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Abstract In the present paper, we classify curves and surfaces in S
2 × R, which make

constant angle with a rotational Killing vector field. We obtain the explicit parametrizations
of such curves and surfaces, and we find examples in some particular cases. Finally, we give
the complete classification of minimal constant angle surfaces in S

2 × R.
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1 Introduction

The study of the properties of curves and surfaces has always represented a major topic in the
classical differential geometry. For example, let us recall the problem of Bertrand-Lancret-de
Saint Venant, according to which a generalized helix denotes a curve of constant slope in the
Euclidean 3-space, i.e., the tangent along it makes constant angle with a fixed direction, if
and only if the ratio of its curvature and torsion is constant. Later, this classical problem was
extended for curves in other ambient spaces, such as real space forms, Sasakian manifolds
or Lie groups. Analogously, a general helix in a 3-dimensional space form is defined by a
curve for which there exists a Killing vector field V along it, with constant length such that
the angle between the tangent and V is constant, see [2,13].

Another motivation in the study of the constant angle between a curve and a Killing
vector field comes from the theory ofmagnetic curves. For example, on a Sasakian manifold,
a normal magnetic curve (parametrized by arc length) corresponding to the magnetic field
defined by the fundamental 2-form makes constant angle with the Reeb vector field, which
is Killing, see, e.g., [10] and references therein. Passing from curves to surfaces, it is natural
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864 A. I. Nistor

to ask which surfaces make constant angle with certain directions, whose choice depends on
the ambient space. Recall that a surface for which the unit normal makes constant angle with
a fixed direction is called a constant angle surface.

In the last years many geometers have been studying the constant angle property for
surfaces in several ambient spaces and for different choices of the fixed direction, obtaining
important classification results. For example, in the product spaces of type M

2 × R, where
M

2 is a surface of constant Gaussian curvature, taken as model the Euclidean plane E
2,

the 2-sphere S
2, or the hyperbolic plane H

2, a standard choice for the fixed direction is the
real line R [4,5,7,17]. Later on, the classification of constant angle surfaces was provided in
other ambient spaces, e.g.: in a warped product manifold [8], in the Heisenberg group [11], in
Berger spheres [15], in the special linear group [16], in Sol3 space [14] and in the 2-parameter
solvable Lie groups [19]. In these cases, the angle was measured between the surface and a
particular vector field for each case. Some results involving constant angle surfaces in higher
dimensional spaces are obtained in [6,9,12].

This paper is mainly related with two articles: the first one is [5], which provides the
classification of constant angle surfaces in S

2 × R with respect to the R−direction, and the
second one is the author’s previous joint work [18], where there are studied the curves and the
surfaces making constant angle with a rotational Killing vector field in the Euclidean 3-space.

Let us go back and see what happens in the Euclidean space. Recall that the Euclidean
3-space has 6-dimensional isometry group and a basis of Killing vector fields is given by
{∂x , ∂y, ∂z, x∂y−y∂x , z∂x −x∂z, z∂y−y∂z}. The first three vector fieldsmay be considered
as translationKilling vector fields. The surfacesmaking constant anglewith ∂z arewell known
(maybe since Gauss), and they were emphasized recently in [17]. The last three vector fields
represent the rotational Killing vector fields in E

3, and the study of the surfaces making
constant angle with V = −y∂x + x∂y was developed in [18], where a complete list of
such surfaces was provided. The explicit parametrizations of these surfaces were given in
cylindrical coordinates. More precisely, we have the following:

Theorem A [18] Let M be a surface isometrically immersed in E
3\{Oz} and consider the

Killing vector field V = −y∂x + x∂y . Then M makes a constant angle θ with V if and only if
it is an open subset of one of the following surfaces, up to vertical translations and rotations
around the z-axis:

(i) either a half-plane with the z−axis as boundary (for θ = 0),
(ii) or a rotational surface around the z−axis (for θ = π

2 ),
(iii) or a right cylinder over a logarithmic spiral given by

F(u, z) = (
u cos θ, log(cu− tan θ ), z

)
, c ∈ R\{0},

(iv) or, finally, the Dini’s surface defined in cylindrical coordinates by

F(u, v) =
(

−cos θ sin(cu)

c
, −cv tan θ

cos θ
− tan θ log

(
tan

(cu
2

))
, v − cos θ cos(cu)

c

)
,

where c is a nonzero real constant.

