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Abstract The irrationality exponent of an irrational p-adic number ξ , which measures the
approximation rate of ξ by rational numbers, is in general very difficult to compute explicitly.
In this work, we shall show that the irrationality exponents of large classes of automatic p-
adic numbers and Mahler p-adic numbers (which are transcendental) are exactly equal to
2. Our classes contain the Thue–Morse–Mahler p-adic numbers, the regular paperfolding
p-adic numbers, the Stern p-adic numbers, among others.

Keywords Hankel determinant ·Automatic sequence · Thue–Morse sequence · Periodicity ·
Regular paperfolding sequence · Stern sequence · Irrationality exponent
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1 Introduction and results

ByRoth’s Theorem, the irrationality exponent of any irrational algebraic real number is equal
to 2. However, it is in general a very difficult problem to determine the irrationality exponent
of a given transcendental real number, unless its continued fraction expansion is known.
Recently, a method based on Padé approximants was developed in [11] and generalized in
several subsequent works; see [13] and the references given therein. In the present work, we
shall show that this method can be also used to estimate the irrationality exponent of special
classes of transcendental p-adic numbers.
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Fix p a prime number. We denote by Qp the field of p-adic numbers, and by | · |p the
p-adic absolute value normalized such that |p|p = 1/p (for basic properties about p-adic
numbers, see, for example, [32]). The irrationality exponent of a p-adic irrational number ξ ,
denoted by μ(ξ), is the supremum of the real numbers μ such that the inequality

∣
∣
∣ξ − r

s

∣
∣
∣

p
<

1

(H(r, s))μ

has infinitely many solutions in integers r, s with s > 0, where we have set H(r, s) =
max{|r |, |s|}. It follows from a p-adic version of Dirichlet’s theorem that the irrationality
exponent of any irrational element of Qp is at least equal to 2. By the p-adic analogue of
Roth’s theorem (see, for example, [26]), the irrationality exponent of any irrational algebraic
p-adic number is equal to 2.

In the real case, one can easily construct, by means of the theory of continued fractions,
explicit examples of real numbers with any given irrationality exponent ≥2. However, it
seems that such constructions cannot be transposed to the p-adic setting. So, we have to
use metric Diophantine approximation to prove that there exist p-adic numbers with any
prescribed irrationality exponent ≥2; see Section 9.3 of [9]. When one looks for explicit
examples, it is tempting to consider, for any real number c ≥ 2, the p-adic number

ξc =
∑

k≥1

p�ck�,

where �·� denotes the integer part function. By truncating the expansion of ξc, one can easily
get that μ(ξc) ≥ c. And triangle inequalities show that this inequality is indeed an equality
if c ≥ (3 + √

5)/2. In the real case, a similar example has been considered in [10] (see
also Section 7.6 in [12]), where continued fractions are used to prove that the irrationality
exponent of

∑

k≥1 2−�ck� (which can be viewed as the real analogue of ξc) is equal to c for
any c ≥ 2. As far as we are aware, the exact value of μ(ξc) is not yet known when c satisfies
2 ≤ c < (3 + √

5)/2.
Actually, there are very few concrete examples of transcendental p-adic numbers whose

irrationality exponent is known. One can mention Matala-Aho’s paper [27]: The numbers

RR(p) =
∞
∏

k=0

(1 − p5k+2)(1 − p5k+3)

(1 − p5k+1)(1 − p5k+4)

he considers have irrationality exponent equal to 2; however, they are not proved to be
transcendental. For more examples on p-adic numbers with irrationality exponent equal to
2, the reader can consult the work [28] of Matala-Aho and Merilä.

The goal of the present paper is to present explicit examples of transcendental p-adic
numbers whose irrationality exponent is equal to 2, with a special attention to automatic
p-adic numbers.

A p-adic number ξ is automatic if there exist two integers k, b ≥ 2 such that the b-adic
expansion of ξ is k-automatic, where b = pw and w is a positive integer. This means that, if
we write ξ = ∑

n≥0
a(n)bn with a(n) ∈ Z (n ≥ 0) and 0 ≤ a(n) < b (n ≥ 0), then the set of

subsequences
{(

a(kr n + s)
)

n≥0

∣
∣ r ≥ 0, 0 ≤ s < kr}

is finite (for more on automatic sequences, see, for example, Allouche [3] and also the book
of Allouche and Shallit [4]). By following the proof of Theorem 6 in [1], one can show that an
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automatic p-adic number is either rational or transcendental. We have thus a large family of
“simple” transcendental p-adic numbers, and one can then try to determine their irrationality
exponents. In the present paper, we do not restrict our attention to automatic numbers and
take a more general point of view.

Mahler’smethod [23–25] is amethod in transcendence theorywhereby one uses a function
F(z) ∈ Z[[z]] that satisfies a functional equation of the form

n
∑

i=0

Pi (z)F(zdi
) = 0,

for some integers n ≥ 1 and d ≥ 2, and polynomials P0(z), . . . , Pn(z) in Z[x] with
P0(z)Pn(z) 	= 0, to give results about the nature of the p-adic numbers F(b), where, as
above, b is an integer power of p. We refer to such numbers F(b) as Mahler p-adic numbers.
It is well known that automatic p-adic numbers are special cases of Mahler p-adic numbers
(see, for example [7, Theorem 1]).

From now on, we concentrate our attention on a special type of Mahler equation. Let
d ≥ 2 be an integer, (cm)m≥0 be an integer sequence, and set

f (z) =
∑

m≥0

cm zm .

Suppose that there exist A(z), B(z), C(z), D(z) ∈ Z[z] such that

f (z) = A(z)

B(z)
+ C(z)

D(z)
f (zd). (1.1)

Under various assumptions on these polynomials, we shall show that, for every integerw ≥ 1,
the irrationality exponent of the p-adic number f (pw) is equal to 2. A precise statement is
given in Theorem 3.1. We display several consequences of this result in Sect. 4. Among them
is Theorem 1.1 below, which is the p-adic analogue of the main result of [11].

