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Abstract We study a generalization of constant Gauss curvature −1 surfaces in Euclidean
3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We
analyse the singularities of these surfaces, dividing them into those of characteristic and
non-characteristic type. We give methods for constructing all non-degenerate singularities
of both types, as well as many degenerate singularities. We also give a method for solving
the singular geometric Cauchy problem: construct a pseudospherical frontal containing a
given regular space curve as a non-degenerate singular curve. The solution is unique for most
curves, but for some curves there are infinitely many solutions, and this is encoded in the
curvature and torsion of the curve.
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surfaces · Constant Gauss curvature · Singularities

Mathematics Subject Classification Primary 53A05 · 53C43; Secondary 53C42

1 Introduction

It is a well-known theorem of Hilbert that there do not exist complete isometric immersions
in R

3 of surfaces with constant negative Gauss curvature K = −1. These surfaces have
nevertheless been much studied since classical times. The integrability condition is the sine-
Gordon equation φxy = sin φ, where x and y are unit speed asymptotic coordinates and φ is
the angle between the asymptotic directions.Most of the literature on these surfaces dealswith
them via the solutions of this equation, naturally leading to singularities along the curves φ =
nπ for integers n. Amore general approach for pseudospherical surfaces is the formulation in
terms of Lorentz harmonic maps. The Gauss map N of a pseudospherical surface is harmonic
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906 D. Brander

Fig. 1 Pseudospherical surface generated by a Viviani Fig. 8 space curve. The curve has non-vanishing
curvature, but |τ | = 1 at four points. This surface is a frontal but not a wave front (Example 4.7)

with respect to the Lorentzianmetric induced by the second fundamental form. Conversely, if
we restrict to weakly regular harmonic maps, i.e. those where the derivatives Nx and Ny with
respect to a null coordinate system never vanish, then these maps correspond to solutions of
the sine-Gordon equation. The associated surfaces are called weakly regular pseudospherical
surfaces, and this has been the standard class of pseudospherical surfaces investigated in the
literature.

In this article, we aim to study the natural singularities of pseudospherical surfaces. We
will drop the weak regularity assumption, as it serves only to make a connection with the
sine-Gordon equation. This connection is not needed in the harmonic map approach. Given a
harmonic map N : S → S

2, from a simply connected Lorentz surface, there is a canonically
associated map f : S → R

3, unique up to a translation, that is pseudospherical wherever it
is immersed, and such that d f is orthogonal to N (see Sect. 2.2). We take such maps f as
the definition of a generalized pseudospherical surface.

Abandoning the identification with solutions of the sine-Gordon equation is advantageous
for two reasons. In the first place, in order to solve the Cauchy problem along an arbitrary
non-characteristic curve, it is necessary to choose asymptotic coordinates (x, y) such that
the curve is given by y = ±x . This can always be achieved, at least locally, but not if we
require that the coordinate lines are constant speed, the choice for which the angle between
the coordinate curves is a solution of sine-Gordon. The second advantage is that we are
interested in the natural singularities of these surfaces, and for many of these (for example
the bifurcating cusp lines in Fig. 1, or the rank zero singularities in Fig. 10), there is no
corresponding local solution of the sine-Gordon equation.

We will use a variant of the generalized d’Alembert method given by Toda [19] to study
the surfaces. In brief, a loop group lift F̂ of a harmonic map is obtained, via integration and
a loop group decomposition, from a potential pair (χ̂ , ψ̂) of loop algebra valued 1-forms
along a pair of transverse null coordinate lines. Essentially, the solution is thus given by
more or less arbitrary functions of one variable along two characteristic lines, in analogue
with the d’Alembert solution of the wave equation. The challenge is to find the potentials
that correspond to particular geometric properties, as the geometry is difficult to see in the
potentials. To address this problem, in joint work with Svensson [8], we defined special
potentials that allow one to solve a geometric Cauchy problem: find a surface that contains
a given curve with prescribed surface normal. Here, we generalize these potentials to the
case where the curve is required to be a singular curve, in place of prescribing the surface
normal.
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Pseudospherical surfaces with singularities 907

1.1 Main results

A frontal is a differentiable map f from a surface M into R
3 that locally has a well-defined

unit normal, that is a map N into S
2 ⊂ R

3 such that d f is orthogonal to N . General-
ized pseudospherical surfaces, as defined here, are frontals, and we may thus call them
pseudospherical frontals. If the map ( f, N ) : M → R

3 × S
2 is everywhere regular, then f

is called a (wave) front. A pseudospherical frontal is a wave front if and only if it is weakly
regular. That is, wave front solutions are exactly those that correspond to solutions of the
sine-Gordon equation.

A point p on a frontal f is called a singular point if the derivative d f has rank less
than 2 at p, and the local singular locus is called a singular curve. The singular point p is
non-degenerate if the singular curve is locally a regular curve in M . The image in R

3 of a
non-degenerate singular curve need not be a regular curve, demonstrated by the case of a
swallowtail singularity or a cone singularity (Fig. 3). Below we will divide non-degenerate
singular curves into two types, characteristic singular curves that are always tangent to a null
coordinate direction and non-characteristic those that are never tangent to a null direction.

Theorem 4.2 gives the potentials for constructing all non-degenerate non-characteristic
singular curves, together with the conditions on the data for cuspidal edges, swallowtails
and cone singularities. We then use this to prove Theorem 4.3, which states that given an
arbitrary space curve with non-vanishing curvature κ , and torsion τ �= ±1, there is a unique
pseudospherical wave front that contains this curve as a cuspidal edge. Moreover, the poten-
tials are given by a very simple formula in terms of κ and τ . We use this formula to compute
several examples. In fact, the potentials in Theorem 4.2 generate a pseudospherical frontal
from an arbitrary pair of functions κ and τ . At a point where κ vanishes, the singular curve
is degenerate. At a point where |τ | = 1, the surface is a frontal but not a wave front, and the
singular curve is also degenerate. Examples are shown in Figs. 1, 7 and 11.

In Sect. 5, we analyse the problem for characteristic singular curves. These singular-
ities are non-generic, but nevertheless of some interest. For example, a weakly regular
pseudospherical surface (i.e. a wave front) contains a non-degenerate characteristic singular
curve if and only if this curve is a straight line segment. For a general frontal, the singular
curve, if it is not a straight line, must instead have non-vanishing curvature and constant
torsion τ = ±1, incidentally the same conditions that are satisfied by asymptotic curves
on a regular pseudospherical surface. In the characteristic case, the solution is not unique,
and there are infinitely many pseudospherical frontals containing a prescribed curve of the
allowed type.Wegive the precise statement and the potentials for all solutions inTheorem5.1.

We have computed many examples of solutions using a numerical implementation of
the generalized d’Alembert method.1 We have tried to include some representative images
throughout the article, as well as further examples illustrating degenerate singularities and
surfaces generated fromcurveswith unbounded curvature inSect. 6. The surfaces are coloured
here according to mean curvature, which generally blows up near singularities, showing the
singular curves more clearly (Fig. 2).

