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Abstract We prove the C1
loc regularity and developability of W

2,p
loc isometric immersions of

n-dimensional flat domains into R
n+k where p ≥ min{2k, n}. We also prove similar rigidity

and regularity results for scalar functions of n variables for which the rank of the Hessian
matrix is a.e. bounded by some k < n, again assumingW 2,p

loc regularity for p ≥ min{2k, n}. In
particular, this includes results about the degenerate Monge–Ampère equation, detD2u = 0,
corresponding to the case k = n − 1.
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1 Introduction

1.1 Background

The question of rigidity vs. flexibility of isometric immersions has been studied in differential
geometry since the end of nineteenth century. It was already known, as established by Dar-
boux, among others, that smooth surfaces in the three-dimensional space which are isometric
to a piece of plane are developable, i.e. they are locally foliated as a ruled surface by straight
segments aligned at each point in one of the principal directions. New developments in the
mid-twentieth century highlighted the very fact that this rigidity statement relies strongly on
the regularity of the surface. In particular, it followed from the results of Nash [29] andKuiper
[21] that there exist manyC1 isometric embeddings of a given flat n-dimensional domain into
R
n+1 (and hence intoRn+k for any k ≥ 1) with arbitrarily small upper bound on the diameter

of the image, a property which rules out the developability of the image. On the other hand,
the developability of co-dimension one isometric immersions of flat n-dimensional domains
was essentially established by Chern and Lashof [5, Lemma 2] and Hartman and Nirenberg
[13, Lemma 2], who also provided more detailed results in the case n = 2 of surfaces. In
[35], a generalized developability result for C2 isometric immersions of a Euclidean domain
� ⊂ R

n into Euclidean spaces Rn+k, k < n was established.
A natural question arises, which consists in asking what would be the critical regularity

threshold at which the distinction between rigidity and flexibility á la Nash and Kuiper is
withheld. The most straightforward path would be to discuss this question for Hölder regular
isometries of classC1,α , 0 < α < 1. Some progress is made in this direction, but the problem
of the critical value of α is still open. While a careful analysis of the iteration methods of
Nash and Kuiper has lead to flexibility results for surfaces for α < 1/13 [2], and then for
α < 1/7 [6], it has only been established thatC1,α isometric immersions of two- dimensional
flat domains into the three-dimensional space are rigid if α > 2/3 [2,3,6]. In a different but
related vein, Pogorelov showed that C1 surfaces with total zero curvature are developable
[32, Chapter II] and [31, Chapter IX]. If one only assumes Hölder regularity, it seems that
there is no consensus on what the critical exponent should be, as it has been conjectured to
be α = 1/3, 1/2 or 2/3.

One could also consider other function spaces which lie somewhat belowC2. In particular,
Sobolev isometries arise in the study of nonlinear elastic thin films. Kirchhoff’s plate model
put forward in the nineteenth century [20] consists in minimizing the L2 norm of the second
fundamental form of isometric immersions of a 2d domain into R

3 under suitable forces or
boundary conditions. In other words, using the modern terminology, the space of admissible
maps for this model is that of W 2,2 isometric immersions (See also [10,23]).

Quite strong results are known about regularity and rigidity of co-dimension 1 isometric
immersions, as summarized in the following

Theorem 1 Let U ∈ W 2,2(�,Rn+1) be an isometric immersion, where � is a bounded
Lipschitz domain in R

n. Then, U ∈ C1,1/2
loc (�,Rn+1). Moreover, for every x ∈ �, either DU

is constant in a neighbourhood of x, or there exists a unique (n−1)-dimensional hyperplane
P � x of Rn such that DU is constant on the connected component of x in P ∩ �.

This was proved in by Liu and Pakzad [25] and followed earlier results [30] of the second
author that established the n = 2 case of Theorem 1, drawing on work of Kirchheim in [19]
on W 2,∞ solutions to degenerate Monge–Ampère equations, discussed below.

The result is optimal which is the sense that it fails for W 2,p isometries with p < 2.
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Sobolev spaces of isometric immersions 689

Remark 1.1 In [28], it was established for n = 2 that the C1 regularity can be extended up
to the boundary if the domain is of class C1,α . This does not hold true anymore for merely
C1 regular domains.

Isometric immersions of flat domains are closely related to the degenerateMonge–Ampère
equation

det(D2u) = 0 a.e. in �, (1.1)

or more generally to the Hessian rank inequality

rank(D2u)≤ k a.e. in �. (1.2)

This is equivalent to the degenerate Monge–Ampère equation when k = n − 1, but for
k < n − 1 is a stronger condition. As we recall in Sect. 2, it is satisfied by the components
Um of an isometric immersion U : � → R

n+k of co-dimension k (see Proposition 2.1), and
many rigidity properties of isometric immersions can be deduced solely from the weaker
condition (1.2).

In order to discuss Sobolev solutions with lower regularity than the assumptions of the
above theorem, it is helpful to study distributional andmeasure theoretic variants of condition
(1.1) including (in two-dimensional domains)

Det(D2u) := −1

2
curlT curl(Du ⊗ Du) = 0 (1.3)

for u ∈ H1(�); or∫
�

φx1(x, Du)uxk x2 − φx2(x, Du)uxk x1 dx = 0 for all φ ∈ C∞
c (� × R

2) and k = 1, 2

(1.4)

for u ∈ W 2,1(�). Both of these imply (1.1) if u ∈ W 2,2
loc (�). It turns out that (1.1), even in

the weak form (1.4), is strong enough to imply rigidity, as shown in the following result.

Theorem 2 Let � be a bounded, open subset of R2.
If u ∈ W 2,2

loc (�) and detD2u = 0 a.e. in �, then u ∈ C1(�), and for every point x ∈ �,
there exists either a neighbourhood of x, or a segment passing through x and joining ∂� at
both ends, on which Du is constant.

More generally, the same conclusions hold if we merely assume that u ∈ W 2,1(�) and u
satisfies (1.4).