At this point, let us return to the surfaces in the product space S
2 × R (see also [5]). In

order to fix some notations, let us briefly mention that a vector field V in S
2 × R is Killing

if and only if it satisfies the Killing equation:

〈∇̃Y V, Z〉 + 〈∇̃Z V, Y 〉 = 0,

for any vector fields Y , Z in S
2 ×R, where ∇̃ denotes the Levi-Civita connection on S

2 ×R.
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New developments on constant angle property in S2 × R 865

The homogeneous space S2 ×R has a 4-dimensional isometry group, fact proved first by
Cartan [3]. Moreover, the associated Lie algebra admits the following basis of Killing vector
fields:

{∂t , −y∂x + x∂y, z∂x − x∂z, z∂y − y∂z}.
Here x, y, z denote the coordinates on R

3 ⊃ S
2 and t is the global coordinate on R.

The Killing vector field ∂t represents the translations along R and the surfaces making
constant angle with this direction were classified by Dillen et al. [5], as follows:

Theorem B [5] A surface M immersed in S
2 ×R is a constant angle surface relative to ∂t if

and only if the immersion F is (up to isometries of S2×R) locally given by F : M → S
2×R,

F(u, v) = (cos(u cos θ)) f (v) + sin(u cos θ)) f (v) × f ′(v), u sin θ), where f : I → S
2 is

a unit speed curve in S
2 and θ ∈ [0, π ] is the constant angle.

In this paper, we focus on the rotational Killing vector fields in S
2 × R and, without loss

of generality, we choose V = −y∂x + x∂y due to symmetry reasons. Our aim is to combine
ideas from [5] and [18] in order to classify the curves and the surfaces in S

2 × R making
constant angle with V . Since the vector field V must be nonzero, we have to remove from
the ambient space all the points with coordinates (0, 0,±1, t). Hence, from now on we will
assume that the curves and the surfaces lie in S

2 × R\{(0, 0,±1, t)}, even that we do not
mention explicitly this fact.

In the next section, we classify the curves making constant angle with the Killing vector
field ∂t obtaining the geodesics of the ambient space in Theorem 1, and respectively with V ,
obtaining the explicit parametrizations of the generalized helices in Theorem 2.

The study of the surfaces in S2×Rmaking constant anglewith V is presented in Sect. 3. An
important role in the proof is played by the use of the spherical coordinates as well as by the
use of the almost contact metric structure of S2 ×R. We obtain the explicit parametrizations
included in the classification Theorem 3. The particular case when the constant angle θ

defined by the unit normal to the surface and the Killing vector field V is π
2 is treated in

Theorem 4. Moreover, under the extra assumption of minimality, we give a classification
result in Theorem 5.

2 Curves in S
2 × R

In this section, we study the curves in S
2 × R ⊂ R

3 × R,

γ : I ⊂ R → S
2 × R, γ (s) = (

x(s), y(s), z(s), t (s)
)
, (1)

parametrized by the arc length, which make a constant angle θ ∈ [0, π] with a Killing vector
field.
An appropriate way to work is to choose spherical coordinates on the 2-sphere, and thus, we
consider the curve γ given in the coordinates (ϕ, ψ, t) as:

γ (s) = (
cosϕ(s) cosψ(s), cosϕ(s) sinψ(s), sin ϕ(s), t (s)

)
, (2)

where ϕ ∈ (−π/2, π/2) and ψ ∈ [0, 2π ].
Let us denote by ∇̃ the Levi-Civita connection on S

2 × R and by (T, N , B) the Frenet
frame field associated to γ , where T , N and B represent the tangent, the principal normal
and the binormal vector fields, respectively. The Frenet-Serret equations are given by:

∇̃T T = κN , ∇̃T N = −κT + τ B, ∇̃T B = −τN ,
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866 A. I. Nistor

where κ = |∇̃T T | and τ are the curvature and the torsion of γ , respectively.
In the next two subsections, we find the explicit coordinate functions for a curve which

makes constant angle with the R direction and with the Killing vector field V , respectively.