1.2 Concluding remarks

This work is part of a series investigating how to analyse the singularities arising naturally in
integrable systems formulations of geometric problems [4,5,7,9]. The singularities in each
case studied arise in a different way. For spacelike and timelike constant mean curvature

1 Currently available at http://davidbrander.org/software.html.
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908 D. Brander

Fig. 2 Left One of many pseudospherical fronts that contain a straight line as a singular curve: Theorem 5.1,
with κ = 0, α = 1, β(t) = t . Right Example 5.4, a higher-order “cuspidal edge”, κ = 0, α(t) = t2, β(t) = t .
This surface is not a wave front

Fig. 3 Non-degenerate singularities: cuspidal edge, swallowtail and cone

surfaces in Minkowski 3-space [4,7,9], singularities are caused by the break down of the
IwasawaandBirkhoff loopgroupdecompositions for non-compact groups.Approaching such
points, the direction of the surface normal becomes null, and so the (harmonic) unit normal
is not defined. For constant Gauss curvature surfaces in R

3, the loop group decompositions
are globally defined, and hence, the unit normal is well defined everywhere, but this does not
guarantee that the surface is regular. This is because the unit normal is harmonicwith respect to
themetric induced by the second fundamental form, so the existence of conformal coordinates
with respect to this metric does not imply surface regularity. Positive curvature surfaces,
studied in [5], differ substantially in treatment from negative curvature surfaces, because the
former constitute an elliptic problem corresponding to Riemannian harmonic maps, and the
latter case, treated here, is hyperbolic and corresponds to Lorentzian harmonic maps.

We generally consider maps to be in the smooth category. The methods we use involve
only integration and loop group decompositions, which preserve smoothness: if real analytic
data are given, then the solutions are also real analytic. Our solutions, as frontals, are defined
globally, because the Birkhoff decomposition used is shown in [3] to be global.Wework with
a simply connected (which implies contractible) Lorentz surface S. For non-trivial topologies,
this amounts to working on the universal cover. Note, however, that by Kulkarni’s theorem
[12], there are infinitely many Lorentzian conformal structures on the plane, and not all
of these can be realized as conformal submanifolds of the Lorentz plane R

1,1. This raises
interesting questions for the global theory of pseudospherical frontals.

Andrey Popov [16] proved the existence and uniqueness part of our Theorem 4.3, by
using the sine-Gordon equation. The potentials given in Theorem 4.3 improve this result by
including solutions for curves where κ vanishes or |τ | takes the value 1 and by providing
a means of easily computing the solutions. Popov concluded that a pseudospherical surface
is uniquely determined by a cuspidal edge on its boundary, but this is not strictly accurate:
even if we restrict to the class of pseudospherical wave fronts (as he did), there exist cuspidal
edges (necessarily straight lines) that are characteristic curves. For such a curve, there are
infinitely many different pseudospherical wave fronts that contain it as a cuspidal edge.
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Pseudospherical surfaces with singularities 909

An important motivation for studying the singularities of pseudospherical surfaces is to
characterize the natural boundaries of the regular surfaces, given that there are no complete
immersions. See, e.g. [1,21]. Generalizations that include the singular curves as a part of the
surface have previously been studied within the framework of weakly regular surfaces. In
this article, we construct real analytic pseudospherical frontals (examples 5.4 and 5.5 ) that
are immersed on open dense sets, but have non-degenerate singular curves where the surface
is not weakly regular. This demonstrates that the weakly regular framework is not sufficiently
general for the task of including even regular boundary curves of immersed pseudospherical
surfaces. Given this, and the direct relationship between arbitrary Lorentz harmonic maps
and globally defined pseudospherical frontals, we conclude that frontals are a more natural
candidate for a global theory of pseudospherical surfaces.

2 Generalized pseudospherical surfaces

We first summarize necessary background material on pseudospherical surfaces and the loop
group representation. For more references, see, for example [2,13,15].

2.1 Lorentz surfaces and box charts

Any pseudospherical immersion has a natural Lorentz structure induced by the second fun-
damental form. We therefore outline a little background on Lorentz surfaces fromWeinstein
[20].

A Lorentz surface (S, [h]) is an orientedC∞ surface S equipped with a conformal equiva-
lence class of indefinite metrics [h]. There is naturally associated an ordered pair of nowhere
parallel null direction fieldsX and Y . A local proper null coordinate system with respect to
[h] is a local coordinate chart (x, y) such that ∂x and ∂y are parallel toX andY , respectively,
and h = 2Bdxdy for some positive function B.

The Lorentzian analogue to a holomorphic chart of a Riemann surface is a box chart. A
pair of charts φ = (x, y), φ̂ = (x̂, ŷ), on a surface S are C�-related if the orientation and
the directions ∂x and ∂y are preserved by the transition function, that is φ̂ ◦ φ−1(x, y) =
( f (x), g(y)) with f ′g′ > 0. A C�-atlas A � is a subatlas of the atlas of S in which all
charts are C�-related. A box surface is an ordered pair (S,A �), consisting of a surface and
a maximal C�-atlas, and any element of A � is called a box chart.

By Theorem 1 of [20], box surfaces are in one-one correspondence with Lorentz surfaces
(S, [h]), where [h] is a conformal equivalence class of Lorentz metrics. In particular, given
a Lorentz surface (S, h), the set of all proper null coordinate charts is a maximal C� atlas
on S.

A grid box in R
2 is a product of intervals B = (a, b) × (c, d) where −∞ ≤ a < b ≤ ∞

and −∞ ≤ c < d ≤ ∞. Since the property of being a grid box is preserved by the transition
functions of C�-related charts, the concept of a grid box is well defined on a Lorentz surface.
We call φ−1(B) a grid box on S if B is a grid box and φ is a box chart.

2.2 Lorentz harmonic maps and the associated pseudospherical frontal

Let (S, h) be a simply connected Lorentz surface. Suppose N : S → S
2 to be a smooth map.

Then, N is harmonic if and only if the mixed partial derivative Nxy is proportional to N
otherwise stated as N × Nxy = 0, where (x, y) are any null coordinate system (box chart).
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910 D. Brander

Consider now the system

fx = N × Nx , fy = −N × Ny, (2.1)

for a map f : S → R
3. The compatibility of the system (2.1), i.e. ∂y(N × Nx ) = ∂x (−N ×

Ny), is equivalent to the equation N × Nxy = 0, i.e. to the harmonicity of N .

Definition 2.1 The smooth map f : S → R
3, unique up to a translation, obtained by

integrating the system (2.1) is called the pseudospherical frontal associated with N . The
map L = ( f, N ) : S → R

3 × S
2 is called the Legendrian lift of f .

Clearly d f is orthogonal to N , and so f is a frontal. At points where f is an immersion,
the Gauss curvature is −1, and the null coordinates are asymptotic coordinates for f (see
below). Hence the name “pseudospherical frontal”.

Conversely, if f̃ : S → R
3 is a regular constant Gauss curvature −1 surface, where S is

simply connected, it is well known that one can find a global asymptotic coordinate system
for f̃ , and that the unit normal is a harmonic mapwith respect to the Lorentz structure defined
by the second fundamental form. Hence, all standard pseudospherical surfaces are obtained
in the above manner from their Gauss maps.

2.3 The extended frame

Let K denote the diagonal subgroup of SU (2) and represent S2 as the symmetric space
SU (2)/K , with projection π : SU (2) → S

2 given by π(g) = Adg e3, where

e1 = 1

2

(
0 i
i 0

)
, e2 = 1

2

(
0 −1
1 0

)
, e3 = 1

2

(
i 0
0 −i

)
,

are an orthonormal basis for su(2), with respect to the inner product 〈X, Y 〉 = −2 trace(XY ).
We have the commutators [e1, e2] = e3, [e2, e3] = e1 and [e3, e1] = e2, so that the cross-
product in R

3 = su(2) is

A × B = [A, B].
Let N : S → S

2 = SU (2)/K be a harmonic map, as above, and F : S → SU (2) any lift
of N , i.e. a map such that N = π(F) = AdF e3. We can express the Maurer–Cartan form of
F as

α := F−1dF = (Uk + Up)dx + (Vk + Vp)dy,

where the k and p components arewith respect to the Lie algebra decomposition k = span{e3},
p = span{e1, e2}.

