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Abstract In the present article we investigate how geometric microstructures of a domain
can affect the diffusion on the macroscopic level. More precisely, we look at a domain with
additional microstructures of two kinds, the first one are periodically arranged “horizontal
barriers” and the second one are “vertical barriers” which are not periodically arranged, but
uniform on certain intervals. Both structures are parametrized in size by a small parameter
ε. Starting from such a geometry combined with a diffusion(-reaction) model, we derive the
homogenized limit and discuss the differences of the resulting limit problems for various
particular arrangements of the microstructures.
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Boundary conditions
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1 Introduction

The aim of the present work is to study the question whether and how geometric microstruc-
tures of the domain on which a diffusion process takes place are reflected in the macroscopic
description of the same process.

The macroscopic description is related to the microscopic one by a homogenization limit.
So, reformulated we want to investigate the effects of geometric microstructures on the

partial differential equation and boundary conditions obtained through homogenization.
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Thus, since we want to “separate” the effect of the underlying geometry from other effects
we do not include reactions in our diffusion process.

This is also due to the observation that in particular nonlinear reaction terms can have a
strong influence on, e.g., the stability properties or the bifurcation behavior (see, e.g., [22,30]
as well as [11] and [12,13]).

So, we start our considerations with a diffusion model on a suitable domain.
We model (in two dimensions) the geometric microstructure by two classes of “barriers,”

horizontal and vertical ones. The first class can be seen as the various layers of themicrostruc-
ture and the second class as the possible bridgings between them. Mathematically, for this
latter class we have an additional liberty of whether or not these connections are present. In
fact, we will show that depending on where and how often these connections are open we
get different limit problems.

This whole geometric structure is parametrized by basically one parameter ε which is
small. And in particular we are interested in what happens if this parameter tends to zero.

This microstructure is situated in the interior of a “container.” All these geometric prop-
erties are explained in full detail in Sect. 2.

Starting from a classical diffusion equation on the domain equipped with a geometric
microstructure as described above, we pass to the limit as ε tends to zero.

This homogenization is performed as a combination of classical homogenization tech-
niques and the concept of concentration capacity. The combination of these two techniques
was first used in the seminal works of Andreucci and collaborators (see [1–5]).

The difference between their geometry and our here is that in their work only the barriers
of the first class were present (see, e.g., [3]).

In the present work, we impose an additional constraint on the positions of the vertical
“barriers.”

The limit behavior obtained through homogenization depends crucially on the properties
of the microstructure we have at level ε �= 0. Three particular situations are depicted in Fig.
4, and it turns out that the corresponding limits are genuinely different. These differences are
discussed in Sect. 6.

Asmentioned earlier, passing from the problem at fixed level ε �= 0 to the homogenization
limit can be viewed as the passage from the microscopic to the macroscopic level.

The precise formulation of these various limit scenarios as well as the precise hypotheses
is presented in Sect. 3.

In Sects. 4 and 5 we give the derivation of the limits and show some additional properties
of solutions to these limit problems.

Although at first glimpse, our setting might be comparable with other homogenization
problems (see, e.g., [7,9,26], or [14]; or [6,10,23] and [28] for more general monographs),
our setting here and the combination of homogenization and concentrated capacity are quite
particular.

2 Our model

In this section we will explain our model, which as announced in the Introduction, consists
of two parts: A suitable description of the underlying geometry and a PDE describing the
diffusion process on the domain with these geometric properties.

In addition, we will discuss the problem in the case that the small parameter ε encoding
the geometry is still strictly positive, i.e., the so-called ε-problem.
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Homogenization with two microstructures 793

2.1 The underlying geometry

In this partwe present the geometric idea behind ourmodel andwegive the precise description
of it as well.

The idea is the following: In an outer container we insert our microstructure.
The first one is just a rectangle Ω . The latter is modelled by horizontal and vertical

obstacles—or “barriers”—as displayed in Fig. 1.
In the following discussion we assume that the thickness of the horizontal and the vertical

obstacles is the same. The case of different thicknesses can be treated along the same lines—as
long as they are of the same order of magnitude as ε.

Note that when ε decreases the number of layers of our microstructure increases. This
dependence is given by the following relation:

The number n = n(ε) of horizontal barriers is given by

n = n(ε) = H

ε(1 + ν)
≡ Hθ0

ε

where θ0 has the following geometric-volumetric interpretation

θ0 = nε

H
=

∑n
j=1 ε

H
= summarized height of all the horizontal barriers

total height of the outer cylinder
.

As indicatedwith different colors, i.e., black and gray in Fig. 1, in contrast to the horizontal
barriers, denoted by C j , the vertical ones—Vj,l and Vj,r—may be present or not (see also
figures at the end of this subsection).

In order to indicate this, we introduce the following functions:
Let I j denote the space between the horizontal barrierC j andC j+1 (respectively between

the bottom {z = 0} and C1 and between Cn and the top). More precisely we have I0 =
{|x | < R}×{

0 < z < νε
2

}
, I j = {|x | < R}×{

νε
2 + ( j − 1)νε + jε < z < νε

2 + j (1 + ν)ε
}

and In = {|x | < R}× { νε
2 + (n− 1)νε + nε < z < H} = {|x | < R}× {

H − νε
2 < z < H

}
.

Then define

B j,l : I j → {1, 0}
(x, z) ∈ I j �→

{
1 if the barrier Vj,l is present
0 else

B j,r is defined analogously.
For the sake of simplicity, we assume that there are no “completely closed compartments.”

More precisely we assume that

B j,l = 1 ⇒ B j,r = 0

and vice versa

B j,r = 1 ⇒ B j,l = 0.

At this point, let us also summarize the further notation concerning our underlying geom-
etry:

We will use the following notation:

• Ω̃ε denotes the big (outer) cylinder

Ω̃ε = (−σε − R, R + σε) × (0, H)

123



794 L. G. A. Keller
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Fig. 1 Illustration of the underlying geometry

• The “free space,” i.e., the space where diffusion can take place, is denoted by Ωε, i.e.,

Ωε = Ω̃ε\
(

∪ j C j

⋃
∪ jB j,l V j,l

⋃
∪ jB j,r Vj,r

)

• An additional index “T ” denotes the parabolic cylinder defined by the product of the
given domain times the time interval (0, T ], e.g.,

Ω̃ε,T = (−σε − R, R + σε) × (0, H) × (0, T ]
• The “outer shell” Sε is the following set

Sε = (−σε − R,−R) × (0, H) ∪ (R, R + σε) × (0, H) ≡ Sε,l ∪ Sε,r

• On the horizontal barriersC j (of the form {−R < x < R}×{
νε
2 +( j−1)(ν+1)ε < z <

νε
2 + ( j − 1)(ν + 1)ε + ε

}
) we use the following notation (as displayed in Fig. 2):

– The space between two horizontal barriers, say between C j and C j+1 is denoted by
I j ,

– The upper boundary is denoted by ∂ I−
j ,

– The lower boundary is denoted by ∂ I+
j−1,
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Homogenization with two microstructures 795

Fig. 2 Boundaries of the
horizontal barrier C j

∂ I−j

∂ I+j−1

Llj Lrj

Fig. 3 Boundaries of the vertical
barriers V j,l and Vj,r (gray)
between C j and C j+1 loj,l lij,l lij,r loj,r

– The lateral boundary parts are denoted by Ll
j (for the left boundary part) and respec-

tively Lr
j (for the right boundary part).

