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Abstract Using the variationalmethod, we investigate periodic solutions of aDirac equation
with asymptotically nonlinearity. The variational setting is established and the existence and
multiplicity of periodic solutions are obtained.
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1 Introduction and main results

Let us consider the following (stationary) Dirac equation

− i
3∑

k=1

αk∂ku + aβu + V (x)u = Gu(x, u) (1.1)

for x = (x1, x2, x3) ∈ R
3, where ∂k = ∂/∂xk, a > 0 is a constant, α1, α2, α3 and β are 4×4

Pauli-Dirac matrices:

β =
(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3
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with

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

This equation arises when one seeks for the standing wave solutions of the nonlinear Dirac
equation (see [25])

− i h̄∂tψ = ich̄
3∑

k=1

αk∂kψ − mc2βψ − M(x)ψ + Fψ(x, ψ). (1.2)

Assuming that F(x, eiθψ) = F(x, ψ) for all θ ∈ [0, 2π], a standing wave solution of (1.2)
is a solution of the form ψ(t, x) = e

iμt
h̄ u(x). It is clear that ψ(t, x) solves (1.2) if and only

if u(x) solves (1.1) with a = mc/h̄, V (x) = M(x)/ch̄ +μI4/h̄ and G(x, u) = F(x, u)/ch̄.
For notational convenience, denoting

α = (α1, α2, α3) and α · ∇ =
3∑

k=1

αk∂k,

we rewrite the Eq. (1.1) as

− iα · ∇u + aβu + V (x)u = Gu(x, u). (DV )

There are many papers studying the existence and multiplicity of standing wave of the equa-
tions under different assumptions on the potentials V and G, see, [3,8–11,14–18,21,23]
and their references. Recall that, mathematically, the conditions that the potential func-
tions depend periodically on x is used for describing a class of self-interaction of quantum
electrodynamics in, e.g. [1,2,4,5,19,20,24,26] for Schrödinger equations and [3] for Dirac
equations. Note that if the potentials are periodic in x one may also study the existence and
multiplicity of periodic solutions. Naturally, a periodic solution of (DV ) may be referred
as a standing periodic wave of (1.2). In recently paper [12], we have investigated periodic
solutions of (DV ) in both cases that the nonlinearityGu(x, u) is of superlinear and subcritical
growth as |u| → ∞. The case of concave and convex has been researched in the paper [13].

In the present paper, we are interested in the case that G(x, u) is asymptotically quadratic
at 0 and ∞ and obtain the existence and multiplicity results of periodic solutions.

We make the following periodicity hypothesis on V (x) and G(x, u):

(V ) V ∈ C(R3,R), and V (x) is 1-periodic in xk, k = 1, 2, 3.
(G0) G ∈ C1(R3 × C

4, [0,∞)), and G(x, u) is 1-periodic in xk, k = 1, 2, 3.

We are looking for periodic solutions of (DV ): u(x + z) = u(x) for any z ∈ Z
3.

Setting Q = [0, 1] × [0, 1] × [0, 1], if u is a solution of (DV ), its energy will be denoted
by

	(u) =
∫

Q

[
1

2
(−iα · ∇u + aβu + V (x)u) · u − G(x, u)

]
dx, (1.3)

where (here and in the following) by v · w we denote the scalar product in C
4 of v and w.

In order to state our results, let A0 = −iα · ∇ + aβ and AV = A0 + V denote the self-
adjoint operators acting in L2(Q,C4). Let {λ j } j∈Z denote the sequence of all eigenvalues of
AV counted by multiplicity:

. . . ≤ λ−2 ≤ λ−1 < λ0 = 0 < λ1 ≤ λ2 ≤ . . . ,
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Periodic solutions of an asymptotically linear Dirac equation 719

and let {e j } j∈Z be the associated sequence of eigenvectors of AV :

AV e j = λ j e j , |e j |L2 = 1, j = ±1,±2, . . . . (1.4)

Remark 1.1 We can find out all eigenvalues and the associated eigenfunctions of A0. Let

z = (k1, k2, k3) ∈ N
3, x = (x1, x2, x3) ∈ Q, zx = k1x1 + k2x2 + k3x3,

and |z| =
√
k21 + k22 + k23 . Note that

A0 =
(
aI −i(σ1∂1 + σ2∂2 + σ3∂3)

−i(σ1∂1 + σ2∂2 + σ3∂3) −aI

)

and

−i(σ1∂1e
2π zxi + σ2∂2e

2π zxi + σ3∂3e
2π zxi ) = 2πe2π zxiW,

where W =
(
k3 k1 − ik2
k1 + ik2 −k3

)
. Setting D =

(
aI 2πW
2πW −aI

)
, one can verify that if

λ �= 0 is a eigenvalue of the matrix D and v is a eigenvector corresponding to λ, then λ must
be a eigenvalue of A0 and e2π zxiv is a eigenfunction corresponding to λ. By |λI − D| = 0
we obtain

∣∣∣∣
(λ − a)I −2πW
−2πW (λ + a)I

∣∣∣∣

=

∣∣∣∣∣∣∣∣

(λ − a) 0 −2πk3 −2π(k1 − ik2)
0 (λ − a) −2π(k1 + ik2) 2πk3
−2πk3 −2π(k1 − ik2) (λ + a) 0
−2π(k1 + ik2) 2πk3 0 (λ + a)

∣∣∣∣∣∣∣∣

= (λ2 − a2 − 4π2|z|2)2 = 0,

and therefore

λ = ±
√
a2 + 4π2|z|2.

For v = (c1, c2, c3, c4), in virtue of DvT = λvT we get
{
2πk3c3 + 2π(k1 − ik2)c4 = (λ − a)c1,
2π(k1 + ik2)c3 − 2πk3c4 = (λ − a)c2,

and so
{
v(1)
λ = (2π |z|2, 0, (λ − a)k3, (λ − a)(k1 + ik2)),

v(2)
λ = (0, 2π |z|2, (λ − a)(k1 − ik2), (a − λ)k3).

Put

ē1 = (1, 0, 0, 0), ē2 = (0, 1, 0, 0), ē3 = (0, 0, 1, 0), ē4 = (0, 0, 0, 1),

then
ϕ

(1)
λ (x) := e2π i zx [2π |z|2ē1 + (λ − a)k3ē3 + (λ − a)(k1 + ik2)ē4],

ϕ
(2)
λ (x) := e2π i zx [2π |z|2ē2 + (λ − a)(k1 − ik2)ē3 − (λ − a)k3ē4] (1.5)

satisfy A0ϕ
( j)
λ = λϕ

( j)
λ , j = 1, 2.

