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1 Introduction and main results

Let us consider the following (stationary) Dirac equation

3
—i > adput +apu + V(x)u = G, (x, u) (1.1)
k=1

forx = (x1, x2, x3) € R3, where 9 = d/dxr,a > 0isaconstant, oy, @z, o3 and B are 4 x 4
Pauli-Dirac matrices:

(1 0 (0 ok .
ﬁ—(o_,), ak—(ako), k=123
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01 0 —i 10
T=\10) 2=\io) 2=\o-1):

This equation arises when one seeks for the standing wave solutions of the nonlinear Dirac
equation (see [25])

with

3
— ihdy =ich Y axdpy —me* By — M)W + Fy (x, ). (1.2)
k=1
Assuming that F(x, emw) = F(x, 1/;_) for all 6 € [0, 27r], a standing wave solution of (1.2)
is a solution of the form ¥ (¢, x) = elhﬂu(x). It is clear that v (¢, x) solves (1.2) if and only
if u(x) solves (1.1) witha = mc/h, V(x) = M(x)/ch + puls/h and G(x, u) = F(x, u)/ch.
For notational convenience, denoting

3
o= (x;,0p,03) and o -V = Zakak,
k=1
we rewrite the Eq. (1.1) as
—ia-Vu+afu+Vx)u = G,(x,u). (Dy)

There are many papers studying the existence and multiplicity of standing wave of the equa-
tions under different assumptions on the potentials V and G, see, [3,8-11,14-18,21,23]
and their references. Recall that, mathematically, the conditions that the potential func-
tions depend periodically on x is used for describing a class of self-interaction of quantum
electrodynamics in, e.g. [1,2,4,5,19,20,24,26] for Schrodinger equations and [3] for Dirac
equations. Note that if the potentials are periodic in x one may also study the existence and
multiplicity of periodic solutions. Naturally, a periodic solution of (Dy) may be referred
as a standing periodic wave of (1.2). In recently paper [12], we have investigated periodic
solutions of (Dy ) in both cases that the nonlinearity G, (x, u) is of superlinear and subcritical
growth as |u| — oo. The case of concave and convex has been researched in the paper [13].

In the present paper, we are interested in the case that G (x, u) is asymptotically quadratic
at 0 and oo and obtain the existence and multiplicity results of periodic solutions.

We make the following periodicity hypothesis on V (x) and G (x, u):

(V) Ve C(R3, R), and V (x) is 1-periodic in x, k = 1, 2, 3.
(Go) G € C'(R? x C*, [0, 00)), and G (x, u) is 1-periodic in x¢, k = 1, 2, 3.

We are looking for periodic solutions of (Dy): u(x 4+ z) = u(x) forany z € 73,
Setting Q = [0, 1] x [0, 1] x [0, 1], if u is a solution of (Dy), its energy will be denoted
by

1
S(u) = / [5(—1'0( -Vu+apu+Vx)u) -u—Gx, u)i| dx, (1.3)
Q
where (here and in the following) by v - w we denote the scalar product in C* of v and w.
In order to state our results, let Ag = —i - V +ap and Ay = Ay + V denote the self-

adjoint operators acting in L2(Q, C*). Let {A j}jez denote the sequence of all eigenvalues of
Ay counted by multiplicity:

S A=Ay <r=0< A =<,
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Periodic solutions of an asymptotically linear Dirac equation 719

and let {e;} ez be the associated sequence of eigenvectors of Ay:
AVej:)‘jej’ |e,/|L2:1’ j::l:l,:liz, (14)
Remark 1.1 We can find out all eigenvalues and the associated eigenfunctions of Ag. Let

7= (ki ko, k3) e N}, x = (x1,x2,x3) € O, zx = kix1 + kaxa + k3xs,

and |z| = ,/kf + k% + k%. Note that

A= (1 —i(0101 + 0202 + 0303)
0= —i(0101 + 020> + 0303) —al

and
_i(alale2nzxi + 028262712)“' + G33362ﬂ1xi) — 2ne2””i W,
(k3 ki — ik . _fal 2mW . .
where W = (k] Viky —ks . Setting D = 2w W —qp ) Onecan verify that if

A # 01s a eigenvalue of the matrix D and v is a eigenvector corresponding to A, then A must
be a eigenvalue of Aq and e>"**'v is a eigenfunction corresponding to A. By [AI — D| = 0
we obtain

h—a)] —27W '

—2aW (A+a)l
A —a) 0 —2mks —2m(k; — ikp)
10 (A —a) —2m(ky +iky) 2mks
T | —2mks —2m(ky —iky) (A +a) 0
—2mw(ky +iky) 2mks 0 A+a)

=0 —a? — 47z =0,
and therefore
A= EVa? +4n?|z)2.
For v = (1, ¢2, €3, ca), in virtue of DvI = Av? we get

2mkscs + 2w (ky — iky)cq = (A — a)cy,
2w (k1 +ikpy)ey — 2wkscy = (A — a)ca,

and so
[V;n = @2nlz|%, 0, (A —a)ks, (A —a) (ki + ik2)),
v =0, 27122, (h — a) (ki — ika), (a — M)ks).
Put
€ =(1,0,0,0),& = (0,1,0,0),& = (0,0, 1,0), & = (0,0,0, 1),
then

oV (x) := X 2|2 28) + (h — a)k3&3 + (h — @) (ki + ik2)&4],

. - L i (1.5)
02 (x) 1= 2T 2|28 + (A — a) (ki — ik2)&3 — (h — a)kaey]

satisty Agp) = rp\”, j =1,2.