2.1 Constant angle with ∂t

The curves in S
2 × R making constant angle θ with the Killing vector field ∂t are classified

as follows:

Theorem 1 A curve γ in S
2 × R makes a constant angle θ with the Killing vector field ∂t

if and only if it is parametrized in (ϕ, ψ, t)−coordinates, up to isometries of the ambient
space, by:

ϕ(s) = sin θ

s∫
cosα(ζ )dζ, ψ(s) = sin θ

s∫
sin α(ζ )

cosϕ(ζ )
dζ, t (s) = s cos θ + t0, t0 ∈ R,

where α is a smooth function. Moreover, when θ /∈ {0, π}, this curve is a generalized helix
on S

2 × R, namely the ratio of its curvature κ and torsion τ is constant, τ
κ

= cot θ . When
θ = 0 or θ = π , the curve γ is the geodesic s 
→ (p0, s + t0), where p0 is an arbitrary point
of S2.

Proof Let γ be given by (1). The property that γ makes constant angle θ with ∂t may be
expressed using the Euclidean scalar product 〈 , 〉 from E

4 restricted in the points of S2 ×R,
as: cos θ = 〈γ̇ , ∂t |γ 〉, which is equivalent with ṫ(s) = cos θ . Hence, the last component of
γ is obtained:

t (s) = s cos θ + t0, t0 ∈ R. (3)

The condition that γ is parametrized by arc length, ẋ2 + ẏ2 + ż2 = sin2 θ , may be rewritten,
using (2), in terms of ϕ and ψ as:

ϕ̇2 + ψ̇2 cos2 ϕ = sin2 θ. (4)

Thus, there exists α = α(s) such that

ϕ(s) = sin θ

s∫
cosα(ζ )dζ, ψ(s) = sin θ

s∫
sin α(ζ )

cosϕ(ζ )
dζ. (5)

Let us observe that if θ = 0 or θ = π , then γ is the straight line in a point p0 of S2, that is
γ : s 
→ (p0, s + t0).

If θ /∈ {0, π} one can prove that the curvature κ and the torsion τ of the curves parametrized
by (2) where ϕ(s), ψ(s) and t (s) are given by (5) and (3), respectively, satisfy the relation

τ

κ
= cot θ.

Hence, these curves are generalized helices on S
2 × R.

Finally, when the constant angle is θ = π
2 , γ is an arbitrary curve on S

2 for any point
t0 ∈ R.

The converse part follows checking that the generalized helices make a constant angle θ

with the Killing vector field ∂t . ��
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New developments on constant angle property in S2 × R 867

2.2 Constant angle with V = − y∂x + x∂ y

Regarding the other three Killing vector fields, the problem is basically the same for each of
them and therefore let us choose

V = −y∂x + x∂y .

In the sequel, we give the complete list of curves in S
2 × R\{(0, 0,±1, t)} making constant

angle with V .

Theorem 2 A curve γ in S
2 × R\{(0, 0,±1, t)} makes a constant angle θ with the Killing

vector field V = −y∂x + x∂y if and only if it is given, in (ϕ, ψ, t)−coordinates, up to
isometries of the ambient space, by

ϕ(s) = sin θ

s∫
cosω(ζ )dζ, ψ(s) = cos θ

s∫
dζ

cosϕ(ζ )
, t (s) = sin θ

s∫
sinω(ζ )dζ,

where ω is a smooth function on I ⊂ R.

Proof Since V |γ = (−y, x, 0, 0) and �
(
γ̇ , V |γ

) = θ , we have x ẏ−ẋ y√
x2+y2

= cos θ, which in

spherical coordinates is written as:

ψ̇ cosϕ = cos θ. (6)

As γ is parametrized by arc length and using (6), we get ϕ̇(s)2+ ṫ(s)2 = sin2 θ . Hence, there
exists a function ω(s) such that

ϕ̇(s) = sin θ cosω(s), ṫ(s) = sin θ sinω(s).

Integrating the above expressions and combining with (6), we obtain the expressions of the
(ϕ, ψ, t)-coordinates and thus the direct implication is proved.

The converse part follows by straightforward computations. ��

Remark 1 If the function ω involved in the Theorem 2 vanishes identically, then the curve γ

lies on the 2−sphere having (in S2 ×R) the curvature κ = cos θ cot(s sin θ) and null torsion,
τ = 0.

