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Abstract In this paper, we define a space h1(M) of Hardy–Goldberg type on a measured
metric space satisfying some mild conditions. We prove that the dual of h1(M) may be
identified with bmo(M), a space of functions with “local” bounded mean oscillation, and
that if p is in (1, 2), then L p(M) is a complex interpolation space between h1(M) and
L2(M). This extends previous results of Strichartz, Carbonaro, Mauceri and Meda, and
Taylor. Applications to singular integral operators on Riemannian manifolds are given.
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1 Introduction

This paper focuses on the study of spaces of Hardy–Goldberg type on certain measured
metric spaces and is based on previous results of the second-named author [28]. Our goal is
twofold:On the one hand,we aimat extending previouswork on the subject byStrichartz [25],
Carbonaro et al. [7,8], and Taylor [27]. On the other hand, our results pave the way to further
developments concerning Riesz transforms on a certain class of noncompact Riemannian
manifolds that will appear in a forthcoming paper.

Strichartz worked on compact Lie groups; some of his far-reaching ideas have been sub-
sequently developed by Taylor to successfully extend Strichartz’s results to the setting of
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Riemannian manifolds with strongly bounded geometry. A comparison between the results
contained in [7] and [27] may help understanding our motivations and contributions. Before
coming to this, we mention that in [29,30], the authors established a quite complete the-
ory of local Hardy spaces on RD-spaces, i.e., on spaces of homogenous type in the sense
of Coifman and Weiss where a reverse doubling property holds. See also [16] for results
concerning Triebel–Lizorkin spaces on RD-spaces and their relationships with local Hardy
spaces. In particular, note that if M is an RD-space, then our space h1(M) reduces to the
space H1,2

� (M) of [29]. However, we emphasise the fact that though our theory works also
on spaces of homogeneous type in the sense of Coifman and Weiss (without assuming the
RD-property), our main goal is to develop a theory that works on a certain class of manifolds
with exponential growth, where the doubling property fails.

Coming back to the comparison between the results in [7] and [27], observe that in [7]
the authors consider a metric measured space (M, μ, d) satisfying three conditions: the
approximate midpoint property (AMP), the local doubling condition (LDC), and Cheeger’s
isoperimetric property (IP) (see Sect. 2 for the definitions). The AMP is a very mild assump-
tion, very often satisfied, the LDC is a very natural assumption for the applications we have
in mind to Riemannian manifolds, whereas the IP is a comparatively restrictive assumption,
for it implies that the volume growth of M be at least exponential [18, Proposition 3.1 (i)]. In
this setting, the authors introduce an atomic Hardy space H1(M), identify the dual space of
H1(M) with BMO(M) (suitably defined), and prove that if p is in (2,∞), then L p(M) is
an interpolation space between L2(M) and BMO(M). Also, applications to spectral multi-
pliers and Riesz transforms are given. It is important to keep in mind that atoms are functions
in L2(M), with support contained in balls of radius at most 1, say, satisfying the standard
size estimate and cancellation property (the same as those satisfied by atoms in the classical
Hardy space H1(Rn)).

In [27], Taylor works on a Riemannian manifold M of bounded geometry in a very
strong sense, which requires a uniform local control of all derivatives of the metric tensor
in exponential co-ordinates around each point, but a mild control on the volume growth of
the manifold. He defines a local Hardy space h1(M), which is a direct generalisation of the
classical local Hardy space h1(Rn), introduced byGoldberg [13], and of the extension thereof
to compact Lie groups by Strichartz. Taylor defines h1(M) via a suitable grand maximal
function, identifies the dual space of h1(M) with bmo(M) (suitably defined), and proves
that if p is in (2,∞), then L p(M) is an interpolation space between L2(M) and bmo(M).
Applications to a wide class of pseudo-differential operators are provided. Taylor also proves
that h1(M) has an atomic decomposition, whose atoms are either atoms in H1(M) (in the
sense of [7]), or functions in L2(M), supported in a ball of radius exactly equal to 1 and
satisfying the standard size condition, but possibly not the cancellation condition. One of the
limitations of this approach is that the geometric assumptions on the Riemannian manifolds
are, as mentioned above, quite stringent. One of its advantages is that it reduces any estimate
involving h1(M) to corresponding local estimates for h1(Rn).

It is worth observing that each of the spaces H1(M) and h1(M) has its own advan-
tages and range of applications. Clearly h1(M) is a flexible space that is preserved by the
action of suitable classes of pseudo-differential operators [13,25,27]. However, it is not apt
to obtain endpoint estimates for certain singular integral operators like, for instance, the
purely imaginary powers of the translated Ornstein–Uhlenbeck operator [9], where H1(M)

functions perfectly.
Asmentioned above, one of themotivations of ourwork is to extend considerably the range

of applicability of the approach of Strichartz and Taylor. Our ambient space is a measured
metric space possessing AMP and LDP. It is well known that the assumptions above are
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Spaces of Goldberg type on certain measured metric spaces 949

satisfied whenever M is a Riemannian manifold with Ricci curvature bounded from below
(without assuming thatM has positive injectivity radius), a condition that does not require any
control on the derivatives of themetric tensor. Note that suchmanifoldsmay have exponential
volume growth, so that they may not be homogeneous spaces in the sense of Coifman–Weiss.
Note that we do not assume that M possesses the so-called uniform ball size condition, i.e., it
may happen that inf {μ(B) : rB = r} = 0 and sup {μ(B) : rB = r} = +∞ for each r > 0.

We emphasise the fact that our methods are quite different from those of Taylor, for we
cannot reduce the analysis to that of Goldberg on Euclidean spaces. We give an atomic
definition of h1(M): When M is a manifold of strongly bounded geometry, h1(M) agrees
with the space defined by Taylor. We prove that the topological dual of h1(M) may be iden-
tified with a local space bmo(M) of functions of bounded mean oscillation in an appropriate
sense (see Sects. 5 and 6), and that if p ∈ (1, 2), then L p(M) is a complex interpolation
space between h1(M) and L2(M) (see Sect. 8). Applications to the study of the translated
Riesz transform and of spectral multipliers of the Laplace–Beltrami operator on manifolds
with Ricci curvature bounded from below will be given in Sect. 10.

Finally, a few words concerning our second goal. A basic question concerning the Riesz
transform R = ∇L −1/2 (here L denotes the Laplace–Beltrami operator on M) is to char-
acterise the space H1

R(M) of all functions f in L1(M) such that
∣
∣R f

∣
∣ is in L1(M). In

many cases, for instance in R
n , such space is just the Hardy space H1(Rn). Recent results

of Mauceri et al. [21] show that if D denotes the hyperbolic disc, then H1
R(D) is not H1(D).

The analysis of h1(M) performed in this paper will be the key to provide a characterisation
of H1

R(M) for a comparatively large class of Riemannian manifolds.
We will use the “variable constant convention” and denote by C , possibly with sub- or

superscripts, a constant that may vary from place to place and may depend on any fac-
tor quantified (implicitly or explicitly) before its occurrence, but not on factors quantified
afterwards.

For each p in [1,∞], we denote by p′ the index conjugate to p, i.e., p′ = p/(p − 1).

2 Notation, terminology, and geometric assumptions

Suppose that (M, d, μ) is a measured metric space, and denote by B the family of all balls
on M . We assume that μ(M) > 0 and that every ball has finite measure. For each B in B,
we denote by cB and rB the centre and the radius of B, respectively. Furthermore, we denote
by kB the ball with centre cB and radius krB . For each s in R

+, we denote byBs the family
of all balls B in B such that rB ≤ s.

We say that M possesses the local doubling property (LDP) if for every s in R
+, there

exists a constant Ds such that

μ
(

2B
) ≤ Ds μ

(

B
) ∀B ∈ Bs .

Remark 1 The LDP implies that for each τ ≥ 1 and for each s inR+, there exists a constantC
such that

μ
(

B ′) ≤ C μ(B) (1)

for each pair of balls B and B ′, with B ⊂ B ′, B in Bs , and rB′ ≤ τ rB . We shall denote
by Dτ,s the smallest constant for which (1) holds. In particular, if (1) holds (with the same
constant) for all balls B in B, then μ is doubling and we shall denote by Dτ,∞ the smallest
constant for which (1) holds.
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We say that M possesses the approximate midpoint property (AMP) if there exist R0 in
[0,∞) and β in [1/2, 1) such that for every pair of points x and y in M with d(x, y) > R0,
there exists a point z in M such that d(x, z) < β d(x, y) and d(y, z) < β d(x, y). This is
clearly equivalent to the requirement that there exists a ball B containing x and y such that
rB < β d(x, y).

If M is a measured metric space for which R0 = 0 and each segment has a midpoint, then
we say that M possesses the midpoint property (MP). Typically graphs enjoy the AMP, but
quite often a “segment” in a graph has not a midpoint. On the other hand, every connected
Riemannian manifold possesses the MP, and the constant R0 is equal to 0.

All the results in this paper hold under the assumption that M possesses the local dou-
bling property LDP and the approximate midpoint property AMP. However, for the sake of
simplicity, hereafter we assume that M possesses the local doubling property LDP and
the midpoint propertyMP (with R0 = 0). This leads to cleaner statements and allows us to
avoid certain annoying technicalities, which makes the reading more difficult. The interested
reader may easily fill the additional details and come to prove our results under the assump-
tion that M satisfies the AMP only. To this end, [7] may serve as a guide, for the details of
proofs therein are done under the assumption that M possesses the AMP only.

Given a positive number η, a set M of points in M is a η-discretisation of M if it is
maximal with respect to the following property:

min{d(z, w) : z, w ∈ M, z 
= w} > η and d(M, x) ≤ η ∀x ∈ M.

It is straightforward to show that η-discretisations exist for every η. For each subset E of M ,
we set

ME := {

z ∈ M : B2η(z) ∩ E 
= ∅},
and denote by �ME its cardinality. If x is a point in M , we write Mx instead of M{x},
for simplicity. Note that �Mx is the number of balls of the covering

{

B2η(z) : z ∈ M
}

that
contain x .

Lemma 1 Suppose that M possesses the LDP and the MP (with R0 = 0, see, however, the
remark before the definition of discretisations). Assume that c is a positive number and that
M is a c/2-discretisation. The following hold:

(i) the family {Bc(z) : z ∈ M} is a locally uniformly finite covering of M, and there exists
a constant C, depending on c, such that supx∈M �Mx ≤ C;

(ii) for every b > c there exists a constant C, which depends on b and c, such that �MB ≤ C
for every ball B of radius b.

Proof First we prove (i). Since M is a c/2-discretisation, d(M, x) ≤ c/2 for every x in
M , so that {Bc(z) : z ∈ M} is a covering of M . Observe that if z is in Mx , then Bc(z) ⊂
B2c(x) ⊂ B3c(z). This and the LDP (1) imply that

μ
(

B2c(x)
) ≤ μ

(

B3c(z)
) ≤ D12,c/4 μ

(

Bc/4(z)
)

.

Since Bc/4(z) ⊂ B2c(x) and the balls of the family
{

Bc/4(z) : z ∈ M
}

are pairwise disjoint,

μ
(

B2c(x)
) ≥ μ

( ⋃

z∈Mx

Bc/4(z)
)

=
∑

z∈Mx

μ
(

Bc/4(z)
)
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Spaces of Goldberg type on certain measured metric spaces 951

≥ �Mx

D12,c/4
μ
(

B2c(x)
)

,

whence �Mx ≤ D12,c/4, as required.
Now we prove (ii). Denote by B ′ the ball with centre cB and radius b + 2c. Observe that

if z is in MB , and x belongs to Bc(z), then d(x, cB) < b + 2c. Therefore, x is in B ′. This
and (i) imply that

∑

z∈MB

1Bc(z) ≤ D12,c/4 1B′ .