We will use the following hypotheses:
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720 Y. Ding, X. Liu

(G1) thereis by > 0 such that and G, (x, u) — bou = o(|u]) as u — 0 uniformly in x € Q;

(Gy) thereis boo > Osatisfying G, (x, u) —boot = o(|u|) as |u| — oo uniformlyinx € Q;

(G3) either (i) by ¢ o (Ay)or(ii) G, (x, u)—bsou isbounded and G (x, u)—%boo|u|2 — 00
as |u| — oo uniformly in x € Q.

Set
G (x,u) == G(x,u) — %b0|u|2, G™®(x,u) == G(x,u) — %boo|u|2,
and define
by :=min[o (Ay) N (by, 00)], by, := max[o(Ay) N (b, boo)].
The first result reads as follows.

Theorem 1.2 Let (V), (Go) and (G1) — (G3) be satisfied and boo > bar. Then

(a) ifGO(x, u) > 0, then (Dy) has at least one nontrivial periodic solution in HY(0Q,CY;
(b) if G is even in u, then (Dy) has at least d(by, bo) pairs of periodic solutions, where
d(bg, bso) denotes the dimensionality of the eigenspace associated to o (Ay) N (bg, bso).

If by = 0, then b(‘)" = A1, we have

Corollary 1.3 Assume that (V), (Go) and (G1) — (G3) hold with bg = 0. If bss > A1, then
(Dvy) has at least one nontrivial periodic solution in HY (0, CH. If G is in addition even in
u, then (Dy) has at least d(0, bxo) pairs of periodic solutions.

If V(x) =0, thatis, Ay = Ay, then the equation (Dy) becomes the following
—ia-Vu+aPfu = G,(x,u). (Do)

We write {1} the sequence of all eigenvalues of A( according to the size of order, not by
multiplicity:

< U < P <pmo=0< pu; < u2 < ...

Let #,,, define the multiplicity of ux, and )»5.“ ©) the eigenvalues such that )»5.” =, j=

| IR
Let N[;] denote the number of z € N3 corresponding to Iz|> = j.For 0 < |z|*> < 10, we
have:

N[O]=N[31=1; N[j1=3, j=1,2,4,6,8;

N[k] =6, k=5,9,10; N[7]=0,

then by Remark 1.1,

wj=+/a?+4G — D% 1 <j <7 w =va*+4kn?, k=28,9,10,

and

Sy = B = 1 B, = 3,7 =2,3,5.7.8; f, = 6,k = 6,9, 10.
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Periodic solutions of an asymptotically linear Dirac equation 721

Accordingly, we see
A0 =y = a, AP = a0 =009 = a2 142,
AU 9 2049 _ /a2 162, Al — .. = 20 — /a2 4 2072,
A =8 0 = Va2 4 24m2, 20 = a8 =0 = Va2 43202,
2 22 g 3emE, A0 == a0 /a2 1 40n2,

By (1.5), we can list the first 10 eigenvalues A; and eigenfunctions e; corresponding to
A; as follows:

AM =Xy =pu; =a with z = (0, 0, 0),
e1=(1,0,0,0), ex=(0, 1, 0, 0);

3=y = o = Va2 + 42 with z = (1,0,0),
e3 = Me¥M 27, 0, 0, uy — a),

es = Ae?™1(0, 27, po —a, 0);

As = Xe = up with z = (0, 1,0),

es = Ae¥ 27, 0, 0, (12 — a)i),

e6 = A1e¥™(0, 27, (a — wa)i, 0);

A7 =Ag = o with z = (0, 0, 1),

e7 = Ae™ (27, 0, po —a, 0),

eg = A1e?™3(0, 27, 0, a — wo);

Mo = 1o = 13 = Va2 + 872 with z = (1, 1, 0),
€9 = Mg T (4 0, (3 —a)(1+1), 0),
e10 = Mg 1IN0, 4, 0, (u3 —a)(1 — i),

1 _ 1

—_— A= —— — ——.
VAr2+(ur—a)? 1672 42(uz—a)?

Now we have a special consequence corresponding to the equation (Dp).

where A| =

Corollary 1.4 Let (Go) and (G1) — (G3) be satisfied with by = 0. Then (Do) has at least
one nontrivial periodic solution in H'(Q, C*), provided bss > a. If moreover G is in even
inu and by, = i for some positive integer k, then (Do) has at least | := 2(8,,, +- -+ f,,)
pairs of periodic solutions.

A more general result can be obtained if (G ) is replaced by

(G/l) there is by € C(Q, [0, 00)) such that by(x) is 1-period with by(x) > O and G, (x, u) —
bo(x)u = o(Jul) as |u| — oo uniformly in x € Q,

(G») is replaced by

(G/z) there is b, € C(Q, (0, 00)) such that b, (x) is 1-period and G, (x, u) — beo (X)u =
o(Jul) as |u| — oo uniformly in x € Q,

and (G3) is replaced by
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722 Y. Ding, X. Liu

(G%) either (1) 0 ¢ o(Ay — boo) or (i) G(x,u) := LG, (x,w)u — G(x,u) > 0 and
G(x, u) — oo as |u| — oo uniformly in x € Q.