Recall here that the Thue–Morse sequence (tn)n≥0 on {0, 1} is defined recursively by
t0 = 0, t2n = tn , and t2n+1 = 1− tn for all integers n ≥ 0. It is 2-automatic but not ultimately
periodic (see, for example [4]); thus, all the p-adic numbers

∑

n≥0 tn pwn are transcendental.

Theorem 1.1 Let (tn)n≥0 denote the Thue–Morse sequence over {0, 1}. Let p be a prime
number and w a positive integer. Then, the irrationality exponent of the p-adic number
∑

n≥0 tn pwn = 2.

The proofs of our theorems essentially follow the same lines as the proofs of the cor-
responding statements in the real case (see [13]). However, there is an extra difficulty to
overcome, since we do not know the exact degrees of the polynomials giving the Padé
approximants to the power series f which satisfies (1.1).

2 Auxiliary results

The following result is the p-adic analogue of Lemma 4.1 in [2].

Lemma 2.1 Let ξ be an element of Qp. Let λ, κ , and θ be real numbers such that 0 < λ ≤ κ

and θ ≥ 1. Suppose that there exists a sequence (rn/sn)n≥1 of rational numbers and positive
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932 Y. Bugeaud, J.-Y. Yao

numerical constants c0, c1, c2 such that, for all integers n ≥ 1, we have

H(rn, sn) < H(rn+1, sn+1) ≤ c0(H(rn, sn))θ ,

c1
(H(rn, sn))1+κ

≤
∣
∣
∣
∣
ξ − rn

sn

∣
∣
∣
∣

p
≤ c2

(H(rn, sn))1+λ
.

Then, we have μ(ξ) ≤ (1 + κ)θ/λ.

Proof Let r/s be a rational number with H(r, s) large enough. Then, there exists a unique
integer n = n(r, s) ≥ 2 such that

H(rn−1, sn−1) < (4c2H(r, s))1/λ ≤ H(rn, sn).

If r
s 	= rn

sn
, then we obtain

∣
∣
∣ξ − r

s

∣
∣
∣

p
≥

∣
∣
∣
∣

r

s
− rn

sn

∣
∣
∣
∣

p
−

∣
∣
∣
∣
ξ − rn

sn

∣
∣
∣
∣

p
≥ |rsn − srn |p

|ssn |p
− c2

(H(rn, sn))1+λ

≥ 1

|rsn − srn | − c2
(H(rn, sn))1+λ

≥ 1

2H(r, s)H(rn, sn)
− 1

4H(r, s)H(rn, sn)

= 1

4H(r, s)H(rn, sn)
,

for we have H(rn, sn) ≥ (4c2H(r, s))1/λ. But

H(rn, sn) ≤ c0(H(rn−1, sn−1))
θ < c0(4c2)

θ/λ(H(r, s))θ/λ, (2.1)

thus, by using that 0 < λ ≤ κ and θ ≥ 1, we obtain
∣
∣
∣ξ − r

s

∣
∣
∣

p
≥ 1

c3(H(r, s))1+θ/λ
≥ 1

c3(H(r, s))(1+κ)θ/λ
,

where we have put c3 = 4c0(4c2)θ/λ.
If r

s = rn
sn
, then we deduce from (2.1) that

∣
∣
∣ξ − r

s

∣
∣
∣

p
=

∣
∣
∣
∣
ξ − rn

sn

∣
∣
∣
∣

p
≥ c1

(H(rn, sn))1+κ
≥ 1

c4(H(r, s))(1+κ)θ/λ
,

where we have set c4 = c−1
1 c1+κ

0 (4c2)(1+κ)θ/λ.
By the definition of μ(ξ), we obtain finally μ(ξ) ≤ (1 + κ)θ/λ. 
�
Below we summarize several basic facts on Padé approximation. For more details, we

refer the reader to [6,8].
Let F be a field and z be an indeterminate over F. For any sequence c = (cm)m≥0 of

elements in F, we put f = f (z) = ∑

m≥0 cm zm and call it the generating function of c.
For all integers n ≥ 1 and k ≥ 0, the Hankel determinant of the power series f (or of the
sequence c) is defined by

H(k)
n ( f ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

ck ck+1 . . . ck+n−1

ck+1 ck+2 . . . ck+n
...

...
. . .

...

ck+n−1 ck+n . . . ck+2n−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

∈ F.
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By convention, we put H(k)
0 ( f ) = 1, for all integers k ≥ 0. For all integers n ≥ 0, write

Hn( f ) := H(0)
n ( f ). The sequenceH( f ) := (Hn( f ))n≥0 is called the sequence of the Hankel

determinants of f .
Let r, s ≥ 0 be integers. By definition, the Padé approximant [r/s] f (z) to f is the rational

fraction P(z)/Q(z) in F[[z]] such that

deg(P) ≤ r, deg(Q) ≤ s, and f (z) − P(z)

Q(z)
= O(zr+s+1).

The pair (P, Q) has no reason to be unique, but the fraction P(z)/Q(z) is unique (see [8,
p. 35]). Moreover, if we assume that P and Q are coprime, then we have Q(0) 	= 0.

If there exists an integer k ≥ 1 such that Hk( f ) is nonzero, then we know that the Padé
approximant [k − 1/k] f (z) exists and we have

f (z) − [k − 1/k] f (z) = Hk+1( f )

Hk( f )
z2k + O(z2k+1).

This formula is of little help ifHk+1( f ) = 0. But even in this case, we still have the following
fundamental result (for the proof, see [13]).

Theorem 2.2 With the same notation as above, suppose that there exist two integers �, k
such that � > k ≥ 1 and H�( f )Hk( f ) 	= 0. Then the Padé approximant [k − 1/k] f (z)
exists, and there exist a nonzero element hk in F and an integer k′ such that k ≤ k′ < � and

f (z) − [k − 1/k] f (z) = hk zk+k′ + O(zk+k′+1).

