and 9).

Choose Q in 2. Take x in Q and suppose that B is a ball whose centre belongs to Q and
such that x € B N Q. We consider the cases where rg < a;8F and rg > a8 separately. If
rg < a8%, the triangle inequality gives

1

JB|f—fB|du Vx € M,

j \f — fonoldu < \f — faldu + 1 f5 — fenol
BNQ

o)
u(B N Q) Jeno

w(BN Q)
: J
< — If — fBldu.
w(BN Q) Jeno f=1
By Proposition 3 (i), we have that u(B N Q) > D;ll/(aoﬁ),sk w(B), so that
1 2Dy, 1(ap8), 6
- — du < AJ — du.
BTG Do Fonoldn = TG | i iyl
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Since the ball B belongs to %, s, the right-hand side of the formula above is majorised by

2Dy jaoi. ot T ().

Now assume that r5 > a;8%. For the sake of definiteness, suppose that Q is the dyadic
cube Q’g[. Recall that diam(Q) < a; 8%, by Theorem 4 (iv), whence Q N B = Q. Moreover,
B st (z/(;) C O C By (zﬁ), by Theorem 4 (v). Denote by B the ball B, sk (z’[;). Then, by
the triangle inequality,

1 1
— - du<— - i e
D g O g ]y~ I U finel
2
2 g
EM(BDQ)JBmQUc Syl du

2
. A — fldp.
S ) J§|f faldu

Now, the local doubling property implies that
/J'(E) = Dal/ao,aoak M(Baofsk(zlé));

hence, the right-hand side can be estimated from above by

2 Dal/ao,aoék J

w(B) JB

which, in turn, may be majorised by 2 D, /40 a0t fjlék (x), for the ball B has radius a; 8*.

By taking the supremum over all balls B containing x and whose centre belongs to Q, we
get

|f = fgldu,

fﬁ,Q(X) < 2Da1/(a06),max(1,a0)5k fflgk(x) Vx € Q

The local doubling property ensures that for each b in R™, there exists a constant C such that
fb: <C fz: »+ Therefore,

1.0 i
frEHx) < Cf2a15k(x) Vx € Q.
Now, if the integer k large enough so that 2a;8F < 1, ie., k > [10g5(1/2a1)], we get
f2:a1 sk = f*, which gives the desired conclusion. O

Now we are ready to prove the main result of this section.

Proof of Theorem 3 Fix an integer k so large that Lemmas 6 and 7 hold. In particular, k must
be > [10g5(1/2a1)]. The cubes in 2* are pairwise disjoint, and their union is a set of full
measure in M, so that

LN pary = D 1100

Qe 9k
<C 3 (1559 g + 1@ 1111 )]
Qe 9k
=C 3 151y + @' 1N S 15 ]
Qe 9k
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970 S. Meda, S. Volpi

the first inequality above follows from Lemma 5, and the second is a consequence of Lem-
mas 6 and 7. Furthermore, by Holder’s inequality,

1 1/p ,
— | INofldp s ———— U INofl”du] Q)
w(Q)7r JQ w77 Lo
= |[NofllLr(o)-
Thus,
10wy < € (151 niany + 1N S 12|
< CUNFIZ piar,

as required. O

8 Interpolation

Suppose that X and Y are Banach spaces, and that 6 is in (0, 1). We denote by S the strip
{z € C:Rez € (0, 1)}, and by S its closure. We consider the class . (X, Y) of all functions
F : § — X 4 Y with the following properties:

1. F is continuous and bounded in S and analytic in S;

2. the functions t — F(it) and t — F(1 + it) are continuous from R into X and Y,
respectively;

3. 1Moo | F(D)llx = 0 and limys s 4o0 | F(1 + i1) |y = 0.

We endow .Z (X, Y) with the norm

IF|l 7 (x.yy = supmax (| FGD)| . [F( +in)],) : 1 € R}.
We define the complex interpolation space (X, Y)g] by
(X, gy ={F(©O) : FeF(X ),
endowed with the norm
HfH(X’y)[Q] :inf{HF”g(x’y) : FeZ(X,Y)and F(0) = f}.

For more on the complex interpolation method, see, for instance, [1].