Theorem 1.5 Suppose that (V), (Go), (G}) — (G}) are satisfied and g > q0+, where
Joo i= mig bso(x), q(;’ :=min[o (Ay) N (qo, 00)] and qo := maé( bo(x). Then
xXe xXe

(a) if G(x,u) — %qolul2 > 0, then (Dy) has at least one nontrivial periodic solution in
H'(Q,CY;
(b) if G is even in u, then (Dy) has at least d(qo, qoo) pairs of periodic solutions.

This paper is organized as follows. In Sect. 2, we state the variational setting and establish
a deformation theorem and abstract critical point theorems under the Cerami condition ((C).-
condition). The proofs of the main results are given in Sect. 3.

2 Variational setting and abstract critical point theorems

To prove our main results, some preliminaries are first in order.
In what follows by | - |, we denote the usual L9-norm, and (-, -); the usual L2-inner
product. Let

LI(Q):={ue L] (R, CH:u(x+&)=ux)ae., i=1723)
where ¢; = (1,0, 0),@2 =(0,1,0), ez = 0,0,1).Let Ag = —i - V+ap, Ay = Ao+ V
denote the self-adjoint operators on L2(Q, C*) with domain
D(Ay) = D(Ag) = Hy(Q)
={ueH (R CH u(x+é)=ux)ae. ,i=1,723).

Set E := D(|Ay |%) which is a Hilbert space with the inner product and norm, for u =

ZjeZajej and v = Zjezbjej €E,
w,v) =D [hjlaj by + @02 and ful> =D |xjlla;* + |u°]3, 2.1)
J#0 Jj#0

here {e;}jcz are the eigenvectors of Ay.

Then we have an orthogonal decomposition E = E~ @ E® @ ET with E~ := span{e; :
j < 0},ET = span{e; : j > 0}, and EY := ker(Ay). Note that if 0 ¢ o(Ay) then
E% = {0}.

The functional ® defined by (1.3) can be rewritten by

1
du) = 5(||u+||2— llu™1I%) —/QG<x,u>

foru =u" +u®+ut € E. Then ® € C'(E, R) and critical points of @ are solutions of
(Dy).
First we have the following (see [8,11])

Lemma 2.1 E = H'?(Q,C*) with equivalent norms, hence E embeds compactly into
LST(Q) forall s € [1,3). In particular there is a constant as > 0 such that

luls < asllu|| forall ueE. 2.2)
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Periodic solutions of an asymptotically linear Dirac equation 723

We also use the following result, the proof is similar to that of Proposition B.10 in [22].

Lemma 2.2 Assume that

(i) G e C'(Q x C*R), and
(i1) there are ki, ky > 0 such that

1Gu(x, )| < ki +kolul®, V(x,u) e Q x C*,
where 0 < s < 3.

Then
Y(u) = /Q G(x,u) (2.3)

is weakly continuous and ' € C(E, R) is compact.

Recall that a sequence {u;} in E is said to be a (C).-sequence of &, if ®(u;) — ¢
and (1 + [lu; ||)<1>’(uj) — 0 as j — oo. We say that ® satisfies the (C).-condition if any
(C).-sequence possesses a convergent subsequence ([6]).

Let X be a Banach space, and

b i=o, N, B, :={ueX: D) >a}, d’:={ueX: du)<b}.

We first establish a deformation theorem which plays an important role in the multiplicity
for (Dy).

Theorem 2.3 Let ® € C'(X, R) and satisfy the (C).-condition, K. = {u € X : ®(u) = ¢
and ®' (u) = 0}. If ¢ > 0 and O is any neighborhood of K, then there exists an ¢ € (0, &)
and a deformation n € C([0, 1] x X, X) such that

1°n0,u) =uforallu € X.

2°n(t,u) = u forallt € [0, 1] ifu ¢ ®FE.

3°n(t, ) : X — X is homeomorphism fort € [0, 1].

4° O (n(-, u)) is nonincreasing on [0, 1] foru € E.

5° 77(1, Pete \ O) C dE,

6°If K. =0, n(1, ) C dC¢,

7° If ©(u) is even in u, n(t, u) is odd in u.

Proof By the (C).-condition, K. is compact. Set Us = {u € X : d(u, K.) < §}. Choosing
§ suitably small (§ < 1), Us C O. Therefore it suffices to prove 5° with O replaced by Us.
Note that Us = () when K. = (, and so we get 6° instead.

Let M > 0 such that |lul| < M for all u € Us.

One can easy to verify that there are € > 0 and & > 0 such that

(I + [lulD]|®’ ()| > «, forall u e dDZJ: \ Usya. 24)
We may assume that
A 38 N T
0<é<———minj&a”, —¢. 2.5)
8(1+ M) 4

Let X := {ueX|®(u)#0and V : X — Xbea pseudo gradient such that V' is odd
if @ is even (see [22]). Choosing any ¢ € (0, &), define

, ifs > 1,

h(s) = {

1, if0<s<l,
1
N
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724 Y. Ding, X. Liu

Fu) = du, X \ Cbité) ) = d(u, Ussg)

d(u, X\ @) + d(u, @¢Ff) d(u, Usyg) +d(u, X \ Usa)”

Then
fl@ffi - gIX\U5/4 = 17 f|X\¢fir§ = g|U5/3 =0.