By integrating both sides of this inequality, we see that
∑

z∈MB

μ
(

Bc/4(z)
) ≤

∑

z∈MB

μ
(

Bc(z)
) ≤ D12,c/4 μ(B ′).

Recall that the balls Bc/4(z), z ∈ MB , are pairwise disjoint, and that μ
(

Bc/4(z)
) ≥

D−1
4(b/c)+8 μ(B ′) by the LDP, so that

�MB D−1
4(b/c)+8 μ(B ′) ≤ D12,c/4 μ(B ′),

from which the required estimate follows directly. 
�
Remark 2 A careful examination of the proof of Lemma 1 reveals that, in fact, we have
proved the following: supx∈M �Mx ≤ D12,c/4 and �MB ≤ D4(b/c)+8D12,c/4 (see Remark 1
for the definition of Dτ,s). We have made here the choice not to keep track of the precise
dependence of the constants appearing in the statement from the various parameters.We shall
do the same in all the subsequent sections.

3 The local Hardy space h1(M)

Definition 1 Suppose that p is in (1,∞] and let p′ denote the index conjugate to p. Suppose
that b is a positive number. A standard p-atom at scale b is a function a in L1(M) supported
in a ball B in Bb satisfying the following conditions:

(i) size condition:

‖a‖∞ ≤ μ(B)−1 if p = ∞ and ‖a‖p ≤ μ(B)−1/p′
if p ∈ (1,∞);

(ii) cancellation condition:
∫
B
a dμ = 0.

A global p-atom at scale b is a function a in L1(M) supported in a ball B of radius exactly
equal to b satisfying the size condition above (but possibly not the cancellation condition).
Standard and global p-atoms will be referred to simply as p-atoms.

Definition 2 Let b be a positive number. The local atomic Hardy space h1,pb (M) is the space
of all functions f in L1(M) that admit a decomposition of the form

f =
∞
∑

j=1

λ j a j , (2)
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where the a j ’s are p-atoms at scale b and
∑∞

j=1 |λ j | < ∞. The norm ‖ f ‖
h
1,p
b

of f is the

infimum of
∑∞

j=1 |λ j | over all decompositions (2) of f .

We shall prove that h1,pb (M) is independent of p and b, and later the space h1,p1 (M) will
be denoted simply by h1(M).

The following lemma produces an economical decomposition of atoms supported in “big”
balls as finite linear combinations of atoms supported in smaller balls. This result extends to
global atoms the economical decomposition for standard atoms proved in [20, Lemma 6.1];
see also [7, Prop. 4.3 (i)] for a “less economical” decomposition. It is worth observing that
our proof does not require the uniform ball size condition, which, instead, is used in [20,
Lemma 6.1]. Furthermore, the proof of the following lemma is somewhat simpler than the
proof of [20, Lemma 6.1], for we can decompose atoms supported in “big” balls as finite
linear combinations of global atoms supported in smaller balls, so that we need not care
about cancellations.

Lemma 2 Suppose that p is in (1,∞] and that b > c > 0. Then, each p-atom a at scale b
may be written as a finite linear combination of global p-atoms at scale c, and there exists
a constant C, independent of the atom a, such that ‖a‖

h
1,p
c

≤ C.

Proof Suppose that a is a p-atom at scale b (either standard or global), supported in the ball
B, and denote by M a c/2-discretisation of M . We denote by B1, . . . , BN the balls with
centre at points in MB and radius c, and define

ψ j := 1Bj
∑N

k=1 1Bk
.

Clearly
∑N

k=1 ψ j is equal to 1 on B. Set λ j := ‖aψ j‖p μ(Bj )
1/p′

, b j := aψ j λ
−1
j , and

write a = ∑N
j=1 ψ j a = ∑N

j=1 λ j b j . Clearly b j is a global p-atom at scale c, whence

‖a‖
h
1,p
c

≤
N
∑

j=1

|λ j |

=
N
∑

j=1

‖aψ j‖p μ(Bj )
1/p′

≤
⎡

⎣

N
∑

j=1

‖aψ j‖p
p

⎤

⎦

1/p ⎡

⎣

N
∑

j=1

μ(Bj )

⎤

⎦

1/p′

;

we have used Hölder’s inequality with exponents p and p′ in the last inequality. Observe that
the balls Bj are contained in the ball with centre cB and radius b+2c. Since, by Lemma 1 (i)
each point in Bb+2c(cB) is covered by at most C balls Bj , with C depending only on c,

N
∑

j=1

μ(Bj ) ≤ C μ
(

Bb+2c(cB)
)

.

Similarly,

N
∑

j=1

‖aψ j‖p
p =

∫
M

N
∑

j=1

ψ
p
j |a|p dμ
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Spaces of Goldberg type on certain measured metric spaces 953

≤ ‖a‖p
p

≤ μ(B)−p/p′ ;
we have used the fact that 0 ≤ ψ j ≤ 1, that p > 1, and that

∑N
k=1 ψ j = 1 on B in the first

inequality above and the size condition of the p-atom a in the second. By combining the
preceding estimates, we obtain that there exists a constant C , depending on c and on p, such
that

‖a‖
h
1,p
c

≤ C μ(B)−1/p′
μ
(

Bb+2c(cB)
)1/p′

.

Since B and Bb+2c(cB) have the same centre,

μ
(

Bb+2c(cB)
) ≤ D1+2(c/b),b μ(B),

whence ‖a‖
h
1,p
c

≤ C D1/p′
1+2(c/b),b, as required. 
�

Proposition 1 Suppose that p is in (1,∞] and that b > c > 0. A function f is in h1,pc (M) if
and only if f is in h1,pb (M). Furthermore, there exist positive constants C1 and C2, depending
on b, c and p, such that

C1 ‖ f ‖
h
1,p
b

≤ ‖ f ‖
h
1,p
c

≤ C2 ‖ f ‖
h
1,p
b

∀ f ∈ h
1,p
c (M).

Proof Webegin by showing that h1,pc (M) ⊂ h
1,p
b (M), and that the left-hand inequality holds.

If a is a p-atom at scale c with support contained in B, then a

[

μ(B)

μ
(

(b/c)B
)

]1/p′

is a p-atom

at scale b, and

‖a‖
h
1,p
b

≤
[

μ
(

(b/c)B
)

μ(B)

]1/p′

≤ D1/p′
b/c,c.

This implies that if f belongs to h1,pc (M), then f is in h1,pb (M) and ‖ f ‖
h
1,p
b

≤ D1/p′
b/c,c ‖ f ‖

h
1,p
c
.

The reverse inclusion follows directly from Lemma 2. 
�
Remark 3 Suppose that p is in (1,∞]. Then, for every b and c such that b > c > 0 the
spaces h1,pb (M) and h

1,p
c (M) are isomorphic (in fact, they contain the same functions) by

Proposition 1. Hereafter, we denote the space h1,p1 (M), endowed with any of the equivalent
norms defined above, simply by h1,p(M).

In Sect. 6, we shall prove that h1,p(M) does not depend on the parameter p in (1,∞),
and then we shall denote all the spaces h1,p(M) simply by h1(M).

4 The local ionic space h1
I (M)

In this section, we show that h1(M) admits a “ionic decomposition”. Specifically, we shall
define a “ionic” Hardy space h1I (M). The space h1I (M) is defined much as h1(M), but with
ions in place of atoms. It will be clear from the definition that every atom is an ion, but
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954 S. Meda, S. Volpi

not conversely. In fact, we shall consider a one-parameter family of different types of ions.
When this parameter is equal to one, and M is a Riemannian manifold with strongly bounded
geometry, then h1I (M) is the local Hardy space introduced by Taylor in [27].

Definition 3 Suppose that p is in (1,∞] and that α is a positive real number. A (p, α)-ion
is a function g in L1(M) supported in a ball B with the following properties:

(i) ‖g‖∞ ≤ μ(B)−1 if p = ∞ and ‖g‖p ≤ μ(B)−1/p′
if p ∈ (1,∞);

(ii)
∣
∣
∣

∫
B
g dμ

∣
∣
∣ ≤ rα

B .

A (p, 1)-ion will be simply called a p-ion.

Note that Taylor considered ∞-ions only.

Definition 4 Suppose that b and α are positive real numbers. The local ionic Hardy space
h
1,p,α
I,b (M) is the space of all functions f in L1(M) that admit a decomposition of the form

f =
∞
∑

j=1

μ j g j , (3)

where the g j ’s are (p, α)-ions supported in balls of radius at most b and
∑∞

j=1 |μ j | < ∞.
The norm ‖ f ‖

h
1,p,α
I,b

of f is the infimum of
∑∞

j=1 |μ j | over all decompositions (3) of f .

If α = 1, then we denote h1,p,αI,b (M) simply by h
1,p
I,b (M).

We shall prove that the spaces h1,p,αI,b (M) do not depend on α. Indeed, we shall show that all

these spaces coincide with the atomic spaces h1,pb (M) and that the corresponding norms are
equivalent. We shall make use of the following remark.

Remark 4 If α ≥ 1, then it is easy to show that h1,p,αI,b (M) ⊂ h
1,p
I,b (M) and ‖ f ‖

h
1,p
I,b

≤
‖ f ‖

h
1,p,α
I,b

for every f in h
1,p,α
I,b (M).

Indeed, consider a (p, α)-ion g supported in a ball B. If rB ≥ 1, then the size condition
implies that

∣
∣
∣

∫
B
g dμ

∣
∣
∣ ≤ ‖g‖p μ(B)1/p

′ ≤ 1 ≤ rB .

If rB < 1, then
∣
∣
∣

∫
B
g dμ

∣
∣
∣ ≤ rα

B ≤ rB .

Hence, g is a p-ion. The inclusion h
1,p,α
I,b (M) ⊂ h

1,p
I,b (M) and the desired norm inequality

follow.

Theorem 1 Suppose that p ∈ (1,∞], α > 0 and b > 0. The spaces h1,p,αI,b (M) and h1,pb (M)

coincide. Furthermore, there exist a constant C1, depending on b and α, and a constant C2,
depending on b, α and p, such that

C1
∥
∥ f
∥
∥
h
1,p,α
I,b

≤ ∥
∥ f
∥
∥
h
1,p
b

≤ C2
∥
∥ f
∥
∥
h
1,p,α
I,b

∀ f ∈ h
1,p
b (M).

123



Spaces of Goldberg type on certain measured metric spaces 955

Proof First we prove that h1,pb (M) ⊂ h
1,p,α
I,b (M), by showing that each p-atom at scale b is

a multiple of a (p, α)-ion supported in the same ball. Indeed, clearly each standard p-atom
is a (p, α)-ion. Now, suppose that a is a global p-atom supported in a ball B of radius b.
Then, the size condition implies that

∣
∣
∣

∫
B
a dμ

∣
∣
∣ ≤ ∥

∥a
∥
∥
p μ(B)1/p

′ ≤ 1. (4)

If b ≥ 1, then
∣
∣
∣

∫
B
a dμ

∣
∣
∣≤ bα and a is a (p, α)-ion at scale b. If b < 1, then it is clear that

bα a is a (p, α)-ion at scale b. Therefore,
∥
∥a
∥
∥
h
1,p,α
I,b

≤ 1/bα . Thus, h1,pb (M) ⊂ h
1,p,α
I,b (M)

and
∥
∥ f
∥
∥
h
1,p,α
I,b

≤ max
(

1, b−α
) ∥
∥ f
∥
∥
h
1,p
b

∀ f ∈ h
1,p
b (M).

To prove the reverse inclusion, let g be a (p, α)-ion with support contained in B, with
rB ≤ b. We write g = a + h, where

a = g − χB

μ(B)

∫
B
g dμ and h = χB

μ(B)

∫
B
g dμ.