Theorem S Suppose that 6 is in (0, 1). The following hold:

(i) if pg is 2/(1 = ), then (L*(M), bmo(M)) 5, = L (M);
(ii) if po is 2/(2 — 0), then (' (M), Lz(M))[O] = LP(M).

Proof First we prove (i). Observe that
LP'(M) = (L*(M), L®(M)) ;) S (L7 (M), bmo(M)) ;

the containment above follows from the fact that L>° (M) C bmo(M).

In order to prove the reverse inclusion, suppose that f is in the interpolation space
(L*(M), bmo(M)) ). Then, given € > 0 there exists a function F in 7 (L*(M), bmo(M))
such that F () = f and

||F||9(L2,bm0) =< ”f”(Lz,me)[(ﬂ +e.
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Spaces of Goldberg type on certain measured metric spaces 971

Let ¢ be any measurable function which associates to any point x in M aball ¢ (x) in % (x).
Furthermore, let n : M x M — C be any measurable function with || = 1. We consider
the linear operators S and T which act on a function f in L>(M) as follows:

ST f(x) = u(qﬁl(x))Lm[f — fow]nG,)du  VxeM
and
TV f(x) = LJ FoGeodn Vxe M.
w(Bi(x)) JBix)
Then,
fpung"””fl =/f* and Sl;pIT"fI = Nof. (18)

For each ¢ and 7 as before, consider the functions $-7 F and T" F, where F is in the space
F(L*(M), bmo(M)).
We claim that S F and T" F belong to the class .Z (L2(M), L®(M)),

P,
|s nF”gf(LZ,LOO) =C ||F||9(L2,bmo)
and
”TVIF“?(LZ,LDO) =C ”an(ﬁ,bmo)'
Indeed, recall that gIi < 2.# g and that .# is bounded on L%(M). Thus,
|S97F (0|, < IFG0F 2 < 2 1.4 Fn)ls < CIF D).
Note that the constant C in the above inequality does not depend on ¢ and . Moreover,
ISP 7F (1 +iDlloo < IF(1+it)lloo < | F(1+iD)]|bmo-
Similarly,
|T"Fit)|, < .4 F @itz < CIF@ 0|2
and
IT"F(1+iD)llec < INoF(1+it)lloc < IF(1+it)]omo,
where C is independent of 7. Hence,
1827 £l py = ISP F Ol (12, 1%y,
< ISP Fl 22,1
= ClIFllz w2 bmo)
= C(||f||(L2,bmo)[9] + E)-
By taking the infimum over all € > 0, we get
¢.n <
1% Fllps = C 1Sl (22,6mo)
Now, by taking the supremum over all ¢ and 71, we obtain the estimate

150 = CIFN2.bmo) (19)
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972 S. Meda, S. Volpi

Similarly, we get

17" Fllps = CILF22,mo),,
and taking the supremum over all functions 1, we have

[Nof [, < CIFlL2bmo),, (20)
Now, applying Theorem 3 and combining (19) and (20), we may conclude that

171, < CINFI,,
(|1, + INosl,)
< Clfll2omey,, VI € (LX), bmo(M))

and the required inclusion (LZ(M), bmo(M)) 01 € LP? (M) follows.
To prove (ii), we may apply a duality argument [1, Corollary 4.5.2]. We omit the details.
[m]

9 On the h! — L! boundedness of operators

One of the reasons which make h' (M) useful is that to prove that a linear operator T maps
h'(M) to a Banach space X it suffices to prove that T is uniformly bounded on atoms. This
extends to the space bl (M) the analogous result for H LM (see [22]).

We need more notation. Suppose that p is in [1, 0o). For each closed ball B in M, we
denote by L? (B) the space of all functions in L” (M) which are supported in B. The union of
all spaces L”(B) as B varies over all balls coincides with the space L (M) of all functions
in L? (M) with compact support. Fix a reference point o in M, and for each positive integer
k, denote by By the ball centred at o with radius k. A convenient way of topologising L% (M)
is to interpret LP(M) as the strict inductive limit of the spaces LP2(By) (see [2, 11, p- 33] for
the definition of the strict inductive limit topology). We denote by X ” the space LY (M) with
this topology, and write X ,f for L?(By). It is well known that the topological dual of X7 is

/
Lﬁ,c(M ), where p’ denotes the index conjugate to p.