Let

_ [ = f@g@h(@ + [ulDIVa@ DA + [ulD?V @), ueX,

W) = .
0, otherwise.

It is easy to verify that
W)l < 1+ |jull forall u. (2.6)

Then by construction, W is locally Lipschitz continuous on X and W is odd if & is even.
Now we consider the Cauchy problem:
dn

m = W), n0,u) = u. 2.7

By virtue of the locally Lipschitz continuity of W and (2.6), the basic existence uniqueness
theorem for ordinary differentia equations implies that for each # € X, (2.7) has a unique
solution n (¢, u) defined for ¢ € [0, 00),and n € C([0, 1] x X, X). (2.7) implies that 1° holds.
Since f(u) =0on X \ qué’ so 2° is true. The semigroup property for solutions of (2.7)
gives 3°. The oddness of W when @ is even yields 7°.

IfWw)#0, uce X so V (u) is defined as is V (n(¢, u)) and

do(n(t, )
y = (@ (g, u)). Wt w)))
= —FMgA((1 + InDIVIDA + 2@ ), vipy Y
< —FmegmhL+ InDIV A+ I mII* < 0.

It follows that 4° holds.

Finally, we verify (1, ®T¢\ Us) C ®°¢. Letu € &%\ U, then ®(n(t,u)) <c+¢
by 4° and 1°. We need only prove that there exists 7y € [0, 1] such that ® (5 (7, u)) < c — &,
then 4° gives ®(n(1, u)) < c — .

If otherwise, then ®((t, u)) > ¢ — ¢ for all ¢ € [0, 1], and thus (¢, u) € ®5¢, which
implies

D0, u)) — d(nt, u) <2 <2, vVt €[0,1]. 2.9

If n(t,u) € X\ Usy for all t € [0, 1], we see n(t,u) € @;fg \ Us/2. This shows

S, u)) =g, u)) = 1 and by (2.4),

(1 + (@, W) IDIID (2, )| = &, Vi €0, 1]. (2.10)
This yields

do(y(r, ) 2
o = A DIV DA+ Il (@' (), V() o

< —h(@+ DIV I+ InD @' 12 Ve € [0, 1].
If (1 + DIV @Il < 1, then A((1 + [[nIDIIV )] = 1. It follows from (2.10) and (2.11)

that db
(n(t, u)) < ol

™ (2.12)

@ Springer



Periodic solutions of an asymptotically linear Dirac equation 725

If L+ DIV Gl > 1, then

R((L+ DIV ID = [+ DIV eI~
s0 (2.11) and the property of V (-) imply

A (n(t, u)) [nwmnT 1
— 0 < 1% —-. 2.13
o < =T+ 1nbIvml VDl < 7 (2.13)
Consequently, by (2.12) and (2.13) we have
W < —min [oﬂ, H forall 7 € [0, 1]. 2.14)

Integrating (2.14) and combing the result with (2.9) gives
28 > ®(n(0,u)) — P(n(1, u))

_/1_d<I>(n(t,u)) S [a2 1] (2.15)
“Jo dr = T4

this is contrary to (2.5). Consequently, we infer that there is 7 € [0, 1] such that n(f, u) €
Usj>. Obviously, 7 > 0 since n(0, u) = u ¢ Us. The continuity of (7, u) guarantees that
there are s1, 52 € [0, 1] with 51 # s2 such that n(sy,u) € 0Uss4, n(sy,u) € dUs and
n(t,u) € Us \ Usys forall t € (s1,52) ort € (s, 51), where B denotes the closure of B.
This yields

lmCs1, u) — nls2, w)ll = 38/4. (2.16)

By (2.6) we see |W(u)|| < 1 + M for all u € Uy, and so
lnCs2, u) —nlsi, w)ll < (1 + M)ls2 — s1]
which together with (2.16) shows

36

_ >
ls2 —s1| > N,

We may assume that s; < s7.
On the other hand, similarly to (2.15) we get that

28 = d(n(s1, u)) — P(n(s2, u))
By T
) dr

1
> min {o? 1 (s2 — s1)
> s B2
38 . 5 1
> ———minja”, — 1.
41+ M) 4
This, however, leads to a contradiction. The proof is complete. O

Remark 2.4 In paper [12] (or [13]), we established a deformation theorem under the (C).-
condition. However, it is difficult to use for the multiplicity. Therefore, Theorem 2.3 improves
the corresponding result in [12].

In order to study the functional @, we need certain abstract critical point theorems. In the
following, we suppose that E is a real Hilbert space with E = X @ Y.
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726 Y. Ding, X. Liu

Theorem 2.5 Lete € X \ {0} and Q@ = {u =se+ v : |lu]| < R,s > 0,v € Y}. Suppose
that

(®)) ® e CLHE,R), satisfies the (C).-condition for any ¢ € R;
(D) thereisar € (0, R) such that p := inf ®(X N dB,) > w := sup P(IQ), where IQ
refers to the boundary of Q2 relative to spanfe} ® Y, and B, = {u € E : |u| < r}.