We will use the following hypotheses:
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720 Y. Ding, X. Liu

(G1) there is b0 ≥ 0 such that and Gu(x, u) − b0u = o(|u|) as u → 0 uniformly in x ∈ Q;
(G2) there is b∞ > 0 satisfyingGu(x, u)−b∞u = o(|u|) as |u| → ∞ uniformly in x ∈ Q;
(G3) either (i)b∞ /∈ σ(AV )or (ii)Gu(x, u)−b∞u is bounded andG(x, u)− 1

2b∞|u|2 → ∞
as |u| → ∞ uniformly in x ∈ Q.

Set

G0(x, u) := G(x, u) − 1

2
b0|u|2, G∞(x, u) := G(x, u) − 1

2
b∞|u|2,

and define

b+
0 := min[σ(AV ) ∩ (b0,∞)], b−∞ := max[σ(AV ) ∩ (b0, b∞)].

The first result reads as follows.

Theorem 1.2 Let (V ), (G0) and (G1) − (G3) be satisfied and b∞ > b+
0 . Then

(a) if G0(x, u) ≥ 0, then (DV ) has at least one nontrivial periodic solution in H1(Q,C4);
(b) if G is even in u, then (DV ) has at least d(b0, b∞) pairs of periodic solutions, where

d(b0, b∞) denotes the dimensionality of the eigenspace associated to σ(AV )∩ (b0, b∞).

If b0 ≡ 0, then b+
0 = λ1, we have

Corollary 1.3 Assume that (V ), (G0) and (G1) − (G3) hold with b0 = 0. If b∞ > λ1, then
(DV ) has at least one nontrivial periodic solution in H1(Q,C4). If G is in addition even in
u, then (DV ) has at least d(0, b∞) pairs of periodic solutions.

If V (x) ≡ 0, that is, AV = A0, then the equation (DV ) becomes the following

− iα · ∇u + aβu = Gu(x, u). (D0)

We write {μ j } the sequence of all eigenvalues of A0 according to the size of order, not by
multiplicity:

... < μ−2 < μ−1 < μ0 = 0 < μ1 < μ2 < ....

Let �μk define the multiplicity of μk , and λ
(μk )
j the eigenvalues such that λ

(μk )
j = μk, j =

1, . . . , �μk .
Let N [ j] denote the number of z ∈ N

3 corresponding to |z|2 = j . For 0 ≤ |z|2 ≤ 10, we
have:

N [0] = N [3] = 1; N [ j] = 3, j = 1, 2, 4, 6, 8;

N [k] = 6, k = 5, 9, 10; N [7] = 0,

then by Remark 1.1,

μ j =
√
a2 + 4( j − 1)π2, 1 ≤ j ≤ 7; μk =

√
a2 + 4kπ2, k = 8, 9, 10,

and

�μ1 = �μ4 = 1; �μ j = 3, j = 2, 3, 5, 7, 8; �μk = 6, k = 6, 9, 10.
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Periodic solutions of an asymptotically linear Dirac equation 721

Accordingly, we see

λ
(μ1)
1 = μ1 = a, λ

(μ2)
1 = λ

(μ2)
2 = λ

(μ2)
3 =

√
a2 + 4π2,

λ
(μ3)
1 = λ

(μ3)
2 = λ

(μ3)
3 =

√
a2 + 8π2, λ

(μ4)
8 =

√
a2 + 12π2,

λ
(μ5)
1 = λ

(μ5)
2 = λ

(μ5)
3 =

√
a2 + 16π2, λ

(μ6)
1 = · · · = λ

(μ6)
6 =

√
a2 + 20π2,

λ
(μ7)
1 = λ

(μ7)
2 = λ

(μ7)
3 =

√
a2 + 24π2, λ

(μ8)
1 = λ

(μ8)
2 = λ

(μ8)
3 =

√
a2 + 32π2,

λ
(μ9)
1 = · · · = λ

(μ9)
6 =

√
a2 + 36π2, λ

(μ10)
1 = · · · = λ

(μ10)
6 =

√
a2 + 40π2.

By (1.5), we can list the first 10 eigenvalues λ j and eigenfunctions e j corresponding to
λ j as follows:

λ1 = λ2 = μ1 = a with z = (0, 0, 0),

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0);
λ3 = λ4 = μ2 =

√
a2 + 4π2 with z = (1, 0, 0),

e3 = 
1e
2πx1i (2π, 0, 0, μ2 − a),

e4 = 
1e
2πx1i (0, 2π, μ2 − a, 0);

λ5 = λ6 = μ2 with z = (0, 1, 0),

e5 = 
1e
2πx2i (2π, 0, 0, (μ2 − a)i),

e6 = 
1e
2πx2i (0, 2π, (a − μ2)i, 0);

λ7 = λ8 = μ2 with z = (0, 0, 1),

e7 = 
1e
2πx3i (2π, 0, μ2 − a, 0),

e8 = 
1e
2πx3i (0, 2π, 0, a − μ2);

λ9 = λ10 = μ3 =
√
a2 + 8π2 with z = (1, 1, 0),

e9 = 
2e
2π(x1+x2)i (4π, 0, (μ3 − a)(1 + i), 0),

e10 = 
2e
2π(x1+x2)i (0, 4π, 0, (μ3 − a)(1 − i)),

where 
1 = 1√
4π2+(μ2−a)2

, 
2 = 1√
16π2+2(μ3−a)2

.

Now we have a special consequence corresponding to the equation (D0).

Corollary 1.4 Let (G0) and (G1) − (G3) be satisfied with b0 = 0. Then (D0) has at least
one nontrivial periodic solution in H1(Q,C4), provided b∞ > a. If moreover G is in even
in u and b−∞ = μk for some positive integer k, then (D0) has at least l := 2(�μ1 +· · ·+ �μk )

pairs of periodic solutions.

A more general result can be obtained if (G1) is replaced by

(G ′
1) there is b0 ∈ C(Q, [0,∞)) such that b0(x) is 1-period with b0(x) ≥ 0 andGu(x, u)−

b0(x)u = o(|u|) as |u| → ∞ uniformly in x ∈ Q,

(G2) is replaced by

(G ′
2) there is b∞ ∈ C(Q, (0,∞)) such that b∞(x) is 1-period and Gu(x, u) − b∞(x)u =

o(|u|) as |u| → ∞ uniformly in x ∈ Q,

and (G3) is replaced by
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722 Y. Ding, X. Liu

(G ′
3) either (i) 0 /∈ σ(AV − b∞) or (ii) Ĝ(x, u) := 1

2 Ĝu(x, u)u − G(x, u) ≥ 0 and

Ĝ(x, u) → ∞ as |u| → ∞ uniformly in x ∈ Q.