3 Surfaces making constant angle with V

In this section, we are interested in finding all the surfaces in S
2 ×R which make a constant

angle with the rotational Killing vector field V = −y∂x + x∂y .
First, let us fix the notations.
Let M be a regular surface isometrically immersed in the product space S2 ×R endowed

with the metric g̃ = ḡ+dt2 and Levi-Civita connection ∇̃, where ḡ denotes the metric on S2

induced from R
3 with the corresponding Levi-Civita connection ∇̄, and t denotes the global

parameter on R.
The Gauss and Weingarten formulas are:

(G) ∇̃XY = ∇XY + h(X, Y ),
(W) ∇̃X ξ = −AX ,
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868 A. I. Nistor

for every X, Y tangent to M . Here h is a symmetric (1, 2)−tensor field called the second
fundamental form of the surface, and A is a symmetric (1, 1)−tensor field called the shape
operator associated to the unit normal ξ , satisfying g̃(h(X, Y ), ξ) = g(X, AY ) for any X, Y
tangent to M .

On the 2-sphere we use the spherical coordinates (ϕ, ψ), ϕ ∈ (−π/2, π/2), ψ ∈ [0, 2π]
⎧
⎨

⎩

x(u, v) = cosϕ(u, v) cosψ(u, v)

y(u, v) = cosϕ(u, v) sinψ(u, v)

z(u, v) = sin ϕ(u, v),

where (x, y, z) are the Cartesian coordinates, and let us denote by p(x, y, z) the position
vector on the 2-sphere. Then, the surface in S

2 × R is parametrized by:

F : D ⊂ R
2 → S

2 × R ↪→ R
4, F(u, v) = (x(u, v), y(u, v), z(u, v), t (u, v)).

In spherical coordinates, the rotational Killing vector field V = (−y, x, 0) becomes
V = ∂ψ and the metric on S

2 is a warped metric, ḡ = cos2 ϕdψ2 + dϕ2. Denoting by Jp
the Euclidean rotation of angle π/2 in the tangent plane TpS

2, for any p ∈ S
2, one has

J∂ψ = cosϕ∂ϕ, J∂ϕ = − 1

cosϕ
∂ψ . (7)

The Levi-Civita connection ∇̄ associated to the metric ḡ is given by the expressions:

∇̄∂ψ ∂ψ = cosϕ sin ϕ∂ϕ, ∇̄∂ψ ∂ϕ = ∇̄∂ϕ ∂ψ = − tan ϕ∂ψ, ∇̄∂ϕ ∂ϕ = 0. (8)

Obviously ∇̄ J = 0, i.e., J is parallel with respect to ∇̄.
At this point, we set the following geometric objects on S

2 × R:

• a 1-form η as the algebraic dual of ∂t , that is η(X) = g̃(X, ∂t ), equivalently η(∂t ) = 1
and η(X) = 0 for any X tangent to S

2;
• a field of endomorphisms φ of the tangent spaces defined by

φ|S2 = J, φ∂t = 0.

It is straightforward that
φ2 = −I + η ⊗ ∂t , η ◦ φ = 0. (9)

Moreover, it can be easily checked that the metric g̃ is compatible with the triple (φ, ∂t , η),
that is

g̃(φX, φY ) = g̃(X, Y ) − η(X)η(Y ).

Hence, we have defined an almost contact metric structure (φ, ∂t , η, g̃) on S
2 × R. We will

use this structure in the proof of the Theorem 3.
The next result is a classification of surfaces making constant angle with V .

Theorem 3 A surface in S
2 × R\{(0, 0,±1, t)} makes constant angle θ /∈ {0, π

2 } with the
Killing vector field V = −y∂x + x∂y if and only if it is given by one of the following cases:

(a) a cylinder over a loxodrome of the 2−sphere;
(b) the parametrization F : D ⊂ R

2 → S
2 × R ↪→ R

4,

F(u, v) = (cosϕ(u, v) cosψ(u, v), cosϕ(u, v) sinψ(u, v), sin ϕ(u, v), t (u, v)) ,
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New developments on constant angle property in S2 × R 869

where the coordinate functions are given by:

ϕ(u, v) = ∓arctan

(√
1 − m sin2 α√

m sin α

)

,

ψ(u, v) = ±
⎛

⎝ tan θ√
m

v + sin θ√
m

u∫
1

sin α(ζ )
dζ

⎞

⎠ ,

t (u, v) = v + cos θ

u∫
sin α(ζ )dζ,

with α(u) = ±am
(

1√
m
u cos θ + c

∣
∣
∣m

)
, m, c ∈ R. Here am denotes the Jacobi ampli-

tude.