Theorem 2 was established for u ∈ W 2,2
loc (�) by the second author in [30], see also

Kirchheim [19]. The final assertion of the theorem, concerning W 2,1 functions, is in fact a
special case of a more general result from [18] that applies in the (larger) class of Monge–
Ampère functions, introduced by Fu [11] and developed in [17,18]. If one considers not the
distributional condition (1.4) but just the pointwise Monge–Ampère equation (1.1), then the
W 2,2 hypothesis of [30] is optimal. Indeed, conic solutions to (1.1) exist if the regularity
is assumed to be only W 2,p for p < 2 (see Example 1 below). One could even construct
more sophisticated solutions by gluing these conic singularities in a suitable manner, using
Vitali’s covering theorem (Example 2). Furthermore, Liu and Malý [24] have established
the existence of strictly convex W 2,p solutions to (1.1) (but not to 1.3) when p < 2. In the
meantime, it is known [9] that for p < 2, W 2,p solutions to (1.3) exist which are not C1

and fail to satisfy the developability statement of Theorem 2 at a given point in the domain.
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690 R. L. Jerrard, M. R. Pakzad

Finally, Lewicka and the second author have recently proved in [22] that the conclusions of
Theorem 2 hold for C1,α solutions to (1.3) provided α > 2/3, but not if α < 1/7.

What interests us in this paper are regularity and rigidity results in the manner of Theo-
rems 1 and 2 for arbitrary 1 ≤ k < n, under Sobolev regularity assumptions. We note that
the case k = 0 is trivial and that there is no rigidity whenever k ≥ n, see, for example, [35].

The proof in [25] of Theorem 1 was based on induction on the dimension of slices of the
domain and careful and detailed geometric arguments, applying theW 2,2

loc case of Theorem 2
to two-dimensional slices. These methods cannot be adapted to the solutions of (1.2) even
for k = 1, since one loses some natural advantages when working with (1.2) rather than with
the isometries themselves as done in [25]: the solution u is no more Lipschitz and being just a
scalar function, one loses the extra information derived from the length preserving properties
of isometries. On the other hand, contrary to the case of k = 1, regularity and developability
of the Sobolev solutions to (1.2) do not directly lead to the same results for the corresponding
isometries (see [30]).

Hence, the problems of regularity and developability of Sobolev isometric immersions
of co-dimension higher than 1 and also of the developability of Sobolev solutions to (1.2)
for k > 1 are more involved and could not be tackled through the methods discussed in
[25,30]. In this paper, we adapt methods of geometric measure theory, applied by the first
author in [17,18] to the class of Monge–Ampère functions, to overcome the above obstacles
for k > 1 and tackle both of the isometry and rank problems for Sobolev regular solutions
simultaneously.

Remark 1.2 It was proved furthermore in [30] that anyW 2,2 isometry on a convex 2d domain
can be approximated in strong norm by smooth isometries. The convexity assumption can be
weakened to e.g. piecewiseC1 regularity of the boundary, see also [14–16]. A generalization
of these results to the co-dimension one casewas obtained in [25]. It could be expected that the
results of this paper could help in proving similar density statements in higher co-dimensions,
but that would be more technically challenging than the previous cases.

1.2 Main results

We first introduce a few fundamental definitions.

Definition 1.3 Let � ⊂ R
n be an open set and j ∈ {1, . . . , n}. We say the set P ⊂ �

is a j-plane in � whenever P is the connected component of the intersection of � and a
j-dimensional affine subspace P of Rn . We will generally write P to denote a j-plane in �

for some subset � ⊂ R
n and P to denote a complete j-plane.

Definition 1.4 Let n ∈ N, n > 1, � be an open subset of Rn . We say a mapping w ∈
C0(�,R�) is (n − k)-flatly foliated whenever 0 ≤ k < n is an integer and there exists
disjoint subsets Fj , j = 0, . . . , k of �, such that the following properties hold:

(i) � =
⋃k

j=0
Fj ,

(ii) For all j ∈ {0, . . . , k}, � j :=
⋃ j

m=0
Fm is open,

(iii) For all j ∈ {0, . . . , k} and every x ∈ Fj , there exists at least one (n − j)-plane P in
� j such that x ∈ P and w is constant on P .

We say a mapping is flatly foliated when it is (n − k)-foliated for some integer k.
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Sobolev spaces of isometric immersions 691

Remark 1.5 Note that for all j ∈ {0, . . . , k}, Fj = � j \ � j−1. Hence, a straightforward
conclusion of the above definition is that Fj is closed in � j for all j ∈ {0, . . . , k}.
Definition 1.6 Let n, N ∈ N, n > 1, N ≥ 1, and let � be an open subset of Rn . We say
a mapping y ∈ C1(�,RN ) is (n − k)-developable whenever Dy : � → R

N×n ∼= R
nN is

(n − k)-flatly foliated. We say a mapping is developable when it is (n − k)-developable for
an integer k ∈ {0, 1, . . . , n − 1}.
We will later introduce weaker versions of the notions defined in Definitions 1.4 and 1.6for
mappings which are not necessarily of the required regularity.

The following two theorems sum up the main contribution of this paper. The first theorem
concerns Sobolev isometric immersions of Euclidean domains and extends Theorem 1 to
arbitrary co-dimension.

Theorem 3 Let k ∈ {1, . . . , n− 1}. Assume that � is a bounded, open subset of Rn and that
U ∈ W 2,p

loc (�;Rn+k) is an isometric immersion, so that U satisfies

Uxi ·Ux j = δi j a.e.in �, ∀i, j ∈ {1, . . . , n}.
If p ≥ min{2k, n}, then U ∈ C1(�;Rn+k), and U is (n − k)-developable.

The next theorem is a similar statement concerning scalar functions and generalizes to
arbitrary n and k those parts of Theorem 2 that concern the (pointwise) degnerate Monge–
Ampère equation (1.1) . This result is new whenever n > 2, even for k = 1.

Theorem 4 Assume that � is a bounded, open subset of Rn and that u : � → R satisfies

u ∈ W 2,p
loc (�) with p ≥ min{2k, n} rank(D2u) ≤ k a. e (1.5)

for some k ∈ {1, . . . , n − 1}. Then, u ∈ C1(�) and u is (n − k)-developable.

Remark 1.7 One interesting feature of these results is that the Sobolev regularity W 2,p can
be much below the required W 2,n+ε for obtaining C1 regularity by Sobolev embedding
theorems. The argument used in [30, Lemma 2.1] to show the continuity of the derivatives
of the given Sobolev isometry is no more generalizable to our case. In [30], the C1 regularity
is shown as a first step towards the proof of developability. Here, on the other hand, we first
show a weaker version of developability for the mapping and use it to show theC1 regularity.