3 Irrationality exponent with Hankel determinants

In this section, we shall use Hankel determinants to bound from above the irrationality
exponent of p-adic transcendental numbers, which are values at integer powers of p of
power series satisfying a functional equation of a special type.

Theorem 3.1 Let p be a prime number, w a positive integer, and b = pw . Let (cm)m≥0 be
an integer sequence and f (z) = ∑+∞

m=0 cm zm. Suppose that there exist an integer d ≥ 2 and
A(z), B(z), C(z), D(z) ∈ Z[z] such that

f (z) = A(z)

B(z)
+ C(z)

D(z)
f (zd) (3.1)

and B(bdm
)C(bdm

)D(bdm
) 	= 0, for all integers m ≥ 0. If there exists an increasing sequence

of positive integers (ni )i≥0 such that Hni ( f ) 	= 0 for all integers i ≥ 0, then, setting

ρ := lim sup
i→∞

ni+1

ni
,

the p-adic number f (b) is transcendental, and we have

μ ( f (b)) ≤ (1 + ρ)ρ3 min{ρ4, d}.
In particular, the irrationality exponent of f (b) = 2 if ρ = 1.

Theorem 3.1 is the p-adic analogue of Theorem 4.1 in [13] and their proofs essentially
follow the same lines. Observe, however, that the dependence on ρ in the upper bound for
the irrationality exponent of f (b) is much worse in Theorem 3.1 than in its real counterpart.
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934 Y. Bugeaud, J.-Y. Yao

This is due to the fact that we have to control the degrees of the polynomials giving the Padé
approximants to f (z). Such a control was not needed in the real case. Anyway, in both the
real and the p-adic settings, we have established that the irrationality exponent of f (b) = 2
when ρ = 1.

Proof Since there exists an increasing sequence of positive integers (ni )i≥0 such that
Hni ( f ) 	= 0 for all integers i ≥ 0, we know by Kronecker’s theorem (see [29, p. 5])
that f (z) is not a rational function; thus, it is transcendental over Q(z) by Fatou’s theorem
(see [17]). But f (z) has integer coefficients, so it is also transcendental over Cp(z) (see
[31]), whereCp is the topological completion of a fixed algebraic closure ofQp . Then from
Eq. (3.1) and the fact that B(bdm

)C(bdm
)D(bdm

) 	= 0 for all integers m ≥ 0, we deduce
immediately that f (b) is transcendental (see, for example [34, p. 464]).

In the following, we shall only consider the case that ρ < +∞.
By iteration of the formula (3.1), we have, for all integers m ≥ 1,

f (z) = Am(z)

Bm(z)
+ Cm(z)

Dm(z)
f (zdm

), (3.2)

where we have set Cm(z) =
m−1∏

j=0
C(zd j

), Dm(z) =
m−1∏

j=0
D(zd j

), and

Bm(z) = Dm−1(z)
m−1
∏

j=0

B(zd j
), Am(z) =

m−1
∑

j=0

C j (z)A(zd j
) · Bm(z)

D j (z)B(zd j
)
,

with C0(z) = D0(z) = 1. Since Bm, B; Cm, C ; and Dm, D share the same properties, we
can always assume d > ρ (otherwise everything which follows holds with d being replaced
by dk , where k ≥ 1 is the smallest integer such that dk > ρ).

Put α = deg(A(z)), β = deg(B(z)), γ = deg(C(z)), δ = deg(D(z)). Then, as proved in
[13], we have:

deg(Am(z)) ≤ (α + β + γ + δ)dm,

deg(Bm(z)) ≤ (δ + β)dm,

deg(Cm(z)) ≤ γ dm,

deg(Dm(z)) ≤ δdm .

Let i ≥ 0 be an integer. By virtue of Theorem 2.2, we can find an integer n′
i (ni ≤ n′

i < ni+1),
hi ∈ Q \ {0}, and Pi (z), Qi (z) ∈ Z[z] with deg(Pi (z)) ≤ ni − 1, deg(Qi (z)) ≤ ni , and
Qi (0) 	= 0 (see [13]) such that we have the following equality

f (z) − Pi (z)

Qi (z)
= hi z

ni +n′
i Si (z), (3.3)

where Si (z) = 1 + ∑+∞
j=1 s(i)

j z j , with s(i)
j ∈ Q for all integers j ≥ 1. Thus, for all integers

m ≥ 1, we have

f (zdm
) − Pi (zdm

)

Qi (zdm
)

= hi z
(ni +n′

i )d
m

Si (z
dm

).

Combined with the formula (3.2), this gives

f (z) − Am(z)

Bm(z)
− Cm(z)

Dm(z)
· Pi (zdm

)

Qi (zdm
)

= hi z
(ni +n′

i )d
m Cm(z)

Dm(z)
Si (z

dm
).
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To simplify the notation, we define

Pi,m(z) = Am(z)Dm(z)Qi (z
dm

) + Bm(z)Cm(z)Pi (z
dm

),

Qi,m(z) = Bm(z)Dm(z)Qi (z
dm

).

Since C(z)D(z) 	= 0, then we can write

C(z) = cηzη(1 + zC̃(z)), D(z) = dιz
ι(1 + z D̃(z))

with η, ι ≥ 0 integers, cη, dι ∈ Z \ {0}, and C̃(z), D̃(z) ∈ Q[z]. Note that C̃(z), D̃(z) are
bounded on the closed unit disk Zp; thus, there exists an integer j0 > 0 such that for all

integers j ≥ j0, we have |bd j
C̃(bd j

)|p < 1 and |bd j
D̃(bd j

)|p < 1; hence,

|1 + bd j
C̃(bd j

)|p = 1 and |1 + bd j
D̃(bd j

)|p = 1,

from which we obtain, for all integers m > j0,

σ :=
j0∏

j=0

∣
∣
∣1 + bd j

C̃(bd j
)

∣
∣
∣

p
=

∣
∣
∣
∣
∣
∣

Cm(b)

cm
η b

η(dm −1)
d−1

∣
∣
∣
∣
∣
∣

p

,

τ :=
j0∏

j=0

∣
∣
∣1 + bd j

D̃(bd j
)

∣
∣
∣

p
=

∣
∣
∣
∣
∣
∣

Dm(b)

dm
ι b

ι(dm −1)
d−1

∣
∣
∣
∣
∣
∣

p

.