• On the vertical barriers Vj,l and Vj,r

(of the form {−R < x < −R + ε} × {
νε
2 + ( j − 1)νε + jε < z < νε

2 + j (1 + ν)ε
}
,

respectively, {R − ε < x < R} × {
νε
2 + ( j − 1)νε + jε < z < νε

2 + j (1 + ν)ε
}
) we

use the following notation:

The lateral boundary parts are denoted by loj,l , l
i
j,l , l

i
j,r and l

o
j,r as indicated in Fig. 3.

Here, loj,l and l
i
j,l are the boundaries of Vj,l and similar for the boundaries of Vj,r .

Here, R, H , ν and σ are fixed whereas ε is a small parameter which will tend to zero.

At this point, let us introduce one additional notation: As can easily been seen, as ε tends
to zero the outer container Ωε shrinks to

Ω0 = (−R, R) × (0, H)

And the outer shell Sε = Sε,l ∪ Sε,r shrinks to

S ≡ Sl ∪ Sr = {x = −R} × (0, H) ∪ {x = R} × (0, H).

Remark – A similar geometry has been studied by Andreucci et al (see [2,3] and [5], and
with some variants [1]) in the context of visual transduction. The difference is that here
as a second class of barriers we have the vertical ones.
If none of the vertical barriers is present and if one looks at the two-dimensional reduction
of their three-dimensional model, our model coincides with the one studied in [3] and
our main result coincides in the case of vanishing source terms.

– Note that we do not impose any periodicity condition, but we assume a certain uniform
distribution of the vertical barriers in a sense to be explained later on when we state our
main result.

Before we pass to the formulation of the PDE part of our model we would like to point
out the two main possible configuration one should have in mind. Moreover, we will also
give one example of a possible combination of them.

The fist possibility is that there are no vertical barriers on one side, e.g., on the right-hand
side. This case is called model A. In this case B j,l = 1 for all j and B j,r = 0 for all j .

The second case is the possibility that there are no vertical barriers. This case is referred
to as model B. This correspond to the geometry appearing in [3].
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Model A
one side closed

Model B
no vertical barriers

Model M
mixed

Fig. 4 Particular models studied

The last example is of mixed nature: For the under half, i.e., for 0 ≤ z ≤ H/2, there are
no vertical barriers present and in the upper half, i.e., for H/2 ≤ z ≤ H , all the possible
openings on the left side are closed whereas on the right side they are still open.

These particular cases are displayed in Fig. 4.

2.2 The PDE model at level ε

On the domain described in the previous section, we will look at the following problem—
where ε is fixed.

Before we come to the statement of the problem at level ε, let us start with the following
observation.

The total volume V of the “free space between the horizontal barriers” in the region
{|x | ≤ R} is asymptotically preserved, more precisely

V =
∑

j

|I j | −
∑

j

B j,lε νε −
∑

j

B j,rε νε = n2Rνε −
∑

j

B j,lε νε −
∑

j

B j,rε νε

= H

(1 + ν)
2Rν −

∑

j

B j,lε νε −
∑

j

B j,rε νε = Hθ02Rν −
∑

j

B j,lε νε −
∑

j

B j,rε νε

→ Hθ02Rν = constant as ε → 0.

But on the other hand, the total volume of the outer shell S tends to zero, i.e.,

S = 2σεH → 0 as ε → 0.

In order to compensate the vanishing volume of the outer shell, we introduce the following
function which allows us to track also the contribution of u in this outer shell

aε(x, z) =
{
1 if |x | ≤ R
ε0
ε

if R < |x | ≤ R + σε

where ε0 ∈ (0, 1] is fixed and ε ∈ (0, ε0].
Then uε ∈ C(0, T ; L2(Ωε)) ∩ L2(0, T ;W 1,2(Ωε)) denotes the weak solution of the

following PDE

aε

∂

∂t
uε − div(aε∇uε) = 0 in Ωε
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Homogenization with two microstructures 797

with the following boundary condition

∇uε · n = 0 on ∂Ωε

where as usual n denotes the normal vector, and the initial condition

u(x, z, t = 0) = u(x, z, 0)

where we assume that the given u(x, z, 0) = u0(x, z) ≥ 0 is bounded and smooth (C1 would
we sufficient, but for the sake of simplicity we assume smoothness).

Here, Ls(0, T ;Wk,p) denotes the Bochner space of Ls-functions with values in the
Sobolev space Wk,p , the space of distributions such that the derivatives up to oder k belong
to L p . The corresponding norms are given by

|| f ||Ls (0,T ;Wk,p) =
( ∫ T

0
|| f (t)||sWk,p dt

)1/s =
⎛

⎝
∫ T

0

(
k∑

α=0

||∂α f (t)||pL p

)s/p

dt

⎞

⎠

1/s

with the usual modifications in the case s = ∞, respectively p = ∞.
The space C(0, T ; L2(Ωε)) is defined analogously.
Note that for ε = ε0 we have the usual diffusion equation in Ωε0 .
In our situation where we are particularly interested in the interplay between the geometry

and the PDE, the choice of zero fluxes across the boundaries is most natural.
Moreover, since we are interested in the effects of the geometry, more precisely the place-

ments of the horizontal and vertical “barriers” we do not take into account any reaction
terms.

Remark – What about other boundary conditions? In the general situation one could
impose that ∇uε · n = fo on (∪ j Ll

i )
⋃

(∪ j Lr
j )

⋃
(∪ j loj,l)

⋃
(∪ j loj,r ), ∇uε · n =

fi on (∪ j lij,l)
⋃

(∪ j lij,r ) and ∇uε · n = fh on (∪n−1
j=0∂ I

+
j )

⋃
(∪n

j=1∂ I
−
j ) where fo,

fi and fh extend to W 1,1-functions on Ω̃ε. (Note that in the above formulation by abuse
of notationwemean that the boundary condition applies only if the corresponding vertical
barriers are present.)
In doing so, one has to be a little bit careful. If, for example, fh is strictly positive, this
production rate has to be scaled by ε, i.e., one has to impose
∇uε · n = ε fh on (∪n−1

j=0∂ I
+
j )

⋃
(∪n

j=1∂ I
−
j ). Otherwise, the total production rate blows

up due to the fact that as ε tends to zero the total surface H 1(
⋃

∂ I+
j ∪ I−

j ) = 2R2n
becomes arbitrarily large.

– The initial data are assumed to be smooth for the sake of simplicity, and actually C1-
regularity would be sufficient.

– General background material about parabolic problems of the kind of our model can be
found in [18], [19] or [29].
For important results about Bochner spaces the reader is referred to, e.g., [17], [20], [25]
or [29].
The results related to the corresponding elliptic problem (trace theorems, Sobolev embed-
dings, etc.) are presented in [18] or [21].

Our goal is to describe the limit of the above problem as ε → 0.
But before we perform this passage to the limit, let us say a few words about the above

problems for fixed ε.
One of the first and most natural questions is whether the solutions remain positive—for

positive initial data. In fact, we have the following result.
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798 L. G. A. Keller

Proposition 1 For each fixed ε > 0 the above problem has a unique solution uε which
satisfies the following properties.

(i) The solution uε is positive and bounded, i.e.,

0 ≤ uε(x, z, t) ≤ C ∀ (x, z, t) ∈ Ωε,T .

(ii) Moreover, we have the energy estimate

sup
0≤t≤T

||√aεuε(·, ·, t)||L2(Ωε)
+ ||√aε∇uε||L2(Ωε,T ) ≤ C.

(iii) The following uniform “time-regularity property” holds
∫ T−h

0

∫

Ωε

1

h
aε(uε(t + h) − uε(t))

2 dxdz dt ≤ C.

Here, C does not depend on ε. This constant depends only on the data u(x, y, t = 0) and on
the constants R, H, T , σ , ν and ε0.

Since this result is standard, we will not give a detailed proof here.
Nevertheless, we would like to point out some important aspects.