Equation (2.1) for the associated pseudospherical frontal can be written

fx = AdF Up, fy = −AdF Vp,

and f is immersed precisely at the points where Up and Vp are linearly independent. At such
a point, the first and second fundamental forms are

I =
( |Up|2 |Up||Vp| cosφ

|Up||Vp| cosφ |Vp|2
)

, II =
(

0 |Up||Vp| sin φ

|Up||Vp| sin φ 0

)
,

where φ is the angle from Up to −Vp, and | · | is the standard norm in R
3 ≡ su(2). Thus, x

and y are asymptotic coordinates for f , and the Gauss curvature is −1.
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Pseudospherical surfaces with singularities 911

To characterize the harmonicity of N in terms of F , we differentiate N = AdF e3 to
obtain

AdF−1 Nxy = [Up, [Vp, e3]] +
[

∂Vp

∂x
+ [Uk, Vp], e3

]
.

Hence, Nxy is proportional to AdF e3 if and only if the p part of the right hand side vanishes,
i.e. if and only if

[
∂x Vp + [Uk, Vp], e3

] = 0, and this holds if and only if

∂x Vp + [Uk, Vp] = 0. (2.2)

If α is the Maurer–Cartan form of a frame F for an arbitrary smooth map N : S → S
2, we

can define

αλ := (Uk + Upλ)dx + (Vk + Vpλ
−1)dy,

where the parameter λ takes values in C
∗ := C \ {0}. The basis of the loop group set-up is

that the Maurer–Cartan equation

dαλ + αλ ∧ αλ = 0, (2.3)

is satisfied for all λ if and only if Eq. (2.2) holds, if and only if N is harmonic.
Fix some point p ∈ S with F(p) = F0. We want to retain the twisted structure that αλ

already has, namely that diagonal and off-diagonal matrix components are, respectively, even
and odd functions of λ. We therefore set

Fλ
0 :=

(
a λb

−b̄λ−1 ā

)
, where F0 =

(
a b

−b̄ ā

)
.

Give that N is harmonic, the Maurer–Cartan equation (2.3) means that, for any value of λ,
we can solve the equations

(Fλ)−1dFλ = αλ, Fλ(p) = Fλ
0 ,

to obtain a family of maps Fλ : S → SL(2,C), which take values in SU (2) for real values
of λ, and we have an associated family Nλ : S → S

2 of harmonic maps given by

Nλ := AdFλ e3, for λ ∈ R
∗.

Given a fixed basepoint p, the family Nλ is independent of the choice of lift F of N . Any
other lift is of the form F̃ = F D where D is a diagonal matrix-valued function, and the
extended frame works out to be F̃λ = Fλ D, leaving Nλ = AdFλ e3 unchanged. Let us call
the family Nλ the extended harmonic map, or the extended unit normal, and Fλ an extended
frame. There is a convenient way to obtain the associated pseudospherical frontal f from
Fλ. The Sym formula is defined as:

Sλ(Nλ) := λ
∂ Fλ

∂λ
(Fλ)−1. (2.4)

This formula is independent of the choice of extended frame Fλ (given a fixed basepoint)
and hence well defined on Nλ. By computing the derivatives, one verifies:

Lemma 2.2 For each λ ∈ R
∗, the map f λ : S → R

3 = su(2), given by the Sym formula:
f λ = Sλ(Nλ), is (up to a translation) the unique pseudospherical frontal associated with
the harmonic map Nλ.
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912 D. Brander

The Sym formula was given by A. Sym [18]. A geometric explanation of this formula can
be found in [6].

Finally, we remark that the choice of basepoint in the construction of the extended har-
monic map Nλ has no geometric significance. Choosing a different basepoint will result in
a translation of the surface obtained from the formula f = S1(Nλ), and this is the same
freedom we have in the definition of the associated pseudospherical frontal.

3 Singularities of pseudospherical frontals

For notational convenience, we now use X̂ instead of Xλ to denote a family of objects
parametrized by λ. For such an object, we also write X for X̂ |λ=1.

Analysis of singularities is local, and so, in this section, we are generally discussing a
harmonic map N : R → S

2, where R is a grid box Ix × Iy ⊂ R
2, a product of open intervals.

A harmonic map N is called weakly regular if the kernel of dN is everywhere of dimension
at most 1 and never contains a nonzero null vector.

Definition 3.1 An admissible connection is an integrable family of 1-forms

α̂ := (Uk + Upλ)dx + (Vk + Vpλ
−1)dy,

on R := Ix × Iy , where Uk, Vk and Up, Vp take values, respectively, in k and p in su(2). The
connection is weakly regular at p ∈ R, if both Up and Vp are nonzero at p and regular if
Up are Vp are linearly independent at p. The connection is weakly regular or regular if these
conditions hold on the whole of R. An admissible frame is a family of maps F̂ : R → SU (2)
such that F̂−1dF̂ is an admissible connection.

The problem of constructing harmonic maps R → S
2 is essentially equivalent to that of

finding admissible connections. The only freedom in the choice of admissible frame F̂ is a
gauge F̂ �→ F̂ D, where D takes values in the diagonal subgroup K ⊂ SU (2). Equivalently,
α̂ �→ D−1α̂D + D−1dD. The harmonic map N = AdF e3 is (weakly) regular if and only if
the admissible connection is.

Lemma 3.2 Let F̂ be an admissible frame, with associated harmonic map N = AdF e3 and
f = S1(F̂). The connection α̂ := F̂−1dF̂ is weakly regular if and only if f is a wave front.

Proof We have

AdF−1 d f = Updx − Vpdy.

If α̂ is not weakly regular, then at least one of Up and Vp is zero at some point. Since the
derivatives dN and d f are computed in terms of these, the rank of dL = (d f, dN ) is at most
1 at this point and f is not a wave front.

Now suppose that α̂ is weakly regular. We need to show that dL = (d f, dN ) has rank 2.
Define W : R → S

1 ⊂ p by W = Up/|Up|. We can write

Up = AW, Vp = −B RφW,

where A and B are smooth positive real-valued functions, φ is smooth and real valued and Rφ

denotes the rotation of angle φ in the e1e2 plane. The connection is regular when φ is not an
integer multiple of π . Writing W = Rγ e1, let us multiply the extended frame F̂ on the right
by D = diag(eiγ /2, e−iγ /2). This has no effect on the harmonic map N = AdF e3 or the map
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Pseudospherical surfaces with singularities 913

f = S1(F̂). Thus, it is equivalent to consider the admissible connection D−1α̂D + D−1dD,
which we now denote by α̂. The conclusion is that we can assume that

Up = Ae1, Vp = −B(cosφe1 + sin φe2).

Now

AdF−1 dN = [Ae1dx − B(cosφe1 + sin φe2)dy , e3]
= −B sin φdy e1 + (−Adx + B cosφdy) e2,

and

AdF−1 d f = (Adx + B cosφdy)e1 + B sin φdy e2.

Since A and B are non-vanishing, it follows that dL = (d f, dN ) has rank 2 and f is a wave
front. ��
3.1 The singular curve for pseudospherical wave fronts

Assume that α̂, N and f are as above, and α̂ is weakly regular. Using the same choices as in
the previous lemma, we have

fx = AAdF e1, fy = B AdF (cosφe1 + sin φe2), N = AdF (e1 × e2). (3.1)

Thus,

fx × fy = AB sin φN . (3.2)

Since A and B are assumed non-vanishing, the singular set is the set of points sin φ = 0, i.e.
φ = kπ , for k ∈ Z. A singular point q on a frontal is non-degenerate if and only if one can
write fx × fy = μN , where μ(q) = 0 and dμ|q �= 0. Here, we have μ = AB sin φ and
dμ = ±ABdφ. Thus, the non-degeneracy condition in our case is

dφ �= 0. (3.3)

In a neighbourhood of a non-degenerate singular point, the singular set is a regular curve in
the coordinate domain, and there is a well-defined 1-dimensional direction field η along the
curve called the null direction (not to be confused with null coordinate directions!) such that

d f (η) = 0.