Note that Qi (0) 	= 0, so Qi (z) is different from zero in a neighborhood of zero in Qp , on
which Si (z) converges by virtue of (3.3). Hence, we can find an integer N0,i > j0 (which

depends only on i) such that for all integers j ≥ N0,i we have Qi (bd j
) 	= 0 and

|Si (b
d j

) − Si (0)|p < 1, for z �→ Si (z)

is continuous at the point z = 0. Thus, |Si (bd j
)|p = |Si (0)|p = 1. Note also that, by

assumption, we have B(bd j
)C(bd j

)D(bd j
) 	= 0 for all integers j ≥ 0. Hence, στ 	= 0, and

for all integers m > N0,i , we have
∣
∣
∣
∣

f (b) − Pi,m(b)

Qi,m(b)

∣
∣
∣
∣

p
=

∣
∣
∣
∣
hi b

(ni +n′
i )d

m Cm(b)

Dm(b)
Si (b

dm
)

∣
∣
∣
∣

p

= σ

τ
|hi |p

∣
∣
∣
∣

cη

dι

∣
∣
∣
∣

m

p
|b|(ni +n′

i )d
m+ (η−ι)(dm −1)

d−1
p . (3.4)

Unlike in the real case, we need control the degrees of Pi (z) and Qi (z).
Note that, for all integers i ≥ 2, we have

f (z) − Pi−1(z)

Qi−1(z)
= hi−1zni−1+n′

i−1 (1 + O(z)) ,

f (z) − Pi (z)

Qi (z)
= hi z

ni +n′
i (1 + O(z)) = zni−1+n′

i−1O(z)

from which we deduce immediately that Pi−1(z)
Qi−1(z)

	= Pi (z)
Qi (z)

. However, Pi−1(z)
Qi−1(z)

is the Padé
approximant [ni−1 − 1/ni−1] f (z) to f . Then, by the unicity of Padé approximant (see [8,

123



936 Y. Bugeaud, J.-Y. Yao

p. 35]), we deduce that Pi (z)
Qi (z)

is not the Padé approximant [ni−1 − 1/ni−1] f (z) to f ; thus,
we have

deg(Pi (z)) ≥ ni−1 or deg(Qi (z)) > ni−1. (3.5)

This simple observation is crucial in the remaining part of the proof.
Recall that Qi (bd j

) 	= 0 for all integers j ≥ N0,i . Recall also that, by assumption, we
have B(bdm

)C(bdm
)D(bdm

) 	= 0 for all integers m ≥ 0. Thus, we can find two constants
α1,i , α2,i > 0 (which depend only on i) such that for all integers m ≥ 0, we have

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|A(bdm
)| ≤ α2,i bdm deg(A),

|Pi (bdm
)| ≤ α2,i bdm deg(Pi ),

α1,i bdm deg(B) ≤ |B(bdm
)| ≤ α2,i bdm deg(B),

α1,i bdm deg(C) ≤ |C(bdm
)| ≤ α2,i bdm deg(C),

α1,i bdm deg(D) ≤ |D(bdm
)| ≤ α2,i bdm deg(D),

α1,i bdm deg(Qi ) ≤ |Qi (bdm
)| ≤ α2,i bdm deg(Qi ),

(3.6)

where the last one only holds for m ≥ N0,i . For all integers i, m ≥ 1, put

qi,m = |Qi,m(b)|, pi,m = Pi,m(b)sgn(Qi,m(b)),

Ti,m = max(deg(Qi,m), deg(Pi,m)) and ti,m = max(|pi,m |, |qi,m |, 1).
We note that qi,m and pi,m are integers. Fix ε ∈ (0, 1

10 ) small enough such that d
ρ

> 1+ε
1−2ε .

Since lim
i→+∞ ni = +∞, there exists an integer N1 ≥ 1 such that for all integers i ≥ N1, we

have

α + β + γ + δ + η + ι <
εni

4
. (3.7)

From the definition of Pi,m, Qi,m and the formula (3.7), we obtain that for all integers i > N1

and m ≥ 1, we have

Ti,m ≤
(

1 + ε

2

)

ni d
m .

It then follows from the definition of ti,m and the formula (3.6) that there exists an integer
N1,i ≥ N0,i such that for all integers m ≥ N1,i , we have

ti,m ≤ b(1+ε)ni dm
.

To get a lower bound for ti,m with i > N1, we distinguish two cases:

Case I deg(Qi (z)) ≥ (1 − ε
2 )ni−1. Then, for all integers m ≥ 1, we have

Ti,m ≥ deg(Qi,m) ≥ deg(Qi (z
dm

)) ≥
(

1 − ε

2

)

ni−1dm .

It then follows from the definition of ti,m and the formula (3.6) that there exists an integer
N2,i ≥ N1,i such that, for all integers m > N2,i , we have

ti,m ≥ qi,m ≥ b(1−ε)ni−1dm
.

Case II deg(Qi (z)) ≤ (1− ε
2 )ni−1. Then, it follows from the formula (3.5) that deg(Pi (z)) ≥

ni−1, and for all integers m ≥ 1, we have

Ti,m ≥ deg(Pi,m) = deg(Bm(z)Cm(z)Pi (z
dm

)) ≥ ni−1dm .
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At the same time, from the definition of ti,m and the formula (3.6), we can find an integer
N3,i ≥ N1,i such that for all integers m > N3,i , we have

ti,m ≥ |pi,m | ≥ b(1−ε)ni−1dm
.