Remark – The assertion about existence and uniqueness of the solution to the ε-problem
is standard.
The interested reader is referred to Ladyženskaja–Solonnikov–Ural’ceva, chapter III, §5,
Theorem 5.2 ([24], see also [19]).
A detailed presentation of the above regularity results with all the calculations can be
found, e.g., in [27].

– The positivity follows from a weak version of the maximum principle (see, e.g., [15],
[24] or [18]) in combination with the use of uε itself as a test function—upon suitable
modifications.
This latter point is achieved as follows: Look at −u−

ε , the negative part of uε and in
addition take its Steklov (time) average.
This average is defined as follows: Let f ∈ L1(ΩT ) and let h > 0 be sufficiently small.
Then the Steklov (time) average f h of f with respect to the time variable t is given by

f h(·, t) := 1

h

∫ t+h

t
f (·, τ ) dτ where 0 < t < T − h.

One of the important features of such an average is that it has a regularizing effect. In
fact, fh ∈ W 1,p for f ∈ L p (p < ∞).
Similar averages can also been taken with respect to other (space) variables.
Further details and proofs about Steklov averages can be found, e.g., in [24] or [16].

– What concerns the strategy to prove the boundedness of uε, it is quite the same as for
the positivity. The basic idea is that again uε itself—up to an additive constant and up to
passing to the Steklov averages—can be used as a test function.

– The energy estimate as well as the uniform “time-regularity” property is very classical,
and the interested reader is referred to the book of Ladyženskaja–Solonnikov–Ural’ceva
[24].
In fact, the more refined time-regularity estimate holds

∫ T

0

∫

Ωε

1

h
aε(uε(t + h) − uε(t))

2 → 0 as h → 0.

From that one can deduce (by classical regularity theory) that
√
aεuε ∈ C(0, T ; L2(Ωε)).
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Homogenization with two microstructures 799

– Note that
√
aεuε has a special role; in particular, the energy estimate holds for this

quantity. In this view, one could see
√
aεuε—restricted to either the outer shell Sε or the

region {|x | < R}—as solutions of the classical diffusion problem (heat equation) with
constant coefficients. And such solutions are smooth.
But the physically relevant quantity is uε itself.

3 The limit problem

In this section we present and state our main result.
For the limit problem when ε → 0 we have the following description.

Theorem 2 Assume that there exist intervals Jl ⊂ (0, H) and Jr ⊂ (0, H)—possibly
empty—such that

I j ∩ {|x | < R} × Jl �= ∅ ⇒ B j,l = 1

respectively

I j ∩ {|x | < R} × Jr �= ∅ ⇒ B j,r = 1

and

B j,l = B j,r = 0 for all j such that I j ∩ {|x | < R} ×
(
(0, H)\(Jl ∪ Jr )

)
�= ∅ for almost all ε.

Then the solutions uε of the ε-problems from above—suitably extended—converge in the
sense of distributions to u where u solves

ut − uxx = 0 in D ′(Ω0,T )

with boundary conditions

∇u · n = 0 on {x = −R} ∩ Jl

and

∇u · n = 0 on {x = R} ∩ Jr .

In addition, u satisfies

ux ∈ L2(0, T ; L2(Ω0)).

And the restrictions of uε to the outer shell Sε ,moreprecisely,vε,r = 1
σε

∫ R+σε

R uε(x, z, t) dx,
converge in the sense on distributions to vr , respectively, vε,l converges to vl , with vl,z =
0 = vr,z for z = 0 and z = H, and they are related to u in the following way

vl,t − vl,zz = −1 − θ0

σε0
ux |x=−R

vr,t − vr,zz = −1 − θ0

σε0
ux |x=R .

Moreover, we have the following transition condition

u = vl on {x = −R} ∩ J cl
u = vr on {x = R} ∩ J cr .
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800 L. G. A. Keller

Remark – Note that since we assumed that there are no closed compartments the intervals
Jl and Jr are disjoint.

– The boundary–transition condition can be summarized as follows: The normal derivative
∇u ·n has to vanish on Jl , respectively, on Jr . And on the complement of Jl , respectively,
Jr , u has to coincide with vr , respectively, with vl .

– In our particular model cases, the boundary–transition conditions read as follows

– Model A:

ux = 0 on {x = −R} and u = vr on {x = R}
Note that it holds Jl = (0, H) and Jr = ∅.

– Model B:

u = vl on {x = −R} and u = vr on {x = R}
since Jl = Jr = ∅.

– Model M:

ux = 0 on {x = −R} ∩
{

z >
H

2

}

and u = vl on {x = −R} ∩
{

z ≤ H

2

}

and

u = vr on {x = R} .

In this case we have Jl =
(
H
2 , H

)
and Jr = ∅.

– The assumptions on the vertical barriers can be seen as information of “where they are”
(i.e., the location of the intervals Jl und Jr ) and which percentage of the connecting open
spaces between the interior ({|x | < R}) and the exterior region ({|x | > R}) are open,
respectively, closed (i.e., the size if Jl and Jr ).

– The limit problem in weak formulation reads

(1 − θ0)
(

−
∫

Ω0,T

uϕt −
∫

Ω0

uϕ(t = 0) +
∫

Ω0,T

uxϕx

)

+ σε0

(
−

∫

ST
vϕt −

∫

S
vϕ(t = 0) +

∫

ST
vzϕz

)
= 0 (1)

for all test function ϕ ∈ C1(Ω0,T ) vanishing at t = T .
In addition, we can show improved regularity properties of the limit. More precisely, we

have the following assertions.
The first one concerns time-regularity.

Proposition 3 The limit satisfies the “time-regularity”

u ∈ W 1,2(0, T ; L2(Ω0)) and v ∈ W 1,2(0, T ; L2(S)).

The next two assertions regard space-regularity.

Proposition 4 The limit v in the outer shell satisfies the “space-regularity”

vz ∈ L2(0, T ; L2(S)).

Proposition 5 The limit satisfies the “space-regularity”

uxx ∈ L2(0, T ; L2(Ω0)).
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Homogenization with two microstructures 801

Furthermore, the solution of the limit problem is unique.

Proposition 6 The solution of the limit problem is unique in the class W 1,2(0, T ; L2) .

At this point, recall that the solutions of the problem at level ε satisfy the inequality
0 ≤ uε ≤ C for some constant C . A natural question then is to ask whether the limit as well
satisfies a positivity assertion. The answer again is positive.

Proposition 7 The solution (u, v) of the limit problem satisfies

0 ≤ u, v ≤ C a.e.

for some positive constant C.

4 Proof of the main theorem: homogenization

The proof of Theorem 2 will be done basically in three steps.
First, we consider test functions whose support is disjoint from the “outer shell” Sε. This

will basically give us the behavior “between the horizontal barriers.”
Second, we consider another class of particular test functions which now have a support

which intersects the whole cylinderΩε but which do not depend on x in the region {|x | > R}.
Finally, wewill analyze how the “inner boundary condition” on∪ j lij,l and on∪ j lij,r passes

to the limit. And we will establish the transition condition.

But first of all, we need some additional (technical) lemmata. This will be the content of
the first subsection.

4.1 Some technical lemmata

As announced above, we would like to start with some observations which will turn out to
be very useful when we perform the calculation of the limit problem.

The first result concerns the limit behavior of the space between the horizontal barriers.
This result is a variant of an analogous assertion in [3].

Lemma 8 With the same notation as above we have for p ∈ (1,∞)
∑

j

χI j ⇀ (1 − θ0) in L p(0, H).

Proof In order to show weak convergence, first of all, look at a characteristic function φ of
a subinterval (a, b) of (0, H). For such a “test function” one immediately calculates

∫ H

0

∑

j

χI j φ → (1 − θ0)(b − a) =
∫ H

0
(1 − θ0)φ.