The generic singularities of pseudospherical surfaces were studied by Ishikawa andMachida
[10] and shown to be cuspidal edges and swallowtails. For general wave fronts, these singu-
larities can be identified by the following characterization:

Proposition 3.3 ([11]) Let f be a wave front and q a non-degenerate singular point. Let
σ(t) be a local parametrization for the singular curve around q, with σ(0) = q. Then, the
image of f in a neighbourhood of q is diffeomorphic to:

(1) A cuspidal edge if and only if η(0) is not proportional to σ ′(0);
(2) A swallowtail if and only if η(0) is proportional to σ ′(0), and

d

dt
(det(σ ′(t), η(t))

∣∣
t=0 �= 0.
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914 D. Brander

In our situation, assuming, for concreteness’ sake that the singular curve is given locally by
φ(x, y) = 0, we have d f = (Adx + Bdy)AdF e1, and so the null direction is given on this
curve by

η = B∂x − A∂y .

Assume first that the singular curve is not tangent to either ∂x or ∂y . In that case, we can, after
a change of box coordinates (see, e.g. [8]), assume that our singular curve is locally given by
y = εx , where ε = ±1. Note that this special choice of coordinates means that we cannot
assume that A and B are constant. Now we have, in the basis ∂x , ∂y ,

η(t) = (B(t),−A(t)), σ ′(t) = (1, ε),
d

dt
det(σ ′(t), η(t)) = A′(t) + εB ′(t).

Let us add here that the special case that A(t)+εB(t) ≡ 0 corresponds to a cone singularity,
i.e. a non-degenerate singular curve that maps to a single point. This follows from the formula
d f (σ ′(t)) = (A(t) + εB(t))AdF e1. Constructing pseudospherical wave fronts with cone
singularities is discussed by Pinkall [15].

Now consider the case that the singular curve is tangent, at a point p, to one of the
coordinate directions ∂x or ∂y . Then, it is not proportional to η, because both B and A are
nonzero. In this case, by the proposition above, the surface is a cuspidal edge at p. We
summarize this as:

Theorem 3.4 Let f be a pseudospherical wave front. Suppose that q is a non-degenerate
singular point. If the singular curve is tangent at q to a null coordinate direction, then the
surface is locally diffeomorphic to a cuspidal edge at q. Otherwise, there exist box coordinates
(x, y) such that, in a neighbourhood of q = (0, 0), the singular set is parametrized by
(x(t), y(t)) = (t, εt), and the image of f is diffeomorphic to:

(1) A cuspidal edge if A(0) + εB(0) �= 0;
(2) A swallowtail if A(0) + εB(0) = 0 and A′(0) + εB ′(0) �= 0.
(3) A cone singularity if A(t) + εB(t) ≡ 0,

where A(t) = | fx (t, εt)| and B(t) = | fy(t, εt)|.
3.2 Singular curves that are not wave fronts

Let us now consider the case that α̂ is semi-regular – meaning that the derivative of the
associated harmonic map N has rank at least 1 – but not weakly regular. This means that at
least one of Up and Vp is nonzero, but the other may vanish. We assume then that Up �= 0,
the other case being analogous. We can, as before, assume that Up = Ae1. After a change
of box coordinates, we can take A = 1. The angle φ is not well defined at points where Vp

vanishes, so we now have:

Uk = u0e3, Up = e1,

Vk = v0e3, Vp = ae1 + be2,

where u0, v0, a and b are real-valued functions. The integrability condition dα̂ + α̂ ∧ α̂ = 0
is equivalent to the following set of equations

∂u0

∂y
= b,

∂a

∂x
= u0b,

∂b

∂x
= −u0a, v0 = 0.
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Pseudospherical surfaces with singularities 915

Now we have

fx = AdF e1, fy = AdF (ae1 + be2), fx × fy = bN .

Thus, the frontal f has a singular point precisely when b vanishes, i.e. the singular set is
given by

b = 0,

and the non-degeneracy condition is db �= 0. If a is non-vanishing, then we are at a weakly
regular point, already discussed. We therefore consider now a point q at which

a(q) = 0, b(q) = 0, db|q �= 0.

We relabel coordinates so that q = (0, 0). The integrability conditions above for a and b
give, along the line y = 0, the system:

∂a(x, 0)

∂x
= u0(x, 0)b(x, 0),

∂b(x, 0)

∂x
= −u0(x, 0)a(x, 0), a(0, 0) = b(0, 0) = 0,

which has the unique local solution

a(x, 0) = b(x, 0) = 0.

Hence, assuming the non-degeneracy condition, which is now

∂yb|(x,0) �= 0,

the singular curve is locally given by

y = 0.

Theother integrability condition becomes ∂yu0 = 0 along y = 0.The null direction isη = ∂y ,
which is transverse to the singular curve, but the singularity is not a standard cuspidal edge
because the surface is not a wave front along this curve. We call such a singularity a higher-
order cuspidal edge, because it is non-degenerate and the image of the singular curve is a
regular curve in R

3. A fold singularity is of this type.
We have shown that if a pseudospherical surface has a non-degenerate singularity at a point

where the surface is not a wave front, then the singular curve at that point is a characteristic
curve, or null coordinate curve. However, we saw in the previous section that it is also possible
for a weakly regular singular curve to be tangent to a characteristic direction.

4 Prescribed non-characteristic singular curves

4.1 The generalized d’Alembert method

A well-known method for producing essentially all admissible frames is the generalized
d’Alembert representation given by Toda in [19]. Here, is a summary, using definitions and
notation as in [8]: let G := �SL(2,C)σρ denote the group of smooth maps γ : S

1 →
SL(2,C) that are fixed by the involutions σ and ρ given by

(σγ )(λ) = AdP γ (−λ), (ργ )(λ) = (γ (λ̄)
t
)−1.

where P = diag(−1, 1), andλ is the S1 parameter. All loops considered here extend holomor-
phically to C \ {0}, and the reality condition given by ρ means that they take values in SU (2)
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916 D. Brander

for real values of the loop parameter λ. We also consider the subgroups G± consisting of
loops the Fourier expansions of which are power series in λ±1. We denote the corresponding
Lie algebras by Lie(G ), Lie(G±).

Definition 4.1 Let Ix and Iy be two real intervals, with coordinates x and y, respectively. A
potential pair (χ̂ , ψ̂) is a pair of smooth Lie(G )-valued 1-forms on Ix and Iy , respectively,
with Fourier expansions in λ as follows:

χ̂ =
1∑

j=−∞
χ jλ

j dx, ψ̂ =
∞∑

j=−1

ψ jλ
j dy.

We will call the potential pair semi-regular at a point p if at least one of the “leading
coefficients” χ1 and ψ−1 is nonzero at p and regular if both are nonzero, and the potential
pair is called (semi-)regular if the condition holds at every point.

An admissible frame F̂ is then obtained by solving X̂−1dX̂ = χ̂ , and Ŷ −1dŶ = ψ̂ for
X̂(x) and Ŷ (y), each with initial condition the identity matrix, thereafter performing, at each
(x, y), a Birkhoff decomposition (see [3,17]):

X̂−1(x)Ŷ (y) = Ĥ−(x, y)Ĥ+(x, y), with Ĥ±(x, y) ∈ G±, (4.1)

and finally defining F̂ by:

F̂(x, y) = X̂(x)Ĥ−(x, y). (4.2)

The admissible frame is semi-regular if and only if the potential pair is semi-regular and
weakly regular if and only if the potential pair is regular.