Hence, for all integers i > N1 and m > max(N2,i , N3,i ), we always have

b(1−ε)ni−1dm ≤ ti,m ≤ b(1+ε)ni dm
. (3.8)

Similarly by (3.4) and (3.7), there exists an integer N4,i > max(N2,i , N3,i ) such that for
all integers i > N1 and m ≥ N4,i , we have

1

b(ni +n′
i )(1+ε)dm ≤

∣
∣
∣
∣

f (b) − pi,m

qi,m

∣
∣
∣
∣

p
≤ 1

b(ni +n′
i )(1−ε)dm , (3.9)

and by the formula (3.8), we obtain also

t
− (ni +n′

i )(1+ε)

ni−1(1−ε)

i,m ≤
∣
∣
∣
∣

f (b) − pi,m

qi,m

∣
∣
∣
∣

p
≤ t

− (ni +n′
i )(1−ε)

ni (1+ε)

i,m . (3.10)

By the definition of ρ, there exists an integer i0 > N1 such that for all integers i ≥ i0, we
have ni+1

ni
< ρ + ε ≤ ρ(1 + ε), and

⎧

⎨

⎩

(ni +n′
i )(1+ε)

ni−1(1−ε)
≤ (1 + ρ)ρ(1 + 3ε),

(ni +n′
i )(1−ε)

ni (1+ε)
≥ 2(1 − 3ε).

(3.11)

In particular, for all integers i > i0 and for all integers m ≥ N4,i , we have

bni dm (1−2ε)/ρ ≤ ti,m ≤ bni dm (1+ε), (3.12)

ti,m < t
d(1−2ε)
ρ(1+ε)

i,m ≤ ti,m+1 ≤ t
ρd(1+ε)
1−2ε

i,m , (3.13)

t−(1+ρ)ρ(1+3ε)
i,m ≤

∣
∣
∣
∣

f (b) − pi,m

qi,m

∣
∣
∣
∣

p
≤ t−2(1−3ε)

i,m . (3.14)

Applying Lemma 2.1 with (3.13) and (3.14), we obtain

μ( f (b)) ≤ (1 + ρ)ρ(1 + 3ε)

2(1 − 3ε) − 1
· ρd(1 + ε)

1 − 2ε
.

Since ε is positive and can be chosen arbitrarily small, we get

μ( f (b)) ≤ d(1 + ρ)ρ2. (3.15)

In the following, we assume ρ <
3
√

d and choose ε > 0 small enough such that ρ <
3
√

d − ε. Fix � > 1 an integer such that d�−1 > ni0+1. Let i1 > i0 be the smallest integer
such that ni1 ∈ [d�−1, d� − 1] (such an integer exists maybe not for all �, but at least for
infinitely many �). Then, ni1−1 ≤ d�−1 − 1, and thus, we have

d�−1 ≤ ni1 < (ρ + ε)ni1−1 ≤ (ρ + ε)(d�−1 − 1).

Since ni1+1 < (ρ + ε)ni1 , we can find an integer i2 > i1 such that

ni2 < (ρ + ε)ni1 ≤ ni2+1.
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So ni2+1 < (ρ + ε)ni2 < (ρ + ε)3(d�−1 − 1) ≤ d� − 1. Set i3 = i2 + 1,

A� = {ni1 , ni2 , ni3} ∪ {n j ∈ [d�−1, d� − 1] | j > i3},
and denote the elements of A� as ni1 < ni2 < · · · < niω . Then, ω ≥ 3, and we have
d� ≤ niω+1 < (ρ + ε)niω . Set

M� = max
1≤i≤iω

N4,i .

We arrange the integers til ,m (1 ≤ l ≤ ω and m ≥ M�) as an increasing sequence, denoted
by (r�, j ) j≥0.

Fix j ≥ 0, and write r�, j = til ,m with 1 ≤ l ≤ ω. By (3.12), we have

bnil dm (1−2ε)/ρ ≤ til ,m ≤ bnil dm (1+ε).

We distinguish below two cases:

Case I niω > ρnil (1 + ε)/(1 − 2ε). Since ρ ≥ 1, we have iω > il and thus there exists a
smallest integer v such that l < v ≤ ω such that

niv > ρnil
1 + ε

1 − 2ε
.

Consequently, we have tiv,m ≥ bniv dm (1−2ε)/ρ > bnil dm (1+ε) ≥ til ,m and

log tiv,m

log til ,m
≤ ρniv (1 + ε)

nil (1 − 2ε)
.

By the minimality of v, we obtain

niv < (ρ + ε)niv−1 ≤ (ρ + ε)ρnil
1 + ε

1 − 2ε
,

from which we deduce directly

1 <
log r�, j+1

log r�, j
≤ log tiv,m

log til ,m
<

ρ2(ρ + ε)(1 + ε)2

(1 − 2ε)2
.

Case II niω ≤ ρnil (1 + ε)/(1 − 2ε). Since niω < d� ≤ dni1 , we get dni1/niω > 1 and we
obtain, for all ε > 0 small enough and by our choice of i3, that

ρniω
1 + ε

1 − 2ε
< (ρ + ε)dni1 ≤ dni3 ,

as ρ(1+ε)
(1−2ε)(ρ+ε)

converges to 1 when ε tends to 0. Then, we get

log ti3,m+1

log til ,m
≥ ni3d(1 − 2ε)

ρnil (1 + ε)
>

niω

nil
≥ 1.

Moreover, from niω ≤ ρnil (1 + ε)/(1 − 2ε), we obtain also

log ti3,m+1

log til ,m
≤ ρdni3(1 + ε)

nil (1 − 2ε)
≤ ρ2dni3(1 + ε)2

niω (1 − 2ε)2
.

Note that niω > d�

ρ+ε
and ni3 = ni2+1 < (ρ + ε)3(d�−1 − 1), hence

dni3

niω
< (ρ + ε)4

d(d�−1 − 1)

d�
< (ρ + ε)4,
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and then we deduce

1 <
log r�, j+1

log r�, j
≤ log ti3,m+1

log til ,m
<

ρ2(ρ + ε)4(1 + ε)2

(1 − 2ε)2
.