From that, the claimed weak convergence follows also immediately for step functions.
Finally, since by density any arbitrary test function ϕ ∈ L p′

(0, H) can be approximated
by step functions, the assertion of weak convergence follows. ��

In order to actually compute the “inner limit” in the region {|x | < R}we have to overcome
the problem that a priori we have a sequence of functions uε whose support changes with ε.
In order to handle this inconvenience, we will show that the functions uε can be extended
to (at least) Ω0 ∩ {−R + ε < x < R − ε} in such a way that the norms of the new extended
functions can be uniformly bounded. This is the content of the following lemma.
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802 L. G. A. Keller

Lemma 9 Assume that 1 < p < 2.
There exist extensions ũε of uε, defined on Ω0 ∩ {−R + ε < x < R − ε} such that

(i)

ũε = uε in
⋃

j

I j

(ii)

ũε ∈ L2(0, T ;W 1,1(Ω0 ∩ {−R + ε < x < R − ε}))
with

||ũε||L2(0,T ;W 1,1(Ω0∩{−R+ε<x<R−ε})) ≤ C

(iii)

ũε(·, ·, t) ∈ L p(Ω0 ∩ {−R + ε < x < R − ε}) ∀ t ∈ (0, T )

with

||ũε||L p(Ω0∩{−R+ε<x<R−ε}) ≤ C

(iv)

||ũε(t + h) − ũε(t)||L2(0,T−h;L p(Ω0∩{−R+ε<x<R−ε})) ≤ C
√
h ∀ h ∈ (0, T )

where the constants C do not depend on ε.

Proof The basic idea how to construct an extension with the properties as claimed above is
the following: In a first step, for each space I j between two subsequent horizontal barriers
we reflect on one hand at the boundary ∂ I−

j and ∂ I+
j combined with a suitable scaling. Then,

in a second step we multiply the function we have obtained in the first step—and which is
now defined on C j ∪ I j ∪C j+1—by a cutoff function which equals 1 on I j and vanishes on
∂ I−

j+1 and I+
j−1. Finally, in a third step, this procedure is repeated for all I j and the extension

we are looking for is the superposition of all the single extensions from the preceding steps.
More precisely, we define ũε as follows:
Let the heights of the interfaces between the I j ’s and the C j ’s be parametrized by ξ+

j and

ξ−
j , i.e., ξ

−
0 = 0, ξ+

0 = νε
2 , ξ

−
1 = νε

2 + ε, ξ+1 = νε
2 + ε + νε and so on.

Now, let z belong to some C j . This means that z ∈ (ξ+
j−1, ξ

−
j ).

Then, ũε is given by

ũε(x, z, t) = uε(x, ξ
+
j−1 − ν(z − ξ+

j−1), t)
(
1 + ξ+

j−1 − z

ε

)

+uε(x, ξ
−
j + ν(ξ−

j − z), t)
(
1 − ξ−

j − z

ε

)

≡ uε(x, ξ
+
j−1 − ν(z − ξ+

j−1), t)Ψ+(z) + uε(x, ξ
−
j + ν(ξ−

j − z), t)Ψ−(z).

For z ∈ I j for some j we set ũε(x, z, t) = uε(x, z, t).
First of all, note that the so constructed extensions are continuous. Moreover, property (i)

is obviously true.
Next, we shall verify the other claimed properties.
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The L p-regularity follows immediately from the fact that uε are uniformly bounded in
L∞. Thus, we have

||ũε||L p(Ω0∩{−R+ε<x<R−ε}) ≤ ||ũε||L∞(Ω0∩{−R+ε<x<R−ε})|Ω0 ∩ {−R+ε < x < R − ε}|1/p
≤ C

where C does not depend on ε. Here, we used also the fact that Ψ+ and Ψ− are bounded by
1.

Summarized we have shown (iii), even more, namely that the extensions are uniformly
bounded in any L p .

Note also, that we can estimate as well

||ũε||L2(0,T ;L p(Ω0∩{−R+ε<x<R−ε})) ≤ C ||ũε||L2(Ω0∩{−R+ε<x<R−ε},T ))

= C
( ∫ T

0

∫

Ω0∩{−R+ε<x<R−ε}
|ũε|2 dxdz dt

)1/2

≤ C sup
0≤t≤T

||uε||L2(Ωε∩{−R+ε<x<R−ε})

≤ C by Proposition 1

where the constants C may depend on the size of Ω0, the length T of the time interval and
the parameter ν but do not depend on ε.

From this observation, the Lipschitz property (iv) follows immediately from the corre-
sponding property of uε, see again Proposition 1.

It remains to prove property (ii). First, we observe that from the definition of ũε and the
properties of uε it follows immediately

||ũε,x ||L2(0,T ;L1(Ω0∩{−R+ε<x<R−ε})) ≤ C ||uε,x ||L2(0,T ;L2(Ωε∩{−R+ε<x<R−ε})) ≤ C

where again the constants may depend on the size of Ω0 and the parameter ν but do not
depend on ε.

We are left with the derivative in z-direction.
Note that on the I j we have ũε,z = uε,z , and the integrability—restricted to

⋃
j I j follows

from the corresponding property of uε and Hölder’s inequality.
For the z-derivative and z ∈ C j for some j we find

ũε,z = −νuε,z(x, ξ
+
j−1 − ν(z − ξ+

j−1), t)
(
1 + ξ+

j−1 − z

ε

)

− νuε,z(x, ξ
−
j + ν(ξ−

j − z), t)
(
1 − ξ−

j − z

ε

)

− uε(x, ξ
+
j−1 − ν(z − ξ+

j−1), t),
1

ε
+ uε(x, ξ

−
j + ν(ξ−

j − z), t)
1

ε
.

For the first two terms, the claimed integrability in L2(L1) follows again from the integrability
in L2(L1) of uε and Hölder’s inequality.

It remains to estimate

∫ T

0

∫

⋃
j C j∩{−R+ε<x<R−ε}

∣
∣
∣ − uε(x, ξ

+
j−1 − ν(z − ξ+

j−1, t)
1

ε
+ uε,z(x, ξ

−
j + ν(ξ−

j − z), t)
1

ε

∣
∣
∣ dxdz dt.
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This quantity can be reformulated—up to a constant which does not depend on ε—as
∫ T

0

∫

⋃
j I j∩{−R+ε<x<R−ε}

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|1
ε
dxdz dt

At this point, we distinguish four cases:

(i) The index j is such that B j,l = B j+1,l = B j,r = B j+1,r = 0.
(ii) The index j is such that B j,l = 1 = B j+1,l .
(iii) The index j such that B j,r = 1 = B j+1,r .
(iv) None of the conditions in (i) to (iii) hold.

We observe that due to our hypothesis, the number of indices j such that case iv) applies is
finite and independent on ε.

For these cases we exploit the fact that ũε are uniformly bounded in L∞. Moreover, the
size of the region I j ∩ {−R + ε < x < R − ε} is proportional to ε. Altogether we see that
the L1-norm on these I j is uniformly bounded by a constant which is independent on ε.

For the cases (i) to (iii), by Hölder’s inequality the desired uniform bound follows imme-
diately once we can show that

∫ T

0

∫
⋃

j I j ∩ {−R + ε < x < R − ε}
j such that B j,r = B j+1,r = B j,l = B j+1,l = 0

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt ≤ Cε2,

∫ T

0

∫
⋃

j I j ∩ {−R + ε < x < R − ε}
j such that B j,r = 1 = B j+1,r

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt ≤ Cε2

and
∫ T

0

∫
⋃

j I j ∩ {−R + ε < x < R − ε}
j such that B j,l = 1 = B j+1,l

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt ≤ Cε2.