Conversely, any admissible frame F̂ is associatedwith apotential pair
(
X̂−1+ dX̂+,Ŷ −1− dŶ−

)
,

where X̂+ and Ŷ− are obtained by the pair of pointwise normalized Birkhoff factorizations

F̂ = X̂+Ĝ−, X̂+(x) ∈ G+, Ĝ−(x, y) ∈ G−, X̂+
∣∣
λ=0 = I,

F̂ = Ŷ−Ĝ+, Ŷ−(y) ∈ G−, Ĝ+(x, y) ∈ G+, Ŷ−
∣∣
λ=∞ = I.

Note that the special form of an admissible connection automatically implies that X̂+ and
Ŷ− depend only on x and y, respectively. Because of the normalization, these potentials are
uniquely determined by F̂ and have particularly simple forms:

X̂−1+ dX̂+ =
(

0 ζ(x)

−ζ(x) 0

)
λdx, Ŷ −1− dŶ− =

(
0 ξ(y)

−ξ(y) 0

)
λ−1dy,

and are called normalized potentials.

4.2 Potentials for non-characteristic singularities

Given the d’Alembert representation just described, a generalized pseudospherical surface
is locally determined by an arbitrary pair of (real)-differentiable complex-valued functions
ζ(x) and ξ(y). A generic function R → C is non-vanishing, and so a generic normalized
potential pair is regular, and the corresponding pseudospherical surface is a wave front.

Our aimhere is to give potentials that produce prescribed singular curves.Wewill consider
separately two cases: that the singular set is or is not a characteristic curve, starting with the
non-characteristic case. For this, rather than normalized potentials, a better choice is a form
of the boundary potential pairs, introduced in [8] for the purpose of giving prescribed values
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Pseudospherical surfaces with singularities 917

of F̂ along a non-characteristic curve. We assume that the singular curve is non-degenerate
and never parallel to a null curve. Then, we can always find local box coordinates (x, y) such
that the curve is given by

y = εx, ε = ±1.

Suppose given the value for F̂(x, y), along the curve y = εx . In the coordinates

u = 1

2
(x + εy), v = 1

2
(x − εy),

the curve is given by v = 0, and the value of F̂ along the curve is given by

F̂0(u) = F̂(u, 0).

Since F̂ is assumed to be an admissible frame we have, from Definition 3.1,

F̂−1
0 dF̂0 = (εVpλ

−1 + Uk + εVk + Upλ)du. (4.3)

Since the highest and lowest powers of λ appearing are 1 and −1, respectively, this 1-form
is valid as either χ̂ or ψ̂ or both in a potential pair. Hence, setting

X̂(x) = F̂0(x), Ŷ (y) = F̂0(εy)

gives a valid potential pair (X̂−1dX̂ , Ŷ −1dŶ ), called the boundary potential pair relative to
the curve v = 0. For this potential pair, the Birkhoff decomposition (4.1) is trivial along the
curve v = 0, since X̂(v = 0) = Ŷ (v = 0), and so the admissible frame F̃ obtained by (4.2)
agrees with F̂ along this curve. A uniqueness argument using normalized potentials (see [8])
then shows that F̃ and F̂ determine the same harmonic map.

Wenowwant to construct F̂0(u) along a curvev = 0 fromgeometric data of a pseudospher-
ical frontal f prescribed along the curve. Since the curve is non-characteristic, and assumed
non-degenerate, f is necessarily a wave front (see Sect. 3.2). From Sect. 2.3, we can assume
that we are given box coordinates (x, y) that are asymptotic coordinates for f , the angle φ

is the oriented angle between fx and fy , and the first and second fundamental forms are:

I = A2dx2 + 2 cos(φ)ABdxdy + B2dy2, I I = 2AB sin(φ)dxdy,

where A = | fx | and B = | fy |. Using the same frame F as in the proof of Lemma 3.2, defined
by (3.1), we have:

Uk = −φx e3, Up = Ae1, Vk = 0, Vp = −B(cosφe1 + sin φe2).

In the coordinates (u, v) we have φx = 1
2 (φu + φv). If v = 0 is a singular curve, we have

φ = kπ constant along the curve, so φu(u, 0) = 0. Without loss of generality, we take k = 0,
i.e. φ(u, 0) = 0. The basic data that determine the boundary potential are thus

Uk = −φv(u, 0)

2
e3, Up = A(u)e1, Vk = 0, Vp = −B(u)e1,

where A(u) = | fx (u, 0)| and B(u) = | fy(u, 0)|. Substituting into (4.3) and applying
Theorem 3.4, we conclude that all non-degenerate non-characteristic singular curves on
pseudospherical frontals are obtained from the following theorem:

Theorem 4.2 Let J be an open interval, A, B : J → (0,∞) and β : J → R three
differentiable functions. Let ε = ±1 and set

η̂ :=
(

−εB(t)e1λ
−1 − β(t)

2
e3 + A(t)e1λ

)
dt.
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918 D. Brander

Consider the potential pair (η̂, η̂) defined on the intervals Ix = J and Iy = εJ . Let f :
Ix × Iy → R

3 be the generalized pseudospherical surface obtained from (η̂, η̂) via the
generalized d’Alembert method. Then,

(1) The set C := {y = εx} is a singular set for f .
(2) C is non-degenerate at a point (x0, εx0) if and only if β(x0) �= 0. In this case,

(a) C is diffeomorphic to a cuspidal edge in a neighbourhood of (x0, εx0) if and only if
A(x0) + εB(x0) �= 0.

(b) C is diffeomorphic to a swallowtail in a neighbourhood of (x0, εx0) if and only if
A(x0) + εB(x0) = 0 and A′(x0) + εB ′(x0) �= 0.

(c) C is diffeomorphic to a cone singularity if and only if A(x) + εB(x) ≡ 0.

Three non-degenerate examples are computed in Fig. 3, all with β(t) = 2. Some degenerate
examples are shown in Fig. 7.

4.3 Prescribed non-characteristic cuspidal edges

Theorem 4.2 gives the boundary potential pair for the generic non-characteristic singularities
of pseudospherical surfaces, as well as cones. We now adapt this to produce pseudospherical
surfaces with a given curve inR3 as a singular curve.We treat the case that the curve is regular
in R

3, which means that the singular curve, where non-degenerate, must be a cuspidal edge.
The geometric Cauchy problem for regular pseudospherical surfaces was studied in [8].

For a non-characteristic curve, there is a unique immersed solution containing a given curve
γ and with the surface normal N prescribed along the curve, with a regularity condition
〈γ ′(t), N ′(t)〉 �= 0. For the non-characteristic singular geometric Cauchy problem, we
replace the regularity condition with a singularity condition, 〈γ ′(t), N ′(t)〉 = 0:
Non-characteristic singular geometric Cauchy data along an open interval J :

(1) A regular curve γ : J → R
3;

(2) A unit vector field Z : J → S
2 ⊂ R

3, satisfying

〈Z(t), γ ′(t)〉 = 0, 〈Z ′(t), γ ′(t)〉 = 0.