Since ρ ≥ 1, thus for all integers j ≥ 0, we have in both cases

1 <
log r�, j+1

log r�, j
<

ρ2(ρ + ε)4(1 + ε)2

(1 − 2ε)2
. (3.16)

Once again applying Lemma 2.1 with (3.14) and (3.16), we get

μ( f (b)) ≤ (1 + ρ)ρ(1 + 3ε)

2(1 − 3ε) − 1
· ρ2(ρ + ε)4(1 + ε)2

(1 − 2ε)2
.

Since ε is positive and can be chosen arbitrarily small, hence we have

μ( f (b)) ≤ (1 + ρ)ρ7. (3.17)

The bounds (3.15) and (3.17) are obtained under the assumption that d > ρ. As noticed
previously, we can remove this assumption by replacing d with dk , where k is the smallest
integer such that dk > ρ. In particular, we have dk ≤ dρ. Consequently, we have shown that

μ( f (b)) ≤ (1 + ρ)ρ3d

and, under the assumption ρ < dk/3,

μ( f (b)) ≤ (1 + ρ)ρ7,

from which we deduce the desired result by noting that min{d, ρ4} = d when ρ ≥ dk/3.
In particular, if ρ = 1, then f (b) ≤ 2. But f (b) is transcendental; thus, its irrationality
exponent is equal to 2. 
�
Remark In the statement of Theorem 3.1, if we replace b = pw by b = r pw/s, where r, s
are coprime integers such that r 	= 0, s > 0, and p does not divide rs, then the same reason
(see [34, p. 464]) yields that the p-adic number f (r pw/s) is transcendental. Moreover, with
slight modifications, we can also show that

μ

(

f

(
r pw

s

))

≤ w

2w − logp max{r pw, s} (1 + ρ)ρ3 min{ρ4, d},

if max{r pw, s} < p2w . The verification is slightly technical, but direct and routine. In the
real case, an analogous result was given in [13]. See also Dubickas [16] for the irrationality
exponent of the Thue–Morse power series evaluated at the rational number a/b with a2 < b.

If the sequence (c j ) j≥0 takes only finitely many integer values, then the conditions in
Theorem 3.1 can be simplified as follows.

Theorem 3.2 Let p be a prime number, w a positive integer, and b = pw . Let (cm)m≥0 be
an integer sequence taking only finitely many values, and set f (z) = ∑+∞

j=0 c j z j . Suppose

that there exist an integer d ≥ 2 and A(z), B(z), C(z), D(z) ∈ Z[z] such that C(bdm
) 	= 0

for all m ≥ 0, and

f (z) = A(z)

B(z)
+ C(z)

D(z)
f (zd).
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If there exists an increasing sequence of positive integers (ni )i≥0 such that Hni ( f ) 	= 0 for
all integers i ≥ 0 and lim sup

i→∞
ni+1

ni
= 1, then the p-adic number f (b) is transcendental and

its irrationality exponent is equal to 2.

Proof Since the sequence (c j ) j≥0 is bounded, we can find an integer � > 2 such that

|c j | < bd�−1, for all integers j ≥ 0. As in the proof of Theorem 3.1, we know also that f (z)
is not rational, and there exist A�(z), B�(z), C�(z), and D�(z) in Z[z] such that

f (z) = A�(z)

B�(z)
+ C�(z)

D�(z)
f (zd�

). (3.18)

Moreover, C�(bdm
) 	= 0 for all integers m ≥ 0, since C(bdm

) 	= 0 for all integers m ≥ 0.
Without loss of generality, we can also suppose that

gcd(A�(z), B�(z)) = 1 and gcd(C�(z), D�(z)) = 1.

We argue by contradiction. Suppose that there is an integer m ≥ 0 such that B�(bdm
)D�(bdm

)

= 0. Then, we can write

B�(z) = (z − bdm
)s E(z), D�(z) = (z − bdm

)t F(z),

where E(z), F(z) ∈ Q[z] are not equal to zero at z = bdm
, and s, t ≥ 0 are integers such

that max{s, t} ≥ 1.
If s > t , then from the formula (3.18), we obtain

(z − bdm
)t f (z) − C�(z)

F(z)
f (zd�

) = A�(z)

(z − bdm
)s−t E(z)

.

The left-hand side is regular at z = bdm
, while the right-hand side is not, giving us the

required contradiction.
If s ≤ t , then from the formula (3.18), we have

(z − bdm
)t f (z) − (z − bdm

)t−s A�(z)

E(z)
= C�(z)

F(z)
f (zd�

).

Hence, f (bdm+�
) is a rational number. But (c j ) j≥0 is the sequence of coefficients of this

rational number in its base-bdm+�
expansion, and it is bounded by bd�−1. Thus, the sequence

(c j ) j≥0 is ultimately periodic. This gives again a contradiction since f (z) is not rational.
To conclude, it suffices to apply Theorem 3.1 to the formula (3.18). 
�

4 Some applications

All the results in the real case presented in [13] have corresponding p-adic versions. In this
section, we only summarize the main applications of Theorem 3.1.

We begin with the p-adic analogue of Theorem 6.1 from [13].

Theorem 4.1 Let f (z) ∈ Z[[z]] be a power series such that

A(z) + B(z) f (z) + C(z) f (z2) = 0, (4.1)

where A(z), B(z), and C(z) are integer polynomials satisfying one of the following condi-
tions:
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(i) B(0) ≡ 1, C(0) ≡ 0 (mod 2),
(ii) A(0) ≡ 0, B(0) ≡ 1, C(0) ≡ 1 (mod 2).

Let p be a prime number, w a positive integer, and b = pw such that B(b2
m
)C(b2

m
) 	= 0 for

all integers m ≥ 0. If f (z) (mod 2) is not a rational function, then the p-adic number f (b)

is transcendental and its irrationality exponent is equal to 2.

Proof Put F(z) = f (z) (mod 2) ∈ F2[[z]]. By the formula (4.1), we obtain

A(z) + B(z)F(z) + C(z)F(z)2 = 0.