Remark 1.8 In Example 1 below, we show that if u ∈ W 2,p(�) satisfies rank(D2u) ≤ k a. e,
and if p < k + 1, then u may fail to be C1. Also, Liu and Malý [24] have established the
existence of strictly convexW 2,p ∩C1,α solutions for 0 < α < 1 to the above rank condition
when p < k + 1. These examples, in particular, imply that the condition p ≥ min{2k, n} in
Theorem 4 cannot be weakened if k = 1 or k = n − 1. We believe, however, that it can be
weakened if k ∈ {2, . . . , n − 2}. Indeed, it seems likely that the conclusions of the theorem
continue to hold under the assumption that

u ∈ W 2,p
loc (�) with p ≥ k + 1 rank(D2u) ≤ k a.e. (1.6)

1.3 Some examples

Example 1 For any k < n and 1 ≤ p < k+1, there exists u ∈ W 2,p
loc (Rn) and rank (D2u) ≤ k

a.e. but such that the conclusions of the theorem fail. Indeed, consider u of the form

u(x1, . . . , xn) = u0(x
1, . . . , xk+1) for u0 ∈ C2

loc(R
k+1 \ {0}) homogeneous of degree 1.

123



692 R. L. Jerrard, M. R. Pakzad

One easily checks that u ∈ ∪p<k+1W
2,p
loc (Rn), and it is clear that Du is not continuous on

the set {x ∈ R
n : x1 = . . . , xk+1 = 0}, unless it is constant.

One could generalize the above example by gluing conic singularities in the following
manner:

Example 2 By Vitali’s covering theorem, we choose a covering B := {B(ai , ri )}i∈N of Rk+1

of non-overlapping balls so that Rk+1 \ ⋃
i∈N B(ai , ri ) is of Lebesgue measure zero. We

define v0 : Rk+1 → R
k+1 by

v0(x) :=
{
ai + ri (x − ai )/|x − ai | if x ∈ B(ai , ri ),
x otherwise.

It can be easily verified that v0 ∈ W 1,p
loc (Rk+1) for all 1 ≤ p < k + 1 and that v0 = Du0

for a scalar function. Let u(x1, . . . , xn) := u0(x1, . . . , xk+1). Then, u ∈ W 2,p
loc (Rn) for

1 ≤ p < k + 1, rank (D2u) ≤ k, but Du is not continuous on the set {ai }i∈N × R
n−k−1.

One might naively hope that for every k < n, the set {x ∈ � : rank(D2u) = k} is foliated
by n − k-planes on which Du is constant. This is not at all the case.

Example 3 Consider u : (0, 1)2 → R of the form u(x, y) = F(x)where F ′ = f : (0, 1) →
R is a strictly increasing Lipschitz continuous function such that {x ∈ (0, 1) : f ′(x) = 0}
has positive measure. For example, fix an open dense set O ⊂ (0, 1) whose complement has
positive measure, and let f (x) := L1((0, x) ∩ O), so that f is Lipschitz continuous and

f ′(x) =
{
1 for a.e. x ∈ O

0 for a.e. x /∈ O.

For a function of this form, we have u ∈ W 2,∞, with

Du(x, y) = ( f (x), 0), D2u(x, y) =
(

f ′(x) 0
0 0

)
a.e.

so that rank(D2u) ≤ 1 a.e. and rank(D2u) = 0 on a dense set of positive measure. However,
there is no two-dimensional set onwhich Du is locally constant; rather, for every ξ ∈ Im(Du),
where Im(·) denotes the image, Du−1{ξ} is the line segment f −1{ξ} × (0, 1).

Example 4 Consider again u : (0, 1)2 → R of the form u(x, y) = F(x), where F ′ = f and
f (x) := L1((0, x) \ O), where O is as in Example 3 above. Then, f is Lipschitz continuous
and

f ′(x) =
{
0 for a.e. x ∈ O

1 for a.e. x /∈ O.

Then, in the notation of Definition 1.4 below, � = �1, and �0 = O × (0, 1). Thus, �0

is a dense subset of �1, and F1 = �1 \ �0 is nowhere dense in �1.
More generally, given 0 ≤ j < k ≤ n, one can write down examples in the same spirit

defined on the unit cube in R
n , such that � j is dense in �k .

Example 5 Fix a C2 map v : R → R
2 such that v(0) = 0, v′(z) �= 0 for z �= 0, and

limz→0
v′
|v′| does not exist. For example, we may take v(z) = (z5 cos(1/z), z5 sin(1/z)).
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Sobolev spaces of isometric immersions 693

Nowset� = (−1, 1)3, and let u(x, y, z) = (x, y)·v(z). Then,we canwrite Du(x, y, z) =
(v(z), (x, y) · v ′(z)). Thus, level sets of Du are the plane z = 0, together with the line
segments

{x, y, z) : z = z0, (x, y) · v ′(z0) = c}, z0 �= 0, c ∈ R.

It is also easy to check that u is C2, rank(D2u) = 2 if z �= 0 and rank(D2u) = 0 if z = 0.
(Note also, ũ := u + z2 has all the same properties as u described above, except that

rank(D2u) = 1 when z = 0.)
This example shows that (in notation to be introduced later) �̄k may contain planes of

dimension greater than n−k on which Du is a.e. constant. By contrast, the previous example
shows that it may also happen that �̄k \ �k is foliated by planes of dimension n − k.

Also, we can see from this example that the (n − k)-planes that locally foliate �k may
oscillate wildly as one approaches points in �̄k at which rank(D2u) < k.

1.4 Remarks on notation and an outline of proofs

Throughout the paper, we will often simply write “measurable”, “almost everywhere”, with-
out specifying the Hausdorff measure at use, when the latter is clear from the context. Many
of our arguments take place in a product space � × R

�, where � ⊂ R
n and � is a positive

integer. In this setting, we will think of � and R� as “horizontal” and “vertical”, respectively,
andwewill use subscripts h and v accordingly. For example, wewill write ph, pv to designate
projections of � × R

� onto the horizontal and vertical factors, respectively:

ph(x, ξ) := x, pv(x, ξ) := ξ. (1.7)

If w ∈ L p(�) for some p < ∞, then a Lebesgue point of w will mean a point x such
that

lim
r→0

∫
Br (x)

|w(y) − w(x)|p dy := lim
r→0

1

Ln(Br (x))

∫
Br (x)

|w(y) − w(x)|p d = 0. (1.8)

Thus, we always understand “Lebesgue point” in an L p sense.We assume that every function
w appearing in this paper is precisely represented. Thus, w always equals its Lebesgue value
at every point where the Lebesgue value exists. If u ∈ W 2,p(�), there is a set E such that
Capp(E) = 0 and every point of � \ E is a Lebesgue point of Du. The capacity estimate
implies that Hn−p+ε(E) = 0 for every ε > 0. These facts can be found, for example, in
Ziemer [36], Theorem 3.3.3 and 2.6.16, respectively, or in [7].