Note that the spaces X ,f and X7 differ from the spaces, denotes exactly in the same
way, considered in [22], for functions in our version of X ,f and X?” need not have vanishing
integral.

Theorem 6 Suppose that p is in (1,00) and that T is a L'(M)-valued linear operator
defined on h}i;’p (M) with the property that

A :=sup{||Tal : aisa p-atom} < co.

Then, there exists a unique bounded operator T from hL(M) to LY (M) which extends T.

Proof Suppose that B is aball of radius rg > 1. Foreach f € L”(B) such that || f||, = 1 set

a= M(B)_l/”/f, where p’ denotes the index conjugate to p. Then, a is a p-atom at scale rg

and by Lemma 2 there exist global p-atoms at scale 1, ay, ..., ay suchthata = ZN

j=1€j%j>
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Spaces of Goldberg type on certain measured metric spaces 973

with |c;| < C, where C and N are constants, which depend only on rp and M. Thus, we get

1771 = 1T (B a)

N
< (B> jejl ITaj)
j=I1

<CNAuB

for every f € LP(B) such that || f||, = 1.
In particular, the restriction of T to X ,f isbounded from X ,f to L1 (M) foreach k. Therefore,
T is bounded from X7 to L' (M). It follows that the transpose operator 7* is bounded from

L°° (M) to the dual of X7, which can be identified with sz’/c (M). Therefore, for every f in
L°°(M) and every p-atom a we have

(Ta, f)=(a, T*f) = JMa T* fdu,

so that
HM“ T* fd| = [(Ta, )| < 1Talil flloo < Allfllc- 1)

Now we show that 7* f belongs to bmo (M) and that
IT* fllomo <3 Al fllo  Vf € L¥(M).

Suppose that B is a ball of radius at most 1; we have

, 1/p'
UBIT*f—(T*f)BIP du} = sup HBfﬂ(T*f—(T*f)B)dM)- (22)

lellLr =1
Observe that
| s = puyan=| (0-va) (175 = @ n) d
B B 23)
= JB(w —p) T* f dp.

Since |l¢llLrg) = 1,

1/
los| < L[ jppra "< (B!
% w(B) s pI-au M

Then,

Il — @sllLe) < l@llirs) + losl w(B)/P

<2,
so that (¢ — ¢p) xB/(2 ,u(B)l/f’/) is a standard p-atom, and (21) implies that
[ @—vm T au| <240 o wi®)!”

Thus, by (23) and (22), we may conclude that for every ball B of radius at most 1

1 R R )
—_— T f —(T* A 00-
[M(B) JB| f— (T f)g] du] <24]f]
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974 S. Meda, S. Volpi

Now take a ball B of radius exactly equal to 1. We have
, 1/p
U T 1P du] = s [ o1raul
B el =178

The function ¢/u(B)"/?" is a global p-atom, and, by (21),

IRZNZZE O

Therefore, for every ball B of radius 1
, 1/p'
[E | i du] < Allf .
Combining the above estimates, we get

IT* Fllomo < IT* Flly, v <3A1flec  Yf € LX(M),

as required.
Now we prove that T extends to a bounded operator from h (M) to L' (M). Observe that

XP and f)ﬁ P (M) coincide as vector spaces. For every g in hﬁ“ (M) and every f in L*°(M)

(Tg. f)1=I{g. T*f)]|
< Cligly IT* fllomo
<3CAlgly I flloo-

By taking the supremum of both sides over all functions f in L% (M) with || f|lcc = 1, we
obtain that

ITgllh =3CAlgly  Vge bl (M).

Since b:-l;]p (M) is dense in h! (M) with respect to the norm of hl(M), the required conclusion
follows by a density argument. O

Suppose that T is a bounded linear operator on L2(M). Then, T is automatically defined
on hfli’rlz(M ). If we assume that

A:=sup{||Talli:a is a 2-atom} < o0,

then, by the previous theorem, the restriction of 7' to bﬁn (M) has a unique bounded extension
to an operator 7 from h (M) to L! (M ). We wonder if the operators 7" and T are consistent,
i.e., if they agree on the intersection b1 (M) N L*(M) of their domains. As in the case of the
same problem on the space H L(M) (see [22, Prop. 4.2]), the answer is in the affirmative, as
shown in the next proposition.