Then ® has a critical value ¢ > p, with

c = inf sup ®(h(u)),

€l yeQ

here
I'={heC(E,E):hlyg =id, ®(h(u)) < ®(u) foru e Q}. 2.17)

Proof Put § = X N 9B,. We first show that for any 7 € ', h(2) N § # @. We may assume
llell = 1. Chose ¢ € Y with |le|| = 1, and write F := span{e, ¢}, QF := F N Q. Let
Qr, dQr denote the closure and bound of Q in F, respectively, P the project of E onto Y.
Foru € Qp,t € [0, 1], define

H(t,u) = t[||(id — PYh(u)lle + Ph(u)] + (1 — )u.

Then H : [0,1] x QF — E is continuous. Obviously H is a compact operator. Since
hlagg =1id, ifu € 0Qp,

H(t,u) =t[||lu — Pulle + Pul+ (1 — t)u = u,

ie., H(t, )|sq, =idfort € [0, 1]. In particular H (¢, u) # re fort € [0, 1], u € 0QF. By
the property of Brouwer degree, we have

deg(H(1, ), QF,re) =deg(H(0, -), QF, re) = deg(id, QF,re) =1

which implies that there exists u € Q2 such that H(1,u) = re € S. We find Ph(u) =
0, [h(u)|| = r,ie. h(u) € S, and therefore ¢ > p.
Next we prove there is a sequence {u;} in €2 such that

A+ [lu; IDN® | — 0 for j — oo. (2.18)
Indeed otherwise there exist og > 0 and g9 > O such that
1+ ulD)® )] > «o forallu € QN &

c—eo°

Sete = min{%(,o—a)), go}. Thereisane € (0, &) andn € C([0, 1]x E, E) given by Theorem
2.3 such that 1° — 4° and 6° are satisfied. Chose & € I' such that sup ®(h(R2)) < ¢ + e.
Consequently

h(Q) C o°F, (2.19)

Let g(u) :=n(1, h(u)), then g € C(E, E). It follows from 3° and 1° that
Q(gu)) = D1, h(u) = (O, h(u)) = P(h(u)) < )
forall u € Q. Foru € 92, (¥,) shows
Pu)y<w<p—e<c—et=<c-—c¢
which, by 2°, implies 1 (1, u) = u, and so

gw) =n,hw) =n(,u) =u.
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Periodic solutions of an asymptotically linear Dirac equation 727

Thus g € I'. (2.19) and 6° yield g(2) = n(1, h(2)) C P~ which leads to the contradiction
c <supP(g(2) <c—e.

Now we find that there is a sequence {u} in €2 satisfying (2.18). Since P satisfies (P1)
(the (C)-condition), there exists a convergent subsequence {u j, } of {u;} such that u j, — u.
The conclusion follows by & € CUE, E). ]

Remark 2.6 In [[22], Theorem 5.3], under the conditions that Y is finite dimensional and ®
satisfies the (P S)-condition, the same result was proved. Clearly, the conditions of Theorem
2.5 are weaker than that of Theorem 5.3.

Next, we consider a kind of pseudo-index (see [7]). Let ¥ denote the class of closed
subsets of £ symmetric with respect to the origin, and y : ¥ — N U {oo} the Z, genus map
(see [22]). Let ® € C(E,R), J = (0, 00),

H=1{h € C(E, E): hisahomeomorphism and is odd},

My={geHr: glo-1myy = id and ®(g(u)) < ®(u) foru € E},

and A, = {h € My : h(B1Y) C ®~'(J)UB,Y}.
Now we define the pseudo-index (X, i*) relative to M ; for the genus y as follows

i*(A) = inf y(ANh(SIY)).
helAy
One can verify the following

Lemma 2.7 Let ¥* = 3, then (X*, i) satisfies all properties for pseudo-index ([7]):

(Pl) ¥*C X, A\BeX*andg(A) e X* forall Ae X*, Be X andg € My;
(P2) A C B impliesi*(A) <i*(B)forall A, B € ¥*;

(P3) i*(A\ B) > i*(A) —y(B) forall A € ¥* and B € %;

(P4) i*(g(A)) = i*(A) forall A € ¥* and g € M.

Now, we give a abstract critical point theorem as follows.

Theorem 2.8 Assume that ® is even and satisfies (P1). If

(®3) there exists r > 0 with p := inf ®(S,Y) > ®(0) = 0, where S, := 0B,, AB =
ANB;

(D4) there exists a finite dimensional subspace Yo C Y and R > r such that for E, =
X &Yy, My, =supP(E,) < +ooand o :=supP(E, \ Br) < p,

then ® possesses at least m distinct pairs of critical points, where m = dim Y.

Proof Let
Sk={AeX:i*"(A) >k}, k=12,...,m.
Define
cy = inf sup®(u), k=1,2,...,m. (2.20)
A€Zk yeA

We first show Xy # . Set A= BRrE,. (®4) implies o)) c(E \ E4) U Bg, and hence
ADYoN (P N (J)UBRY) D Yo Nh(B1Y)
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for each h € A, which yields
ANK(S1Y) D Yo Nh(S1Y) D d(Yo Nh(BiY)),
and we get
Y(ANK(S1Y) = y(@(Yo N h(B1Y))) = m.
Consequently, X # @, and ¢, < M, by (P4). Forany A € ¥, by h :=rid € A, one has
Y(ANSY) = y(ANK(SY) = i*(A) = k
which yields ¢y > p by (®3). Noting that ¥1 D ¥, D --- D %, we have
o<p=c=c=<--=cy <M.