Proof For an arbitrary vector field X = X1∂ϕ + X2∂ψ + X3∂t in S2 ×R, taking into account
that V = ∂ψ , and using formulas (7) and (8) we may compute

∇̃XV = ∇̃X1∂ϕ+X2∂ψ+X3∂t
∂ψ = sin ϕ J (X1∂ϕ + X2∂ψ).

Since φ coincides with J on S2 and it vanishes alongR (due to the construction), the previous
expression becomes

∇̃XV = sin ϕφX. (10)

Projecting V onto the tangent plane to M one has V = T + μ cos θξ , where ξ denotes the
vector field normal to the surface, T is the tangent part with ‖T ‖ = μ sin θ and μ = ‖V ‖ =
cosϕ �= 0, since V = ∂ψ . At this point, we may choose an orthonormal basis {e1, e2} on the
tangent plane toM such that e1 = T

‖T ‖ and e2 ⊥ e1.Wehave thatV = cosϕ(sin θe1+cos θξ).
Then, if X is tangent to M , one can compute

∇̃XV = −X (ϕ) sin ϕ(sin θe1 + cos θξ) + cosϕ sin θ(∇Xe1 + h(X, e1)) − cosϕ cos θ AX.

(11)
Combining (10) and (11) one gets:

sin ϕφX = −X (ϕ) sin ϕ sin θe1 + cosϕ sin θ∇Xe1 − cosϕ cos θ AX

−X (ϕ) sin ϕ cos θξ + cosϕ sin θh(X, e1). (12)

Since V = ∂ψ and 〈V, e2〉 = 0, we have that e2 ∈ span{∂ϕ, ∂t } and φe2 ∈ span{∂ψ }. Hence,
it follows that there exists a smooth function λ ∈ C∞(M) such that

φe2 = λV . (13)

Furthermore, 〈V, ∂t 〉 = 0 yields that there exists a smooth function ρ ∈ C∞(M) such that

〈e1, ∂t 〉 = ρ cos θ, 〈ξ, ∂t 〉 = −ρ sin θ. (14)

Applying φ in formula (13) and using the almost contact metric structure we obtain

−e2 + 〈e2, ∂t 〉∂t = λφ∂ψ .

As φ∂ψ ⊥ ∂ψ , we deduce that e2 ∈ span{∂ϕ, ∂t }. Using the fact that e2, ∂ϕ and ∂t are unitary,
and denoting by α ∈ C∞(M) the angle between e2 and ∂t , we get

e2 = ν sin α∂ϕ + cosα∂t , (15)

where ν := ±1. Moreover, the functions λ and α are related by λ = −ν sin α
cosϕ

.
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870 A. I. Nistor

Next, φe1 and φξ may be expressed as

φe1 = ν sin α sin θe2 + Bξ, φξ = −Be1 + ν sin α cos θe2, (16)

for a certain function B. From the fact thatφξ is orthogonal to ∂t it follows Bρ = ν sin α cosα.
Then, computing 〈φξ, φe1〉 in two ways, the functions B and ρ are given by:

B = νε cosα, ρ = ε sin α. (17)

Combining (17) with (13)–(16) and computing

φ2e1 = −e1 + 〈e1, ∂t 〉∂t , φ2ξ = −ξ + 〈ξ, ∂t 〉∂t ,
we obtain first:

e1 = sin θ

cosϕ
∂ψ − νε cosα cos θ∂ϕ + ε sin α cos θ∂t ,

ξ = cos θ

cosϕ
∂ψ + νε cosα sin θ∂ϕ − ε sin α sin θ∂t . (18)

Asking for the basis {e1, e2, ξ} to have the same orientation as {∂ψ, ∂ϕ, ∂t } one has νε = −1.
Without loss of generality we take ν = −1 and ε = 1.