By Theorem 5.2 in [13] (with conditions (i) and (iii), respectively), the sequence H(F)

of Hankel determinants of F is ultimately periodic over F2. Since F(z) is not a rational
function in F2[[z]], there exists an increasing sequence of positive integers (ni )i≥0 such that
Hni (F) 	= 0 for all i ≥ 0 and lim

i→∞
ni+1

ni
= 1. The conclusion comes from Theorem 3.1. 
�

Theorem 1.1 can be deduced immediately from Theorem 4.1.

Proof of Theorem 1.1 Put f (z) = ∑

n≥0
tnzn . Then,

z − (1 − z2) f (z) + (1 − z2)(1 − z) f (z2) = 0.

But the Thue–Morse sequence (tn (mod 2))n≥0 is not ultimately periodic; thus, by Theo-
rem 4.1 (ii), we obtain the desired result. 
�

For all integers n ≥ 0 with binary expansion n = ∑k
j=0 n j2 j where n j = 0, 1 (0 ≤

j ≤ k), put s2(n) = ∑k
j=0 n j , called the sum of the binary digits of n. One checks that

s2(n) ≡ tn (mod 2), for all integers n ≥ 0.
Inspired by the above proof and also by the recent work [15] of Coons, we obtain the

following result.

Theorem 4.2 Let p be a prime number and w a positive integer. Then, the p-adic number
∑

n≥0 s2(n)pwn is transcendental, and its irrationality exponent is equal to 2.

Proof Indeed, if we put f (z) = ∑

n≥0 s2(n)zn , then

z − (1 − z2) f (z) + (1 − z2)(1 + z) f (z2) = 0.

To conclude, it suffices to proceed as for the proof of Theorem 1.1. 
�
Theorem 4.3 Let f (z) ∈ Z[[z]] be the power series defined by

f (z) =
∏

n≥0

(

1 + uz2
n + 2z2

n+1 C(z2
n
)

D(z2n
)

)

, (4.2)

with u ∈ Z, C(z), D(z) ∈ Z[z], and D(0) = 1. Let p be a prime number, w a positive
integer, and b = pw such that D(b2

m
) f (b2

m
) 	= 0 for all integers m ≥ 0. If f (z) (mod 4) is

not a rational function, then the p-adic number f (b) is transcendental and its irrationality
exponent is equal to 2.

Proof We proceed exactly as in the proof of Theorem 2.2 of [13] to show that there exists an
increasing sequence of positive integers (ni )i≥0 such that Hni ( f ) 	= 0 for all integers i ≥ 0
and limi→∞ ni+1

ni
= 1. We conclude by applying Theorem 3.1. 
�

123



942 Y. Bugeaud, J.-Y. Yao

Remark Note that Theorem 4.3 cannot be deduced from Theorem 4.1, for f (z) (mod 2) is a
rational function.

Theorem 1.1 is also a direct consequence of Theorem 4.3.

Another proof of Theorem 1.1 Put f (z) = ∑

n≥0(1 − 2tn)zn . Then, we have

f (z) =
∏

n≥0

(1 − z2
n
).

Applying Theorem 4.3 with C(z) = 0, D(z) = 1, and u = −1, we obtain that μ( f (b)) = 2.
But f (b) = 1

1−b − 2
∑

n≥0 tnbn ; hence,

μ

⎛

⎝
∑

n≥0

tnbn

⎞

⎠ = μ( f (b)) = 2.


�
For all integers α, β ≥ 0, define the functions

Fα,β(z) = 1

z2α

∞
∑

n=0

z2
n+α

1 + z2n+β
=

∞
∑

n, j≥0

(−1) j z( j2β−α+1)2n+α−2α

,

Gα,β(z) = 1

z2α

∞
∑

n=0

z2
n+α

1 − z2n+β
=

∞
∑

n, j≥0

z( j2β−α+1)2n+α−2α

.

It is shown in [13] that Gα,β(z) is rational if β = α +1, and Gα,β(z) (mod 2) is not a rational
function if β 	= α + 1. The sequence of coefficients of G0,0(z) is usually called the Gros
sequence [19,22].

For β 	= α + 1, we have the following result.

Theorem 4.4 Let α, β ≥ 0 be integers such that β 	= α + 1. Let p be a prime number, w

be a positive integer, and set b = pw . Then, the p-adic numbers Fα,β(b) and Gα,β(b) are
transcendental and their irrationality exponents are equal to 2.

Proof From the definition, we know directly that Fα,β(z) and Gα,β(z) have integer coeffi-
cients in power series expansion. Moreover, we have also

− 1 + (1 + z2
β

)Fα,β(z) − z2
α

(1 + z2
β

)Fα,β(z2) = 0, (4.5)

−1 + (1 − z2
β

)Gα,β(z) − z2
α

(1 − z2
β

)Gα,β(z2) = 0. (4.6)

Note that Fα,β(z) (mod 2) = Gα,β(z) (mod 2) is not rational over F2. To conclude, it suffices
to apply Theorem 4.1 (i). 
�

Recall here that the regular paperfolding sequence (un)n≥0 on {0, 1} is defined recursively
by u4n = 1, u4n+2 = 0, and u2n+1 = un , for all integers n ≥ 0. The p-adic regular
paperfolding numbers are defined by

fRPF(b) :=
∑

n≥0

unbn,

where p is a prime number, w a positive integer, and b = pw . Recall also that the regular
paperfolding sequence is 4-automatic, but not ultimately periodic (see, for example [4]); thus,
all the regular paperfolding p-adic numbers fRPF(b) are transcendental.
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Theorem 4.5 Let p be a prime number, w a positive integer, and b = pw . Then, the irra-
tionality exponent of the regular paperfolding p-adic number fRPF(b) is equal to 2

Proof It suffices to apply Theorem 4.4 to G0,2(z). 
�
Stern’s sequence (an)n≥0 and its twisted version (bn)n≥0 (see [5,14,30]) are defined,

respectively, by
{

a0 = 0, a1 = 1,

a2n = an, a2n+1 = an + an+1 (n ≥ 1),

and
{

b0 = 0, b1 = 1,

b2n = −bn, b2n+1 = −(bn + bn+1) (n ≥ 1).