Theorem 1.5 Suppose that (V ), (G0), (G ′
1) − (G ′

3) are satisfied and q∞ > q+
0 , where

q∞ := min
x∈Q b∞(x), q+

0 := min[σ(AV ) ∩ (q0,∞)] and q0 := max
x∈Q b0(x). Then

(a) if G(x, u) − 1
2q0|u|2 ≥ 0, then (DV ) has at least one nontrivial periodic solution in

H1(Q,C4);
(b) if G is even in u, then (DV ) has at least d(q0, q∞) pairs of periodic solutions.

This paper is organized as follows. In Sect. 2, we state the variational setting and establish
a deformation theorem and abstract critical point theorems under the Cerami condition ((C)c-
condition). The proofs of the main results are given in Sect. 3.

2 Variational setting and abstract critical point theorems

To prove our main results, some preliminaries are first in order.
In what follows by | · |q we denote the usual Lq -norm, and (·, ·)2 the usual L2-inner

product. Let

Lq
T (Q) := {u ∈ Lq

loc(R
3,C4) : u(x + êi ) = u(x) a.e. , i = 1, 2, 3},

where ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1). Let A0 = −iα · ∇ + aβ, AV = A0 + V
denote the self-adjoint operators on L2(Q,C4) with domain

D(AV ) = D(A0) = H1
T (Q)

:= {u ∈ H1
loc(R

3,C4) : u(x + êi ) = u(x) a.e. , i = 1, 2, 3}.
Set E := D(|AV | 12 ) which is a Hilbert space with the inner product and norm, for u =∑
j∈Z a j e j and v = ∑

j∈Z b j e j ∈ E ,

(u, v) =
∑

j �=0

|λ j |a j · b j + (u0, v0)2 and ‖u‖2 =
∑

j �=0

|λ j ||a j |2 + |u0|22, (2.1)

here {e j } j∈Z are the eigenvectors of AV .
Then we have an orthogonal decomposition E = E− ⊕ E0 ⊕ E+ with E− := span{e j :

j < 0}, E+ := span{e j : j > 0}, and E0 := ker(AV ). Note that if 0 /∈ σ(AV ) then
E0 = {0}.

The functional 	 defined by (1.3) can be rewritten by

	(u) = 1

2

(‖u+‖2 − ‖u−‖2) −
∫

Q
G(x, u)

for u = u− + u0 + u+ ∈ E . Then 	 ∈ C1(E,R) and critical points of 	 are solutions of
(DV ).

First we have the following (see [8,11])

Lemma 2.1 E = H1/2(Q,C4) with equivalent norms, hence E embeds compactly into
Ls
T (Q) for all s ∈ [1, 3). In particular there is a constant as > 0 such that

|u|s ≤ as‖u‖ for all u ∈ E . (2.2)
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Periodic solutions of an asymptotically linear Dirac equation 723

We also use the following result, the proof is similar to that of Proposition B.10 in [22].

Lemma 2.2 Assume that

(i) G ∈ C1(Q × C
4,R), and

(ii) there are k1, k2 > 0 such that

|Gu(x, u)| ≤ k1 + k2|u|s, ∀(x, u) ∈ Q × C
4,

where 0 ≤ s < 3.

Then

ψ(u) :=
∫

Q
G(x, u) (2.3)

is weakly continuous and ψ ′ ∈ C(E,R) is compact.

Recall that a sequence {u j } in E is said to be a (C)c-sequence of 	, if 	(u j ) → c
and (1 + ‖u j‖)	′(u j ) → 0 as j → ∞. We say that 	 satisfies the (C)c-condition if any
(C)c-sequence possesses a convergent subsequence ([6]).

Let X be a Banach space, and

	b
a := 	a ∩ 	b, 	a := {u ∈ X : 	(u) ≥ a}, 	b := {u ∈ X : 	(u) ≤ b}.

We first establish a deformation theorem which plays an important role in the multiplicity
for (DV ).

Theorem 2.3 Let 	 ∈ C1(X,R) and satisfy the (C)c-condition, Kc = {u ∈ X : 	(u) = c
and 	′(u) = 0}. If ε̄ > 0 and O is any neighborhood of Kc, then there exists an ε ∈ (0, ε̄)
and a deformation η ∈ C([0, 1] × X, X) such that

1◦ η(0, u) = u for all u ∈ X.
2◦ η(t, u) = u for all t ∈ [0, 1] if u /∈ 	c+ε

c−ε .
3◦ η(t, ·) : X → X is homeomorphism for t ∈ [0, 1].
4◦ 	(η(·, u)) is nonincreasing on [0, 1] for u ∈ E.
5◦ η(1,	c+ε \ O) ⊂ 	c−ε .
6◦ If Kc = ∅, η(1,	c+ε) ⊂ 	c−ε.
7◦ If 	(u) is even in u, η(t, u) is odd in u.

Proof By the (C)c-condition, Kc is compact. Set Uδ = {u ∈ X : d(u, Kc) < δ}. Choosing
δ suitably small (δ < 1), Uδ ⊂ O. Therefore it suffices to prove 5◦ with O replaced by Uδ .
Note that Uδ = ∅ when Kc = ∅, and so we get 6◦ instead.

Let M > 0 such that ‖u‖ ≤ M for all u ∈ Uδ .
One can easy to verify that there are ε̂ > 0 and α > 0 such that

(1 + ‖u‖)‖	′(u)‖ ≥ α, for all u ∈ 	c+ε̂
c−ε̂

\Uδ/2. (2.4)

We may assume that

0 < ε̂ <
3δ

8(1 + M)
min

{
ε̄, α2,

1

4

}
. (2.5)

Let X̃ := {u ∈ X | 	′(u) �= 0} and V : X̃ → X be a pseudo gradient such that V is odd
if 	 is even (see [22]). Choosing any ε ∈ (0, ε̂), define

h(s) =
{
1, if 0 ≤ s ≤ 1,
1
s , if s > 1,
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724 Y. Ding, X. Liu

f (u) = d(u, X \ 	c+ε̂
c−ε̂

)

d(u, X \ 	c+ε̂
c−ε̂

) + d(u,	c+ε
c−ε)

, g(u) = d(u,Uδ/8)

d(u,Uδ/8) + d(u, X \Uδ/4)
.

Then

f |	c+ε
c−ε

= g|X\Uδ/4 = 1, f |X\	c+ε̂
c−ε̂

= g|Uδ/8 = 0.

Let

W (u) =
{− f (u)g(u)h((1 + ‖u‖)‖V (u)‖)(1 + ‖u‖)2V (u), u ∈ X̃ ,

0, otherwise.