Thus, the expressions (15) and (18) yield:

e1 = sin θ

cosϕ
∂ψ + cosα cos θ∂ϕ + sin α cos θ∂t ,

e2 = − sin α∂ϕ + cosα∂t , (19)

ξ = cos θ

cosϕ
∂ψ − cosα sin θ∂ϕ − sin α sin θ∂t .

Computing the Lie bracket [e1, e2] and using the fact that {e1, e2} is an involutive system,
that is [e1, e2] ∈ span{e1, e2}, we obtain:

e1(α) + cos θ sin α tan ϕ = 0. (20)

Taking the derivative with respect to e1 in the above expression and using (19), it follows that
the smooth function α on M satisfies the following second-order partial differential equation:

e1e1(α) = − cos2 θ sin α cosα. (21)

Our aim now is to define appropriate coordinates on M in order to be able to describe the
surface M explicitly.

First, let us choose one of the coordinates on the surface as e1 = ∂
∂u . Second, we have to

find the other coordinate, let us call it v, such that e2 = a(u, v) ∂
∂u + b(u, v) ∂

∂v
, for a suitable

choice of functions a and b. We get on the one hand e2(ϕ) = a(u, v)ϕu + b(u, v)ϕv , and on
the other hand, from (19), e2(ϕ) = − sin α. We may take

a(u, v) = − tan α

cos θ
, (22)

where cos θ �= 0 since θ �= π
2 and we assume cosα �= 0. The remained cases will be studied

separately. This fact immediately implies that α, and consequently ϕ, do not depend on v.
Combining (20) and (21) it follows that there exists a positive real constant p such that

e1(α)2 = cos2 θ(p2 − sin2 α).
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New developments on constant angle property in S2 × R 871

We obtain

e1(α) = ±cos θ√
m

√
1 − m sin2 α, (23)

where m := 1
p2

. Next, we may determine the expression of α from the theorem,

α(u) = ±am

(
1√
m

u cos θ + c
∣
∣
∣m

)
, (24)

where am denotes the Jacobi amplitude and m, c are some integration constants. For more
details on elliptic functions see for example [1].

We have already known

[e1, e2] = sin α tan ϕe1 − cos θe2(α)e2.

Computing now the same Lie bracket in terms of u and v, we get the following partial
differential equation

bu
b

= tan α α′,

from which we find the solution

b(u, v) = 1

cosα
. (25)

Using (22) and (25) it follows

e2 = − tan α

cos θ

∂

∂u
+ 1

cosα

∂

∂v
. (26)

We may easily check that the Lie bracket of ∂u and ∂v vanishes, [∂u, ∂v] = 0, thus we made
the right choice of coordinates.

From (20), when sin α �= 0, we have

tan ϕ = − e1(α)

cos θ sin α
,

and combining it with (23) we find

tan ϕ = ∓
√
1 − m sin2 α√

m sin α
, (27)

obtaining the expression of the ϕ−coordinate from the theorem.
Using the expressions of e1 and e2, on one side given by (19) and on the other side written

in terms of local coordinates u and v, together with (27), we get

ψu = ± sin θ√
m sin α

, ψv = ± tan θ√
m

.

Thus ψ is also obtained. Finally, from (19) and (26), the t−coordinate satisfies

tu = e1(t) = cos θ sin α, tv = 1.

Hence, case (b) of the theorem is proved.
Let us study now the two particular cases we excluded during the proof.
cosα = 0. Similar reasoning yields to the conclusion that the surfaces for which the angle

α between e2 and ∂t is π
2 are given by: an open part of the 2-sphere, S2 × {t0} (when also
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872 A. I. Nistor

θ = π
2 ), or an open part of the product manifold S

1 ×R, where S1 denotes a meridian of the
2-sphere (when θ = 0), these cases being excluded for the constant angle θ /∈ {0, π

2 }.
sin α = 0. When α = 0, namely the angle between e2 and ∂t vanishes, t is a local

coordinate on M . We get that these surfaces are cylinders given by C × R, where C is
a loxodrome on the 2-sphere, completing case (a) of the direct implication. In particular,
regarding the Equator E as a degenerated loxodrome, the surface E × R should be excluded
from the theorem since it corresponds to the constant angle θ = π

2 .
Conversely, by straightforward computations onemay show that the surfaces parametrized

as in the theorem make constant angle with the rotational Killing vector field V . ��
Let us see now two particular cases for the constant angle θ .
If θ vanishes, then the surface is given by S

1 × R, where S1 denotes a meridian on S
2.