Proposition 4 Suppose that T is a bounded linear operator on L*>(M) and that
A :=sup{||Tal : ais a 2-atom} < o0.
Denote by T the unique bounded extension of the restriction of T to f)lli’nz (M) to an operator

from hl(M) to LY (M). Then, the operators T and T coincide on hl(M) N LE(M).
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Spaces of Goldberg type on certain measured metric spaces 975

Proof Assume that f is in L>(M) N L% (M) and that g is in L2(M). Denote by T* the
transpose operator of 7' (as an operator on L2(M )). Then,

| srorau=] reran.

M M

Since g is in hé’nz(M ) and the operators 7" and T agree on hé’nz(M ), we get
J Tgfdu=J Tg fdu.
M M

Denote by (T)* the transpose of T as an operator from hl(M) to L' (M). Then,
JM Tgfdu= (g, ()" f>-

Since (T)* f isin bmo(M) and g is in h}i’nz(M), we can write the last scalar product (g, (f)*f)
(with respect to the duality between hl (M) and bmo(M)) as

(e.(1) 1) =] & (@) ran.
Thus, combining the above equalities, we obtain that
| g[r7r= @ s]an=0 vgerzam,
i.e., for all g in X2. This implies that T* f — (T)* f = 0 is in the dual space of X2, i.e., in

LIZOC(M). Thus, T* f = (f)*f almost everywhere.
Now, suppose that f is in L>(M) N L% (M) and that g is in §' (M) N L>(M). Then,

J TgfdM=J gT*fdu
M M
= J ¢ (T)" fdu
M
= J fg fdu.
M
Thus, we have obtained that
J [Tg—fg] fdu=0
M
for an arbitrary f in L2(M)NL% (M). This implies that Tg = T g forall ginh' (M)NLZ(M).

[m}

10 Applications to SIO

The purpose of this section is to show that the Hardy space h!(M) may be used to obtain
endpoint estimates for interesting singular integral operators on Riemannian manifolds.
Hereafter in this section, we assume that M is a complete connected noncompact n-
dimensional Riemannian manifold with bounded geometry, that is with Ricci curvature
bounded from below and positive injectivity radius. We view M as a measured metric space
with respect to the Riemannian distance and measure. Clearly the MP property holds (with
Ry = 0). Furthermore, it is well known that manifolds with bounded geometry possess the
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976 S. Meda, S. Volpi

LDP, as a consequence of the Bishop—Gromov comparison theorem (see, for instance, [14],
[5, Thm I11.4.5]). Thus, the theory of local Hardy spaces h' (M) developed in the previous
chapters applies to this setting. Denote by —.% the Laplace—Beltrami operator on M: .Z is
a symmetric operator on CS°(M), and its closure is a self-adjoint operator on L?(M) which
we still denote by .Z.

We consider the (translated) Riesz transforms R, := V(a.# +.%)~'/2, where V denotes
the Riemannian gradient, and a is a positive number, and spectral multipliers of .# satisfying
a Mihlin-type condition at infinity.

The latter operators are treated in [27] and in [19]. A comparison between the results
obtained therein and our result is in order. We extend the resultin [27] by relaxing significantly
the assumptions on the geometry of M, as already illustrated in Introduction. In [19], the
Riemannian manifold M is assumed to have bounded geometry in the same sense as here, but
an additional hypothesis is made, i.e., that the bottom b of the L2 spectrum of .Z is strictly
positive. This assumption rules out, for instance, all Riemannian manifolds of polynomial
volume growth [3]. The reason for this additional assumption is that the local Hardy space
H{ (M) used in [19] is known to interpolate with L*(M) to give LP(M), 1 < p < 2, only
when b > 0.

The problem of establishing endpoint estimates for R, when p = 1 in the setting of
noncompact Riemannian manifolds has been widely studied. In particular, Coulhon and
Doung [4] proved that if M is locally doubling, of exponential growth, and supports an L>-
scaled Poincaré inequality, then R, is of weak type 1. Russ [24] complemented this result
by showing that, for a large enough, R, is bounded from the atomic Hardy space H 11 (M) to
LY(M). Note, however, that Russ’ result is known to interpolate with L2(M) to give LP (M)
estimates only when M has bounded geometry and spectral gap (see [7] and the remarks
above).

Here we prove, under the assumption that M has bounded geometry, that if a is suitably
large, then R, is bounded from hl (M) to LY(M). This result complements the analogous
result in [7].