Thanks to Lemma 10 below the quantities on the left-hand sides can be estimated as follows
∫ T

0

∫
⋃

j I j
j such that

B j,r = B j+1,r = B j,l = B j+1,l = 0

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt

≤ C
∑

j such that
B j,r = B j+1,r = B j,l = B j+1,l = 0

∫

∂ I j∩{|x |=R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt,

+C
∑

j such that
B j,r = B j+1,r = B j,l = B j+1,l = 0

ε3

∫ T

0

∫
⋃

j I j ∩ {−R + ε < x < R − ε}
j such that B j,l = 1 = B j+1,l

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt

≤ C
∑

j such that B j,l=1=B j+1,l

∫

∂ I j∩{x=R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt

+C
∑

j such that B j,l=1=B j+1,l

ε3
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and

∫ T

0

∫
⋃

j I j ∩ {−R + ε < x < R − ε}
j such that B j,r = 1 = B j+1,r

|uε(x, z + (1 + ν)ε, t) − uε(x, z, t)|2 dxdz dt

≤ C
∑

j such that B j,l=1=B j+1,l

∫

∂ I j∩{x=−R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt.

+
∑

j such that B j,l=1=B j+1,l

ε3

Using Lemma 11 below, Proposition 1 and the fact that the total number of horizontal barriers
and thus also the number of free spaces between two such barriers is limited by Hθ0

ε
the

conclusion follows easily. ��

Lemma 10 With the same notation as before we have the following assertions.

(i) For j such that B j,r = B j+1,r = B j,l = B j+1,l = 0 it holds

∫

I j ,T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dxdz dt

≤ C
∫

∂ I j∩{|x |=R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt + Cε3.

(ii) For j such that B j,l = 1 = B j+1,l it holds

∫

I j ,T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dxdz dt

≤ C
∫

∂ I j∩{x=R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt + Cε3.

(iii) For j such that B j,r = 1 = B j+1,r it holds

∫

I j ,T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dxdz dt

≤ C
∫

∂ I j∩{x=−R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt + Cε3.

In all cases the constant C does not depend on ε. It depends only on the initial data and ν.

Proof The assertion of this lemma is proved along the same lines as the corresponding
assertion (Lemma A2.1) in [3]. In the cases (ii) and (iii) one just has to look at the following
comparison problem
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806 L. G. A. Keller

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt + Δϕ = −ū
ϕ(x, T ) = 0{

ϕ(R, z, t) = 0
ϕx (−R + ε, z, t) = 0

ϕz(x̄, 0, t) = 0
ϕz(x̄, νε, t) = 0

respectively
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt + Δϕ = −ū
ϕ(x, T ) = 0{

ϕ(−R, z, t) = 0
ϕx (R − ε, z, t) = 0

ϕz(x̄, 0, t) = 0
ϕz(x̄, νε, t) = 0

In addition, due to the fact that we allow initial data u0 which do not necessarily have to be
constant the starting point is in each case

∫ T

0

∫

I j
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dxdz dt

= −
∫ T

0

∫

∂ I j∩{|x |=R},
(∇ · ϕ)(u(x, z + (1 + ν)ε, t) − u(x, z, t)) dz dt

−
∫

I j
ϕ(0)(u0(x, z + (1 + ν)ε) − u0(x, z)) dxdz dt

respectively

∫ T

0

∫

I j
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dxdz dt

= −
∫ T

0

∫

∂ I j∩{|x |=−R},
(∇ · ϕ)(u(x, z + (1 + ν)ε, t) − u(x, z, t)) dz dt

−
∫

I j
ϕ(0)(u0(x, z + (1 + ν)ε) − u0(x, z)) dxdz dt

where ϕ is a solution of the comparison problem.
The first terms on the right-hand sides are treated as in Lemma A2.1 in [3], and for the

second terms on the right-hand sides we use the regularity of the initial data. ��

Lemma 11 Under the same notation as before, it holds

∑

j

∫

∂ I j∩{|x |=R},T
|u(x, z + (1 + ν)ε, t) − u(x, z, t)|2 dz dt ≤ Cε2

(1

ε

∫ T

0

∫

Sε

|∇uε|2
)

where the constant C is independent of ε.

Proof The proof of this assertion follows the same lines as the analogous assertion in [3]
(see chapter 9 in the cited article). ��
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4.2 The limit in the interior region (−R, R) × (0, H)

In order to study the limit behavior in the region (−R, R) × (0, H), we use the weak formu-
lation of the ε-problem and use suitable test functions.

The strategy is to look at tests functions ϕ which satisfy for a fixed, but arbitrarily small
δ > 0

•
ϕ ∈ C2

0 (Ω0,T )

•
x → ϕ(x, z, t) ∈ C2

0 ({|x | ≤ R − δ})
Note that in particular we have ϕ(t = 0) = 0 = ϕ(t = T ).
For such test functions, from the weak formulation of the ε-problem we find—recall also

that in the region {|x | < R} we have aε = 1

0 = −
∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕt −

∫ T

0

∫

∂Ωε∩{|x |<R−δ}
(∇uε · n)ϕ

+
∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,xϕx +

∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,zϕz . (2)

Our goal is to study the limit as ε → 0. In order to achieve this we will study each term
in the above equation separately.

Note that without loss of generality we may assume that ε ≤ δ.
Limit of − ∫ T

0

∫
Ωε∩{|x |<R−δ} uε,tϕ:

Note that this term can be written as follows using the extensions ũε

−
∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕt = −

∫ T

0

∫

Ω0

∑

j

χI j ũεϕt .

In this expression, we have the following properties:
On one hand, on Ω0 ∩ {|x | < R − δ} we can see our extensions ũε as Lipschitz maps

in L2(0, T ; L p) ⊂ L p(0, T ; L p) where p < 1∗ = 2 and where the latter space can be
identified with L p((Ω0 ∩ {|x | < R − δ}),T ) by Fubini–Tonelli.

Due to the properties of ũε we established in Proposition 9 the Lebesgue space version
of the Arzelà–Ascoli theorem due to Riesz–Fréchet–Kolmogorov (see, e.g., [8]) tells us that
we have sufficient (pre-)compactness in order to pass to the limit in the appearing products
in (2), i.e., we can extract a strongly convergent subsequence which we still denote by {ũε}.

In view of the uniqueness of the limit which we will establish later on, passing to a
subsequence does not give rise to any problem. On the other hand, recall from Lemma 8 that∑

j χI j converges weakly in p′.
Thus, we find that

−
∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕt → −(1 − θ0)

∫ T

0

∫

Ω0

uϕt .

Remark Proving first an additional improved time-regularity assertion for uε and combining
this with the above constructed extensions, one could apply the Aubin–Lions–Lemma (see,
for instance, [20] or [25]) to alternatively deduce the existence of a strongly convergent
subsequence in L p .
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Limit of − ∫ T
0

∫
∂Ωε∩{|x |<R−δ}(∇uε · n)ϕ:

In a first step, we will rewrite this term as

−
∫ T

0

∫

∂Ωε∩{|x |<R−δ}
(∇uε · n)ϕ

= −
∑

j

∫ T

0

∫

∂ I+
j ∩{|x |<R−δ}

(∇uε · n)ϕ −
∑

j

∫ T

0

∫

∂ I−
j ∩{|x |<R−δ}

(∇uε · n)ϕ

−
∑

j

∫ T

0

∫

{x=−R+ε}∩ spt ϕ

χI jBl, j (∇uε · n)ϕ −
∑

j

∫ T

0

∫

{x=R−ε}∩ spt ϕ

χI jBr, j (∇uε · n)ϕ

=: I + I I

+ I I I + I V

The terms I and I I vanish identically (for all ε) due to the boundary conditions we impose
on the boundaries of the horizontal barriers.