(3) Weak regularity condition:

|γ ′(t)| �= |Z ′(t)|.
The above conditions are necessarily satisfied along a non-characteristic singular curve on a
pseudospherical frontal. We also find that the singular curve is non-degenerate at a point if
and only if the curvature κ of the curve γ is nonzero at that point. Adding this assumption
then simplifies the above description of the geometric Cauchy data. Suppose that γ (s) is
parameterized by arc length. Let t, n and b be the Frenet–Serret frame along the curve. The
vector field Z must satisfy: 〈Z , t〉 = 0 and 〈Z ′, t〉 = 0. Differentiating the first equation
gives

〈Z ′, t〉 = −〈Z , t′〉 = −κ〈Z ,n〉.
Hence, the assumptions 〈Z , t〉 = 0 and κ �= 0 imply that 〈Z ,n〉 = 0. It follows that Z = ±b,
where b is the unit binormal to the curve. Since b′ = −τn, where τ is the torsion, the weak
regularity condition |γ ′| �= |N ′| becomes τ �= ±1. To simplify matters, we will also take
τ > −1. Hence, for non-degenerate singular curves, the geometric Cauchy data are the curve
given in the following result:
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Pseudospherical surfaces with singularities 919

Theorem 4.3 Let γ : J → R
3 be a regular arc-length parameterized curve, with curvature

κ and torsion τ satisfying

κ(s) �= 0, and either |τ(s)| < 1, or τ(s) > 1

along J . Let ε := sign(τ − 1). Then,

(1) There exists, unique up to a Euclidean motion, a pseudospherical wave front f (u, v),
with box coordinates (x, y) and u = (x + εy)/2, v = (x − εy)/2, containing γ as a
non-characteristic singular curve in the form f (u, 0) = γ (u). The singular curve is
non-degenerate.

(2) The surface f is given by the d’Alembert method, with potential pair (η̂, η̂) on J × εJ ,
with

η̂ =
(

τ − 1

2
e1λ

−1 + κe3 + τ + 1

2
e1λ

)
ds.

(3) All non-degenerate non-characteristic singular curves of pseudospherical frontals that
have a regular image in R

3 are obtained this way.

Proof By Theorem 4.2, there is a generalized pseudospherical surface generated by any
triple of functions A, B and β. The surface is a wave front if and only if both A and B
are non-vanishing, which in this case means τ �= ±1. The non-degeneracy condition is
β = −2κ(t) �= 0.

Now suppose the existence of a pseudospherical wave front f : J × εJ → R with
f (u, 0) = γ (u) a non-degenerate non-characteristic singular curve. As described above, it
follows that the surface normal satisfies N (u, 0) = ±b(u). Since we are only looking for the
potential up to a Euclidean motion, we can take

N (u, 0) = b(u).

Along the singular curve, the vectors fu , fv , fx and fy are all parallel. As previously, let F
be the frame defined at (3.1), so that, on v = 0,

AdF e1 = fx

| fx | = fy

| fy | , AdF e3 = N ,

which is to say that

AdF e1 = fu = γ ′, AdF e2 = n, AdF e3 = b.

We have already shown in Sect. 4.2 that along v = 0

F−1Fu = (−εB(u) + A(u))e1 − β(u)

2
e3,

where A(u) = | fx (u, 0)| and B(u) = | fy(u, 0)|. Differentiating b = AdF (e3), we have

b′ = AdF [F−1Fu, e3]
= (εB − A)AdF (e2),

so that

εB(u) − A(u) = −τ(u).

We also have γ ′(u) = fu = fx + ε fy , from which

1 = A(u)2 + 2εA(u)B(u) + B(u)2.
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920 D. Brander

Fig. 4 Example 4.4, R = 0.5, R = 1 and R = 1.5

There are, in general, two solutions for positive A and B, but the surfaces obtained from the
corresponding potentials are congruent after interchanging x and y. Hence, we can take the
solution:

A = τ + 1

2
, εB = 1 − τ

2
, ε = sign(1 − τ).

To find β, we use

κn = γ ′′ = AdF [F−1Fu, e1]
= −β

2
AdF (e2),

so β = −2κ . Substituting the expressions for A, B, ε and β into the potential η̂ of Theorem
4.2 gives the potential in the theorem statement. Since the above data were obtained from
an arbitrary solution of the geometric Cauchy problem, this also proves uniqueness, and so
items (1) and (2) are proved. Item (3) follows from the fact, already explained, that, for
a non-degenerate non-characteristic singular curve the curvature is non-vanishing and the
torsion satisfies |τ | �= 1 (Fig. 4). ��

Example 4.4 Circles: take γ (t) = R(cos t, sin t, 0), where R > 0. The arc-length parameter,
curvature and torsion are s = Rt , κ = 1/R and τ = 0. The potential is thus:

η̂ =
(

− R

2
e1λ

−1 + e3 + R

2
e1λ

)
dt,

and this gives the well-known pseudospherical surfaces of revolution. The case R = 1 is the
pseudosphere.

Example 4.5 Helices: taking κ and τ both constant, with τ �= 0, gives a surface containing
a circular helix as a cuspidal edge (Fig. 5). Helical, as well as rotational, constant curvature
surfaces, were studied by Minding in [14]. These surfaces are generally periodic in the v

direction, which can be seen by considering that the curve is invariant under a 1-parameter
family of rigid motions (a screw motion). The surface must also have this symmetry by
uniqueness of the solution to the geometric Cauchy problem. Hence, the next singular curve
encountered when moving in the v direction is also a circular helix. By the symmetry of the
initial data, it follows that every second singular curve is congruent.

As with the case of the circle, there are essentially three types:

(1) Case κ2 + τ 2 > 1: here, there are two sets of helices with the same axis but different
radius. The initial curve is on the outer cylinder when |τ | > 1, and the inner when
|τ | < 1.
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Pseudospherical surfaces with singularities 921

Fig. 5 Examples of helical pseudospherical surfaces

Fig. 6 Example 4.6

(2) Case κ2 + τ 2 = 1: the special case where the inner helices degenerate to a straight line.
These are Dini’s surfaces, which can be parametrized as

f (ζ, ξ) = (a cos ζ sin ξ, a sin ζ sin ξ, a(cos ξ + ln(tan(ξ/2))) + bξ),

where, for the case of constant curvature K = −1, we must have a2 + b2 = 1. The
surface has singularities at cos(ξ) = 0, so we can take the helix

γ (t) = f (t, π/2) = (a cos t, a sin t, bt)

as the initial curve. We then have κ = |a| and τ = b. Hence, Dini’s surfaces are given
by constant κ and τ , with κ2 + τ 2 = 1.

(3) Case κ2+τ 2 < 1: here, the inner helix disappears completely, so that all singular curves
are congruent.

Example 4.6 The closed curve γ (t) = (cos(3t), sin(3t),− sin(t)) lies on a round cylinder
and has two self-intersections. Computing κ(t) = 3(8 cos2(t) + 82)1/2(cos2(t) + 9)3/2,
τ = −12 cos(t)/(4 cos2(t) + 41) and ds = √

cos2(t) + 9dt , we see that κ is non-vanishing
and |τ | < 1. The surface that contains this curve as a cuspidal edge is shown in Fig. 6.

Example 4.7 Examples with inflections and with τ taking the value 1: Theorem 4.3 is stated
for curves with κ non-vanishing and τ �= ±1. However, we can use any functions κ and τ and
still obtain a valid potential pair and therefore a pseudospherical frontal. If we take κ ≡ 0,
the solution degenerates to a straight line. If we take τ ≡ ±1, the solution degenerates to a
helix curve.
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922 D. Brander

Fig. 7 Singular curves with inflections

If κ vanishes at just one point, we will get a singular curve that is degenerate at this
point, but non-degenerate elsewhere, provided |τ | �= 1. The most basic example is κ(t) = t ,
τ(t) = 1/2, shown in Fig. 7. At the point (0, 0), there are two cuspidal edges crossing each
other. For the example κ(t) = t , τ(t) = 0, the surface appears to have a degenerate cone
point. The case κ(t) = t2, τ(t) = 1/2 is also computed and shown in Fig. 11. In this case,
the singular set is a single curve through the point (0, 0).