10.1 Spectral multipliers
First we define the class of symbols which will be needed in the statement of Theorem 7.

Definition 5 Suppose that J is a positive integer and that W is in R*. Denote by Sy the
strip {¢ € C: Im(¢) € (—W, W)} and by H*(Sy; J) the vector space of all bounded even
holomorphic functions f in Sy for which there exists a positive constant C such that

IDIfOI<CA+ch™  VeeSy Vje{o,1,...,J). (24)

We denote by || f|s,, ;s the infimum of all constants C for which (24) holds. If || f[|s,,.s < oo,
we say that f satisfies a Mihlin condition of order J at infinity on Sy .

Denote by w an even function in C°(R) which is supported in [—3/4, 3/4], is equal to 1
in [—1/4, 1/4], and satisfies

Dot—j)=1 VieR

JEZ

Denote by 2 the operator /.Z — b, where b denotes the bottom of the L? spectrum of .Z.
Clearly spectral multipliers of . may equivalently be expressed as spectral multipliers of
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Spaces of Goldberg type on certain measured metric spaces 977

2 (with a different multiplier). Recall that the heat semigroup is the one-parameter family
{A}1>0 defined, at least on LZ(M), by

Hf =e"LF  VfelL*M).

It is well known that /% extends to a contraction semigroup on L” (M) for all p € [1, oo].
Furthermore, since M has Ricci curvature bounded from below, the heat semigroup {57}
satisfies the following ultracontractivity estimate [14, Section 7.5]

40,0 = Ce™ a3 (1 4 0y"* 722 Ve e RT (25)

for some § in [0, 00). Recall also that a lower bound for the Ricci curvature implies also an
upper bound of the volume growth of M (see (26)). Indeed, there are positive constants «,
and C such that

w(B(p,r) <Cr*e®” Vre[l,oo) VpeM. (26)

The following result should be compared with [27, Proposition B.5]. It provides an end-
point result to the multiplier theorem [26, Thm 1.1].

Theorem 7 Assume that o« and B are as in (26), and § as in (25). Denote by N the integer
[n/2 4 11+ 1. Suppose that J is an integer > max (N +2+a/2—-6,N+ 1/2). Then, there
exists a constant C such that

lm(D)llyr < Climlis,;s  Vm e H*(Sg; J).

Proof We claim that it suffices to prove that for each 2-atom a at scale 1, the function m(2) a
may be written as the sum of 2-atoms supported in balls of %, with £ norm of the coefficients
controlled by C [lm||s; ;-

Indeed, suppose that f is a function in h'(M) and that f = Z,’ Ajaj is an atomic
decomposition of f with || fllg1 > Z/ |A;j| — e. Since for each 2-atom a, we have
lm(2)alli < C |Imllsg; s, by Theorem 6 m(Z) extends to a bounded operator from hl(M) to
L'(M). Then, m(2)f = Zj A jm(Z)a;, where the series is convergent in LY (M). But the
partial sums of the series jAjm(Z)aj is a Cauchy sequence in h'(M); hence, the series
is convergent in h'(M), and the sum must be the function m(2) f. Therefore,

Im(2) fllgr < > 11j1 Im(@ajly
J

< C lmllsys D 12l
J

< Clmlisges (If1y +e).

and the required conclusion follows by taking the infimum of both sides with respect to all
admissible decompositions of f.

It has already been shown in the proof of [19, Thm 3.4] that the claim holds for standard
atoms. Therefore, it suffices to prove it for global atoms.

As in the proof of [19, Thm 3.4], we split the operator m (Z) into the sum of two operators
and analyse them separately. The functions @ * m and m — @ * m (w is the cut-off function
defined above) are bounded. Define the operators . and .7 spectrally by

S =@*xm)(2) and T =m—o*m) (D).
Thus m(2) = .7+ 7.
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Suppose that a is a global 2-atom supported in By (p) for some p in M. Observe that the
function @ * m is bounded and

@+ mlloo < Cllmlloo < C lImllsy:- 27
Therefore, (@ % m)(2) is bounded on L2(M) by the spectral theorem, and
@ *m)(Dll2 < @ *mlloo < C limlls,:-