To describe the proof, it is useful to introduce several weaker versions of the notions of
flatly foliated, defined above.

Definition 1.9 Let n ∈ N, n > 1, � be an open subset of Rn . We say a measurable mapping
w : � → R

� is densely weakly (n − k)-flatly foliated whenever there exist some k ∈
{0, 1, . . . , n − 1} and disjoint subsets Fj , j = 0, . . . , k of �, such that

� = ∪k
j=0Fj , (1.9)

and in addition, the following properties hold for every j :

� j := ∪ j
m=0Fm is open, (1.10)

and

for every x in some dense subset of Fj , there exists at least one n − j-plane P in � j

such that x ∈ P and w is Hn− ja.e. constant on P. (1.11)
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694 R. L. Jerrard, M. R. Pakzad

Definition 1.10 Let n ∈ N, n > 1, � be an open subset of R
n . We say a measurable

mapping w : � → R
� is pointwise weakly (n − k)-flatly foliated whenever there exist some

k ∈ {0, 1, . . . , n − 1} and disjoint subsets Fj , j = 0, . . . , k of �, such that (1.9) and (1.10)
hold, and

for every x ∈ Fj , there exists at least one n − j-plane P in � j

such that x ∈ P and w is Hn− ja.e. constant on P. (1.12)

Remark 1.11 The definitions require that the values of w are well defined for Hn− j a.e.
points on the given n − j-planes in �. As noted above, this is the case if we assume that e.g.
w ∈ W 1,k+1

loc (�,R�) and w is precisely represented, since in that case the set of points that
fail to be Lebesgue points of w has dimension less than n − k.

We start in Sect. 2 by showing that if U ∈ W 2,2(�;Rn+k) is an isometric immersion for
� ⊂ R

n , then w = DU satisfies

rank(Dw) ≤ k a.e. in �.

This is a classical fact for smooth maps. As a consequence, both of our main results reduce
to the study of maps w : � → R

� for some �, such that

rank(Dw(x)) ≤ k a.e. in �, w = (Du1, . . . , Duq) for some q ≥ 1. (1.13)

Amain challengewemust address is to find away to extract information from the hypothe-
ses (1.13) under conditions of low regularity. We carry this out making extensive use of the
machinery of geometric measure theory, including in particular some results fromGiaquinta,
Modica and Souček [12], Fu [11] and the first author [18] about the related topics of Cartesian
maps and Monge–Ampère functions.

To explain the role of geometric measure theory, we first outline the basic argument on
a formal level. Towards that end, consider a smooth map w = (Du1, . . . , Duq) such that
rank(Dw) = k everywhere, and further suppose that

• image(w) is a smooth embedded k-dimensional submanifold 
v ⊂ R
n , where Im(w)

denotes the image of w, and
• for every ξ ∈ 
v , 
h(ξ) := w−1{ξ} is a smooth (n − k)-dimensional submanifold of �.

These assumptions are far stronger than one can reasonably expect, but in any case they are
certainly consistent with the condition that rank(Dw) = k. For every ξ ∈ 
v , and for every
x ∈ 
h(ξ), basic calculus implies that

Im(Dw(x)) = Tξ
v (1.14)

and

ker(Dw(x)) = Tx
h(ξ). (1.15)

Moreover, the symmetry of D2ui (x) implies that ker(D2ui (x)) = [Im(D2ui (x))]⊥, if we
identify, in the natural way, the horizontal and vertical spaces to which Tξ
v and Tx
h(ξ)

belong. Thus,

Tx
h(ξ) = ker(Dw(x)) =
q⋂

i=1

ker(D2ui (x)) =
q⋂

i=1

[Im(D2ui (x))]⊥.
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Sobolev spaces of isometric immersions 695

The space on the right is completely determined by Tξ
v — in fact it can be written
∩q
i=1[Pi Tξ
v]⊥, where Pi denotes orthonormal projection of Rnq = (Rn)q onto the i th

copy of Rn . Thus, the tangent space Tx
h(ξ) does not depend at all on x ∈ 
h(ξ), but only
on ξ . Since the tangent space is constant, 
h(ξ) must be a union of n − k-planes in �, all
orthogonal to ∩ j

i=1[Pi Tξ
v]⊥.
The rigorous version of this argument starts in Sect. 3, where we use the machinery of

geometric measure theory to establish facts about

• the structure of 
v and 
h(ξ), which in our actual proof will be, not exactly the image
and the level sets of w, but closely related sets, and

• the relationship between their tangent spaces and the derivatives of w, along the lines of
(1.14) and (1.15) above

that are (barely) strong enough to justify some form of the proof sketched above. These
arguments apply to generalmappings (without a gradient structure)w ∈ W 1,k+1(�;R�) such
that rank(Dw) ≤ k a.e. Under these assumptions, we obtain 
v and 
h(ξ) as, essentially,
the vertical projection and horizontal slices, respectively, of a set


 := {(x, w(x)) ∈ � × R
� : x is a Lebesgue point of both w and Dw}.

(See 3.5, 3.4) for the actual definitions.)Appealing to results ofGiaquinta,Modica andSouček
[12], we find that 
 is n-rectifiable and that an integral n-current Gw , canonically associated
with the graph of w and carried by 
, has no boundary in � ×R

�. Then, the rectifiability of

v and of Hk almost every 
h(ξ) follows from classical results and the definitions of these
sets, as does a version of (1.14). Additional work is required to establish a version of (1.15)
and to show that the slices 
h(ξ) have enough regularity (in particular, they carry integer
n − k-currents with no boundary) to conclude from the constancy of the tangent spaces that
they are in fact planar.

In Section 4, we use these facts to prove that if w ∈ W 1,k+1
loc satisfies (1.13), then w is

densely weakly (n − k) flatly foliated. More precisely, we define

�k := {x ∈ � : x is a Lebesgue point of w and Dw, and rank (Dw) = k},
and we give a rigorous version of the formal argument sketched above to show, roughly
speaking, that �k is almost everywhere foliated by level sets of w that are n − k-planes in
�. (We remark that this is the only place in the paper where we use the gradient structure
of w.) To deduce that w is densely weakly (n − k)-flatly foliated, we define Fk := �̄k

and �k−1 := � \ Fk , and we note that rank(D2u)≤ k − 1 a.e. in �k−1. Hence, the above
machinery could be reapplied to the new set with the new rank condition. More generally,
letting �k = �, and for j ∈ {k, . . . , 0}, defining (working downwards)

� j := {x ∈ � j : x is a Lebesgue point of Du and D2u, and rank (D2u) = j},
Fj := �̄ j ∩ � j ,

� j−1 := � j − Fj = � j − �̄ j ,

we obtain a partition of � into disjoint sets Fj , j = 0, 1, . . . , k such that every Fj has a
dense subset foliated by n − j-planes on which w is Hn− j a.e. constant.