What concerns the terms I I I and I V , note that for ε < δ we have

spt ϕ ∩ {x = −R + ε} = ∅
and

spt ϕ ∩ {x = R − ε} = ∅.

Thus, the terms I I I and I V vanish in the limit as ε → 0.
Summarized we have

lim
ε→0

(

−
∫ T

0

∫

∂Ωε∩{|x |<R−δ}
(∇uε · n)ϕ

)

= 0.

Limit of
∫ T
0

∫
Ωε∩{|x |<R−δ} uε,xϕx :

First of all, we integrate once more by part. Exploiting the fact that we look at derivatives
in x-direction and the properties of our test function ϕ this leads to

∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,xϕx = −

∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕxx .

And again, we rewrite the term we have found using the extensions ũε

−
∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕxx = −

∫ T

0

∫

Ω0

∑

j

χI j ũεϕxx .

Following the same lines as in the calculation of the limit of − ∫ T
0

∫
Ωε∩{|x |<R−δ} uεϕt we

finally find
∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,xϕx → −(1 − θ0)

∫ T

0

∫

Ω0

uϕxx .

Limit of
∫ T
0

∫
Ωε∩{|x |<R−δ} uε,zϕz :

Here too, we will slightly rewrite the term before passing to the limit. In the present case,
we write

∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,zϕz =

∫ T

0

∫

Ω0

∑

j

χI j uε,zϕz .
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In order to calculate the limit, we have to carefully analyze the behavior or
∑

j χI j uε,z .
In fact, we have

Lemma 12 It holds
∑

j

χI j uε,z → 0 weakly in L2(0, T ; L2(Ω0)).

Proof First of all, recall that
∣
∣
∣
∣
∣
∣
∑

j

χI j uε,z

∣
∣
∣
∣
∣
∣
L2(0,T ;L2(Ω0))

≤ C

where C does not depend of ε.

Thus, there exists a subsequence—still denoted by
{∑

j χI j uε,z

}

ε
—such that it converges

weakly to a limit g.
Next, we will take into account the differential equation involving uε,z , (2), and look at

two particular test functions. Doing so, we have two terms which both equal to zero and a
linear combination of them leads to the conclusion that g = 0.

More precisely, in (2) we will look at φ1(x, z) := ϕ
∫ z
0

∑
j χC j and φ2(x, z) = ϕz where

ϕ is an arbitrary test function.
First of all, we observe that

h(z) :=
∫ z

0

∑

j

χC j → zθ0 uniformly in [0, H ].

This follows from a straightforward calculation.
Using this information, we turn our attention to (2) and take into account also the results

from the preceding steps.
For φ1 we get

0 = (1 − θ0)

∫ T

0

∫

Ω0

( − uϕt zθ0 − uϕxx zθ0
) +

∫ T

0

∫

Ω0

gϕz zθ0

+ lim
ε→0

∫ T

0

∫

Ω0

( ∑

j

χI j uε,z
)
ϕ
( ∑

j

χC j

)
.

Observe here that the last term on the right-hand side vanishes identically.
For the other test function φ2 we find

0 = (1 − θ0)

∫ T

0

∫

Ω0

( − uϕt z − uϕxx z
) +

∫ T

0

∫

Ω0

gϕz z +
∫ T

0

∫

Ω0

gϕ.

Finally, we look at the difference of these two expressions. This immediately leads to the
conclusion—by the fundamental lemma of the calculus of variations—that

g ≡ 0.

Thus, we have
∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,zϕz → 0 as ε → 0.

��
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Summary:
For this interior region (−R, R) × [0, H ] and for test functions with the properties

described above we find

0 = −
∫ T

0

∫

Ωε∩{|x |<R−δ}
uεϕt −

∫ T

0

∫

∂Ωε∩{|x |<R−δ}
(∇uε · n)ϕ

+
∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,zϕz +

∫ T

0

∫

Ωε∩{|x |<R−δ}
uε,xϕx

→ −(1 − θ0)

∫ T

0

∫

Ω0

(
uϕt + uϕxx

) = 0

Note that so far δ was fixed. But the arguments do not depend on the choice of δ. We can
choose this parameter arbitrarily, and thus by an exhaustion of Ω0 by compact sets we can
conclude.

4.3 The full limit

In this subsection we will look at another class of test functions, namely at test functions
whose support contains Ω0, but which do not depend on x for |x | ≥ R and which vanish
only at t = T .

In doing so we not only capture the limiting behavior in the interior of Ω0 (as we did
in the previous subsections) but we take into account also the behavior in the outer shell,
respectively, on the boundary ∂Ω0.

In addition, we will make use of the information we have already found before.
We start with the weak formulation of the ε-problem

∫ T

0

∫

Ωε

( − aεuεϕt + aε∇uε∇ϕ) −
∫ T

0

∫

∂Ωε

aε

(∇uε · n)
ϕ −

∫

Ωε

aεuϕ(x, z, 0) = 0.

Rearranging and splitting terms we get the equivalent form—recall also the definition of aε-
∫ T

0

∫

Ωε\Sε

( − uεϕt + uε,xϕx + uε,zϕz) −
∫

Ωε\Sε

uϕ(x, z, 0)

−
∫ T

0

∫

∂Ωε

aε

(∇uε · n)
ϕ

+
∫ T

0

∫

Sε

( − ε0

ε
uεϕt + ε0

ε
uε,xϕx + ε0

ε
uε,zϕz) −

∫

Sε

ε0

ε
uϕ(x, z, 0)

= 0.

Again, our goal is to study the limit as ε → 0.
For the terms in the first row, we already know its limit

lim
ε→0

( ∫ T

0

∫

Ωε\Sε

( − uεϕt + uε,xϕx + uε,zϕz) −
∫

Ωε\Sε

uϕ(x, z, 0)
)

= (1 − θ0)

∫ T

0

∫

Ω0

( − uϕt − uϕxx
) − (1 − θ0)

∫

Ω0

uϕ(x, z, 0)

In addition, due to the boundary conditions we impose the term in the second row vanishes
identically.
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So, it remains to calculate the limit as ε → 0 of
∫ T

0

∫

Sε

(
−ε0

ε
uεϕt + ε0

ε
uε,xϕx + ε0

ε
uε,zϕz

)
−

∫

Sε

ε0

ε
uϕ(x, z, 0)

=
∫ T

0

∫

Sε,l

(
−ε0

ε
uεϕt + ε0

ε
uε,xϕx + ε0

ε
uε,zϕz

)
−

∫

Sε,l

ε0

ε
uϕ(x, z, 0)

+
∫ T

0

∫

Sε,r

(
−ε0

ε
uεϕt + ε0

ε
uε,xϕx + ε0

ε
uε,zϕz

)
−

∫

Sε,r

ε0

ε
uϕ(x, z, 0). (3)

In what follows, we will look at Sε,r . The calculation of the limit in Sε,l is completely
analogous.

Note that the assumption we made about the test function ϕ implies that in Sε we have

∇uε · ∇ϕ ≡ uε,zϕz .

Now, we introduce the new function

vε,r := 1

σε

∫ R+σε

R
uε(x, z, t) dx .