We have used (27) in the second inequality above. Observe that the support of the kernel of
the operator (@ * m)(2) is contained in {(x, y) : d(x, y) < 1}, for .Z possesses the finite
propagation speed property; hence, the function (@ * m)(Z)a is supported in the ball with
centre p and radius 2. Moreover,
1@ % m)(P)all, < C (@ *m)( D2 a2
< Cllmllsyss n(Bi(p)~"2
< Cllmllsy;s n(Ba(p) ™2,

We have used the LDP in the last inequality. Thus, (@ * m)(2)a is a constant multiple of a
global atom at scale 2 and, by Lemma 2,

(@ % m)(P)allgr < C llmllsy:.-

Now we analyse Za. In the proof of [19, Thm 3.4], it is shown that if b is a standard
2-atom, then .7b may be decomposed as

00
yb:Z)\ij‘,
j=1

where b is an atom at scale j + 2, and
Al < Climlisyy jNT27770 wji=1,2,3,... (28)

A close examination of the proof reveals that the cancellation property of b is used to show
that the atoms b; also have this property, but it is not required in the proof of (28). Thus,
by arguing as in Step IV in the proof of [19, Thm 3.4], we may conclude that 7 a may be
written as

00
Ta :z)\.ja]’,
j=1

where a; is a global 2-atom at scale j + 2 and A ; satisfies estimate (28). Now Lemma 2 (and
its version for Riemannian manifolds [19, Lemma 5.7]) implies that there exists a constant
C such that

||a(,<||r)1§Cj j=12,3,...
Therefore,
o0
1Zallyr < Climllsy.s D i N T27772 < C Imlls,.s.
j=1

where C is independent of a. Hence, .7 extends to a bounded operator from h! (M) to b (M).
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So far, we have proved that there exists a constant C such that for every global atom a
I-Zallgt + | Zallgr = C limlisg;-
Hence,
Im(Pyallgr < C lImllsy..-

The required conclusion follows from the claim at the beginning of the proof. O

10.2 The translated Riesz transform

We shall need the following local estimate for the space derivative of the heat kernel.

Lemma 8 There exists n > 0 such that forally € M, t > 0

Ce—Mt/sg—1/2 Vs € (0, 1]

| Vhs (e, ) dpx) < |
d(x, )=/t Ce= /s gesg—1/2 Vs e (1, 00)

This result is stated in [4], though its proof is given in full detail only in the case where
M is globally doubling. However, it is not hard to modify the argument to produce a proof
of Lemma 8. The proof hinges on upper estimates for the heat kernel and its time derivatives
(see [11,14,15]) and on weighted estimates for the space derivative of the heat kernel ([4]).

Theorem 8 There exists a > 0 such that the translated Riesz transform V(a.% + .£)~/ 2is
bounded from hl(M) to LY (M).

Proof We know that if a is large enough, then V(a.¥ + #)~1/2 is bounded from H!' (M) to
Li(M) by [24]. Therefore, it suffices to show that the kernel k of V(a.¥ + 212 gatisfies
the condition

sup j ke, ] du(x) < oo 29)
yeM JBy(y)¢

and then apply [9, Prop 4.5]. The kernel is given, off the diagonal, by

—+00 efas
k(x, = —V, h(x, ds.
(x. y) JO V() ds

By Fubini’s theorem, we obtain

+o0o e—as
J S k(e y) ds| dp()

ng(y)c Ik(x, y)I dp(x) :J

By o s
“+00 efax
< |Vihg(x, y)|du(x)ds
Jo Vs L(x,y)zz wb Y
=L+ D,
where
1 e as
n=] S| e &
0 V5 a2 T
and

+00 e—as
I, = J

Vihg(x, y)| du(x)ds.
. \/E Jd(x,y)22| xNs »ldu
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Now we apply Lemma 8 to estimate the inner integrals. We get

and

1 e—as—4n/s 1 e—4r]/s e_4;7
I]fCJ 7ds§CJ' 3 ds=C——o,
0 N 0o S 4n
+o00 ef(afc)574n/s +00
I < CJ —ds < CJ e~ (6793 g,
1 N 1

Note that the last integral converges only when a > c. Therefore, (29) holds if @ > ¢, and for
such a, the operator V(a.¥ + #)~1/2 extends to a bounded operator from hl (M) to LY (M),
as required. O
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