Following this, we prove in Sect. 5 that if w ∈ W 1,k+1
loc (�;R�) is densely weakly (n − k)-

flatly foliated, then w is pointwise weakly (n − k)-flatly foliated. (In fact here we only need
W 1,p

loc for some p > k.) The hypothesis already yields a partition of � into sets Fj satisfying
properties (1.9), (1.10), and so the point is to show that (1.11) together with the assumed
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Sobolev regularity implies (1.12). To do this, we obtain a planar level set of w through a
given point as a limit of planar level sets through nearby points. We remark that it is possible,
as illustrated in Example 3, for Fk to contain a subset of � \ �k of positive measure to be
foliated by n − k-planes on which w is constant.

The arguments of Sects. 3, 4 and 5require only the weaker regularity assumption (1.6),
and this hypothesis is sharp in a sense; this follows from Example 1 below. The stronger
assumption (1.5) is needed for Sect. 6, in which prove that if p = min{2k, n} and w ∈
W 1,p

loc (�;R�) is pointwise weakly (n − k)-flatly foliated, then w is continuous and hence
(n − k)-flatly foliated. This will complete the proof of our main results. For the proof, we
first show that if a point x ∈ Fk is contained in two distinct n − k-planes in � on which w is
a.e. constant, then the two constants are in fact equal. (Example 5 shows that this situation
can in fact arise.) It follows rather easily from this that the restriction of w to Fk is C0 and
indeed that the same holds in Fj for all j ≤ k. To conclude that w is continuous in �, it
remains to show that it is continuous at points of ∂� j ∩ �. This is a little more subtle and is
proved by showing that any such discontinuity is inconsistent with the p-quasicontinuity of
w, given facts we have already established about w.

The condition p ≥ {2k, n} is sharp for the results of Sect. 6, at least for certain values of
k, including k = 2, 4, 8. This follows from Examples 6–8 in Sect. 6. These results, however,
apply to vector-valued mapsw : � → R

� that are pointwise a.e. flatly foliated. As suggested
above, we believe that if one considers maps that in addition possess a gradient structure, that
is, maps of the form w = (Du1, . . . , Duq) for some q , then it should be possible to weaken
the regularity requirements.

2 Degenerate Hessians for Sobolev isometric immersions

In this section we prove a proposition that reduces the case of isometries to that of maps
whose Hessian satisfies a degeneracy condition. This is a variant of a classical lemma of
Cartan [4], which concerns smooth maps and has a correspondingly stronger conclusion.

Proposition 2.1 Assume that � ⊂ R
n is a bounded open set and that U ∈ W 2,2(�,Rn+k)

is an isometric immersion of � into R
n+k for some k ∈ {1, . . . , n − 1}, i.e. U satisfies

Uxi ·Ux j = δi j , ∀i, j ∈ {1, . . . , n}. (2.1)

Let w := DU : � → R
n ⊗ R

n+k ∼= R
� for � = n(n + k). Then,

rank(Dw) ≤ k a.e. in �.

In the proof of this result only, to simplify notation we will write U,i to denote partial
differentiation with respect to the i th coordinate direction.

Proof We will first establish the following identity:

U,i j ·U,kl −U,il ·U, jk = 0 ∀i, j, k, l ∈ {1, . . . , n} a.e.in �. (2.2)

LetUm ∈ C∞(�,Rn+k) be a sequence of mappings converging toU in theW 2,2-norm, and
let gmi j := Um,i ·Um, j . Twice differentiating gmi j , we obtain for all i, j, k, l:

gmi j,kl = Um,ikl ·Um, j +Um,ik ·Um, jl +Um,il ·Um, jk +Um,i ·Um, jkl .

Permuting the indices and cancelling the terms in third derivatives yields:

gmi j,kl + gmkl,i j − gmil, jk − gmjk,il = −2(Um,i j ·Um,kl −Um,il ·Um, jk).

123



Sobolev spaces of isometric immersions 697

Passing to the limit as m → ∞, we observe that the left-hand side converges in the sense of
distributions to 0, while the right-hand side converges in L1 to −2(U,i j ·U,kl −U,il ·U, jk).
This establishes (2.2). Our second observation is that

U,i j ·U,k = 0 ∀i, j, k ∈ {1, . . . , n} a.e.in �. (2.3)

This is straightforward to see, as differentiating the isometry constraint (2.1) we obtain for
all i, j, k:

0 = U,ik ·U, j +U,i ·U, jk = U,i j ·U,k +U,i ·U,k j = U,ki ·U, j +U,k ·U, j i ,

where the two last identities are obtained by permutations in i, j, k and all three are valid a.e.
in �. Now, adding the first two identities and subtracting the third implies (2.3), considering
that U,i j = U, j i for all choices of i, j a.e. in �.

In order to proceed, for any x ∈ � for which the identities (2.1), (2.2) and (2.3) are valid,
hence for a.e. x ∈ �, we define the orthogonal space to the imageU (�) at the pointU (x) to
be:

O(x) := span < U,1(x), . . . ,U,n(x) >⊥,

and the symmetric bilinear form B(x) : Rn × R
n → O(x) by

B(x)(V,W ) = W · D2U (x)V :=
n+k∑
m=1

(W · D2Um(x)V )em,

whereU = (U 1, . . . ,Un+k). Evidently, (2.3) implies that B(x) takes values in O(x). On the
other hand, (2.2) implies that for all X,W, Y, Z ∈ R

n we have

B(x)(X,W ) · B(x)(Y, Z) − B(x)(X, Z) · B(x)(Y,W ) = 0,

i.e. the symmetric bilinear form B(x) is flat with respect to the Euclidean scalar product on
O(x). Hence, we can apply a result due to E. Cartan [4] (see also [35, Lemma 1] for a proof),
to obtain that

dim(ker B(x)) ≥ dim(Rn) − dim(O(x)) = n − k,

where

ker (B(x)) := {V ∈ R
n;B(x)(V,W ) = 0 ∀W ∈ R

n} = ker(Dw(x)).