Observe that a is a multiple of a standard p-atom at scale b. Indeed,
∫
B a dμ = 0 and

∥
∥a
∥
∥
p ≤ ∥

∥g
∥
∥
p +

∣
∣
∣

∫
B
g dμ

∣
∣
∣

∥
∥χB

∥
∥
p

μ(B)

≤ μ(B)−1/p′ + rα
B μ(B)−1/p′

≤ (

1 + bα
)

μ(B)−1/p′
,

so that
∥
∥a
∥
∥
h
1,p
b

≤ 1 + bα . Now, if rB = b, then

∥
∥h
∥
∥
p = μ(B)−1/p′ ∣∣

∣

∫
B
g dμ

∣
∣
∣

≤ μ(B)−1/p′
bα,

so that b−α h is a global p-atom at scale b, whence
∥
∥h
∥
∥
h
1,p
b

≤ bα , and
∥
∥g
∥
∥
h
1,p
b

≤ 1 + 2bα .

If, instead, rB < b, then we decompose h as a finite combination of h1,pb -atoms as follows.

Set N := [

log2(b/rB)
]

and write h = ∑N+2
i=1 hi , where

hi =
[

χ2i−1B

μ(2i−1B)
− χ2i B

μ(2i B)

] ( ∫
B
g dμ

)

i = 1, . . . , N + 1

and hN+2 = χ2N+1B

μ(2N+1B)

( ∫
B
g dμ

)

. A straightforward computation shows that for all i =
1, . . . , N + 1,

∫
M

∣
∣
∣

χ2i−1B

μ(2i−1B)
− χ2i B

μ
(

2i B
)

∣
∣
∣

p
dμ ≤ μ

(

2i B\2i−1B
)

μ
(

2i B
)p + μ

(

2i−1B
)

μ
(

2i−1B
)p

≤ μ
(

2i B
)1−p + μ

(

2i−1B
)1−p

≤ 2μ
(

2i−1B
)1−p

.
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Therefore,

∥
∥hi

∥
∥
p ≤ rα

B 21/p μ
(

2i−1B
)−1/p′

≤ rα
B 21/p D1/p′

2,b/2 μ
(

2i B
)−1/p′

;

the last inequality follows from the estimate μ
(

2i B
) ≤ D2,b/2 μ

(

2i−1B
)

. Since 2i B ∈ Bb

for all i = 1, . . . , N , hi/[21/p D1/p′
2,b/2 r

α
B ] is a standard p-atom, so that

∥
∥hi

∥
∥
h
1,p
b

≤ 21/p

D1/p′
2,b/2 r

α
B .

Furthermore, the functions hN+1 and hN+2 are supported in the ball 2N+1B, which has
radius ≤ 2b. Denote by B ′ the ball with the same centre as B and radius 2b. Then,

∥
∥hN+1

∥
∥
p ≤ 21/p rα

B μ
(

2N+1B
)−1/p′

≤ 21/p rα
B

μ(B ′)1/p′

μ
(

2N+1B
)1/p′ μ(B ′)−1/p′

≤ D1/p′
2,2b 2

1/p rα
B μ(B ′)−1/p′

,

and, similarly,
∥
∥hN+2

∥
∥
p ≤ D1/p′

2,2b r
α
B μ(B ′)−1/p′

. Thus,

∥
∥hN+1 + hN+2

∥
∥
h
1,p
2b

≤ D1/p′
2,2b

(

21/p + 1
)

rα
B .

Then, by Proposition 1, there exists a constant C , depending on b and p, such that
∥
∥hN+1 + hN+2

∥
∥
h
1,p
b

≤ C rα
B .

By combining these estimates, we see that there exists a constant C , which depends on b and
p such that

∥
∥h
∥
∥
h
1,p
b

≤
N+2
∑

i=1

∥
∥hi

∥
∥
h
1,p
b

≤ C rα
B

[

N + 1
]

.

Now, observe that

rα
B N ≤ rα

B log2(b/rB) ≤ rα
B

[

log2 b − log2 rB
] ≤ rα

B log2 b ≤ bα log2 b.

Hence,
∥
∥h
∥
∥
h
1,p
b

≤ C, so that each (α, p)-ion g is in h
1,p
b (M) and

∥
∥g
∥
∥
h1,p

≤ C , where the

constant C depends only on b, α and p, as required. 
�

We have already mentioned that the spaces h1,pb (M) will be proved to be independent of
the parameters p and b. Then, by Theorem 1, for p in (1,∞], b > 0 and α in R

+, the spaces
h
1,p,α
I,b (M) coincide with equivalence of the norms.

Remark 5 We shall denote by h1I (M) all the spaces h
1,p,α
I,1 (M), endowed with any of the

equivalent norms defined above.

123



Spaces of Goldberg type on certain measured metric spaces 957

5 The space bmo(M)

Suppose that q is in [1,∞) and b is in R
+. For each locally integrable function f , define the

local sharp maximal function f �,q
b by

f �,q
b (x) = sup

B∈Bb(x)

(
1

μ(B)

∫
B

| f − fB |q dμ
)1/q

∀x ∈ M,

where fB denotes the average of f over B and Bb(x) denotes the family of all balls in Bb

centred at the point x . Define also the modified local sharp maximal function Nq
b ( f ) by

Nq
b ( f )(x) := f �,q

b (x) +
[

1

μ(Bb(x))

∫
Bb(x)

| f |q dμ
]1/q

∀x ∈ M,

where Bb(x) denotes the ball with centre x and radius b. Denote by bmo
q
b(M) the space of

all locally integrable functions f such that Nq
b ( f ) is in L∞(M), endowed with the norm

∥
∥ f
∥
∥
bmo

q
b

= ∥
∥Nq

b ( f )
∥
∥∞.

The space bmo
q
b(M) is related to the space BMOq

b (M), introduced in [7]. The latter is
the Banach space of all locally integrable functions f (modulo constants) such that

∥
∥ f
∥
∥
BMOq

b
= ∥
∥ f �,q

b

∥
∥∞ < ∞.

As shown in [7], the spaces BMOq
b (M) do not depend on the parameters q and b and we

denote them all by BMO(M).

Remark 6 Given f in bmo
q
b(M), we have
∥
∥ f �,q

b

∥
∥∞ ≤ ∥

∥Nq
b ( f )

∥
∥∞ = ∥

∥ f
∥
∥
bmo

q
b
.

Denote by [ f ] the equivalence class in BMOq
b (M)which contains f . By the estimate above,

the linear map ι : bmo
q
b(M) → BMOq

b (M), defined by ι( f ) = [ f ], is continuous, i.e.,
‖ι( f )‖BMOq

b
≤ ‖ f ‖bmo

q
b

∀ f ∈ bmo
q
b(M). (5)

In the following proposition, we show that the space bmo
q
b(M) does not depend on the

parameters b and q in the appropriate ranges.

Proposition 2 Suppose that q is in [1,∞) and that b > c > 0. The following hold:

(i) bmo
q
b(M) and bmo

q
c (M) coincide and their norms are equivalent;

(ii) bmo
q
1(M) and bmo11(M) coincide and their norms are equivalent.

Proof First we prove (i). Suppose that f is in bmo
q
b(M). Since c < b, f �,q

c (x) ≤ f �,q
b (x).

Moreover, for each x ∈ M

1

μ(Bc(x))

∫
Bc(x)

| f |q dμ ≤ 1

μ(Bc(x))

∫
Bb(x)

| f |q dμ

= μ(Bb(x))

μ(Bc(x))

1

μ(Bb(x))

∫
Bb(x)

| f |q dμ

≤ Db/c,c
1

μ(Bb(x))

∫
Bb(x)

| f |q dμ,
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(see (1)). Therefore, Nq
c ( f )(x) ≤ D1/q

b/c,c N
q
b ( f )(x). Thus, f is in bmo

q
c (M) and ‖ f ‖bmo

q
c

≤
D1/q
b/c,c ‖ f ‖bmo

q
b
.

To prove the reverse inequality, observe that, by [7, Prop. 5.1], there exists a constant C1,
depending only on b, c and M , such that

‖ f �,q
b ‖∞ ≤ C1 ‖ f �,q

c ‖∞ ∀ f ∈ bmo
q
c (M).

Now suppose that Bb is a ball of radius b. Then,
[

1

μ(Bb)

∫
Bb

| f |q dμ
]1/q

= 1

μ(Bb)1/q
sup

‖φ‖
Lq

′
(Bb)

≤1

∣
∣
∣

∫
Bb

f φ dμ
∣
∣
∣,

where q ′ is the exponent conjugate to q . If φ is a function in Lq ′
(Bb) satisfying

∥
∥φ
∥
∥
Lq′

(Bb)
≤

1, thenμ(Bb)
−1/qφ is aq ′-global atomat scaleb. Therefore, byLemma2, there existq ′-global

atoms a1, . . . , aN at scale c supported in balls Bj such thatμ(Bb)
−1/qφ = ∑N

j=1 λ j a j , with
∑

j

|λ j | ≤ C,

where C depends only on b, c and p. Thus, by Hölder’s inequality,

1

μ(Bb)1/q

∣
∣
∣

∫
Bb

f φ dμ
∣
∣
∣ =

∣
∣
∣

N
∑

j=1

λ j

∫
Bj

f a j dμ
∣
∣
∣

≤
N
∑

j=1

|λ j |
[∫

Bj

| f |q dμ
]1/q

‖a j‖q ′

≤
N
∑

j=1

|λ j |
[

1

μ(Bj )

∫
Bj

| f |q dμ
]1/q

≤ C
∥
∥ f
∥
∥
bmo

q
c
.

The above estimates imply that
∥
∥ f
∥
∥
bmo

q
b

≤ (C1 + CN )
∥
∥ f
∥
∥
bmo

q
c
, as required to conclude

the proof of (i).
Next we prove (ii). Recall that the spaces BMO1(M) and BMOq(M) agree (with equiv-

alence of norms) for all q in (1,∞) [7, Corollary 5.5]. Therefore, there exists a constant C
such that

∥
∥ι( f )

∥
∥
BMOq ≤ C

∥
∥ι( f )

∥
∥
BMO1 ≤ C

∥
∥ f
∥
∥
bmo1

∀ f ∈ bmo1(M),

where the last inequality follows from (5). Thus,
[

1

μ(B)

∫
B

| f − fB |q dμ
]1/q

≤ C
∥
∥ f
∥
∥
bmo1

∀ f ∈ bmo1(M) ∀B ∈ B1.

Now suppose that B1 is a ball of radius 1. By the triangle inequality
[

1

μ(B1)

∫
B1

| f |q dμ
]1/q

≤
[

1

μ(B1)

∫
B1

| f − fB1 |q dμ
]1/q

+ | fB1 |

≤ C ‖ f ‖bmo1 + 1

μ(B1)

∫
B1

| f | dμ
≤ (C + 1) ‖ f ‖bmo1 .

123



Spaces of Goldberg type on certain measured metric spaces 959

These estimates imply that

‖ f ‖bmoq ≤ (2C + 1)‖ f ‖bmo1 ∀ f ∈ bmo1(M),

whence bmo1(M) ⊆ bmoq(M).
To prove the reverse containment, observe that, by Hölder’s inequality,

N 1
1 ( f )(x) ≤ Nq

1 ( f )(x) ∀x ∈ M,

so that ‖ f ‖bmo1 ≤ ‖ f ‖bmoq , and bmoq(M) ⊆ bmo1(M).
The proof of (ii) is complete. 
�

Remark 7 In view of the observation above, all the spaces bmo
q
b(M), b > 0, q in [1,∞),

coincide. We shall denote them simply by bmo(M), endowed with any of the equivalent
norms ‖·‖bmo

q
b
. This remark will be important in the proof of the duality between h1(M) and

bmo(M).