It is easy to verify that
‖W (u)‖ ≤ 1 + ‖u‖ for all u. (2.6)

Then by construction, W is locally Lipschitz continuous on X and W is odd if 	 is even.
Now we consider the Cauchy problem:

dη

dt
= W (η), η(0, u) = u. (2.7)

By virtue of the locally Lipschitz continuity of W and (2.6), the basic existence uniqueness
theorem for ordinary differentia equations implies that for each u ∈ X , (2.7) has a unique
solution η(t, u) defined for t ∈ [0,∞), and η ∈ C([0, 1]× X, X). (2.7) implies that 1◦ holds.
Since f (u) = 0 on X \ 	c+ε̂

c−ε̂
, so 2◦ is true. The semigroup property for solutions of (2.7)

gives 3◦. The oddness of W when 	 is even yields 7◦.
If W (u) �= 0, u ∈ X̃ so V (u) is defined as is V (η(t, u)) and

d	(η(t, u))

dt
= (	′(η(t, u)),W (η(t, u)))

= − f (η)g(η)h((1 + ‖η‖)‖V (η)‖)(1 + ‖η‖)2(	′(η), V (η))

≤ − f (η)g(η)h((1 + ‖η‖)‖V (η)‖)(1 + ‖η‖)2‖	′(η)‖2 ≤ 0.

(2.8)

It follows that 4◦ holds.
Finally, we verify η(1,	c+ε \Uδ) ⊂ 	c−ε . Let u ∈ 	c+ε \Uδ , then 	(η(t, u)) ≤ c + ε

by 4◦ and 1◦. We need only prove that there exists t0 ∈ [0, 1] such that 	(η(t0, u)) ≤ c − ε,
then 4◦ gives 	(η(1, u)) ≤ c − ε.

If otherwise, then 	(η(t, u)) > c − ε for all t ∈ [0, 1], and thus η(t, u) ∈ 	c+ε
c−ε, which

implies
	(η(0, u)) − 	(η(t, u)) ≤ 2ε < 2ε̂, ∀t ∈ [0, 1]. (2.9)

If η(t, u) ∈ X \ Uδ/2 for all t ∈ [0, 1], we see η(t, u) ∈ 	c+ε
c−ε \ Uδ/2. This shows

f (η(t, u)) = g(η(t, u)) = 1 and by (2.4),

(1 + ‖η(t, u)‖)‖	′(η(t, u))‖ ≥ α, ∀t ∈ [0, 1]. (2.10)

This yields

d	(η(t, u))

dt
= −h((1 + ‖η‖)‖V (η)‖)(1 + ‖η‖)2(	′(η), V (η))

≤ −h((1 + ‖η‖)‖V (η)‖)(1 + ‖η‖)2‖	′(η)‖2, ∀t ∈ [0, 1].
(2.11)

If (1 + ‖η‖)‖V (η)‖ ≤ 1, then h((1 + ‖η‖)‖V (η)‖) = 1. It follows from (2.10) and (2.11)
that

d	(η(t, u))

dt
≤ −α2. (2.12)
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Periodic solutions of an asymptotically linear Dirac equation 725

If (1 + ‖η‖)‖V (η)‖ > 1, then

h((1 + ‖η‖)‖V (η)‖) = [(1 + ‖η‖)‖V (η)‖]−1,

so (2.11) and the property of V (·) imply

d	(η(t, u))

dt
≤ −(1 + ‖η‖)‖V (η)‖

[‖	′(η)‖
‖V (η)‖

]2
≤ −1

4
. (2.13)

Consequently, by (2.12) and (2.13) we have

d	(η(t, u))

dt
≤ −min

{
α2,

1

4

}
for all t ∈ [0, 1]. (2.14)

Integrating (2.14) and combing the result with (2.9) gives

2ε̂ ≥ 	(η(0, u)) − 	(η(1, u))

=
∫ 1

0
−d	(η(t, u))

dt
≥ min

{
α2,

1

4

}
,

(2.15)

this is contrary to (2.5). Consequently, we infer that there is t̄ ∈ [0, 1] such that η(t̄, u) ∈
Uδ/2. Obviously, t̄ > 0 since η(0, u) = u /∈ Uδ . The continuity of η(t, u) guarantees that
there are s1, s2 ∈ [0, 1] with s1 �= s2 such that η(s1, u) ∈ ∂Uδ/4, η(s1, u) ∈ ∂Uδ and
η(t, u) ∈ Uδ \ U δ/4 for all t ∈ (s1, s2) or t ∈ (s2, s1), where B denotes the closure of B.
This yields

‖η(s1, u) − η(s2, u)‖ ≥ 3δ/4. (2.16)

By (2.6) we see ‖W (u)‖ ≤ 1 + M for all u ∈ Uδ , and so

‖η(s2, u) − η(s1, u)‖ ≤ (1 + M)|s2 − s1|
which together with (2.16) shows

|s2 − s1| ≥ 3δ

4(1 + M)
.

We may assume that s1 < s2.
On the other hand, similarly to (2.15) we get that

2ε̂ ≥ 	(η(s1, u)) − 	(η(s2, u))

=
∫ s2

s1
−d	(η(t, u))

dt

≥ min

{
α2,

1

4

}
(s2 − s1)

≥ 3δ

4(1 + M)
min

{
α2,

1

4

}
.

This, however, leads to a contradiction. The proof is complete. ��
Remark 2.4 In paper [12] (or [13]), we established a deformation theorem under the (C)c-
condition. However, it is difficult to use for themultiplicity. Therefore, Theorem 2.3 improves
the corresponding result in [12].

In order to study the functional 	, we need certain abstract critical point theorems. In the
following, we suppose that E is a real Hilbert space with E = X ⊕ Y.
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Theorem 2.5 Let e ∈ X \ {0} and � = {u = se + v : ‖u‖ < R, s > 0, v ∈ Y }. Suppose
that

(	1) 	 ∈ C1(E,R), satisfies the (C)c-condition for any c ∈ R;
(	2) there is a r ∈ (0, R) such that ρ := inf 	(X ∩ ∂Br ) > ω := sup	(∂�), where ∂�

refers to the boundary of � relative to span{e} ⊕ Y , and Br = {u ∈ E : ‖u‖ < r}.
Then 	 has a critical value c ≥ ρ, with

c = inf
h∈�

sup
u∈�

	(h(u)),

here
� = {h ∈ C(E, E) : h|∂� = id, 	(h(u)) ≤ 	(u) for u ∈ �}. (2.17)

Proof Put S = X ∩ ∂Br . We first show that for any h ∈ �, h(�) ∩ S �= ∅. We may assume
‖e‖ = 1. Chose ê ∈ Y with ‖ê‖ = 1, and write F := span{e, ê},�F := F ∩ �. Let
�F , ∂�F denote the closure and bound of � in F , respectively, P the project of E onto Y .
For u ∈ �F , t ∈ [0, 1], define

H(t, u) = t[‖(id − P)h(u)‖e + Ph(u)] + (1 − t)u.