This completes the proof of the proposition. ��

3 Degenerate Cartesian maps

In this section, � is as usual a bounded, open subset of Rn , and w is a map satisfying

w ∈ W 1,k+1
loc (�,R�) , rank (Dw) ≤ k a.e. (3.1)
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for some k ∈ {1, . . . , n − 1} and some � ≥ 1. We will use the notation

�w := {x ∈ � : x is a Lebesgue point of both w and Dw} (3.2)


 := {(x, w(x)) : x ∈ �w} ⊂ � × R
� (3.3)


h(ξ) := {x ∈ �w : w(x) = ξ} (3.4)


v := {ξ ∈ R
� : Hn−k(
h(ξ)) > 0} (3.5)

�k = {x ∈ �w : rank(Dw(x)) = k}. (3.6)

Themain result of this section, stated below,will be used tomakeprecise the formal arguments
discussed in Sect. 1.4. Terminology appearing in the proposition will be recalled after its
statement.

Proposition 3.1 Assume that w satisfies (3.1). Then, 
v is k-rectifiable, and for Hk a.e.
ξ ∈ 
v , the following hold:


h(ξ) is Hn−k-measurable and n − k-rectifiable (3.7)

Tξ
v = Im(Dw(x)) and ker(Dw(x)) = Tx
h(ξ), Hn−ka.e.in
h(ξ). (3.8)

In addition, for Hk a.e. ξ ∈ 
v , there exists an integral current Hξ in � × R
�, defined

explicitly in (3.24) below, represented by integration over 
h(ξ) × {ξ} such that ∂Hξ = 0.
Finally,

Ln
(
�k \ ∪ξ∈
∗

v

h(ξ)

)
= 0, (3.9)

where


∗
v := {ξ ∈ 
v : ∂Hξ = 0, and (3.7)and(3.8) hold}. (3.10)

This is related to results in [18], proved in the more abstract setting of Monge–Ampère
functions. Here, we are able to exploit the Sobolev regularity and results of Giaquinta et al
[12] to extract more information than in [18], such as conclusions (3.8), which are new. We
also believe that the arguments given here are more transparent than those of [18].

Remark 3.2 We emphasize that 
 and 
v may differ from the graph {(x, w(x)) : x ∈ �} and
the image w(�) by sets of positive Hn measure. Indeed, [26] establishes the existence of a
continuous mapping w ∈ W 1,n(�;Rn) with vanishing Jacobian (i.e. k = n − 1), for which
w(�) has positivemeasure. In this construction, the bulk of the image is obtained by applying
w to the null set � \�w , and in fact Proposition 3.1 shows that 
v is an n− 1-rectifiable set.

We start by recalling some definitions. Formore background, one can consult, for example,
[12] for a general introduction to geometric measure theory in product spaces and whose
notation we have tried to follow.

If U ⊂ R
L for some L , then we say that 
 ⊂ U is j-rectifiable if


 ⊂ M0 ∪
∞⋃
q=1

fq(R
j ), where H j (M0) = 0 and fq : R j → U is Lipschitz.

It is a standard fact that a j-rectifiable set 
 has a j-dimensional approximate tangent plane,
denoted Ty
, at H j almost every y ∈ 
.
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If P is a j-dimensional plane in some R
L , then a unit j-vector orienting P is a j-vector

(that is, an element of the space � jR
L ) of the form τ = τ1 ∧ · · · ∧ τ j , where {τi } ji−1 form

an orthonormal basis for the tangent space to P.
Let D j (U ) denote the space of smooth, compactly supported j-forms on U .
Heuristically, j-currents supported in U are “generalized submanifolds” of dimension j ,

defined by duality to D j (U ). Integer multiplicity (henceforth abbreviated as i.m.) rectifiable
currents are those which are represented by a superposition of rectifiable sets. More precisely,
an i.m. rectifiable j-current T in U is a bounded linear functional on D j (U ) that may be
represented in the form

T (φ) =
∫




〈φ, τ 〉 θ dHn (3.11)

where

• 
 is a j-rectifiable set,
• θ : 
 → N is a H j -measurable function, locally integrable with respect to H j � 
; and
• τ is aH j -measurable function from 
 into the space� jR

L of j-vectors onRL , such that
τ(y) is a unit j-vector that orients the approximate tangent space Ty
, for a.e. y ∈ 
.

In (3.11), we write 〈φ(y), τ (y)〉 to denote the dual pairing between a j-covector φ(y) ∈
� j

R
L and a j-vector τ(y) ∈ � jR

L ; see (3.15) below for a concrete definition in the product
space setting.

When (3.11) holds, we say that T is represented by integration over 
.
We next introduce notation needed to write these objects more explicitly and in particular

to write currents and differential forms in the product space U = � × R
�. For 1 ≤ j ≤ m,

we define

I ( j,m) := {α = (α1, . . . , α j ) : 1 ≤ α1 < . . . < α j ≤ m}. (3.12)

If α ∈ I ( j,m), then |α| := j . We will think of I (0,m) as consisting of a single element,
“the empty multiindex”, which we will denote 0.

If S = (Sij ) is an � × n matrix (with i running from 1 to � and j from 1 to n) and
β ∈ I ( j, �), γ ∈ I ( j, n) for some j , then

Sβ
γ = (Sβi

γi ′ )
j
i,i ′=1 , Mβ

γ (S) := detSβ
γ . (3.13)

We refer to Mβ
γ (S) as a minor of S of order j .

We will write points in � × R
� in the form (x, ξ), and we will write {ei }ni=1 and {ε j }�j=1

to denote the standard bases for the spaces

R
n
h := R

n × {0} and R
�
v := {0} × R

�

of “horizontal” and “vertical” vectors. For α ∈ I ( j, n), we set

dxα := dxα1 ∧ . . . ∧ dxα j , eα := eα1 ∧ . . . ∧ eα j

and similarly dξβ and eβ , for β ∈ I ( j, �). Thus, for example, every n-form in � × R
� may

be written

φ =
∑

|α|+|β|=n

φαβ(x, ξ)dxα ∧ dξβ, (3.14)
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where it is understood that α ∈ I (∗, n) and β ∈ I (∗, �). The dual pairing appearing in (3.11)
is defined by

〈 ∑
|α|+|β|=n

φαβdx
α ∧ dξβ,

∑
|δ|+|γ |=n

τ δγ eδ ∧ εγ

〉
=

∑
|α|+|β|=n

φαβταβ . (3.15)

Given α ∈ I ( j, n), we will write ᾱ to denote the complementary multiindex, such that
(α, ᾱ) is a permutation of (1, . . . , n), and we write σ(α, ᾱ) to denote the sign of this permu-
tation. Hence, ᾱ and σ(α, ᾱ) are characterized by the conditions

|α| + |ᾱ| = n and dxα ∧ dx ᾱ = σ(α, ᾱ)dx1 ∧ . . . ∧ dxn .