If θ = π
2 , we have the following classification result:

Theorem 4 A surface M isometrically immersed in the product space S2×R\{(0, 0,±1, t)}
makes constant angle θ = π

2 with the Killing vector field V = −y∂x + x∂y if and only if it
is given, up to isometries of the ambient space, by: F : D ⊂ R

2 → S
2 × R ↪→ R

4,

F(ψ, u) = (cosϕ(u) cosψ, cosϕ(u) sinψ, sin ϕ(u), t (u)) ,

where

ϕ(u) = −
u∫
sin α(ζ )dζ, t (u) =

u∫
cosα(ζ )dζ,

and α : I ⊂ R → R denotes a smooth function.

Proof Since θ = π
2 denotes the angle between V = ∂ψ and the unit normal ξ , it follows

that V is tangent to the surface M , thus ψ is a coordinate on the surface. The circles of radii
r = cosϕ0 corresponding to ϕ = ϕ0 are included in the surface. Moreover, we have t = t0,
z = sin ϕ0, meaning that we obtain a rotational surface. More precisely, if Rψ is the rotation
of angle ψ in the plane (x, y) of R4, that is

Rψ : R4 → R
4, (x, y, z, t) 
→ (x cosψ − y sinψ, x sinψ + y cosψ, z, t),

then M is obtained by rotating the unit speed curve γ , namely

F(ψ, u) = Rψ(γ (u)), where γ (u) = (cosϕ(u), 0, sin ϕ(u), t (u)).

Note that γ lies on a 2-cylinder x2+ z2 = 1 in the 3-dimensional Euclidean space (x, 0, z, t).
In this particular case (θ = π

2 ), we may consider that the tangent plane TpM (in p ∈ M)
is spanned by

e1 = 1

cosϕ
∂ψ,

e2 = − sin α∂ϕ + cosα∂t , (28)

for a certain function α. See also (19). Subsequently, the normal to M is given by

ξ = − cosα∂ϕ − sin α∂t . (29)

The fact that the Lie bracket [e1, e2] ∈ span{e1, e2} yields the compatibility condition

e1(α) = 0,

namely the function α does not depend on the coordinate ψ on the surface.
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Since [∂ψ, e2] = 0, it follows that one can choose a second coordinate on M , call it
u, such that e2 = ∂u . Hence, ϕ = ϕ(u) and the metric on M can be expressed as g =
cos2 ϕ(u)dψ2 + du2.

At this moment, the conclusion follows immediately since ϕ′(u) = e2(ϕ) = − sin α,
e1(t) = 0 and tu = e2(t) = cosα.

Conversely, one may easily check by straightforward computations that the parametriza-
tion of the surface given in the theorem represents a surface for which the unit normal makes
constant angle θ = π

2 with the Killing vector field V . ��
Remark 2 Two examples which arise in Theorem 4 are given by:

• E × R, when ϕ(u) = 0 (and also α(u) = 0);
• S

2 × {t0}, t0 ∈ R, when α(u) = π
2 .

In the study of minimality for surfaces making constant angle with the Killing vector field
V , we compute first the mean curvature of M . Taking the tangent and normal parts in formula
(12) first for X = e1 and then for X = e2 one gets the Levi-Civita connection on M

∇e1e1 = − tan ϕ sin αe2, ∇e1e2 = tan ϕ sin αe1, ∇e2e1 = δ cot θe2, ∇e2e2 = −δ cot θe1,
(30)

and the scalar second fundamental form

h(e1, e1) = − sin θ tan ϕ cosα, h(e1, e2) = 0, h(e2, e2) = δ,

where δ = sin θe2(α).
Thus, the mean curvature is given by

H = sin θ

2

(
e2(α) − tan ϕ cosα

)
. (31)

We may formulate the following classification result:

Theorem 5 Minimal surfaces isometrically immersed in S2 ×R\{(0, 0,±1, t)} which make
constant angle with the Killing vector field V = −y∂x + x∂y are given by:

(a) S
1 × R, where S1 denotes a meridian on the 2−sphere,

(b) S
2 × {t0}, t0 ∈ R,

(c) E × R, where E denotes the Equator of the 2−sphere,
(d) the rotational surface parametrized as F : D ⊂ R

2 → S
2 × R ↪→ R

4,

F(ψ, u) = (cosϕ(u) cosψ, cosϕ(u) sinψ, sin ϕ(u), t (u)) ,

with ϕ(u) = arctan

(
c cos u

√
1 + c2 sin2 u

)

and t (u) = EllipticF(u | − c2),

where EllipticF(u | − c2) denotes the elliptic integral of first kind.

Proof Firstly, the minimality condition in (31) implies the case when sin θ = 0. Namely,
when the constant angle θ vanishes, we already mentioned that the surfaces are given by
S
1 × R, where S1 denotes a meridian on S

2, as in case (a) of the theorem.
Secondly, the condition H = 0 in (31) becomes:

e2(α) = cosα tan ϕ. (32)

Using the expressions (23), (30) and (32), we compute the Lie bracket [e1, e2](α) in two
ways obtaining the compatibility condition:

cos θ(cos 2α + 2 sin2 ϕ) = 0. (33)
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We distinguish the following cases.

• In the most general situation, when cos θ �= 0, i.e., θ �= π
2 and sin α �= 0, cosα �= 0, we

get from (33): cos 2α + 2 sin2 ϕ = 0. Applying e1 to this expression we find

4 cos θ cosα sin ϕ(sin2 α + cos2 ϕ) = 0,

which leads to a contradiction, as follows. Firstly, if sin ϕ = 0 we get that also α = 0
and the surface is given by E × R, where E denotes the Equator, corresponding to the
constant angle θ = π

2 , which is excluded in this case. Secondly, sin2 α + cos2 ϕ = 0
leads to another contradiction since cosϕ �= 0.
Moreover, also the cases cosα = 0, sin α = 0 when θ �= π

2 yield contradictions.
• Let us study the minimality in the case θ = π

2 . Since we already know from Theorem 4
that the local coordinates on the surface were chosen (ψ, u), and e2 = ∂u , we get that
e1(α) = 0 and e1(ϕ) = 0 involving that α and ϕ depend only on u. Moreover, from

e2(α) = cosα tan ϕ, e2(ϕ) = − sin α,

we should determine the functions α and ϕ satisfying the following system of ordinary
differential equations:

{
α′(u) = cosα(u) tan ϕ(u)

ϕ′(u) = − sin α(u).
(34)

Two particular solutions are obtained for cosα = 0, when the surface is given by S2×{t0},
which is totally geodesic, thus minimal, fulfilling case (b) of the theorem; sin α = 0 implies
also ϕ = 0, and the surface is given by E × R, proving case (c) of the theorem.

Going back to the general situation, taking a second derivative with respect to u in the
first relation of (34), we get the following second-order ordinary differential equation

α′′(u) + 2 tan α(u)α′(u)2 + sin α(u) cosα(u) = 0. (35)

In order to solve this ODE for cosα �= 0 and sin α �= 0, we denote f (u) := α′(u)
sin α(u) cosα(u)

.
Then, (35) becomes

f ′(u) + f (u)2 + 1 = 0,

which has the general solution f (u) = cot(u + c0), c0 ∈ R. Without loss of generality, we
may assume c0 = 0 (eventually after a translation in the u coordinate), and it follows that

cot u = α′(u)

sin α(u) cosα(u)
,

which implies that
(
tan α

sin u

)′
= 0,

and we get the solution for (35)

α(u) = arctan(c sin u), c ∈ R, u ∈ (0, π/2).

From the first relation in (34) we easily find

ϕ(u) = arctan

(
c cos u

√
1 + c2 sin2 u

)

.
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Finally, the coordinate t along R−direction is obtained from the condition t ′(u) = cosα(u).

For more details on elliptic functions see e.g. [1].
Conversely, one can check that the surfaces parametrized in the theorem are minimal and

they make constant angle with the Killing vector field V . ��
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