Then H : [0, 1] × �F → E is continuous. Obviously H is a compact operator. Since
h|∂� = id, if u ∈ ∂�F ,

H(t, u) = t[‖u − Pu‖e + Pu] + (1 − t)u = u,

i.e., H(t, ·)|∂�F = id for t ∈ [0, 1]. In particular H(t, u) �= re for t ∈ [0, 1], u ∈ ∂�F . By
the property of Brouwer degree, we have

deg(H(1, ·),�F , re) = deg(H(0, ·),�F , re) = deg(id,�F , re) = 1

which implies that there exists u ∈ �F such that H(1, u) = re ∈ S. We find Ph(u) =
0, ‖h(u)‖ = r , i.e. h(u) ∈ S, and therefore c ≥ ρ.

Next we prove there is a sequence {u j } in � such that

(1 + ‖u j‖)‖	′(u j )‖ → 0 for j → ∞. (2.18)

Indeed otherwise there exist α0 > 0 and ε0 > 0 such that

(1 + ‖u‖)‖	′(u)‖ ≥ α0 for all u ∈ � ∩ 	
c+ε0
c−ε0

.

Set ε̄ = min{ 12 (ρ−ω), ε0}. There is an ε ∈ (0, ε̄) and η ∈ C([0, 1]×E, E) given byTheorem
2.3 such that 1◦ − 4◦ and 6◦ are satisfied. Chose h ∈ � such that sup	(h(�)) ≤ c + ε.

Consequently
h(�) ⊂ 	c+ε. (2.19)

Let g(u) := η(1, h(u)), then g ∈ C(E, E). It follows from 3◦ and 1◦ that

	(g(u)) = 	(η(1, h(u))) ≤ 	(η(0, h(u))) = 	(h(u)) ≤ 	(u)

for all u ∈ �. For u ∈ ∂�, (	2) shows

	(u) ≤ ω < ρ − ε̄ ≤ c − ε̄ ≤ c − ε

which, by 2◦, implies η(1, u) = u, and so

g(u) = η(1, h(u)) = η(1, u) = u.
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Thus g ∈ �. (2.19) and 6◦ yield g(�) = η(1, h(�)) ⊂ 	c−ε which leads to the contradiction
c ≤ sup	(g(�)) ≤ c − ε.

Now we find that there is a sequence {u j } in � satisfying (2.18). Since 	 satisfies (	1)

(the (C)c-condition), there exists a convergent subsequence {u jk } of {u j } such that u jk → ū.
The conclusion follows by 	 ∈ C1(E, E). ��
Remark 2.6 In [[22], Theorem 5.3], under the conditions that Y is finite dimensional and 	

satisfies the (PS)-condition, the same result was proved. Clearly, the conditions of Theorem
2.5 are weaker than that of Theorem 5.3.

Next, we consider a kind of pseudo-index (see [7]). Let � denote the class of closed
subsets of E symmetric with respect to the origin, and γ : � → N∪ {∞} the Z2 genus map
(see [22]). Let 	 ∈ C(E,R), J = (σ,∞),

H = {h ∈ C(E, E) : h is a homeomorphism and is odd},

MJ = {g ∈ H : g|	−1(R\J ) = id and 	(g(u)) ≤ 	(u) for u ∈ E},
and �∗ = {h ∈ MJ : h(B1Y ) ⊂ 	−1(J ) ∪ BrY }.

Now we define the pseudo-index (�, i∗) relative to MJ for the genus γ as follows

i∗(A) = inf
h∈�∗

γ (A ∩ h(S1Y )).

One can verify the following

Lemma 2.7 Let �∗ = �, then (�∗, i∗) satisfies all properties for pseudo-index ([7]):

(P1) �∗ ⊂ �, A \ B ∈ �∗ and g(A) ∈ �∗ for all A ∈ �∗, B ∈ � and g ∈ MJ ;
(P2) A ⊂ B implies i∗(A) ≤ i∗(B) for all A, B ∈ �∗;
(P3) i∗(A \ B) ≥ i∗(A) − γ (B) for all A ∈ �∗ and B ∈ �;
(P4) i∗(g(A)) ≥ i∗(A) for all A ∈ �∗ and g ∈ MJ .

Now, we give a abstract critical point theorem as follows.

Theorem 2.8 Assume that 	 is even and satisfies (	1). If

(	3) there exists r > 0 with ρ := inf 	(SrY ) > 	(0) = 0, where Sr := ∂Br , AB :=
A ∩ B;

(	4) there exists a finite dimensional subspace Y0 ⊂ Y and R > r such that for E∗ :=
X ⊕ Y0, M∗ = sup	(E∗) < +∞ and σ := sup	(E∗ \ BR) < ρ,

then 	 possesses at least m distinct pairs of critical points, where m = dim Y0.

Proof Let

�k = {A ∈ � : i∗(A) ≥ k}, k = 1, 2, . . . ,m.

Define
ck = inf

A∈�k
sup
u∈A

	(u), k = 1, 2, . . . ,m. (2.20)

We first show �k �= ∅. Set Ã := BRE∗. (	4) implies 	−1(J ) ⊂ (E \ E∗) ∪ BR , and hence

Ã ⊃ Y0 ∩ (	−1(J ) ∪ BRY ) ⊃ Y0 ∩ h(B1Y )
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for each h ∈ �∗, which yields

Ã ∩ h(S1Y ) ⊃ Y0 ∩ h(S1Y ) ⊃ ∂(Y0 ∩ h(B1Y )),

and we get

γ ( Ã ∩ h(S1Y )) ≥ γ (∂(Y0 ∩ h(B1Y ))) ≥ m.

Consequently, �k �= ∅, and cm ≤ M∗ by (	4). For any A ∈ �k , by h := r id ∈ �∗ one has

γ (A ∩ SrY ) = γ (A ∩ h(S1Y ) ≥ i∗(A) ≥ k

which yields ck ≥ ρ by (	3). Noting that �1 ⊃ �2 ⊃ · · · ⊃ �m , we have

σ < ρ ≤ c1 ≤ c2 ≤ · · · ≤ cm ≤ M∗.

It is obvious that Kc := {u ∈ X : 	(u) = c and 	′(u) = 0} ∈ �, and Kc is compact by the
(C)c-condition.