6 Duality

In this section,we shall prove that the topological dual of h1,p(M) is isomorphic to bmop
′
(M),

where p′ denotes the index conjugate to p. In view of Remark 7, we consider bmop
′
(M)

endowed with the norm
∥
∥N p′

1 (·)∥∥∞. Similarly, in view of Remark 3, we may, and shall,

consider h1,p(M), endowed with the h1,p1 (M)-norm.
We need more notation and some preliminary observations. Suppose that p is in [1,∞).

For each closed ball B in M , we denote by L p(B) the space of all functions in L p(M) which
are supported in B. The union of all spaces L p(B) as B varies over all balls coincides with
the space L p

c (M) of all functions in L p(M) with compact support. Fix a reference point o
in M and for each positive integer k denote by Bk the ball centred at o with radius k. A
convenient way of topologising L p

c (M) is to interpret L p
c (M) as the strict inductive limit of

the spaces L p
c (Bk) (see [2, II, p. 33] for the definition of the strict inductive limit topology).

We denote by X p the space L p
c (M) with this topology and write X p

k for L p
c (Bk).

We denote by h
1,p
fin (M) the subspace of h1,p(M) consisting of all finite linear combina-

tions of p-atoms. Clearly, h1,pfin (M) is dense in h1,p(M) with respect to the norm of h1,p(M).

A natural norm on h
1,p
fin (M) is defined as follows:

‖ f ‖
h
1,p
fin

= inf

⎧

⎨

⎩

N
∑

j=1

|c j | : f =
N
∑

j=1

c j a j , a j is a p-atom, N ∈ N
+
⎫

⎬

⎭
. (6)

Note that the infimum is taken over finite linear combinations of atoms. Obviously,

‖ f ‖h1,p ≤ ‖ f ‖
h
1,p
fin

∀ f ∈ h
1,p
fin (M). (7)

Remark 8 Observe also that h1,pfin (M) and L p
c (M) agree as vector spaces. Indeed, on the one

hand, each function in h
1,p
fin (M) has finite L p-norm and is compactly supported; hence, it

belongs to L p
c (M). On the other hand, suppose that g is in L p

c (M) and denote by B a ball of
radius≥1 that contains the support of g. Then, a := ‖g‖−1

p μ(B)−1/p′
g is a global p-atom at

scale rB , which, by Lemma 2, may be written as a finite linear combination of global p-atoms
at scale 1. Therefore, a is in h

1,p
fin (M), whence so is g.
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Define

f s,q(x) := sup
B∈B1(x)

inf
c∈C

[
1

μ(B)

∫
B

| f − c|q dμ
]1/q

∀x ∈ M.

It is straightforward to check that f s,q(x) ≤ f �,q(x) ≤ 2 f s,q(x) for all x in M . Thus,

‖ f s,q‖∞ + sup
x∈M

[
1

μ(B1(x))

∫
B1(x)

| f |q dμ
]1/q

is an equivalent norm on bmoq(M). We shall write f s , instead of f s,1.

Lemma 3 If f ∈ bmoq(M), then | f | ∈ bmoq(M) and
∥
∥| f |∥∥

bmoq
≤ 2

∥
∥ f
∥
∥
bmoq

.

Proof Indeed,

| f |�,q(x) ≤ 2 | f |s,q(x)

≤ 2 sup
B∈B1(x)

[
1

μ(B)

∫
B

∣
∣
∣| f | − | fB |

∣
∣
∣

q
dμ

]1/q

≤ 2 sup
B∈B1(x)

[
1

μ(B)

∫
B

| f − fB |q dμ
]1/q

= 2 f �,q(x),

whence

Nq(| f |)(x) = | f |�,q(x) +
[

1

μ(B1(x))

∫
B1(x)

| f |q dμ
]1/q

≤ 2 f �,q(x) +
[

1

μ(B1(x))

∫
B1(x)

| f |q dμ
]1/q

≤ 2 Nq( f )(x),

as required. 
�
Next we identify the dual of h1(M)with bmo(M). The proof follows the lines of the classical
result of Coifman and Weiss [10] in the case of spaces of homogeneous type, and of [7].

Theorem 2 Suppose that p is in (1,∞) and let p′ be the index conjugate to p. The following
hold:

(i) for every g in bmop
′
(M) the functional F, initially defined on h

1,p
fin (M) by the rule

F( f ) =
∫
M

f g dμ,

has a unique bounded extension to h1,p(M). Furthermore,

|||F ||| ≤ 4 ‖g‖
bmop′ ,

where |||F ||| denotes the norm of F as a continuous linear functional on h1,p(M).
(ii) for every continuous linear functional F on h1,p(M), there exists a function gF in

bmop
′
(M) such that ‖gF‖

bmop′ ≤ 3 |||F ||| and

F( f ) =
∫
M

f gF dμ ∀ f ∈ h
1,p
fin (M).
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Proof The proof of (i) is a straightforward adaptation of the original proof of Coifman and
Weiss in the case of spaces of homogeneous type. The argument makes use of Lemma 3
above. We omit the details.

Next we prove (ii). Since F is a continuous linear functional on h1,p(M), for every p-atom
a

|Fa| ≤ |||F |||‖a‖h1,p ≤ |||F |||,
because each p-atom has h1,p(M)-norm at most 1. Thus,

sup
{|Fa| : a is a h1,p-atom

} ≤ |||F |||.
If f is in L p(B), and rB ≥ 1, then ‖ f ‖−1

p μ(B)−1/p′
f is a global p-atom at scale rB . Then,

by Lemma 2, there exists a constant C , independent of f , such that
∥
∥ f
∥
∥
h1,p

≤ C μ(B)1/p
′ ∥
∥ f
∥
∥
p,

whence

|F f | ≤ C |||F ||| μ(B)1/p
′∥
∥ f
∥
∥
p.

Hence, the restriction of F to X p
k is a bounded linear functional on X p

k for each k. Therefore,

F is a continuous linear functional on X p . Since the dual of X p is the space L p′
loc(M), there

exists a function gF in L p′
loc(M) such that

F f =
∫
M

f gF dμ ∀ f ∈ X p. (8)

In particular, this holds whenever f is a p-atom.
To conclude the proof, it suffices to prove that gF belongs to bmop

′
(M) and that

‖gF‖
bmop′ ≤ 3 |||F |||. (9)

Recall that we consider h1,p(M) endowed with the h1,p1 (M) norm (see the beginning of this
section). Thus, we need to consider only atoms with support in balls of radius ≤1. Suppose
that B is a ball of radius at most 1, and observe that

[∫
B

|gF − (gF )B |p′
dμ

]1/p′

= sup
‖ϕ‖L p (B)=1

∣
∣
∣

∫
B

ϕ
(

gF − (gF )B
)

dμ
∣
∣
∣.

But ∫
B

ϕ
(

gF − (gF )B
)

dμ =
∫
B

(

ϕ − ϕB
) (

gF − (gF )B
)

dμ

=
∫
B

(

ϕ − ϕB
)

gF dμ,

and since ‖ϕ‖L p(B) = 1

∣
∣ϕB

∣
∣ ≤

[
1

μ(B)

∫
B

|ϕ|p dμ
]1/p

≤ μ(B)−1/p.

Moreover,

‖ϕ − ϕB‖L p(B) ≤ ‖ϕ‖L p(B) + |ϕB | μ(B)1/p

≤ 2,
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so that the function (ϕ − ϕB)/(2μ(B)1/p
′
) is a standard p-atom. Therefore,

∣
∣
∣

∫
B
(ϕ − ϕB) gF dμ

∣
∣
∣ ≤ 2 |||F ||| μ(B)1/p

′
.

By combining the estimates above, we conclude that for every ball B of radius at most 1

[
1

μ(B)

∫
B

|gF − (gF )B |p′
dμ

]1/p′

≤ 2 |||F |||,

Now take a ball B of radius exactly equal to 1. We have

[∫
B

|gF |p′
dμ

]1/p′

= sup
‖ϕ‖L p (B)=1

∣
∣
∣

∫
B

ϕ gF dμ
∣
∣
∣.

The function ϕ/μ(B)1/p
′
is a global p-atom at scale 1, thus
∣
∣
∣

∫
B

ϕ gF dμ
∣
∣
∣ ≤ |||F ||| μ(B)1/p

′
.

Therefore, for every ball B of radius 1

[
1

μ(B)

∫
B

|gF |p′
dμ

]1/p′

≤ |||F |||.

Combining these estimates, (9) follows. This concludes the proof of (ii) and of the theorem.

�

In view of the last result, we are now able to prove that all the spaces h1,p(M), with p in
(1,∞), coincide. Indeed, suppose that 1 < r < p < ∞. Then, h1,r (M)∗ = h1,p(M)∗, since
bmor

′
(M) = bmop

′
(M). Moreover, the identity is a continuous injection of h1,p(M) into

h1,r (M) and h1,p(M) is a dense subspace of h1,r (M); therefore, the Hahn–Banach theorem
implies that h1,r (M) = h1,p(M).

7 Estimates for the operator N

The purpose of this section is to establish a basic L p(M) estimate for the operator N , which
acts on a locally integrable function f by

N f (x) = f �(x) + N0 f (x) ∀x ∈ M,

where f � is the local centred sharp maximal function given by the formula

f �(x) = sup
B∈B1(x)

1

μ(B)

∫
B

| f − fB | dμ (10)

and

N0 f (x) = 1

μ
(

B1(x)
)

∫
B1(x)

| f | dμ.

Note that f � = f �,1
1 in the notation of Sect. 5. The main result of this section, Theorem 3

below, will be the key to prove a basic interpolation results for h1(M) in the next section.
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For each locally integrable function f , define the local centredHardy–Littlewoodmaximal
function M f as

M f (x) = sup
0<r≤1

1

μ(Br (x))

∫
Br (x)

| f | dμ.

The operator M is bounded on L p(M) for every p ∈ (1,∞] and of weak type 1 (for the
weak-type estimate, just follows the lines of the proof of the maximal inequality in [23]).
Clearly N f (x) ≤ 3M f (x), so that the L p-boundedness ofM implies that for 1 < p < ∞

‖ f ‖p ≥ C ‖N f ‖p ∀ f ∈ L p(M).

In the next theorem, we prove a reverse inequality.

Theorem 3 Suppose that p is in (1,∞). Then, there exists a constant C such that

‖ f ‖p ≤ C ‖N f ‖p

for every f ∈ L1
loc(M) such that N f ∈ L p(M).

We recall [7, Thm. 7.3] that if M possesses the isoperimetric property IP, then for each p
in (1,∞) there exists a constant C such that

‖ f ‖p ≤ C ‖ f �‖p ∀ f ∈ L p(M). (11)

Observe that this estimate may fail if M does not possess the isoperimetric property. For
instance, (11) is false for M = R

n , as shown in [17]. The inequality in Theorem 3 is weaker
than (11), but it does not require the IP.

The proof of Theorem 3, which occupies the rest of this section, will make use of the
so-called dyadic cubes introduced by David and Christ [6,12] on spaces of homogeneous
type. In fact, Christ’s construction requires only the local doubling property, as remarked in
[7]. For the reader’s convenience, we recall the main properties of dyadic cubes.

Theorem 4 ([7, Thm. 3.2]) There exist constants δ in (0, 1), a0, a1 in R
+ and a collection

Q := {Qk
α : k ∈ Z, α ∈ Ik} of open subsets of M such that

(i) for each k in Z, the set
⋃

α Qk
α is of full measure in M;

(ii) if � ≥ k, then either Q�
β ⊂ Qk

α or Q�
β ∩ Qk

α = ∅;
(iii) for each (k, α) and each � < k, there is a unique β such that Qk

α ⊂ Q�
β ;

(iv) diam(Qk
α) ≤ ak1 ;

(v) there exists a point zkα in Q such that

Ba0δk

(

zkα
)

⊂ Qk
α ⊂ Ba1δk

(

zkα
)

.