It is obvious that K. := {u € X : ®(u) = c and ®'(u) = 0} € ¥, and K, is compact by the
(C).-condition.

Finally, we claim:
(PY) If1<j, j+l<m,andcj=---=cjpy=c,theny(K;) =1+ 1.

Ify(K.) <l thenthereisad > Osuchthat y(Us(K,.)) = y(K.) < [. Invoking Theorem
2.3 with O = Us(K,) and & = 257 there are ¢ € (0, &) and y € C([0, 1] x E, E) such that
n (1, -) satisfies the properties 1° — 7° and

n(1, dTEN\ O) C P7E, 2.21)
Choose A € % ;47 such that sup CID(A) < ¢ + &, and hence
A C ©°te, (2.22)
By (P3) one has -
F(ANO) = i"(A) —y(O) = j+I—-1=. (2.23)

Using 3° and 7° we get (1, ) € H. 4° gives ®(n(1,u)) < ®(u) for all u € E. Since
o < c—eg wehave 'R\ J) C E\ DFE, and 2° implies n(1, )|p-1(ry ;) = id.

Therefore n(1,-) € My. Set A, := n(1, A \ O) € X. It follows from (P4) and (2.23) that

i*(Ay) =i* (n(l,A\O)) > i* (A\O) = j,

and thus A, € X;. Combing with (2.21), (2.22) and (2.20) we see

c<supd(Ay) <c—e<c,

a contradiction. Therefore, the conclusion (P*) is valid and the proof is complete. O

3 The proof of the main results
Throughout this section, we suppose that (V') and (Gy) are satisfied.
Observe that, (G) implies that for any ¢ > 0 there is R, > 0 such that
|G, (x, u) — boou| < elu| whenever |u| > R, 3.1
hence

1Gu(x, i — boolul®| < |Gy (x, u) — booullu| < elul*
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or
(boo — &)|u* < Gu(x, u)u < (boo + €)|ul*> forall [u| > R,.

Fixed s9 € (0, 1), in virtue of G(x, u) > 0 we get

1
G(x,u) = G(x,sou)+/ G,(x,su)-uds

50

v

1
1
/qu(x,su)suds
50 S

0
1
> 5 (boo — &)1 —sp)lul?

for all |u| > %Rg, and so

1
G, u) = S (boo = &)(1 = so)ul> = Cy, forall (x, u). (3.2)

First, we have the following lemma.

Lemma 3.1 Suppose that (Gy) and (G2) hold and {u;} is a bounded (C).-sequence of
®. Then there exists a critical point u of ® such that ®(u) = c and after passing to a
subsequence, u; — u strongly in E.

Proof By Lemma 2.1, without loss of generality, we may assume that
up, = uin E and u, — uin L5 (Q) for s € [1, 3). (3.3)
Plainly, u is a critical point of ®. (G1) and (G3) yield that
|Gy(x,u)] < Cplu] for all (x, u) 3.4)

which shows that v/ is continuous and compact by Lemma 2.2, where ¥ is defined by
(2.3). It follows from the representation of @', together with (3.3), the facts ®’(u) = 0 and
®'(u,) — 0, and the compactness of ¥/, that
gy = ut 1P = (@ (un) = @' @), uy —u™)
+( (up) — ¥ @), u —ut) - 0 as n — oo.
Similarly, ||u,, —u~|| — 0 asn — oo. Itis clear that {u(]).} has a convergent subsequence
since EV is finite dimensional. We have thus proved the lemma. O

Lemma 3.2 If by, > A and (G3) holds, then any (C).-sequence of ® is bounded.

Proof Let {u;} C E be such that ®(u;) — c and (1 + |lu;])P'(u;) — 0.
Defining

ET: ueE:u:Za.,ej ,

A.j>boc

EY = {ueE: u= Z ajejr,
Aj=boo

E™ = {ueE:uz > ajej+u’u’ e EO,
)»j<booy)\j3£0

@ Springer



730 Y. Ding, X. Liu

wehave E = E* @ EO @ E~ and write u = it +ii® + i~ for u € E corresponding to this
decomposition. Clearly, E0 = {0} if beo ¢ 0 (Ay).
Let P* : E — E¥ be the orthogonal projections. One can see
(@' (w), &) = |lia*])* — boolit*|5 — / GY(x, uyit,
0
(®'(w),a”") = (PTu,a™) — (P u, i)
—boolii™ |3 —/ G (x, u)ii ™. 3.5)
Qo

Foru = ZjeZ,j;&Oajej +u® € E u° € EY), we have
Z ajej, iU = Z ajej—l—uo.
)\.j>boo }\j<boo,)nj7é0
By (2.1) one finds

~4 12
l@t 1 = bool@™ 3= D Ajlajl* —boo D lajl?