Finally, we claim:

(P∗) If 1 ≤ j, j + l ≤ m, and c j = · · · = c j+l ≡ c, then γ (Kc) ≥ l + 1.

If γ (Kc) ≤ l, then there is a δ > 0 such that γ (Uδ(Kc)) = γ (Kc) ≤ l. Invoking Theorem
2.3 withO = Uδ(Kc) and ε̄ = ρ−σ

2 , there are ε ∈ (0, ε̄) and η ∈ C([0, 1] × E, E) such that
η(1, ·) satisfies the properties 1◦ − 7◦ and

η(1,	c+ε \ O) ⊂ 	c−ε. (2.21)

Choose Â ∈ � j+l such that sup	( Â) ≤ c + ε, and hence

Â ⊂ 	c+ε. (2.22)

By (P3) one has

i∗( Â \ O) ≥ i∗( Â) − γ (O) ≥ j + l − l = j. (2.23)

Using 3◦ and 7◦ we get η(1, ·) ∈ H. 4◦ gives 	(η(1, u)) ≤ 	(u) for all u ∈ E . Since
σ < c − ε, we have 	−1(R \ J ) ⊂ E \ 	c+ε

c−ε , and 2◦ implies η(1, ·)|	−1(R\J ) = id.

Therefore η(1, ·) ∈ MJ . Set A∗ := η(1, Â \ O) ∈ �. It follows from (P4) and (2.23) that

i∗(A∗) = i∗
(

η(1, Â \ O)

)
≥ i∗

(
Â \ O

)
≥ j,

and thus A∗ ∈ � j . Combing with (2.21), (2.22) and (2.20) we see

c ≤ sup	(A∗) ≤ c − ε < c,

a contradiction. Therefore, the conclusion (P∗) is valid and the proof is complete. ��

3 The proof of the main results

Throughout this section, we suppose that (V ) and (G0) are satisfied.
Observe that, (G2) implies that for any ε > 0 there is Rε > 0 such that

|Gu(x, u) − b∞u| ≤ ε|u| whenever |u| ≥ Rε, (3.1)

hence

|Gu(x, u)u − b∞|u|2| ≤ |Gu(x, u) − b∞u||u| ≤ ε|u|2

123



Periodic solutions of an asymptotically linear Dirac equation 729

or

(b∞ − ε)|u|2 ≤ Gu(x, u)u ≤ (b∞ + ε)|u|2 for all |u| ≥ Rε.

Fixed s0 ∈ (0, 1), in virtue of G(x, u) ≥ 0 we get

G(x, u) = G(x, s0u) +
∫ 1

s0
Gu(x, su) · uds

≥
∫ 1

s0

1

s
Gu(x, su)suds

≥ 1

2
(b∞ − ε)(1 − s20 )|u|2

for all |u| ≥ 1
s0
Rε , and so

G(x, u) ≥ 1

2
(b∞ − ε)(1 − s20 )|u|2 − Cs0 for all (x, u). (3.2)

First, we have the following lemma.

Lemma 3.1 Suppose that (G1) and (G2) hold and {u j } is a bounded (C)c-sequence of
	. Then there exists a critical point u of 	 such that 	(u) = c and after passing to a
subsequence, u j → u strongly in E.

Proof By Lemma 2.1, without loss of generality, we may assume that

un ⇀ u in E and uu → u in Ls
T (Q) for s ∈ [1, 3). (3.3)

Plainly, u is a critical point of 	. (G1) and (G2) yield that

|Gu(x, u)| ≤ C1|u| for all (x, u) (3.4)

which shows that ψ ′ is continuous and compact by Lemma 2.2, where ψ is defined by
(2.3). It follows from the representation of 	′, together with (3.3), the facts 	′(u) = 0 and
	′(un) → 0, and the compactness of ψ ′, that

‖u+
n − u+‖2 = (	′(un) − 	′(u), u+

n − u+)

+(ψ ′(un) − ψ ′(u), u+
n − u+) → 0 as n → ∞.

Similarly, ‖u−
n − u−‖ → 0 as n → ∞. It is clear that {u0j } has a convergent subsequence

since E0 is finite dimensional. We have thus proved the lemma. ��
Lemma 3.2 If b∞ > λ1 and (G3) holds, then any (C)c-sequence of 	 is bounded.

Proof Let {u j } ⊂ E be such that 	(u j ) → c and (1 + ‖u j‖)	′(u j ) → 0.
Defining

Ẽ+ :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j>b∞
a j e j

⎫
⎬

⎭ ,

Ẽ0 :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j=b∞
a j e j

⎫
⎬

⎭ ,

Ẽ− :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j<b∞,λ j �=0

a j e j + u0, u0 ∈ E0

⎫
⎬

⎭ ,
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we have E = Ẽ+ ⊕ Ẽ0 ⊕ Ẽ− and write u = ũ+ + ũ0 + ũ− for u ∈ E corresponding to this
decomposition. Clearly, Ẽ0 = {0} if b∞ /∈ σ(AV ).

Let P± : E → E± be the orthogonal projections. One can see

(	′(u), ũ+) = ‖ũ+‖2 − b∞|ũ+|22 −
∫

Q
G∞

u (x, u)ũ+,

(	′(u), ũ−) = (P+u, ũ−) − (P−u, ũ−)

−b∞|ũ−|22 −
∫

Q
G∞

u (x, u)ũ−. (3.5)

For u = ∑
j∈Z, j �=0 a j e j + u0 ∈ E (u0 ∈ E0), we have

ũ+ =
∑

λ j>b∞
a j e j , ũ− =

∑

λ j<b∞,λ j �=0

a j e j + u0.