If we take τ = ±1 at just one point, the surface is not a wave front at this point. This is
because the potential pair is (χ̂ , ψ̂), where

χ̂ = 1

2

(
(τ (x) − 1)e1λ

−1 + 2κ(x)e3 + (τ (x) + 1)e1λ
)
dx,

ψ̂ = 1

2

(
(τ (y) − 1)e1λ

−1 + 2κ(y)e3 + (τ (y) + 1)e1λ
)
dy,

so exactly one of χ1 and ψ−1 vanishes. The potential pair is semi-regular but not regular.
Moreover, the singular curve must be degenerate at this point, because we showed in Sect.
3.2 that if the singular curve is non-degenerate at a point where the surface is not a wave
front, then the curve is a characteristic curve on a neighbourhood of this point, which is not
the case here. The surface shown at Fig. 1 is generated by the Viviani figure-8 space curve
γ (t) = 0.3(1+ cos(t), sin(t), 2 sin(t/2). The torsion takes the values ±1 twice each, and at
each such point another singular curve branches off from the figure eight (Fig. 1, right).

5 Prescribed characteristic singular curves

Now we want to give potentials for non-degenerate characteristic singular curves. As
expected for a Cauchy problem along a characteristic, we will find that data along a curve
do not specify a unique solution: further data must be provided along another, transverse,
characteristic curve. Moreover, with our solution, the non-degeneracy is only guaranteed in
a neighbourhood of the intersection of these two curves.

As explained in Sect. 3.2, given that the map is semi-regular, we can assume that box
coordinates are chosen such that the singular curve is locally given as {y = 0}, and can
choose a local frame satisfying

fx = AdF e1, fy = AdF (ae1 + be2), fx × fy = bN , N = AdF e3,

where

b(x, 0) = 0,
∂b

∂y
(x, 0) �= 0.
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The surface is a wave front at points where a(x, 0) �= 0. The curve γ (x) = f (x, 0) is already
arc-length parameterized. Hence, differentiating the expression for fx , we have:

fxx = AdF [u0e3 + e1, e1] = u0 AdF e2,

along y = 0. Thus, up to a change of orientation, u0(x, 0) = κ(x), the curvature of γ . Note
that if κ(x) �= 0 for all x , then the curve has a well-defined normal n = AdF e2, and hence,
the binormal is b = AdF e3 = N . We then have

−τn = db
dx

= AdF [κe3 + e1, e3] = −AdF e2,

fromwhich we conclude that τ(x) = 1 along the whole curve. Although the curve is singular,
this is the same property that asymptotic curves (of non-vanishing curvature) have on a regular
pseudospherical surface, namely that τ = ±1.

Now differentiating the expression fx × fy = bAdF e3, using b(x, 0) = bx (x, 0) = 0,
we also have

0 = −κ(x)a(x, 0)AdF e3.

Hence, if the surface is a wave front we must have κ(x) = 0 for all x . In other words, the
only possible non-degenerate characteristic singular curve on a pseudospherical wave front
is a straight line.

Theorem 5.1 Let Ix be an open interval containing 0, and γ : Ix → R
3 a regular space

curve, parameterized by arc length, with either non-vanishing curvature function κ , and
constant torsion τ = ±1, or with curvature everywhere zero on Ix . Let Iy be an open
interval containing 0. For every choice of differentiable 1-form of type

ψ̂ = (α(y)e1 + β(y)e2)λ
−1dy.

with

β(0) = 0, β ′(0) �= 0,

and

α(0) = 0, if κ �≡ 0,

there corresponds a unique pseudospherical frontal f : Ix × Iy → R
3, such that

(1) f is semi-regular on an open set containing Ix × {0}, and
(2) f (x, 0) = γ (x) is a characteristic singular curve in the surface, non-degenerate on a

neighbourhood of (0, 0).

Up to a Euclidean motion, the surface f is given by the d’Alembert method with potential
pair (χ̂ , ψ̂) on Ix × Iy , where

χ̂ = (κ(x)e3 + λe1)dx,

and all such surfaces f satisfying (a) and (b) are obtained this way.

Proof The 1-forms defined satisfy the requirements for a potential pair, and therefore inte-
grating X̂−1dX̂ = χ̂ , and Ŷ −1dŶ = ψ̂ , with initial conditions X̂(0) = I and Ŷ (0) = I ,
performing a Birkhoff decomposition

X̂−1(x)Ŷ (y) = Ĥ−(x, y)Ĥ+(x, y), Ĥ±(x, y) ∈ G±, Ĥ−(x, y)
∣∣
λ=∞ = I
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give us an admissible frame F̂ = X̂ Ĥ− = Ŷ Ĥ−1+ . We write O±(λ±k) for any convergent
Fourier series of the form

∑∞
j=k akλ

± j . The normalization of Ĥ− means that its Fourier

expansion is Ĥ− = I + O−(λ−1), so

F̂−1dF̂ = λe1dx + O−(1).

Since the coefficient of λ is e1dx , we can apply the analysis of Sect. 3.2 to conclude that

F̂−1dF̂ = (u0e3 + λe1)dx + (a(x, y)e1 + b(x, y)e2)λ
−1dy.

Along the curve y = 0, we have Ŷ = I , and so the unique factor Ĥ− in the Birkhoff
decomposition above satisfies Ĥ−(x, 0) = I . Thus, F̂(x, 0) = X̂(x), and along y = 0 we
have

F̂−1 F̂x = (κ(x)e3 + λe1).

Hence,

u0(x, 0) = κ(x).

To check the non-degeneracy condition on ∂yb(x, 0), we will use the expression F̂ = Ŷ Ĥ−1+ .
Since Ĥ+ is G+-valued, we can write

Ĥ+ = D0 + O+(λ), D0 = diag
(

eiθ/2, e−iθ/2
)

.

We have Ĥ−1+ (x, 0) = X̂(x), and so, along y = 0,

θx (x, 0)

2
e3 + O+(λ) = Ĥ+

∂ H−1+
∂x

= X̂−1 ∂ X̂

∂x
= κ(x)e3 + λe1,

whilst along x = 0, we also have Ĥ+(0, y) = I . Hence,

θx (x, 0) = 2κ(x), θy(0, y) = 0.

From F̂ = Ŷ Ĥ−1+ , we obtain

F̂−1dF̂ = AdD0(αe1 + βe2)λ
−1 + O+(λ),

which gives

b(x, y) = cos(θ(x, y))β(y) + sin(θ(x, y))α(y).

Differentiating this, using β(0) = 0:

∂b

∂y
(x, 0) = α(0)θy cos θ + β ′(0) cos θ + α′(0) sin θ.

For the case κ(x) ≡ 0,we have θx (x, 0) = 0, so θ is constant along x = 0, and cos(θ(x, 0)) =
1, sin(θ(x, 0) = 0 by the initial condition at (0, 0). Thus,

∂b

∂y
(x, 0) = α(0)θy(x, 0) + β ′(0).

Since θy(0, 0) = 0 and β ′(0) �= 0, it follows that the non-degeneracy condition by(x, 0) �= 0
is satisfied on an open set containing (0, 0). On the other hand, for the case κ �= 0, where we
take α(0) = 0, we have

∂b

∂y
(x, 0) = β ′(0) cos(θ(x, 0)) + α′(0) sin(θ(x, 0)).
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In this case, we use cos(θ(0, 0)) = 1, sin(θ(0, 0) = 0 to again conclude that by(x, 0) �= 0 is
satisfied on an open set containing (0, 0).