We shall denote by Qk the class of all dyadic cubes of “resolution” k, i.e., the family of
cubes {Qk

α : α ∈ Ik}. We shall need the following additional properties of dyadic cubes.

Proposition 3 ([7, Prop. 3.4]) Suppose that b ∈ R
+, ν ∈ Z, and let δ, a0 and a1 be as in

Theorem 4. The following hold:

(i) suppose that Q is in Qk for some k ≥ ν, and that B is a ball such that cB ∈ Q. If
rB ≥ a1 δk , then

μ(B ∩ Q) = μ(Q); (12)

if rB < a1 δk , then
μ(B ∩ Q) ≥ D−1

a1/(a0δ),δν μ(B); (13)
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964 S. Meda, S. Volpi

(ii) suppose that τ is in [2,∞). For each Q inQ, the space
(

Q, d|Q, μ|Q
)

is of homogeneous

type. Denote by DQ
τ,∞ its doubling constant (see Remark 1 for the definition). Then,

sup

{

DQ
τ,∞ : Q ∈

∞
⋃

k=ν

Qk

}

≤ Dτ,a1δν Da1/(a0δ),δν ;

(iii) for each ball B in Bb, let k be the integer such that δk ≤ rB < δk−1, and let B̃ denote
the ball with centre cB and radius

(

1 + a1
)

rB. Then, B̃ contains all dyadic cubes in
Qk that intersect B and

μ
(

B̃
) ≤ D1+a1,b μ(B);

(iv) suppose that B is inBb, and that k is an integer such that δk ≤ rB < δk−1. Then, there
are at most D(1+a1)/(a0δ),b dyadic cubes in Qk that intersect B.

In particular, property (ii) states that, for fixed k, all the cubes in Qk are spaces of homoge-
neous type with doubling constants uniformly bounded from above. More precisely, for each
cube Q in Qk

DQ
τ,∞ ≤ Cτ,k where Cτ,k := Dτ,a1δk Da1/(a0δ),δk (14)

For each locally integrable function f and each dyadic cube Q, the noncentred Hardy–
Littlewood maximal function M Q f is defined by

M Q f (x) = sup
B:B∩Q�x

1

μ(B ∩ Q)

∫
B∩Q

| f | dμ ∀x ∈ Q,

where each B is a ball in B whose centre belongs to Q. The operator M Q is bounded on
L p(Q) for every p in (1,∞] and of weak type 1. Furthermore, there exists a constant C0,
depending only on the doubling constant of (Q, d|Q, μ|Q), such that for all Q in

⋃

k≥ν Q
k

μ
({x ∈ Q : M Q f (x) > λ}) ≤ C0

λ
‖ f ‖L1(Q). (15)

For each locally integrable function f and each dyadic cube Q, we define the noncentred
sharp maximal function f �,Q by

f �,Q(x) = sup
B:B∩Q�x

1

μ(B ∩ Q)

∫
B∩Q

| f − fB∩Q | dμ ∀x ∈ Q, (16)

where B is a ball in B whose centre belongs to Q and

fB∩Q = 1

μ(B ∩ Q)

∫
B∩Q

f dμ.

We split the proof of Theorem 3 into a series of lemmas. For each λ > 0, we define

Eλ :=
{

x ∈ Q : M Q f (x) > λ
}

, Fλ :=
{

x ∈ Q : f �,Q(x) ≤ λ
}

and Gβ,γ
λ := Eβλ ∩ Fγ λ.

Lemma 4 Suppose that k is in Z. Then, there exists a constant A such that for every β >

2C2,k , γ > 0, f in L1
loc(M), and Q in Qk

μ
(

Eβλ ∩ Fγ λ

) ≤ A
γ

β
μ
(

Eλ

)

for every λ > C0
μ(Q)

‖ f ‖L1(Q), where C0 is as in (15).

123
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We observe that the constant A in the statement abovemay very well depend on the resolution
k. This will be no problem, for in the sequel we shall mainly work with cubes with a fixed
resolution.

Proof Set λ0 := C0
μ(Q)

‖ f ‖L1(Q). Since λ > λ0,μ(Eλ) < μ(Q), so that Eλ is a proper subset
in Q. Since Eλ is open and Q is a space of homogeneous type, we can apply a Whitney-type
covering lemma [10, Thm. 3.2] (with 1 in place of C and K therein), and obtain a sequence
{Bi ∩ Q} of balls in Q, where Bi ∈ B, such that:

(i) Eλ = ⋃

i (Bi ∩ Q);
(ii) there exists a constant K0 = K0(k) such that no point of Eλ belongs to more than K0

balls Bi ∩ Q;
(iii) (3Bi ∩ Q) ∩ ((Eλ)

c ∩ Q) 
= ∅.
Note that K0 does not depend on the particular cube Q inQk because K0 depends only on the
doubling constant of the space of homogeneous type, and for cubes of the same resolution,
the doubling constants are uniformly bounded from above (see (14) above).

By assumption, β > 2C2,k > 2. Then, Gβ,γ
λ ⊂ Eβλ ⊂ Eλ, so that

μ
(

Gβ,γ
λ

) = μ

[

Gβ,γ
λ ∩

(⋃

i

(Bi ∩ Q)
)
]

= μ

[
⋃

i

(Gβ,γ
λ ∩ Bi )

]

≤
∑

i

μ(Gβ,γ
λ ∩ Bi ).

If Gβ,γ
λ ∩ Bi = ∅ for some index i , we simply ignore the ball Bi ; otherwise, there exists at

least a point yi ∈ Gβ,γ
λ ∩ Bi , whence f �,Q(yi ) ≤ γ λ.

We claim that

Eβλ ∩ Bi ⊆
{

x ∈ Q : M Q( f χ5Bi )(x) >
βλ

C2,k

}

∀β ≥ C2,k .

The claim will imply that

μ
(

Gβ,γ
λ ∩ Bi

)

≤ μ
(

Eβλ ∩ Bi
) ≤ μ

({

M Q( f χ5Bi ) >
βλ

C2,k

})

.

To prove the claim, we consider the centred Hardy–Littlewood maximal function on the cube
Q defined by

M̃ Q f (x) = sup
r>0

1

μ(Br (x) ∩ Q)

∫
Br (x)∩Q

| f | dμ ∀x ∈ Q.

Since the restriction of μ to each cube Q is a doubling measure with doubling constant
bounded above by C2,k ,

M Q f (x) ≤ C2,k M̃
Q f (x) ∀x ∈ Q.

Suppose that x ∈ Eβλ ∩ Bi and β ≥ C2,k . We need to prove that

M Q ( f χ5Bi

)

(x) >
βλ

C2,k
.
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966 S. Meda, S. Volpi

Clearly, M̃ Q f (x) > βλ/C2,k , so that there exists a ball Br (x) such that

1

μ (Br (x) ∩ Q)

∫
Br (x)∩Q

| f | dμ >
βλ

C2,k
.

Condition (iii) above implies that there exists a point xi in 3Bi ∩ Q such that

M Q f (xi ) ≤ λ. (17)

Since we have assumed that β ≥ C2,k , xi /∈ Br (x), for otherwise

M Q f (xi ) ≥ 1

μ (Br (x) ∩ Q)

∫
Br (x)∩Q

| f | dμ >
βλ

C2,k
≥ λ.

Since xi is in 3Bi\Br (x), r < 4 rBi . Hence, Br (x) ⊂ 5Bi and

βλ

C2,k
<

1

μ (Br (x) ∩ Q)

∫
Br (x)∩Q

| f |χ5Bi dμ ≤ M Q ( f χ5Bi

)

(x).

This concludes the proof of the claim.
Now we observe that

M Q ( f χ5Bi

)

(x) ≤ M Q (( f − f5Bi∩Q
)

χ5Bi

)

(x) + | f5Bi∩Q |.
Since xi is in 3Bi ∩ Q and M Q f (xi ) ≤ λ by (17),

| f5Bi∩Q | ≤ 1

μ (5Bi ∩ Q)

∫
5Bi∩Q

| f | dμ ≤ M Q f (xi ) ≤ λ.

Therefore, if β > 2C2,k , then | f5Bi∩Q | <
β

2C2,k
λ. This estimate, together with the weak type

1 inequality for M Q and the assumption that f �,Q(yi ) ≤ γ λ, implies that, if β > 2C2,k ,
then

μ

({

M Q( f χ5Bi ) >
βλ

C2,k

})

≤ μ

({

M Q(( f − f5Bi∩Q)χ5Bi ) >
βλ

2C2,k

})

≤ C0
2C2,k

βλ

∫
Q

| f − f5Bi∩Q |χ5Bi dμ

≤ C0
2C2,k

βλ
μ(5Bi ∩ Q) f �,Q(yi )

≤ C0 2C2,k
γ

β
μ(5Bi ∩ Q).

Thus, we have proved that

μ
(

Gβ,γ
λ ∩ Bi

)

≤ C0 2C2,k
γ

β
μ (5Bi ∩ Q) ,

which, together with the doubling property on Q and condition (ii) above, implies that

μ
(

Gβ,γ
λ

)

≤ 2C2,k C0
γ

β

∑

i

μ (5Bi ∩ Q)

≤ 2C2,k C0 C5,k
γ

β

∑

i

μ (Bi ∩ Q)

≤ 2C2,k C0 C5,k K0
γ

β
μ (Eλ) ,

as required (with A = 2C2,k C0 C5,k K0). 
�
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Spaces of Goldberg type on certain measured metric spaces 967

Lemma 5 For each integer k, there exists a constant C = C(k) such that for each cube Q
in Qk and every locally integrable function f

‖ f ‖p
L p(Q) ≤ C

(

‖ f �,Q‖p
L p(Q) + μ(Q)1−p ‖ f ‖p

L1(Q)

)

.

Proof Since M Q f ≥ | f | almost everywhere, it suffices to show that

‖M Q f ‖p
L p(Q) ≤ C

(

‖ f �,Q‖p
L p(Q) + μ(Q)1−p ‖ f ‖p

L1(Q)

)

,

We set Eλ = {x ∈ Q : M Q f (x) > λ} and λ0 = C0
μ(Q)

‖ f ‖L1(Q), as in Lemma 4. Note that
for each β > 0

‖M Q f ‖p
L p(Q) = p

∫∞

0
λp−1 μ

(

Eλ

)

dλ

= p β p
∫∞

0
λp−1 μ

(

Eβλ

)

dλ

= p β p
∫λ0

0
λp−1 μ

(

Eβλ

)

dλ + p β p
∫+∞

λ0

λp−1 μ
(

Eβλ

)

dλ.

Denote by I1 and I2 the first and the second integral in the last line above, respectively. Since
the maximal operator M Q is of weak type 1,

I1 ≤ C0 β−1‖ f ‖L1(Q)

∫λ0

0
λp−2 dλ

= C p
0

p − 1
β−1μ(Q)1−p‖ f ‖p

L1(Q)
.

Now, we choose β > 2C2,k . Given γ > 0, we write I2 as∫+∞

λ0

λp−1 μ
(

Eβλ ∩ { f �,Q ≤ γ λ}) dλ +
∫+∞

λ0

λp−1 μ
(

Eβλ ∩ { f �,Q > γλ}) dλ.