By (2.1) one finds

‖ũ+‖2 − b∞|ũ+|22 =
∑

λ j>b∞
λ j |a j |2 − b∞

∑

λ j>b∞
|a j |2

≥
(
1 − b∞

λ′

)
‖ũ+‖2,

(3.6)

where λ′ := min(σ (AV ) ∩ (b∞,∞)). Since b∞ > λ1, σ (AV ) ∩ (0, b∞) �= ∅. Setting
λ′′ := max(σ (AV ) ∩ (0, b∞)), we obtain

(P+u, ũ−) − (P−u, ũ−) − b∞|ũ−|22
=

∑

0<λ j<b∞
λ j |a j |2 −

∑

λ j<0

|λ j ||a j |2 − b∞
∑

λ j<b∞,λ j �=0

|a j |2 − b∞|u0|22

≤ ‖ũ−‖2 − 2
∑

λ j<0

|λ j ||a j |2 − b∞
λ′′

∑

0<λ j<b∞
λ j |a j |2 − (1 + b∞)|u0|22,

and therefore

− (P+u, ũ−) + (P−u, ũ−) + b∞|ũ−|22 ≥ (w − 1)‖ũ−‖2, (3.7)

here w := min{1 + b∞, 2, b∞
λ′′ }. For δ > 0 small, it follows from (3.1) that

|G∞
u (x, u)| < δ|u| + Cδ, for all (x, u). (3.8)

Putting u j = ũ+
j + ũ−

j + ũ0j , by (3.5) we know

‖ũ+
j ‖2 − b∞|ũ+

j |22 = (	′(u j ), ũ
+
j ) +

∫

Q
G∞

u (x, u j )ũ
+
j ,

−(P+u j , ũ
−
j ) + (P−u j , ũ

−
j ) + b∞|ũ−

j |22
= −(	′(u j ), ũ

−
j ) −

∫

Q
G∞

u (x, u j )ũ
−
j .

(3.9)

(3.6)–(3.9) and (2.2) yield

ξ‖ũ+
j + ũ−

j ‖2 ≤ ‖	′(u j )‖‖ũ+
j + ũ−

j ‖
+ δC ′‖u j‖‖ũ+

j + ũ−
j ‖ + C ′

δ‖ũ+
j + ũ−

j ‖ (3.10)
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with ξ = min{1 − b∞
λ′ , w − 1}.

If (i) of (G3) holds, then u j = ũ+
j + ũ−

j . (3.10) implies that

ξ‖u j‖ ≤ ‖	′(u j )‖ + δC ′‖u j‖ + C ′
δ,

and so {u j } is bounded.
Next let (ii) of (G3) be satisfied. (3.6), (3.7) and (3.9) yield that {ũ+

j + ũ−
j } is bounded.

We claim that {ũ0j } is bounded.
Assume by contradiction that ‖ũ0j‖ → ∞ as j → ∞. Since Ẽ0 is finite dimensional, we

have: along a subsequence, there exists Q0 ⊂ Q satisfying |Q0| > 0 such that |ũ0j (x)| → ∞
as j → ∞ uniformly in x ∈ Q0. Here, we write |W | for the Lebesgue measure of W ⊂ R

3.
It follows from the hypotheses that G∞(x, ũ0j ) → ∞ as j → ∞ uniformly in x ∈ Q0, and
thus

G∞(x, u j ) = G∞(x, ũ0j ) +
∫ 1

0
G∞

u (x, s(u j − ũ0j ))(ũ
+
j + ũ−

j )ds

≥ G∞(x, ũ0j ) − K1‖ũ+
j + ũ−

j ‖ → ∞
(3.11)

as j → ∞ uniformly in x ∈ Q0.
By (3.2) and G∞(x, u) → ∞ as |u| → ∞ we obtain that there exists m0 > 0 such that

G∞(x, u) ≥ −m0 for all (x, u). (3.12)

Noting that

‖u+‖2 − ‖u−‖2 − b∞|u|22
= ‖ũ+‖2 +

∑

0<λ j<b∞
λ j |a j |2 −

∑

λ j<0

|λ j ||a j |2 − b∞|ũ+ + ũ−|22,

we get by (2.2)

∣∣‖u+‖2 − ‖u−‖2 − b∞|u|22
∣∣ ≤ (1 + a2b∞)(‖ũ+‖2 + ‖ũ−‖2). (3.13)

On account of (3.13), (3.12) and (3.11) we see that

|	(u j )| =
∣∣∣∣
1

2
(‖u+

j ‖2 − ‖u−
j ‖2 − b∞|u j |22) −

∫

Q
G∞(x, u j )

∣∣∣∣

≥
∣∣∣∣
∫

Q
G∞(x, u j )

∣∣∣∣ − 1

2
(1 + a2b∞)(‖ũ+

j ‖2 + ‖ũ−
j ‖2)

≥
∫

Q0

G∞(x, u j ) − m0 − 1

2
(1 + a2b∞)(‖ũ+

j ‖2 + ‖ũ−
j ‖2) → ∞

as j → ∞, a contradiction. Consequently {x0j } is bounded and the proof is complete. ��
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We need to introduce another orthogonal decomposition: E = Ê+ ⊕ Ê0 ⊕ Ê−, where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ê+ :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j>b0

a j e j

⎫
⎬

⎭ ,

Ê0 :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j=b0

a j e j

⎫
⎬

⎭ ,

Ê− :=
⎧
⎨

⎩u ∈ E : u =
∑

λ j<b0,λ j �=0

a j e j + u0, u0 ∈ E0

⎫
⎬

⎭ ,

(3.14)

One can verify that there is ξ0 ∈ (0, 1) such that

‖û+‖2 − b0|û+|22 ≥ ξ0‖û+‖2,
(P+u, û−) − (P−u, û−) − b0|û−|22 ≤ −ξ0‖û−‖2 (3.15)

for any u = û+ + û0 + û− ∈ E , the proof is similar to that of (3.6) and (3.7).

Lemma 3.3 Suppose that (G1) and (G2) hold, then there exist r > 0 and ρ > 0 such that
inf 	(Ê+ ∩ Br ) ≥ 0 and inf 	(Ê+ ∩ ∂Br ) ≥ ρ.

Proof Choosing q ∈ (2, 3), we have that, for any ε > 0, there is Cε > 0 such that

G0(x, u) ≤ ε|u|2 + Cε|u|q , for all (x, u).

This implies

	(û+) = 1

2
(‖û+‖2 − b0|û+|22) −

∫

Q
G0(x, û+)

≥ 1

2
ξ0‖û+‖2 − εC ′

1‖û+‖2 − C ′
2Cε‖û+‖p

via (3.15) for û ∈ Ê+, which follows that the conclusion is valid. ��
Lemma 3.4 Let (G2) be satisfied. If b∞ > b+

0 , then for any n ∈ N with b−∞ = λn, there
exists Rn > r such that sup	(En \ BRn ) < 0 and sup	(En) < ∞, where r is as in Lemma
3.3, En := E− ⊕ E0 ⊕ span{e1, ..., en}.
Proof It will suffice to show that for u ∈ En

	(u) → −∞ as ‖u‖ → ∞. (3.16)

Choose s0 ∈
(
0,

√
1 − b−∞

b∞

)
in (3.2). Noting that u+ = ∑n

j=1 s j e j for u ∈ En , by (3.2), for

ε = 1
2 (b∞ − b−∞

1−s20
), we find

2	(u) = ‖u+‖2 − ‖u−‖2 − 2
∫

Q
G(x, u)