Similarly, we define vε,l .
For these functions we have the following properties: Due to the energy estimates and the

time-regularity established in Proposition 1,
{
vε,r

}
and

{
vε,l

}
are precompact in L2(Sr,T ),

respectively, in L2(Sl,T ) (recall the compactness criterion of Riesz–Fréchet–Kolmogorov).
So there exist strongly convergent subsequences which we still denote by

{
vε,r

}
and

{
vε,l

}

since in view of the uniqueness passing to a subsequence is immaterial.
Note that the derivatives of vε,r , respectively, of vε.l converge weakly in L2.
Now, we will calculate the limits as ε → 0 of the term in (3).
Limit of − ∫ T

0

∫
Sε,r

ε0
ε
uεϕt :

Rewriting this term leads to

−
∫ T

0

∫

Sε,r

ε0

ε
uεϕt = −

∫ T

0

∫ H

0

∫ R+σε

R

ε0

ε
uεϕt = −σε0

∫ T

0

∫ H

0

1

σε

∫ R+σε

R
uεϕt

= −σε0

∫ T

0

∫ H

0
ϕt (x = R, z, t)

1

σε

∫ R+σε

R
uε

due to the properties of the test function ϕ

= −σε0

∫ T

0

∫ H

0
ϕt (x = R, z, t)vε,r

→ −σε0

∫ T

0

∫ H

0
ϕt (x = R, z, t)vr as ε → 0.

Limit of
∫ T
0

∫
Sε,r

ε0
ε
uε,zϕz :

Following the same lines as in the previous step we get

∫ T

0

∫

Sε,r

ε0

ε
uε,zϕz = σε0

∫ T

0

∫ H

0
vε,r,zϕz

→ σε0

∫ T

0

∫ H

0
ϕ(x = R, z, t)zvr,z as ε → 0.

123



812 L. G. A. Keller

Note that due to the properties of our test function ϕ the term
∫ T
0

∫
Sε,r

ε0
ε
uε,xϕx vanishes

identically.
Limit of − ∫

Sε,r

ε0
ε
uϕ(x, z, 0):

For the remaining term − ∫
Sε,r

ε0
ε
uϕ(x, z, 0) we proceed as follows.

In a fist step we observe that we have

−
∫

Sε,r

ε0

ε
uϕ(x, z, 0) = −σε0

∫ H

0
ϕ(x = R, z, 0)

( 1

σε

∫ R+σε

R
u(x, z, 0) dx

)
dz

= −σε0

∫ H

0
ϕ(x = R, z, 0)

( 1

σε

∫ R+σε

R

(
u(R, z, 0) +

∫ x−R

0

∂

∂x
u(R + s, z, 0) ds

)
dx

)
dz

= −σε0

∫ H

0
ϕ(x = R, z, 0)u(x = R, z, 0) + O(ε)

since − (σε)2

σε
sup |∇u(t = 0)| ≤ 1

σε

∫ R+σε

R

( ∫ x−R
0

∂
∂x u(R + s, z, 0) ds

)
dx

≤ (σε)2

σε
sup |∇u(t = 0)|.

Thus,

−
∫

Sε,r

ε0

ε
uϕ(x, z, 0) → −σε0

∫ H

0
ϕ(x = R, z, 0)u(x = R, z, 0) as ε → 0.

Summary:
Altogether we have seen that the limit of (3) is

lim
ε→0

∫ T

0

∫

Sε

( − ε0

ε
uϕt + ε0

ε
uε,xϕx + ε0

ε
uε,zϕz) −

∫

Sε

ε0

ε
uϕ(x, z, 0)

= −σε0

( ∫

ST
ϕtv + ϕzvz

)
− σε0

∫

S
ϕu(t = 0)

where S := {x = −R} ∪ {x = R} and

v :=
{

vr if x = R
vl if x = −R.

Finally, we have the full limit

0 =
∫

Ωε,T

( − aεuεϕt + aε∇uε∇ϕ
) −

∫

Ωε

aεuϕ(x, z, t = 0)

→ (1 − θ0)
( ∫

Ω0,T

( − uϕt + uxϕx
) −

∫

Ω0

uϕ(t = 0)
)

+ σε0

( ∫

ST
−vϕt + vzϕz −

∫

S
ϕu(t = 0)

)
(4)

which is exactly the weak formulation of the limit equation we claimed in our main theorem.
��

4.4 Derivation of the “interior boundary condition”

In this subsection we will show that

ux = 0 on {x = −R} ∩ Jl
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Homogenization with two microstructures 813

and

ux = 0 on {x = R} ∩ Jr

This property is an immediate consequence of the construction of the extensions ũε .
Note that in the interior region we have continuity up to the boundary and the boundary

conditions hold in the classical sense (see, e.g., [19]) and can be seen as special cases of
constant Neumann boundary conditions on {x = −R} ∩ Jl , respectively, on {x = R} ∩ Jr .

Moreover, the functions Ψ+ and Ψ− are continuous.
Altogether we see that the extensions we have constructed above have derivatives in x-

direction which are continuous up to the boundary.
In particular, since the boundary conditions we imposed at level ε are homogeneous

Neumann boundary data the way in which the extensions ũε are constructed [see Lemma 9,
in particular equation (2)] implies that the extension inherit the same boundary conditions,
i.e., that the extensions satisfy homogeneous Neumann boundary data on {x = −R} ∩ Jl ,
respectively, on {x = R} ∩ Jr . The boundary data for the extensions ũε in a first step hold in
the sense of variational boundary conditions. But in a second step the regularity we have for
uε in fact can be used to give sense to this boundary condition in a classical sense. Note that
in x-direction the extensions inherit the same regularity as the initial functions uε.

4.5 Proof of the “transition condition”

In a first step one has to show that u has a trace on {|x | = R}. But this can be achieved as in
the article of Andreucci et al.

Once we know about the existence of a trace, we can show the coincidence with v on the
part which is “morally free of vertical barriers.” The proof of the transition condition is then
basically the same as the corresponding assertion in the above-cited article [3].

More precisely, in the complement of the support of Jr , respectively, of Jl , by passing if
necessary to a further subsequence we can assume that there are no vertical barriers—recall
also that we excluded closed compartments, i.e., situations such that B j,l = B j,r = 1.

This means that we have the same geometry as Andreucci et al. (see [3])—at least on one
side.

Then it suffices to show that

u − vl = 0 almost everywhere respectively u − vr = 0 almost everywhere.

But this follows immediately from the observation that we can rewrite

u − vl = u − vε,l − (vl − vε,l)

= 1

σε

∫ −R

−R−σε

u(−R, z, t) − uε(s, z, t) ds − (vl − vε,l)

(and similar for the right boundary). Here, the first addend can be rewritten using the (weak)
fundamental theorem of calculus. Once this is done, the a priori estimates we have at hand in
combination with Hölder’s inequality imply that this term vanishes in the limit. The second
addend tends to zero due to the strong convergence of vε,l and thus in particular almost
everywhere convergence (upon possibly passing to a further subsequence).
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5 Proofs of the additional properties of the solution to the homogenized
problem

In this section, we will give the proofs of the additional properties of the solution of the
homogenized problem.

First of all, we will show the “time-regularity.” More precisely we will prove Proposition
3.

Proof of Proposition 3 First observe that it remains only to control ut and vt in L2.
There are two possible approaches.
Either one shows first the corresponding assertion at level ε, shows that the time derivatives

are uniformly bounded in norm and deduces the desired assertion from the weak convergence
and uniqueness of weak limits.

The second one is to look directly at the limit problem in weak formulation. Then u and v

are replaced by their Steklov time averages uh and vh and multiplied by a suitable function
of t . Next, the so constructed function can be used as test function and one observes that the
same equation as before holds—up to an error of order O(h). This finally leads to the desired
estimates of the time derivatives. This approach is explained, e.g., in [3]. ��

Next, we will study the “space-regularity.”