)\j >boo )»_ >boo

bso
> (1= 22 ) paty?,
A

where A’ := min(o (Ay) N (beo, 00)). Since boo > A1, 0(Ay) N (0, bs) # @. Setting
A" :=max(co(Ay) N (0, b)), we obtain

(3.6)

(PYu,ii™) — (P u, i) — boolii ™ |3

D jlailP = D nllaiP —ba D laj? = boolu’f3

0<2j<boo 2j<0 L j<boo,hj7#0
<1amI? =2 20 ByllasP = 50 20 Al = (4 boo)lu’,
2;<0 0<hj <boo
and therefore
— (PYu, ™) + (P u, i) 4 boolit ™13 = (w — D~ ||%, (3.7)

here w := min{1 + b, 2, lj\—%?}. For § > 0 small, it follows from (3.1) that
|G (x, w)| < 8lu| + Cs, forall (x,u). (3.9)

Putting u; = ﬁj + ﬁ; + L?(}, by (3.5) we know

11> — Oo|ﬁ]+|§=(q>/(uj),ﬁj)+/ G (x, up)iy,
—(PTuj, ;) + (P uj, ;) + beolit |3 (3.9)
= —(d)’(uj),ﬂ;)—/QGZO(x,u.,-)ﬁJT.
(3.6)~(3.9) and (2.2) yield

Ellaf +a; I? < 19" wplllaf + i |

. . _ . (3.10)
+8C lujMlat + ;| + Cllaf + iy |
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with & = min{l — %2, w — 1}.

If (i) of (G3) holds, then u; = zzj + ;. (3.10) implies that
Ellujll < 19" (uj)|l + 8C |luj|l + Cs,

and so {u} is bounded.
Next let (ii) of (G3) be satisfied. (3.6), (3.7) and (3.9) yield that {ﬁ}r + ﬁ;} is bounded.

We claim that {ﬁg?} is bounded.
Assume by contradiction that ||ﬂ(,).|| — 00 as j — 00. Since EV is finite dimensional, we
have: along a subsequence, there exists Qg C Q satistying | Qo| > 0 such that |ﬁ(} (x)] = o0

as j — oo uniformly in x € Qg. Here, we write |W| for the Lebesgue measure of W C R3.
It follows from the hypotheses that G*°(x, 12(]).) — 00 as j — oo uniformly in x € Qop, and
thus :

G®(x,uj) = G™(x,i)) +/O GX(x, s(uj —aN) @] +i;)ds G
> G™(x, i) — Killii] +i; || - oo

as j — oo uniformly in x € Qo.
By (3.2) and G®(x, u) — o0 as |u| — oo we obtain that there exists mo > 0 such that

G®(x,u) > —mg forall (x,u). (3.12)
Noting that
a1 = ™ 1> = boolul3
=@t 17+ D AjlajlP = D Ihjllal = beoli™ + i I3,
0<}\j<boo )\,j<0
we get by (2.2)
12 = a1 = boolul3| < (1 + asboo) (11 + i |1%). (3.13)

On account of (3.13), (3.12) and (3.11) we see that

1 -
D (uj)| = ‘f<||u7||2—||u, ||2—boo|u,»|%>—/ G™®(x, uj)
2 0
1 - .
> ‘/ G®(x, up)| = = (1 + azboo) (T 1> + 1 I17)
0 2
] R _1 ~+2 ~—12
2 | 6% 0wy =m0 = 501+ axboo) (]I + 1717 — o0
0
as j — 00, a contradiction. Consequently {x?} is bounded and the proof is complete. O
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We need to introduce another orthogonal decomposition: E = ET® E® E~, where

Et:=JueE:u= ) ajejt.
Aj>bo

EO=JucE:u= Zajej , (3.14)
hj=bo

E-={uekE:u= Z ajei,--l-uo,quEO s
Aj<bo,;j#0

One can verify that there is &y € (0, 1) such that

@t = bola™ 13 = Sollat )%,

(PYu,a™) = (P7u,i™) — bola™ |5 < —&lla”||> (319
forany u = 4+ 4+ 2% 4+ 4~ € E, the proof is similar to that of (3.6) and (3.7).

Lemmg 3.3 Suppose that (G1) qnd (G») hold, then there exist r > 0 and p > 0 such that
inf ®(E* N B,) > 0 and inf ®(ET N 3B,) > p.

Proof Choosing g € (2, 3), we have that, for any ¢ > 0, there is C, > 0 such that

GOCx,u) < elul> + Celul?, forall (x,u).

This implies
X 1 X X
d@at) = E(uu*nz—bowﬂ%)—/ GO(x, ™)
[¢)
1 X X
> SEllatI® — eCllat|? = CyCe |
via (3.15) foru € E +, which follows that the conclusion is valid. ]

Lemma 3.4 Let (G2) be satisfied. If boy > b7, then for any n € N with by, = Ay, there
exists R,, > r such that sup ®(E, \ Bg,) < 0and sup ®(E,) < 0o, where r is as in Lemma
33 E, =E  ®E° @ spanieq, ..., ep}.

Proof Tt will suffice to show that foru € E,

O(u) > —o0 as |ju|| — oo. (3.16)

Choose s € (O, V1= Z—i) in (3.2). Noting that u™ = Z?:l sjej foru € E,, by (3.2), for
P~
&= 5(bxo 17s§)’ we find
20 (u) = [luTl* — [lu"||? —2/ G(x,u)
0 (3.17)
< Nl = u11* = ao(ut 13 + 1u°3 + [u™[3) + 2Cs,,

where o := (boo — &)(1 — s3) > bg,. Since

n —
2 2 »_a—b 2
aolu 3 = utI? = (a0 = An) D Isjl > ==t
=1
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by (3.17) we get

g — b _
20 (u) < —k—l“’nu*n2 — Co(llu™ 12 + 14°)1) + 2Cy,
< —Cllull® +2C,
which implies that (3.16) is valid and sup ®(E,) < oo. O

As a consequence, we have

Lemma 3.5 Under the conditions of Lemma 3.4, ifGO(x, u) > 0, then there is Ry > r such
that sup ®(902) < 0, where

Qi={u=0a +i"+sen:4- +i°c E-®E® s >0,|ul| < Ro}

with Ay e, = b(')"em, and 0S2 refers to the boundary of 2 relative to span{e,,} ® E- @ E°.