Put S(z) = ∑∞
n=0 an+1zn and T (z) = ∑∞

n=0 bn+1zn . Our next result gives the exact irra-
tionality exponent of the p-adic (twisted) Stern numbers.

Theorem 4.6 Let p be a prime number, w a positive integer, and b = pw . Then, the p-adic
numbers S(b) and T (b) are transcendental and their irrationality exponents are equal to 2.

Proof From the above definitions, we obtain (see also [14])

S(z) = (1 + z + z2)S(z2), T (z) = 2 − (1 + z + z2)T (z2).

Han has recently shown in [21] that for all integers n ≥ 2, we have

Hn(S)

2n−2 ≡ Hn(T )

2n−2 ≡
{

0, if n ≡ 0, 1 (mod 4),

1, if n ≡ 2, 3 (mod 4).

Hence, there exists an increasing sequence of positive integers (ni )i≥0 such that Hni (S)Hni

(T ) 	= 0 for all integers i ≥ 0, and lim
i→∞

ni+1
ni

= 1. The rest follows from Theorem 3.1 
� .

Theorem 4.7 Let f (z) ∈ Z[[z]] be a power series defined by

f (z) =
∞
∏

n=0

C(z3
n
)

D(z3n
)
, (4.7)

with D(z), C(z) ∈ Z[z] such that C(0) = D(0) = 1. Let p be a prime number, w a positive
integer, and b = pw such that C(b3

m
)D(b3

m
) 	= 0 for all integers m ≥ 0. If f (z) (mod 3) is

not rational, then f (b) is transcendental and its irrationality exponent is equal to 2.

Proof Over the finite field F3, the power series F(z) = f (z) (mod 3) satisfies the quadratic
equation −D(z)+ C(z)F(z)2 = 0. Consequently, by Theorem 5.2 (iv) in [13], the sequence
H(F) is ultimately periodic. Since F(z) is not a rational function in F3[[z]], there exists an
increasing sequence of positive integers (ni )i≥0 such that Hni (F) 	= 0 for all integers i ≥ 0
and lim

i→∞
ni+1

ni
= 1. The conclusion follows from Theorem 3.1. 
�

Letting C(z) = 1− z (resp. C(z) = 1± z − z2) and D(z) = 1 in Theorem 4.7, we obtain
at once the following corollary. The underlying Hankel determinants are evaluated in [20].
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Corollary 4.8 Let p be a prime number, w a positive integer, and b = pw . Then, the p-adic
numbers

∏

k≥0

(1 − b3
k
) and

∏

k≥0

(1 ± b3
k − b2·3k

)

are transcendental and their irrationality exponents are equal to 2.

The Cantor sequence (vn)n≥0 on {0, 1} is defined as follows: For all integers n ≥ 0, we
have vn = 1 if and only if the ternary expansion of n does not contain the digit 1. The Cantor
p-adic numbers take the form

fC (b) :=
∑

n≥0

vnbn,

where p is a prime number, w a positive integer, and b = pw . Recall also that the Cantor
sequence is 3-automatic, but not ultimately periodic (see, for example, [4]); thus, all the
p-adic Cantor numbers fC (b) are transcendental. Note finally that fC (z) = (1+ z2) fC (z3).

Theorem 4.9 Let p be a prime number, w a positive integer, and b = pw . Then, the irra-
tionality exponent of the Cantor p-adic number fC (b) is equal to 2.

Proof Apply Theorem 4.7 with C(z) = 1 + z2 and D(z) = 1. 
�
We give below further concrete examples of transcendental numbers with irrationality

exponent equal to 2.
In [33], Väänänen studied the following two power series

L(z) =
∞
∑

j=0

z2
j

∏ j−1
i=0 (1 − z2i

)
, M(z) =

∞
∑

j=0

(−1) j z2
j

∏ j−1
i=0 (1 − z2i

)
,

which satisfy, respectively, the functional equations

z(z − 1) + (1 − z)L(z) − L(z2) = 0,

z(z − 1) + (1 − z)M(z) + M(z2) = 0.

One can check directly that neither L(z) nor M(z) is rational modulo 2.

Theorem 4.10 Let p be a prime number, w a positive integer, and b = pw . Then, the p-adic
numbers L(b) and M(b) are transcendental and their irrationality exponents are equal to 2.

Proof It suffices to apply Theorem 4.1 (ii). 
�
Fu and Han [18] studied the Hankel determinants of the following power series F5, F11,

F13, F17A, and F17B , satisfying the equations

F5(z) = (1 − z − z2 − z3 + z4) F5(z
5),

F11(z) = (1 − z − z2 + z3 − z4 + z5 + z6 + z7 + z8 − z9 − z10) F11(z
11),

F13(z) = (1 − z − z2 + z3 − z4 − z5 − z6 − z7 − z8

+ z9 − z10 − z11 + z12) F13(z
13)

F17A(z) = (1 − z − z2 + z3 − z4 + z5 + z6 + z7 + z8 + z9

+ z10 + z11 − z12 + z13 − z14 − z15 + z16) F17A(z17),

F17B(z) = (1 − z − z2 − z3 + z4 + z5 − z6 + z7 + z8 + z9

+ z11 + z12 − z13 − z14 − z15 + z16) F17B(z17)

123



Hankel determinants, Padé approximations, and irrationality... 945

and established that they verify the following relations

Hn(F5)/2
n−1 ≡ Hn(F11)/2

n−1 ≡ Hn(F13)/2
n−1 ≡ 1 (mod 2),

Hn(F17A)/2n−1 ≡ Hn(F17B)/2n−1 ≡ 1 (mod 2).

All these power series satisfy the conditions of Theorem 3.1; thus, we obtain the following
result.

Theorem 4.11 Let p be a prime number, w a positive integer, and b = pw . Then, all
the p-adic numbers F5(b), F11(b), F13(b), F17A(b), F17B(b) are transcendental and their
irrationality exponents are equal to 2.
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