We then define the n-current Gw by

Gw(φ dxα ∧ dξβ) = σ(α, ᾱ)

∫
�

φ(x, w(x))Mβ
ᾱ (Dw) dx, (3.16)

for φ ∈ C∞
c (� × R

n) and |α| + |β| = n. (We use the convention that M0
0 (Dw) = 1.)

We will repeatedly use the fact that

Gw(φ dxα ∧ dξβ) = 0 if |β| ≥ k + 1, (3.17)

which is a direct consequence of (3.1). A computation (see [12], section 3.2.1) shows that

Gw(φ) =
∫

�w

W ∗φ, for every n-form φ in � × R
�, where W (x) := (x, w(x))

and the pullback W ∗φ is defined pointwise in �w . Thus, Gw formally looks like integration
over the (oriented) graph ofw; this is the motivation for the definition ofGw. The next lemma
collects some useful observations of Giaquinta, Modica and Souček [12] which clarify the
sense in which this is, and is not, the case.

Lemma 3.3 Assume that w satisfies (3.1). Then:

(1) The restriction of W (x) = (x, w(x)) to �w maps Ln null sets to Hn null sets.
(2) 
 is n-rectifiable.
(3) For Hn a.e. point W (x) ∈ 
, with x ∈ �w ,

TW (x)
 = Im(DW (x)) (3.18)

(4) Gw is an i.m. rectifiable n-current represented by integration over 
. Indeed, for every
compactly supported n-form φ in � × R

�,

Gw(φ) =
∫




〈φ, τ 〉dHn, where τ(x, ξ) = Wx1(x) ∧ . . . ∧ Wxn (x)

|Wx1(x) ∧ . . . ∧ Wxn (x)| . (3.19)

(5) If K is a compact subset of �, then ‖Gw‖(K ×R
�) = Hn(
 ∩ (K ×R

�)) < ∞, where
‖Gw‖ denotes the total variation measure associated with Gw.

Proof It follows from assumption (3.1) that w is a.e. approximately differentiable, and all
minors of Dw are locally integrable. These are exactly the hypotheses of results in Giaquinta
et al. [12], see in particular sections 3.1.5 and 3.2.1 which establish all the conclusions of the
lemma. ��
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Under the conditions of Lemma 3.3, the set 
 which carries Gw can differ from the actual
graph {(x, w(x)) : x ∈ �} by a set of positive Hn measure; see, for example, [26]. As we
show below, it is nonetheless true that the current Gw associated with 
 has no boundary in
� × R

�. For this, we need the full strength of assumption (3.1); for Lemma 3.3 above, it in
fact suffices to assume that w ∈ W 1,k

loc .

Lemma 3.4 If w satisfies (3.1) and Gw is the n-current defined in (3.16), then

∂Gw = 0 in � × R
�. (3.20)

Remark 3.5 The Lemma implies that if u is a scalar function andw = Du satisfies (3.1), then
u is a Monge–Ampère function, see [11,18], and moreover that Det D2u = 0 in the sense of
[17, Equation (1.14)]. We mention that, while the functions constructed in Examples 1 and
2 are also Monge–Ampere functions, they do not satisfy Det D2u = 0 in the above sense.
It would also be possible to construct a function u ∈ W 2,k on a bounded, open subset of
R
n (say the unit ball) such that rank D2u ≤ k a.e. but u is not Monge–Ampère, due to an

accumulation of conical singularities.

Proof We must check that

0 = Gw

(
d(φ dxα ∧ dξβ)

) = Gw

(
φxi dx

i ∧ dxα ∧ dξβ
)

+ Gw

(
φξ j dξ j ∧ dxα ∧ dξβ

)

(3.21)

for all φ ∈ C∞
c (� × R

�) and α, β such that |α| + |β| = n − 1. The terms on the right-hand
side have the form∫

�

φxi (x, w) · (minor of order |β|) +
∫

�

φξ i (x, w) · (minor of order |β| + 1). (3.22)

If |β| ≥ k + 1, then the assumption that rank(Dw) ≤ k a.e. implies that all such terms
vanish and hence that (3.21) holds. If |β| ≤ k, then let wq be a sequence of smooth functions
converging tow inW 1,k+1

loc (�,R�). For eachwq , (3.21) holds (withw replaced bywq ). Also,
all minors of Dwq appearing in (3.22) have order at most k + 1 and hence converge in L1

loc
to the corresponding minors of Dw. And we can arrange after passing to a subsequence that

φxi (x, wq(x)) → φxi (x, w(x))
φξ j (x, wq(x)) → φξ j (x, w(x))

}
Lna.e.x, as q → ∞

for all i and j . These terms are also pointwise bounded uniformly in q (by ‖∇φ‖∞). We can
thus send q → ∞ to conclude that (3.21) holds for w. ��

Below, we write Jk pv for the k-dimensional Jacobian (in the sense of [8] 3.2.22) of
pv : 
 → R

�
v , the point being that we implicitly restrict the domain of pv to 
. Similarly,

for A ⊂ R
�
v , we understand p−1

v (A) to mean {(x, ξ) ∈ 
 : ξ ∈ A}.
We can now prove Proposition 3.1. In doing so, we establish a number of additional facts

that we record here:

Lemma 3.6 Assume that w satisfies (3.1) and let Gw, 
v and 
h be defined, respectively,
as in (3.16), (3.5) and (3.4). Then, there exist measurable mappings τv : 
v → �kR

�
v and

τh : p−1
v (
v) → �n−k(R

n
h) such that τv and τh are a.e. unit simple multivectors orienting

Tξ
v and T(x,ξ)(
h(ξ) × {ξ}), and

Gw(χ dξβ ∧ ψ) =
∫


v

Hξ (ψ)〈dξβ, τv〉 χ dHk (3.23)
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for β ∈ I (k, �), ψ ∈ Dn−k(� × R
�
v) and χ ∈ C∞(R�), where

Hξ (ψ) :=
∫


h(ξ)×{ξ}
〈ψ, τh〉 dHn−k for ψ ∈ Dn−k(� × R

�). (3.24)

Proof of Proposition 3.1 and Lemma 3.6 1. Given that 
 is rectifiable, see Lemma 3.3, the
measurability and rectifiability of 
v are immediate consequences of [8] 3.2.31, and then,
the a.e. measurability and rectifiability of 
h(ξ) follow directly from [8] 3.2.22(2).