Then, by Lemma 4,

I2 ≤ Aγ

β

∫+∞

λ0

λp−1 μ
(

Eλ) dλ +
∫+∞

λ0

λp−1 μ
({ f �,Q > γλ}) dλ

= Aγ

β

∫+∞

λ0

λp−1 μ
(

Eλ) dλ + 1

γ p

∫+∞

γ λ0

λp−1 μ
({ f �,Q > λ}) dλ

≤ Aγ

pβ
‖M Q f ‖p

L p(Q) + 1

pγ p

∥
∥ f �,Q

∥
∥p
L p(Q)

.

By combining the estimates above, we see that

(1 − A β p−1γ )‖M Q f ‖p
L p(Q) ≤ C p

0 p

p − 1
β p−1μ(Q)1−p‖ f ‖p

L1(Q)
+ β p

γ p
‖ f �,Q‖p

L p(Q).

Now, we choose γ = 1/(2A β p−1) and obtain

‖M Q f ‖p
L p(Q) ≤ 2C p

0 p

p − 1
β p−1μ(Q)1−p‖ f ‖p

L1(Q)
+ 2p+1 Ap β p2‖ f �,Q‖p

L p(Q)

≤ C
(

‖ f �,Q‖p
L p(Q) + μ(Q)1−p‖ f ‖p

L1(Q)

)

,

where C = max
(

2C p
0

p
p−1 β p−1, 2p+1 Ap β p2

)

, as required. 
�
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Lemma 6 For all integers k large enough and for each cube Q in Qk

∥
∥ f
∥
∥
L1(Q)

≤ D(1+a1δk )/a0δk ,a0δk
∥
∥N0 f

∥
∥
L1(Q)

.

Proof For the sakeof definiteness, suppose thatQ is the dyadic cubeQk
α . Then,Q is contained

in Ba1δk (z
k
α) by Theorem 4 (v). Denote by B̃ the ball B1+a1δk (z

k
α). Then, B1(x) ⊂ B̃ for

each x in Q. Furthermore, if k is large enough, then B1(x) ⊃ Q for every x in Q. so that
μ(B1(x)) ≤ μ(B̃). Then, by Tonelli’s theorem,

‖N0 f ‖L1(Q) =
∫
Q

dμ(x)

μ(B1(x))

∫
B1(x)

| f (y)| dμ(y)

≥ 1

μ(B̃)

∫
Q
dμ(x)

∫
Q

| f (y)| dμ(y)

≥ μ(Q)

μ(B̃)

∫
Q

| f (y)| dμ(y).

Recall that Q contains Ba0δk (z
k
α), so that

μ(Q)

μ(B̃)
≥ D−1

(1+a1δk )/a0δk ,a0δk
.

and the required estimate follows. 
�
Lemma 7 Suppose that k is an integer >

[

logδ(1/(2a1))
]

, where δ and a1 are as in Theo-
rem 4. Then, there exists a constant C, depending on k, such that for each cube Q in Qk

f �,Q(x) ≤ C f �(x) ∀x ∈ Q

(see (16) and (10) for the definitions of f �,Q and f �, respectively).

Proof For each b > 0, we define the noncentred sharp function f̃ �
b of a locally integrable

function f as

f̃ �
b (x) = sup

B

1

μ(B)

∫
B

| f − fB | dμ ∀x ∈ M,

where the supremum is taken over all balls in Bb that contain x .
We first show that there exists a constant C , depending on k, such that f �,Q(x) ≤

C f̃ �

a1δk
(x) for each cube Q in Qk and for any x in Q. (see Theorem 4 for the definition

of a1 and δ).
Choose Q inQk . Take x in Q and suppose that B is a ball whose centre belongs to Q and

such that x ∈ B ∩ Q. We consider the cases where rB < a1δk and rB ≥ a1δk separately. If
rB < a1δk , the triangle inequality gives

1

μ(B ∩ Q)

∫
B∩Q

| f − fB∩Q | dμ ≤ 1

μ(B ∩ Q)

∫
B∩Q

| f − fB | dμ + | fB − fB∩Q |

≤ 2

μ(B ∩ Q)

∫
B∩Q

| f − fB | dμ.

By Proposition 3 (i), we have that μ(B ∩ Q) ≥ D−1
a1/(a0δ),δk

μ(B), so that

1

μ(B ∩ Q)

∫
B∩Q

| f − fB∩Q | dμ ≤ 2 Da1/(a0δ),δk

μ(B)

∫
B

| f − fB | dμ.
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Since the ball B belongs to Ba1δk , the right-hand side of the formula above is majorised by

2 Da1/(a0δ),δk f̃ �

a1δk
(x).

Now assume that rB ≥ a1δk . For the sake of definiteness, suppose that Q is the dyadic
cube Qk

α . Recall that diam(Q) ≤ a1 δk , by Theorem 4 (iv), whence Q ∩ B = Q. Moreover,
Ba0δk (z

k
α) ⊂ Q ⊂ Ba1δk (z

k
α), by Theorem 4 (v). Denote by B the ball Ba1δk (z

k
α). Then, by

the triangle inequality,

1

μ(B ∩ Q)

∫
B∩Q

| f − fB∩Q | dμ ≤ 1

μ(B ∩ Q)

∫
B∩Q

| f − fB | dμ + | fB − fB∩Q |

≤ 2

μ(B ∩ Q)

∫
B∩Q

| f − fB | dμ

≤ 2

μ
(

Ba0δk (z
k
α

)

)

∫
B

| f − fB | dμ.

Now, the local doubling property implies that

μ(B) ≤ Da1/a0,a0δk μ
(

Ba0δk (z
k
α)
);

hence, the right-hand side can be estimated from above by

2 Da1/a0,a0δk

μ
(

B
)

∫
B

| f − fB | dμ,

which, in turn, may be majorised by 2 Da1/a0,a0δk f̃ �

a1δk
(x), for the ball B has radius a1 δk .

By taking the supremum over all balls B containing x and whose centre belongs to Q, we
get

f �,Q(x) ≤ 2 Da1/(a0δ),max(1,a0)δk f̃ �

a1δk
(x) ∀x ∈ Q.

The local doubling property ensures that for each b in R+, there exists a constant C such that
f̃ �
b ≤ C f �

2b. Therefore,

f �,Q(x) ≤ C f �

2a1δk
(x) ∀x ∈ Q.

Now, if the integer k large enough so that 2a1δk ≤ 1, i.e., k >
[

logδ(1/2a1)
]

, we get

f �

2a1δk
≤ f �, which gives the desired conclusion. 
�

Now we are ready to prove the main result of this section.

Proof of Theorem 3 Fix an integer k so large that Lemmas 6 and 7 hold. In particular, k must
be >

[

logδ(1/2a1)
]

. The cubes in Qk are pairwise disjoint, and their union is a set of full
measure in M , so that

‖ f ‖p
L p(M) =

∑

Q∈Qk

‖ f ‖p
L p(Q)

≤ C
∑

Q∈Qk

[

‖ f �,Q‖p
L p(Q) + μ(Q)1−p ‖ f ‖p

L1(Q)

]

≤ C
∑

Q∈Qk

[

‖ f �‖p
L p(Q) + μ(Q)1−p ‖N0 f ‖p

L1(Q)

]

;
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the first inequality above follows from Lemma 5, and the second is a consequence of Lem-
mas 6 and 7. Furthermore, by Hölder’s inequality,

1

μ(Q)1/p
′

∫
Q

|N0 f | dμ ≤ 1

μ(Q)1/p
′

[∫
Q

|N0 f |p dμ
]1/p

μ(Q)1/p
′

= ‖N0 f ‖L p(Q).

Thus,

‖ f ‖p
L p(M) ≤ C

[

‖ f �‖p
L p(M) + ‖N0 f ‖p

L p(M)

]

≤ C ‖N f ‖p
L p(M) ,

as required. 
�

8 Interpolation

Suppose that X and Y are Banach spaces, and that θ is in (0, 1). We denote by S the strip
{z ∈ C : Re z ∈ (0, 1)}, and by S its closure. We consider the classF (X, Y ) of all functions
F : S → X + Y with the following properties:

1. F is continuous and bounded in S and analytic in S;
2. the functions t �→ F(i t) and t �→ F(1 + i t) are continuous from R into X and Y ,

respectively;
3. lim|t |→+∞ ‖F(i t)‖X = 0 and lim|t |→+∞ ‖F(1 + i t)‖Y = 0.

We endow F (X, Y ) with the norm
∥
∥F
∥
∥
F (X,Y )

= sup
{

max
(∥
∥F(i t)

∥
∥
X ,
∥
∥F(1 + i t)

∥
∥
Y

) : t ∈ R
}

.

We define the complex interpolation space (X, Y )[θ ] by

(X, Y )[θ ] = {F(θ) : F ∈ F (X, Y )},
endowed with the norm

∥
∥ f
∥
∥

(X,Y )[θ ] = inf
{∥
∥F
∥
∥
F (X,Y )

: F ∈ F (X, Y ) and F(θ) = f
}

.

For more on the complex interpolation method, see, for instance, [1].

Theorem 5 Suppose that θ is in (0, 1). The following hold:

(i) if pθ is 2/(1 − θ), then
(

L2(M), bmo(M)
)

[θ ] = L pθ (M);

(ii) if pθ is 2/(2 − θ), then
(

h1(M), L2(M)
)

[θ ] = L pθ (M).

Proof First we prove (i). Observe that

L pθ (M) = (

L2(M), L∞(M)
)

[θ ] ⊆ (

L2(M), bmo(M)
)

[θ ];
the containment above follows from the fact that L∞(M) ⊂ bmo(M).

In order to prove the reverse inclusion, suppose that f is in the interpolation space
(

L2(M), bmo(M)
)

[θ ]. Then, given ε > 0 there exists a function F in F (L2(M), bmo(M))

such that F(θ) = f and

‖F‖F (L2,bmo) ≤ ‖ f ‖(L2,bmo)[θ ] + ε.
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Let φ be any measurable function which associates to any point x in M a ball φ(x) inB1(x).
Furthermore, let η : M × M → C be any measurable function with |η| = 1. We consider
the linear operators Sφ,η and T η which act on a function f in L2(M) as follows:

Sφ,η f (x) = 1

μ
(

φ(x)
)

∫
φ(x)

[

f − fφ(x)
]

η(x, ·) dμ ∀x ∈ M

and

T η f (x) = 1

μ
(

B1(x)
)

∫
B1(x)

f η(x, ·) dμ ∀x ∈ M.

Then,
sup
φ,η

|Sφ,η f | = f � and sup
η

|T η f | = N0 f. (18)

For each φ and η as before, consider the functions Sφ,ηF and T ηF , where F is in the space
F (L2(M), bmo(M)).

We claim that Sφ,ηF and T ηF belong to the class F (L2(M), L∞(M)),
∥
∥Sφ,ηF

∥
∥
F (L2,L∞)

≤ C
∥
∥F
∥
∥
F (L2,bmo)

and
∥
∥T ηF

∥
∥
F (L2,L∞)

≤ C
∥
∥F
∥
∥
F (L2,bmo)

.

Indeed, recall that g� ≤ 2M g and that M is bounded on L2(M). Thus,
∥
∥Sφ,ηF(i t)

∥
∥
2 ≤ ‖F(i t)�‖2 ≤ 2 ‖M F(i t)‖2 ≤ C ‖F(i t)‖2.

Note that the constant C in the above inequality does not depend on φ and η. Moreover,

‖Sφ,ηF(1 + i t)‖∞ ≤ ‖F(1 + i t)�‖∞ ≤ ‖F(1 + i t)‖bmo.