≤ ‖u+‖2 − ‖u−‖2 − α0(|u+|22 + |u0|22 + |u−|22) + 2Cs0 ,

(3.17)

where α0 := (b∞ − ε)(1 − s20 ) > b−∞. Since

α0|u+|22 − ‖u+‖2 ≥ (α0 − λn)

n∑

j=1

|s j |2 ≥ α0 − b−∞
λ1

‖u+‖22,
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by (3.17) we get

2	(u) ≤ −α0 − b−∞
λ1

‖u+‖2 − C2(‖u−‖2 + ‖u0‖2) + 2Cs0

≤ −Ĉ‖u‖2 + 2Cs0

which implies that (3.16) is valid and sup	(En) < ∞. ��
As a consequence, we have

Lemma 3.5 Under the conditions of Lemma 3.4, if G0(x, u) ≥ 0, then there is R0 > r such
that sup	(∂�) ≤ 0, where

� := {u = û− + û0 + sem : û− + û0 ∈ Ê− ⊕ Ê0, s > 0, ‖u‖ < R0}
with AV em = b+

0 em, and ∂� refers to the boundary of � relative to span{em} ⊕ Ê− ⊕ Ê0.

Proof Since Ê− ⊕ Ê0 ⊕ R
+em ⊂ Em and λm = b+

0 ≤ b−∞, by Lemma 3.4 we find that
	(u) < 0 for u = û− + û0 + sem with ‖u‖ = R0 and s > 0 when R0 > r large.

Let u = û− + û0 with ‖u‖ ≤ R0. By G0(x, u) ≥ 0 and (3.15) one has

2	(u) = (P+u, û−) − (P−u, û−) − b0|û−|22 − 2
∫

Q
G0(x, u)

≤ −ξ0‖û−‖2 − 2
∫

Q
G0(x, u) ≤ 0

which yields that the result is valid. ��
Now, with the above arguments, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 (Existence) Let us verify the conditions of Theorem 2.5. Let X =
Ê+, Y = Ê− ⊕ Ê0, r > 0 be from Lemma 3.3. Lemma 3.1 and 3.2 imply that (	1) is true.
Lemma 3.3 yields inf 	(X ∩ ∂Br ) ≥ ρ, and Lemma 3.5 gives 	|∂� < σ0 for σ0 ∈ (0, ρ).
Therefore (	2) holds. It follows from Theorem 2.5 that 	 possesses a critical value c ≥ ρ,
with

c = inf
h∈�

sup
u∈�

	(h(1, u)),

where � is defined as (2.17).
Next, we proceed to prove the multiplicity. Since G is even in u,	 is even. Using

Lemma 3.3 we know that the condition (	3) holds with X = Ê− ⊕ Y 0 and Y = Ê+.
Let span{em, . . . , en} be the eigenspace associated to σ(AV ) ∩ (b0, b∞), and λ j the eigen-
value corresponding to e j (i.e., AV e j = λ j e j ), j = m, . . . , n, then b+

0 = λm, b−∞ = λn
and d(b0, b∞) = n − m. It follow from Lemma 3.4 that 	 satisfies (	4) with Y0 =
span{em, . . . , en}, R = Rn, M∗ = Mn and σ ∈ (0, ρ). Therefore, 	 has at least n − m
pairs of nontrivial critical points by Theorem 2.8. ��

We are now in a position to give the proof of Theorem 1.5.

Proof The main difference to the proof of Theorem 1.2 lies in the boundedness of the (C)c-
sequences.

Claim 1. Any (C)c-sequence is bounded.
Let {u j } ⊂ E be such that

	(u j ) → c, (1 + ‖u j‖)	′(u j ) → 0 as j → ∞.
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We then have ∫

Q
Ĝ(x, u j ) = 	(u j ) − 1

2
	′(u j ) · u j ≤ C0. (3.18)

Assume by contradiction that ‖u j‖ → ∞. Then the normalized sequence v j = u j/‖u j‖
satisfies (up to a subsequence) v j ⇀ v in E . Lemma 2.1 guarantees v j → v in Ls

T (Q) for
s ∈ [1, 3) and |v j |s ≤ as for all s ∈ [1, 3]. We write ũ j = u−

j + u+
j , ṽ j = v−

j + v+
j . Then

	′(u j )(u
+
j − u−

j ) = ‖u j‖2
(

‖ṽ j‖2 −
∫

Q

Gu(x, u j )(v
+
j − v−

j )|v j |
|u j |

)
,

and therefore

o(1) = ‖ṽ j‖2 −
∫

Q

Gu(x, u j )(v
+
j − v−

j )|v j |
|u j | . (3.19)

We distinguish the two cases: v = 0 or v �= 0.
let v = 0. (G ′

1) and (G ′
2) yield that (3.4) is true, this implies

∫

Q

|Gu(x, u j )|
|u j | |v+

j − v−
j | |v j | ≤ C1|v j |22

which jointly with (3.19) shows ‖ṽ j‖2 → 0, and so |ṽ j |2 → 0. |v j |2 → 0 yields |v0j |2 → 0.

We obtain 1 = ‖v j‖ = ‖ṽ j‖ + |v0j |2 → 0, a contradiction.
Assume v �= 0. First let (i) of (G3) hold. Since |u j (x)| = |v j (x)| ‖u j‖ → ∞, by (3.4)

and Lebesgue dominated convergence theorem we obtain
∫

Q

Gu(x, u j )v jϕ

|u j | →
∫

Q
b∞(x)vϕ

for any ϕ ∈ C∞[Q,C4], hence AV v = b∞v, which contradicts 0 /∈ σ(AV − b∞).
Suppose that (ii) of (G3) is satisfied. v j → v in Ls

T (Q) guarantees (up to a subsequence)
v j (x) → v(x) a.e. on Q. Since v �= 0, there exists Q0 ⊂ Q with |Q0| > 0 such that

v j (x) → v(x) as j → ∞ uniformly on Q0

and |v j (x)| ≥ ε0 > 0 for large j . Observe that |u j (x)| = ‖u j‖|v(x)| ≥ ε0‖u j‖ → ∞ for
x ∈ Q0. By (ii) of (G3) we have

∫

Q0

Ĝ(x, u j ) → ∞,

which contradicts (3.18).
Next we have
Claim 2. The conclusions of Lemmas 3.3–3.5 are true where (G1) and (G2) are replaced

by (G ′
1) and (G ′

2) respectively, and b0 is replaced by q0 in (3.14).
Since (3.2) and (3.4) are satisfied, where b∞ is replaced by q∞, one can prove as before.
Finally, repeating the arguments of the proof of Theorem 1.2, we obtain the desired results.
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