Proof Since E~ ® E° @ Rte,, C E,y and A, = bf < by, by Lemma 3.4 we find that
®(u) < 0foru =i~ + 4% + se,, with |u|]| = Rg and s > 0 when Ry > r large.
Letu = i~ + 4° with [[u|| < Ro. By G°(x, u) > 0 and (3.15) one has

20w) = (PTu,ii7) — (P u, i) —b0|fr|§—2/ G(x, u)
0

IA

—golla |2 —2/ GO u) <0
0

which yields that the result is valid. O
Now, with the above arguments, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 (Existence) Let us verify the conditions of Theorem 2.5. Let X =
E+, Y=FE @ EO, r > 0 be from Lemma 3.3. Lemma 3.1 and 3.2 imply that (®1) is true.
Lemma 3.3 yields inf ®(X N 9B,) > p, and Lemma 3.5 gives ®|3q < og for og € (0, p).
Therefore (®;) holds. It follows from Theorem 2.5 that & possesses a critical value ¢ > p,
with
¢ = inf sup ®(h(l, u)),
hel' ,eq

where I is defined as (2.17).

Next, we proceed to prove the multiplicity. Since G is even in u, ® is even. Using
Lemma 3.3 we know that the condition (®3) holds with X = E-®oY'andY = ET.
Let span{e,, ..., e,} be the eigenspace associated to o (Ay) N (b, bxo), and A; the eigen-
value corresponding to e; (i.e., Aye; = Aje;), j = m,...,n, then b(J)r = Am, by = Ay
and d(by, boo) = n — m. It follow from Lemma 3.4 that & satisfies (dy4) with Yy =
span{e;, ..., en}, R = R,, My = M, and o € (0, p). Therefore, ® has at least n — m
pairs of nontrivial critical points by Theorem 2.8. O

We are now in a position to give the proof of Theorem 1.5.

Proof The main difference to the proof of Theorem 1.2 lies in the boundedness of the (C)c-
sequences.

Claim 1. Any (C)c-sequence is bounded.

Let {u;} C E be such that

D) —c, 1+ ||uj||)<I>/(uj) — 0as j — oo.
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We then have |
/Qf}(x, uj)=>du;) — Efb/(u.,-) -uj < Cop. (3.18)

Assume by contradiction that [u ;|| — oo. Then the normalized sequence v; = u;/|u;||
satisfies (up to a subsequence) v; — v in E. Lemma 2.1 guarantees v; — v in L%.(Q) for
s €[1,3)and |vj|; < a, forall s € [1,3]. We write ii; = u; + u?, vj = v; + v;r. Then

. Gu(x,uj)(i —v)vjl
q>’(u,-)(uj—uj)=||uj||2(||vj||2—/Q : |u]4| T )
J

and therefore

Gu(x,uj)(wh — )yl
0(1)=||5.,<||2—/Q d Iuj-l AAC (3.19)
J

We distinguish the two cases: v = 0 or v # 0.
let v = 0. (G)) and (G%) yield that (3.4) is true, this implies

|Gu(xyuj)| + - 2
B Bt — o7 oyl < Crlvy
0 uj

which jointly with (3.19) shows ||f)j||2 — 0,andso |U]p — 0. |vj]o — 0yields |v?|2 — 0.
We obtain 1 = [lv;|| = [|v;]l + |v5.)|2 — 0, a contradiction.
Assume v # 0. First let (i) of (G3) hold. Since [u;(x)| = |v;(x)] |luj|l — oo, by (3.4)

and Lebesgue dominated convergence theorem we obtain

/7Gu(x,uj)ngo —>/boo(x)v¢’
0 lua ] 0

for any ¢ € C*°[Q, C*], hence Ay v = bsov, which contradicts 0 ¢ 0(Ay — bxo).
Suppose that (i) of (G3) is satisfied. v; — v in L%.(Q) guarantees (up to a subsequence)
vj(x) — v(x) a.e. on Q. Since v # 0, there exists Q¢ C Q with |Qg| > 0 such that

v;j(x) = v(x) as j — oo uniformly on Qg

and |v;(x)| = o > O for large j. Observe that |u;(x)| = |luj||lvx)| = eollu;|| — oo for
x € Qo. By (ii) of (G3) we have

/ é(x, uj) — 00,
Qo

which contradicts (3.18).
Next we have
Claim 2. The conclusions of Lemmas 3.3-3.5 are true where (G ) and (G») are replaced
by (G}) and (GY%) respectively, and by is replaced by g in (3.14).
Since (3.2) and (3.4) are satisfied, where b is replaced by g, one can prove as before.
Finally, repeating the arguments of the proof of Theorem 1.2, we obtain the desired results.
O
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