Similarly,
∥
∥T ηF(i t)

∥
∥
2 ≤ ‖M F(i t)‖2 ≤ C ‖F(i t)‖2;

and

‖T ηF(1 + i t)‖∞ ≤ ‖N0F(1 + i t)‖∞ ≤ ‖F(1 + i t)‖bmo,

where C is independent of η. Hence,

‖Sφ,η f ‖pθ = ‖Sφ,ηF(θ)‖(L2,L∞)[θ ]

≤ ‖Sφ,ηF‖F (L2,L∞)

≤ C ‖F‖F (L2,bmo)

≤ C
(‖ f ‖(L2,bmo)[θ ] + ε

)

.

By taking the infimum over all ε > 0, we get

‖Sφ,η f ‖pθ ≤ C ‖ f ‖(L2,bmo)[θ ] .

Now, by taking the supremum over all φ and η, we obtain the estimate

‖ f �‖pθ ≤ C ‖ f ‖(L2,bmo)[θ ] . (19)
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Similarly, we get

‖T η f ‖pθ ≤ C‖ f ‖(L2,bmo)[θ ]

and taking the supremum over all functions η, we have

∥
∥N0 f

∥
∥
pθ

≤ C ‖ f ‖(L2,bmo)[θ ] . (20)

Now, applying Theorem 3 and combining (19) and (20), we may conclude that

∥
∥ f
∥
∥
pθ

≤ C ‖N f ‖pθ

≤ C
(∥
∥ f �

∥
∥
pθ

+ ∥
∥N0 f

∥
∥
pθ

)

≤ C ‖ f ‖(L2,bmo)[θ ] ∀ f ∈ (L2(M), bmo(M)
)

[θ ]

and the required inclusion
(

L2(M), bmo(M)
)

[θ ] ⊂ L pθ (M) follows.
To prove (ii), we may apply a duality argument [1, Corollary 4.5.2]. We omit the details.


�

9 On the h1 − L1 boundedness of operators

One of the reasons which make h1(M) useful is that to prove that a linear operator T maps
h1(M) to a Banach space X it suffices to prove that T is uniformly bounded on atoms. This
extends to the space h1(M) the analogous result for H1(M) (see [22]).

We need more notation. Suppose that p is in [1,∞). For each closed ball B in M , we
denote by L p(B) the space of all functions in L p(M)which are supported in B. The union of
all spaces L p(B) as B varies over all balls coincides with the space L p

c (M) of all functions
in L p(M) with compact support. Fix a reference point o in M , and for each positive integer
k, denote by Bk the ball centred at o with radius k. A convenient way of topologising L p

c (M)

is to interpret L p
c (M) as the strict inductive limit of the spaces L p

c (Bk) (see [2, II, p. 33] for
the definition of the strict inductive limit topology). We denote by X p the space L p

c (M) with
this topology, and write X p

k for L p
c (Bk). It is well known that the topological dual of X p is

L p′
loc(M), where p′ denotes the index conjugate to p.
Note that the spaces X p

k and X p differ from the spaces, denotes exactly in the same
way, considered in [22], for functions in our version of X p

k and X p need not have vanishing
integral.

Theorem 6 Suppose that p is in (1,∞) and that T is a L1(M)-valued linear operator
defined on h

1,p
fin (M) with the property that

A := sup {‖Ta‖1 : a is a p-atom} < ∞.

Then, there exists a unique bounded operator T̃ from h1(M) to L1(M) which extends T .

Proof Suppose that B is a ball of radius rB ≥ 1. For each f ∈ L p(B) such that ‖ f ‖p = 1 set
a = μ(B)−1/p′

f , where p′ denotes the index conjugate to p. Then, a is a p-atom at scale rB
and by Lemma 2 there exist global p-atoms at scale 1, a1, . . . , aN such that a = ∑N

j=1 c j a j ,
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with |c j | ≤ C , where C and N are constants, which depend only on rB and M . Thus, we get

‖T f ‖1 = ‖T
(

μ(B)1/p
′
a
)

‖1

≤ μ(B)1/p
′

N
∑

j=1

|c j | ‖Ta j‖1

≤ C N Aμ(B)1/p
′

for every f ∈ L p(B) such that ‖ f ‖p = 1.
In particular, the restriction of T to X p

k is bounded from X p
k to L1(M) for each k. Therefore,

T is bounded from X p to L1(M). It follows that the transpose operator T ∗ is bounded from

L∞(M) to the dual of X p , which can be identified with L p′
loc(M). Therefore, for every f in

L∞(M) and every p-atom a we have

〈Ta, f 〉 = 〈

a, T ∗ f
〉 =

∫
M
a T ∗ f dμ,

so that ∣
∣
∣

∫
M
a T ∗ f dμ

∣
∣
∣ = | 〈Ta, f 〉 | ≤ ‖Ta‖1‖ f ‖∞ ≤ A ‖ f ‖∞. (21)

Now we show that T ∗ f belongs to bmo(M) and that

‖T ∗ f ‖bmo ≤ 3 A ‖ f ‖∞ ∀ f ∈ L∞(M).

Suppose that B is a ball of radius at most 1; we have
[∫

B
|T ∗ f − (T ∗ f )B |p′

dμ

]1/p′

= sup
‖ϕ‖L p (B)=1

∣
∣
∣

∫
B

ϕ
(

T ∗ f − (T ∗ f )B
)

dμ
∣
∣
∣. (22)

Observe that ∫
B

ϕ
(

T ∗ f − (T ∗ f )B
)

dμ =
∫
B

(

ϕ − ϕB
) (

T ∗ f − (T ∗ f )B
)

dμ

=
∫
B

(

ϕ − ϕB
)

T ∗ f dμ.

(23)

Since ‖ϕ‖L p(B) = 1,

∣
∣ϕB

∣
∣ ≤

[
1

μ(B)

∫
B

|ϕ|p dμ
]1/p

≤ μ(B)−1/p.

Then,

‖ϕ − ϕB‖L p(B) ≤ ‖ϕ‖L p(B) + |ϕB | μ(B)1/p

≤ 2,

so that (ϕ − ϕB) χB/(2μ(B)1/p
′
) is a standard p-atom, and (21) implies that

∣
∣
∣

∫
B
(ϕ − ϕB) T ∗ f dμ

∣
∣
∣ ≤ 2 A ‖ f ‖∞ μ(B)1/p

′
.

Thus, by (23) and (22), we may conclude that for every ball B of radius at most 1
[

1

μ(B)

∫
B

|T ∗ f − (T ∗ f )B |p′
dμ

]1/p′

≤ 2 A ‖ f ‖∞.
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Now take a ball B of radius exactly equal to 1. We have

[∫
B

|T ∗ f |p′
dμ

]1/p′

= sup
‖ϕ‖L p (B)=1

∣
∣
∣

∫
B

ϕ T ∗ f dμ
∣
∣
∣.

The function ϕ/μ(B)1/p
′
is a global p-atom, and, by (21),
∣
∣
∣

∫
B

ϕ T ∗ f dμ
∣
∣
∣ ≤ A ‖ f ‖∞ μ(B)1/p

′
.

Therefore, for every ball B of radius 1

[
1

μ(B)

∫
B

|T ∗ f |p′
dμ

]1/p′

≤ A ‖ f ‖∞.

Combining the above estimates, we get

‖T ∗ f ‖bmo ≤ ‖T ∗ f ‖
bmop′ ≤ 3 A ‖ f ‖∞ ∀ f ∈ L∞(M),

as required.
Now we prove that T extends to a bounded operator from h1(M) to L1(M). Observe that

X p and h
1,p
fin (M) coincide as vector spaces. For every g in h

1,p
fin (M) and every f in L∞(M)

| 〈Tg, f 〉 | = | 〈g, T ∗ f
〉 |

≤ C ‖g‖h1‖T ∗ f ‖bmo

≤ 3C A ‖g‖h1‖ f ‖∞.

By taking the supremum of both sides over all functions f in L∞(M) with ‖ f ‖∞ = 1, we
obtain that

‖Tg‖1 ≤ 3C A ‖g‖h1 ∀g ∈ h
1,p
fin (M).

Since h1,pfin (M) is dense in h1(M) with respect to the norm of h1(M), the required conclusion
follows by a density argument. 
�

Suppose that T is a bounded linear operator on L2(M). Then, T is automatically defined
on h

1,2
fin (M). If we assume that

A := sup {‖Ta‖1 : a is a 2-atom} < ∞,

then, by the previous theorem, the restriction of T to h1,2fin (M) has a unique bounded extension
to an operator T̃ from h1(M) to L1(M). We wonder if the operators T and T̃ are consistent,
i.e., if they agree on the intersection h1(M) ∩ L2(M) of their domains. As in the case of the
same problem on the space H1(M) (see [22, Prop. 4.2]), the answer is in the affirmative, as
shown in the next proposition.

Proposition 4 Suppose that T is a bounded linear operator on L2(M) and that

A := sup {‖Ta‖1 : a is a 2-atom} < ∞.

Denote by T̃ the unique bounded extension of the restriction of T to h
1,2
fin (M) to an operator

from h1(M) to L1(M). Then, the operators T and T̃ coincide on h1(M) ∩ L2(M).
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Proof Assume that f is in L2(M) ∩ L∞(M) and that g is in L2
c(M). Denote by T ∗ the

transpose operator of T (as an operator on L2(M)). Then,∫
M
g T ∗ f dμ =

∫
M
Tg f dμ.

Since g is in h
1,2
fin (M) and the operators T and T̃ agree on h

1,2
fin (M), we get

∫
M
Tg f dμ =

∫
M
T̃ g f dμ.

Denote by (T̃ )∗ the transpose of T̃ as an operator from h1(M) to L1(M). Then,∫
M
T̃ g f dμ =

〈

g,
(

T̃
)∗

f
〉

.

Since (T̃ )∗ f is in bmo(M) and g is in h1,2fin (M), we canwrite the last scalar product
〈

g, (T̃ )∗ f
〉

(with respect to the duality between h1(M) and bmo(M)) as
〈

g,
(

T̃
)∗

f
〉

=
∫
M
g
(

T̃
)∗

f dμ.

Thus, combining the above equalities, we obtain that∫
M
g
[

T ∗ f − (

T̃
)∗

f
]

dμ = 0 ∀g ∈ L2
c(M),

i.e., for all g in X2. This implies that T ∗ f − (T̃ )∗ f = 0 is in the dual space of X2, i.e., in
L2
loc(M). Thus, T ∗ f = (T̃ )∗ f almost everywhere.

Now, suppose that f is in L2(M) ∩ L∞(M) and that g is in h1(M) ∩ L2(M). Then,∫
M
Tg f dμ =

∫
M
g T ∗ f dμ

=
∫
M
g
(

T̃
)∗

f dμ

=
∫
M
T̃ g f dμ.

Thus, we have obtained that ∫
M

[

Tg − T̃ g
]

f dμ = 0

for an arbitrary f in L2(M)∩L∞(M). This implies that Tg = T̃ g for all g in h1(M)∩L2(M).

�

10 Applications to SIO

The purpose of this section is to show that the Hardy space h1(M) may be used to obtain
endpoint estimates for interesting singular integral operators on Riemannian manifolds.

Hereafter in this section, we assume that M is a complete connected noncompact n-
dimensional Riemannian manifold with bounded geometry, that is with Ricci curvature
bounded from below and positive injectivity radius. We view M as a measured metric space
with respect to the Riemannian distance and measure. Clearly the MP property holds (with
R0 = 0). Furthermore, it is well known that manifolds with bounded geometry possess the
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LDP, as a consequence of the Bishop–Gromov comparison theorem (see, for instance, [14],
[5, Thm III.4.5]). Thus, the theory of local Hardy spaces h1(M) developed in the previous
chapters applies to this setting. Denote by −L the Laplace–Beltrami operator on M : L is
a symmetric operator on C∞

c (M), and its closure is a self-adjoint operator on L2(M) which
we still denote by L .