Proof of Proposition 4 and the corresponding assertion for u Recall that we can uniformly
control the first derivative in x-direction of our extensions ũε on Ω0 (see Lemma 9)—if
necessary by a further extension by reflection at the boundaries lij,l , respectively, l

i
j,r .

From this we can pass to the limit and find the desired assertion for the x-derivative of u.
The control of vz is proved analogously. ��

Next, we study the limit behavior of the second derivatives in x-direction. More precisely,
we will prove Proposition 5.

Proof of Proposition 5 From the equation of the “interior limit” and the fact that ut ∈ L2

we have

T (ϕ) =
∫

Ω0,T

uxϕx = −
∫

Ω0,T

utϕ ≤ C ||ϕ||L2(Ω0,T )

for any test function ϕ ∈ C1
0 (Ω0,T ) vanishing for t = 0 and t = T . Thus, T can be extended

by density to a linear functional on L2(Ω0,T ). Finally, by the Riesz theorem we conclude
that there exists a function l ∈ L2(Ω0,T ) such that

T (ϕ) =
∫

Ω0,T

lϕ

for all ϕ ∈ L2(Ω0,T ). But this implies that uxx ∈ L2(Ω0,T ). ��

Remark A similar argument to the above proof shows that

vzz ∈ L2(0, T ; L2(S)).

Ournext point is to prove theuniqueness of the limit, i.e.,wewill give a proof ofProposition
6.
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Proof of Proposition 6 By contradiction we assume that there are two solutions of the limit
problem. Using the weak formulation of the limit and exploiting the properties of the limit
u, v we find a contradiction.

More precisely, we assume that there are two solutions to the limit problem, {u1, v1} and
{u2, v2} satisfying the same initial and boundary condition.

Then we use the weak formulation of our limit problem which leads to the following
equalities,

0 = (1 − θ0)
( ∫

Ω0,T

uk,tϕ + uk,xϕx

)
+ σε0

( ∫

ST
vk,tϕ + vk,zϕz

)

for k = 1, 2.
Next, look at the difference of these two equalities

0 = (1 − θ0)
( ∫

Ω0,T

(u1,t − u2,t )ϕ + (u1,x − u2,x )ϕx

)

+ σε0

( ∫

ST
(v1,t − v2,t )ϕ + (v1,z − v2,z)ϕz

)
.

Furthermore, we can take (u1−u2)φ(z) as a test functionwhere the cutoff functionφ depends
only on z, is positive and satisfies φ ≡ 0 on(J cl ).

This in particular leads to

0 = (1 − θ0)
( ∫

Ω0,T

(u1 − u2)t (u1 − u2)φ + (u1 − u2)x (u1 − u2)xφ
)

+ σε0

( ∫

Sl,T
(v1 − v2)tϕ + (v1 − v2)zϕ

)

+ σε0

( ∫

Sr,T
(v1 − v2)t (v1 − v2)φ + (v1 − v2)z(v1 − v2)zφ + (v1 − v2)z(v1 − v2)φz

)

Thus, rewriting the remaining terms, integrating by parts where suitable, taking into account
the equation satisfied by v and the fact that ux = 0 on Jl we are left with

0 = (1 − θ0)
( ∫

Ω0

(u1 − u2)
2φ(t = T ) +

∫

Ω0,T

(u1,x − u2,x )
2φ

)

+ σε0

( ∫

Sr
(v1 − v2)

2φ(t = T ) +
∫

Sr,T
(v1,z − v2,z)

2φ + (v1 − v2)z(v1 − v2)φz

)

respectively

(1 − θ0)
( ∫

Ω0

(u1 − u2)
2φ(t = T ) +

∫

Ω0,T

(u1,x − u2,x )
2φ

)

+ σε0

( ∫

Sr
(v1 − v2)

2φ(t = T ) +
∫

Sr,T
(v1,z − v2,z)

2φ
)

= −σε0

∫

Sr,T
(v1 − v2)z(v1 − v2)φz (5)

Then by a careful inspection of the signs of all the terms in the above equation and by standard
arguments the claimed uniqueness follows for the part (−R, R) × Jl .

More precisely, the terms on the left-hand side are all positive whereas the term on the
right-hand side has no specific sign—could be made even negative (recall the freedom we
have for φ). Thus, both sides have to be equal to zero.
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In a next step, by similar arguments the uniqueness on (−R, R)× Jr and finally by similar
reasonings on the whole domain (−R, R) × (0, H) follows. ��

Remark Alternatively, the assertion of Proposition 6 could be derived by a Gronwall-type
inequality.

Finally, we prove that as for the ε-problem, the solution of the limit problem is bounded
and positive.

Proof of Proposition 7 The claimed property follows immediately from the property that for
all ε the solution uε (respectively vε) is positive and bounded (by the fact that we have strong
convergence in L2 and thus also pointwise convergence almost everywhere—if necessary by
passing to a further subsequence). ��

Remark If one combines the proof of Proposition 7 with the proof of Proposition 3 one can
deduce that the positivity and boundedness hold everywhere.

6 Quantitative results

In the present section we will focus on the three models A, B and M (see Sect. 2.1 for their
definition).

First of all, we look at stationary solutions (also called steady states), i.e., at solutions for
which ∂t u = 0 and ∂tv = 0.

Doing so, one can easily observe that by the conservation of mass

– for model A this stationary solution (u∞, v∞) is given by
{

vl,∞(z) ≡ 1
H

∫
Sl

vl(t = 0) independently of z
u∞(x, z) = vr,∞(z) ≡ 1

|Ω0|
∫
Ω0

u0 independently on x and z

– for models B and M, due to the transition condition the stationary solution (u∞, v∞) is
given by

u∞(x, z) = vl,∞(z) = vr,∞(z) ≡ 1

|Ω0|
∫

Ω0

u0

This already gives a first instance in how far the limit models are different.
A next attempt to investigate or quantify the differences of the various models would be

to freeze the time derivative for one equation and keep the second equation unchanged.
The weak point in this idea is that the transition condition u = v on S would on one hand

lead to a time-dependent function and on the other hand to a time-independent function.
A further instance that actually the different models lead to different behaviors is given

by the following observation.
The classical energy method for v leads to an estimate of the form

||v(·, t)||2L2(S)
+ ||vz ||2L2(0,T ;L2(S))

≤ et
(||u(z, t = 0)||2L2(S)

+ ||ux ||2L2(0,T,L2(S))

)
for all t.

In this latter formulawe can see the influence of the normof ||ux ||L2(0,T ;L2(S)), in particular
whether it vanishes identically or not.

But a more striking difference arises from the following observation.
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– In the case of model A it holds

vl,t − vl,zz = 0 on Sl

with homogeneous Neumann boundary condition.
In this situation one can easily verify that the total amount of “mass”

∫
Sl

vl is constant in
time.
On the right side, Sr , the concentration varies with time since we have a nontrivial source
term ux (unless the initial condition is identically zero).

– In models B and M we have nontrivial source terms on both sides, Sl and Sr . Thus, the
concentrations on both sides vary with time.

Summarized, we see that the additional “interior boundary condition”—in dependence
on the precise configuration of the vertical barriers—may lead to the separation of one side
from the interior region Ω0.

7 Outlook

The obvious question of extending our model to a three-dimensional one as well as more
detailed numerical simulations and even further models is subject to ongoing research.

Of course, it would be possible also to think of other—nonlinear—relations between the
horizontal distance of the obstacles to the outer cylinder σε, the vertical distance between
the “layers” of the horizontal obstacles νε and ε.

One restrictions about the Ansatz is that the thickness of the outer shell σε should have the
same scaling as the prefactor aε. This follows from a simple and straightforward calculation.

In addition to the point mentioned above, the possible interpretation from a biological
point of view is the subject of ongoing research.
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