To see that the singular curve f (x, 0), of the solution f , coincides with γ , the discussion
preceding the statement of this theorem shows f (x, 0) has curvature κ and if κ is non-
vanishing, constant torsion τ = 1. Since a curve is determined by its curvature and torsion,
we must have, up to a Euclidean motion, f (x, 0) = γ (x). If κ is everywhere zero, then the
curve is just a straight line segment of the same length as Ix , again identical with γ (x) up to
a Euclidean motion.

For uniqueness given the potential ψ̂ , it is enough to observe that ψ̂ is a normalized
potential, with normalization point (0, 0), which is uniquely determined by the surface f :
Ix × Iy → R

3 and the choice of normalization point. Thus, given any surface f̃ satisfying

f̃ (x, 0) = γ (x), we obtain χ̂ from the knowledge of κ and the frame ˜̂F(x, 0), and we recover

ψ̂ from a normalized Birkhoff decomposition of ˜̂F(x, y) as described at the end of Sect. 4.1.
Hence, f̃ = f . Since ψ̂ is the most general normalized potential satisfying the regularity
conditions, all possible solutions are obtained this way. ��
Remark 5.2 (a) Because β(0) = 0 and β ′(0) �= 0, we can, on a neighbourhood of y = 0,

change y-coordinates to ỹ(y) so that β(y)dy = ỹdỹ. In these coordinates, the potential
ψ̂ is of the form

ψ̂ = (α̃(ỹ)e1 + ỹe2)λ
−1dỹ.

Thus, given κ , the unique solution is determined, on an open set containing the curve,
by a single function α̃(ỹ) that is arbitrary if κ ≡ 0 but in the general case must satisfy
α̃(0) = 0

(2) For the case that κ(x) ≡ 0, adding the assumption α(0) = 0 guarantees that the entire
singular curve is non-degenerate.

(3) Suppose coordinates are chosen such that β(y) = y, as just described. Then, if α is
an odd function of y, the surface has a fold singularity along y = 0, i.e f satisfies
f (x, y) = f (x,−y). This can be seen from the symmetry ψ̂(−y) = ψ̂(y). Such a
singularity, at least if α is analytic, can be “removed” in the sense that one half of the
folded surface is part of a regular pseudospherical surface which contains the same
curve: writing α(y) = y(a1 + a3y2 + · · · ), and setting 2 ỹ = y2, we have, for y > 0, the
expressions α̃(ỹ)dỹ = α(y)dy = (a1+a32 ỹ +a5(2 ỹ)2+· · · )dỹ and ydy = dỹ. Hence,
the surface corresponding to the pair ψ̂ = (α̃(ỹ)e1+e2)λ−1dỹ and χ̂ = (κ(x)e3+λe1)dx
is regular on an open set containing the x-axis and agrees with the folded surface on the
set y > 0.
Of course, the Lorentz structure corresponding to the two surfaces is different here at the
line y = 0. For a given global Lorentz structure, there is noway to remove this singularity
because the vanishing of a 1-form g(y)dy is well defined with respect to changes of box
charts. An example of a folded Amsler surface is shown in Fig. 8.

Example 5.3 Weakly regular characteristic singularities: these are all given by data of the
form κ ≡ 0, β(y) = y and an arbitrary choice of α with α(0) �= 0. The singular curve
is guaranteed to be non-degenerate in a neighbourhood of (0, 0). An example is shown in
Fig. 2.

Example 5.4 Straight lines that are not weakly regular: these are given by κ ≡ 0, β(y) = y
and any choice of α with α(0) = 0. The entire line is a non-degenerate singularity. These
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926 D. Brander

Fig. 8 Non-weakly regular singular curves. Left Folded Amsler surface. Middle Higher-order cuspidal edge.
Right Spiral singularity. All have β(y) = y ( Examples 5.4 and 5.5)

are all higher-order cuspidal edges. See Fig. 8. If α is an odd function, we have a fold. If α

is not an odd function, then we cannot “remove” the singular curve as can be done with the
fold. For example, for the case α(y) = y2 and β(y) = y, let S+ denote the surface generated
by (χ̂, ψ̂), for y > 0. Then, S+ does not extend to a pseudospherical wave front over the
curve y = 0. If it did, because asymptotic directions are well defined on a pseudospherical

surface, the surface would be generated by a potential pair (χ̂ ,
˜̂
ψ), where χ̂ is unchanged

and the one-form ˜̂
ψ agrees with ψ̂ on the set y ≥ 0, but where ˜̂

ψ is regular at y = 0. In
other words, we are looking for a change of coordinates ỹ(y) valid on y > 0 such that the

1-form (y2, y)dy =
(

y2 dy
dỹ , y dy

dỹ

)
dỹ extends to a regular 1-form at y = 0. By definition,

this means that both components are smooth and at least one non-vanishing at y = 0. If y dy
dỹ

is non-vanishing, we can assume that ỹ is chosen so that y dy
dỹ = 1, that is ỹ = y2/2, and

hence, (y2, y)dy =
(√

2 ỹ, 1
)
dỹ, which is not differentiable at ỹ = 0. A similar argument

shows that coordinates cannot be found such that the first component y2dy is nonzero.

Example 5.5 Figure 8 (right) shows a pseudospherical frontal that contains a helix curve.
The surface is not a wave front because the singular curve is characteristic and not a straight
line. The singularity is non-degenerate in a neighbourhood of (0, 0), but degenerates at some
points, which can be seen where it is intersected by other singular curves.

Example 5.6 Weakly regular characteristic singularities: these are all given by data of the
form κ ≡ 0, β(y) = y and an arbitrary choice of α with α(0) �= 0. The singular curve
is guaranteed to be non-degenerate in a neighbourhood of (0, 0). An example is shown in
Fig. 2.

6 Examples and numerics

In this section, we use numerics to give a picture of some degenerate singularities, as well as
to show the global appearance of solutions generated by certain types of singular curve.

6.1 Degenerate singularities

In Example 4.7, we saw some degenerate singularities where κ vanishes or |τ | takes the value
1 on a singular curve generated by Theorem 4.3. Theorem 4.2 is slightly more general, and
the condition for a degenerate singularity for the potential η̂ = (−B(t)e1λ−1 − β(t)/2e3 +
A(t)e1λ)dt is that β vanishes. Two examples are shown in Fig. 9. Both are degenerate cone
points.
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Fig. 9 Degenerate singularities. Top β(t) = t , A(t) = B(t) = 1. Bottom β(t) = t , A(t) = B(t) = −1

Fig. 10 Rank zero singularities. Top β(t) = 1, A(t) = B(t) = t . Bottom β(t) = 1, A(t) = t , B(t) = −t .
(See Sect. 6.2)

6.2 Singularities where the derivative vanishes

Any potential pair (χ̂ , ψ̂)withχ1(x0) = ψ−1(y0) = 0 produces a pseudospherical frontal the
derivative ofwhich has rank0 at (x0, y0). Examples computedwith χ̂ = ψ̂ = (−B(t)e1λ−1−
β(t)/2e3 + A(t)e1λ)dt , β(t) = 1 and A and B vanishing are shown in Fig. 10.

6.3 Global properties of solutions

If we consider a surface generated by singular curve data (κ, τ ), where |κ(t)| → ∞ as
t → ±∞ and τ is bounded, then the solution becomes concentrated spatially for large
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Fig. 11 Pseudospherical surfaces generated from curves with unbounded curvature functions. Left κ(t) =
2 − t2, τ(t) = 0. Middle κ(t) = exp(t2), τ(t) = 0. Right κ(t) = t2 and τ(t) = 1/2

(u, v), with a spiral in the u direction and many singularities in the v direction. This means
that computing a finite subdomain gives a realistic sense of what the surface looks like, as in
Fig. 7. More examples are shown in Fig. 11.
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