We consider the (translated) Riesz transforms Ra := ∇(aI +L )−1/2, where ∇ denotes
the Riemannian gradient, and a is a positive number, and spectral multipliers ofL satisfying
a Mihlin-type condition at infinity.

The latter operators are treated in [27] and in [19]. A comparison between the results
obtained therein and our result is in order.We extend the result in [27] by relaxing significantly
the assumptions on the geometry of M , as already illustrated in Introduction. In [19], the
Riemannian manifold M is assumed to have bounded geometry in the same sense as here, but
an additional hypothesis is made, i.e., that the bottom b of the L2 spectrum of L is strictly
positive. This assumption rules out, for instance, all Riemannian manifolds of polynomial
volume growth [3]. The reason for this additional assumption is that the local Hardy space
H1
1 (M) used in [19] is known to interpolate with L2(M) to give L p(M), 1 < p < 2, only

when b > 0.
The problem of establishing endpoint estimates for Ra when p = 1 in the setting of

noncompact Riemannian manifolds has been widely studied. In particular, Coulhon and
Doung [4] proved that if M is locally doubling, of exponential growth, and supports an L2-
scaled Poincaré inequality, then Ra is of weak type 1. Russ [24] complemented this result
by showing that, for a large enough, Ra is bounded from the atomic Hardy space H1

1 (M) to
L1(M). Note, however, that Russ’ result is known to interpolate with L2(M) to give L p(M)

estimates only when M has bounded geometry and spectral gap (see [7] and the remarks
above).

Here we prove, under the assumption that M has bounded geometry, that if a is suitably
large, then Ra is bounded from h1(M) to L1(M). This result complements the analogous
result in [7].

10.1 Spectral multipliers

First we define the class of symbols which will be needed in the statement of Theorem 7.

Definition 5 Suppose that J is a positive integer and that W is in R
+. Denote by SW the

strip {ζ ∈ C : Im(ζ ) ∈ (−W,W )} and by H∞(SW ; J ) the vector space of all bounded even
holomorphic functions f in SW for which there exists a positive constant C such that

|D j f (ζ )| ≤ C (1 + |ζ |)− j ∀ζ ∈ SW ∀ j ∈ {0, 1, . . . , J }. (24)

We denote by ‖ f ‖SW ;J the infimumof all constantsC for which (24) holds. If ‖ f ‖SW ;J < ∞,
we say that f satisfies aMihlin condition of order J at infinity on SW .

Denote by ω an even function in C∞
c (R) which is supported in [−3/4, 3/4], is equal to 1

in [−1/4, 1/4], and satisfies
∑

j∈Z
ω(t − j) = 1 ∀t ∈ R.

Denote by D the operator
√
L − b, where b denotes the bottom of the L2 spectrum of L .

Clearly spectral multipliers of L may equivalently be expressed as spectral multipliers of
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Spaces of Goldberg type on certain measured metric spaces 977

D (with a different multiplier). Recall that the heat semigroup is the one-parameter family
{Ht }t≥0 defined, at least on L2(M), by

Ht f := e−tL f ∀ f ∈ L2(M).

It is well known that Ht extends to a contraction semigroup on L p(M) for all p ∈ [1,∞].
Furthermore, since M has Ricci curvature bounded from below, the heat semigroup {H t }
satisfies the following ultracontractivity estimate [14, Section 7.5]

∣
∣
∣
∣
∣
∣H t

∣
∣
∣
∣
∣
∣
1;2 ≤ C e−bt t−n/4 (1 + t)n/4−δ/2 ∀t ∈ R

+ (25)

for some δ in [0,∞). Recall also that a lower bound for the Ricci curvature implies also an
upper bound of the volume growth of M (see (26)). Indeed, there are positive constants α, β
and C such that

μ
(

B(p, r)
) ≤ C rα e2β r ∀r ∈ [1,∞) ∀p ∈ M. (26)

The following result should be compared with [27, Proposition B.5]. It provides an end-
point result to the multiplier theorem [26, Thm 1.1].

Theorem 7 Assume that α and β are as in (26), and δ as in (25). Denote by N the integer
[[n/2+ 1]]+ 1. Suppose that J is an integer > max

(

N + 2+α/2− δ, N + 1/2
)

. Then, there
exists a constant C such that

|||m(D)|||h1 ≤ C ‖m‖Sβ ;J ∀m ∈ H∞(Sβ; J).
Proof We claim that it suffices to prove that for each 2-atom a at scale 1, the functionm(D) a
maybewritten as the sumof 2-atoms supported in balls ofB1, with �1 normof the coefficients
controlled by C ‖m‖Sβ ;J .

Indeed, suppose that f is a function in h1(M) and that f = ∑

j λ j a j is an atomic
decomposition of f with ‖ f ‖h1 ≥ ∑

j |λ j | − ε. Since for each 2-atom a, we have

‖m(D)a‖1 ≤ C ‖m‖Sβ ;J , by Theorem 6m(D) extends to a bounded operator from h1(M) to
L1(M). Then, m(D) f = ∑

j λ j m(D)a j , where the series is convergent in L1(M). But the

partial sums of the series
∑

j λ j m(D)a j is a Cauchy sequence in h1(M); hence, the series

is convergent in h1(M), and the sum must be the function m(D) f . Therefore,

‖m(D) f ‖h1 ≤
∑

j

|λ j | ‖m(D)a j‖h1

≤ C ‖m‖Sβ ;J
∑

j

|λ j |

≤ C ‖m‖Sβ ;J
(‖ f ‖h1 + ε

)

,

and the required conclusion follows by taking the infimum of both sides with respect to all
admissible decompositions of f .

It has already been shown in the proof of [19, Thm 3.4] that the claim holds for standard
atoms. Therefore, it suffices to prove it for global atoms.

As in the proof of [19, Thm 3.4], we split the operatorm(D) into the sum of two operators
and analyse them separately. The functions ω̂ ∗ m and m − ω̂ ∗ m (ω is the cut-off function
defined above) are bounded. Define the operators S and T spectrally by

S = (ω̂ ∗ m)(D) and T = (m − ω̂ ∗ m)(D).

Thus m(D) = S + T .
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Suppose that a is a global 2-atom supported in B1(p) for some p in M . Observe that the
function ω̂ ∗ m is bounded and

‖ω̂ ∗ m‖∞ ≤ C ‖m‖∞ ≤ C ‖m‖Sβ ;J . (27)

Therefore, (ω̂ ∗ m)(D) is bounded on L2(M) by the spectral theorem, and

|||(ω̂ ∗ m)(D)|||2 ≤ ‖ω̂ ∗ m‖∞ ≤ C ‖m‖Sβ ;J .

We have used (27) in the second inequality above. Observe that the support of the kernel of
the operator (ω̂ ∗ m)(D) is contained in {(x, y) : d(x, y) ≤ 1}, for L possesses the finite
propagation speed property; hence, the function (ω̂ ∗ m)(D)a is supported in the ball with
centre p and radius 2. Moreover,

‖(ω̂ ∗ m)(D)a‖2 ≤ C |||(ω̂ ∗ m)(D)|||2 ‖a‖2
≤ C ‖m‖Sβ ;J μ(B1(p))

−1/2

≤ C ‖m‖Sβ ;J μ(B2(p))
−1/2.

We have used the LDP in the last inequality. Thus, (ω̂ ∗ m)(D)a is a constant multiple of a
global atom at scale 2 and, by Lemma 2,

‖(ω̂ ∗ m)(D)a‖h1 ≤ C ‖m‖Sβ ;J .

Now we analyse T a. In the proof of [19, Thm 3.4], it is shown that if b is a standard
2-atom, then T b may be decomposed as

T b =
∞
∑

j=1

λ j b j ,

where b j is an atom at scale j + 2, and

|λ j | ≤ C ‖m‖Sβ ;J j N+α/2−J−δ ∀ j = 1, 2, 3, . . . (28)

A close examination of the proof reveals that the cancellation property of b is used to show
that the atoms b j also have this property, but it is not required in the proof of (28). Thus,
by arguing as in Step IV in the proof of [19, Thm 3.4], we may conclude that T a may be
written as

T a =
∞
∑

j=1

λ j a j ,

where a j is a global 2-atom at scale j + 2 and λ j satisfies estimate (28). Now Lemma 2 (and
its version for Riemannian manifolds [19, Lemma 5.7]) implies that there exists a constant
C such that

‖a j‖h1 ≤ C j j = 1, 2, 3, . . .

Therefore,

‖T a‖h1 ≤ C ‖m‖Sβ ;J
∞
∑

j=1

j1+N+α/2−J−δ ≤ C ‖m‖Sβ ;J ,

whereC is independent of a. Hence,T extends to a bounded operator from h1(M) to h1(M).
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So far, we have proved that there exists a constant C such that for every global atom a

‖S a‖h1 + ‖T a‖h1 ≤ C ‖m‖Sβ ;J .

Hence,

‖m(D)a‖h1 ≤ C ‖m‖Sβ ;J .

The required conclusion follows from the claim at the beginning of the proof. 
�
10.2 The translated Riesz transform

We shall need the following local estimate for the space derivative of the heat kernel.

Lemma 8 There exists η > 0 such that for all y ∈ M, t > 0

∫
d(x,y)≥√

t
|∇xhs(x, y)| dμ(x) ≤

⎧

⎨

⎩

Ce−ηt/ss−1/2 ∀s ∈ (0, 1]

Ce−ηt/secss−1/2 ∀s ∈ (1,∞)

.

This result is stated in [4], though its proof is given in full detail only in the case where
M is globally doubling. However, it is not hard to modify the argument to produce a proof
of Lemma 8. The proof hinges on upper estimates for the heat kernel and its time derivatives
(see [11,14,15]) and on weighted estimates for the space derivative of the heat kernel ([4]).

Theorem 8 There exists a > 0 such that the translated Riesz transform ∇(aI +L )−1/2 is
bounded from h1(M) to L1(M).

Proof We know that if a is large enough, then ∇(aI +L )−1/2 is bounded from H1(M) to
L1(M) by [24]. Therefore, it suffices to show that the kernel k of ∇(aI + L )−1/2 satisfies
the condition

sup
y∈M

∫
B2(y)c

|k(x, y)| dμ(x) < ∞ (29)

and then apply [9, Prop 4.5]. The kernel is given, off the diagonal, by

k(x, y) =
∫+∞

0

e−as

√
s

∇xhs(x, y) ds.

By Fubini’s theorem, we obtain
∫
B2(y)c

|k(x, y)| dμ(x) =
∫
B( y)c

∣
∣
∣
∣

∫+∞

0

e−as

√
s

∇xhs(x, y) ds

∣
∣
∣
∣
dμ(x)

≤
∫+∞

0

e−as

√
s

∫
d(x,y)≥2

|∇xhs(x, y)| dμ(x) ds

:= I1 + I2,

where

I1 =
∫ 1
0

e−as

√
s

∫
d(x,y)≥2

|∇xhs(x, y)| dμ(x) ds

and

I2 =
∫+∞

1

e−as

√
s

∫
d(x,y)≥2

|∇xhs(x, y)| dμ(x) ds.
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Now we apply Lemma 8 to estimate the inner integrals. We get

I1 ≤ C
∫ 1
0

e−as−4η/s

s
ds ≤ C

∫ 1
0

e−4η/s

s2
ds = C

e−4η

4η
,

and

I2 ≤ C
∫+∞

1

e−(a−c)s−4η/s

s
ds ≤ C

∫+∞

1
e−(a−c)s ds.

Note that the last integral converges only when a > c. Therefore, (29) holds if a > c, and for
such a, the operator ∇(aI +L )−1/2 extends to a bounded operator from h1(M) to L1(M),
as required. 
�
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