Next, the coarea formula [8] 3.2.22(3) states that for any Hn � 
-integrable function g,∫



g Jk pv dHn =
∫


v

(∫
p−1
v {ξ}

g dHn−k
)
dHk .

It follows that

Jk pv(x, ξ) > 0 Hn−k a.e. in 
h(ξ), for Hk a.e. ξ ∈ 
v. (3.25)

Moreover,

Tξ
v = pv(T(x,ξ)
) = Im(Dw(x)), Hn−ka.e. in
h(ξ), for Hka.e.ξ ∈ 
v, (3.26)

using [8] 3.2.22(1) for the first equality and (3.18) for the second.
2. Let τv : 
v → �kR

�
v be any fixed measurable unit simple k-vectorfield that orients

Tξ
v a.e.. We will construct Hn-measurable τh : p−1
v (
v) → �n−k(R

n
h) characterized (up

to null sets) by the identity

〈dξβ ∧ dxα, τ (x, ξ)〉 = Jk pv(x, ξ) 〈dξβ, τv(ξ)〉 〈dxα, τh(x, ξ)〉 (3.27)

for all multiindices such that |β| = n− |α| = k, where τ was defined in (3.19). In fact, since
τv and τ are measurable, this identity is automatically the measurability of τh .

To prove (3.27), we fix some point (x, ξ) ∈ p−1
v 
v such that rank(Dw(x)) = k and

(3.18) holds. These conditions hold Hn a.e. by (3.25) and Lemma 3.3. We will find τh by
first selecting a basis {bi }ni=1 for R

n
h with a number of good properties and then defining

τi := DW (x)bi , i = 1, . . . , n, τh := τk+1 ∧ . . . ∧ τn . (3.28)

In view of (3.18), any such {τi }ni=1 is a basis for T(x,ξ)
. We choose {bi } to satisfy the
following:

• {bi }ni=k+1 are an orthonormal basis for ker(Dw(x)).
• {bi }ki=1 are orthogonal to ker(Dw(x)) and are chosen so that {τi }ki=1 are orthonormal.
• b1, . . . , bk are ordered so that Dw(x)b1 ∧ . . .∧ Dw(x)bk is a positive multiple of τv(ξ).
• {b1, . . . , bn} is positively oriented with respect to the standard basis {e1, . . . , en}.
The first two conditions can be satisfied since rank(Dw(x)) = k. The third condition can

be achieved due to (3.8), by changing the sign of b1 if necessary. Having fixed {b1, . . . , bk},
we can adjust the sign of bk+1 to arrange the final condition.

We now verify (3.27). Note that τi = DW (x)bi = (bi , Dw(x)bi ) ∈ R
n
h × R

�
v . It follows

that τi = (bi , 0) for i > k and hence that {τi }ni=1 are orthonormal. This and the ordering of
{b1, . . . , bn} imply that τ1 ∧ . . . ∧ τn = τ(x, ξ).

Also, it is a fact that Jk pv = |pvτ1 ∧ . . . ∧ pvτk |; this is a straightforward consequence
of the definition of the Jacobian. Since |τv(ξ)| = 1 and pvτi = Dw(x)bi , the ordering of
b1, . . . , bk implies that

τv(ξ) = pvτ1 ∧ . . . ∧ pvτk

|pvτ1 ∧ . . . ∧ pvτk | = pvτ1 ∧ . . . ∧ pvτk

Jk pv(x, ξ)
.
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Since pvτi = 0 for i > k, it follows that

τ(x, ξ) = τ1 ∧ . . . ∧ τn

= (phτ1 + pvτ1) ∧ . . . ∧ (phτk + pvτk) ∧ τh

= Jk pv(x, ξ) τv ∧ τh + (terms involving at most k − 1 vertical vectors).

Then, the claim (3.27) follows by letting dξβ ∧ dxα act by duality on both sides of the above
expression, since

〈
dξβ ∧ dxα, terms involving at most k − 1 vertical vectors

〉 = 0.

3. We will now show that if |β| = n − |α| ≥ k, then∫



〈
φ dξβ ∧ dxα, τ

〉
dHn =

∫
p−1
v 
v

〈
φ dξβ ∧ dxα, τ

〉
dHn for φ ∈ C∞

c (� × R
n).

(3.29)

This is clear whether |β| = n − |α| > k, in which case both sides vanish. For |β| = k, this
follows from a classical argument, dating back at least to Fu [11], which we recall for the
convenience of the reader. First, we rewrite the left-hand side in terms of slices 〈Gw, qβ, ·〉
of Gw by level sets of qβ , where qβ(x, ξ) = (ξβ1 , . . . , ξβk ) ∈ R

k . This leads to
∫




〈φ dξβ ∧ dxα, τ 〉dHn = Gw(dξβ ∧ φ dxα) =
∫
Rk

〈Gw, qβ, y〉(φ dxα) dy. (3.30)

Fix some i ∈ {1, . . . , �}. We will write qi (x, ξ) = ξ i and qβ,i (x, ξ) = (qβ(ξ), ξ i ) ∈ R
k+1.

We claim that 〈
〈Gw, qβ, y〉, qi , s

〉
= 0 for a.e. (y, s) ∈ R

k × R. (3.31)

To see this, note that for Lk+1 a.e. (y, s) ∈ R
k × R,〈

〈Gw, qβ, y〉, qi , s
〉
= 〈Gw, qβ,i , (y, s)〉

(see [8] 4.3.5). Then, basic properties of slicing imply that for any ψ ∈ Dn−k−1(� × R
�
v)

and χ ∈ C∞
c (Rk × R),

∫
Rk×R

〈Gw, qβ,i , (y, s)〉(ψ) χ(y, s) d ds = Gw(χ ◦ qβ,i dξ
β ∧ dξ i ∧ ψ)

(3.17)= 0.

It follows that for every ψ as above,
〈
〈Gw, qβ, y〉, qi , s

〉
(ψ) = 0 for a.e. (y, s) ∈ R

k × R.

Then, (3.31) follows by considering a countable dense subset of Dn−k−1(� × R
�
v).

Now according to Solomon’s Separation Lemma (Lemma 3.3 of [33]), it is a consequence
of (3.31) that for Lk a.e. y, every indecomposable component of 〈Gw, qβ, y〉 is carried by a
level set of qi . Since this holds for all i , we infer that for a.e y, every indecomposable compo-
nent of 〈Gw, qβ, y〉 is carried by p−1

v {ξ} for some ξ ∈ R
�. From general properties of slicing,

each such indecomposable component can be represented by integrationwith respect toHn−k

over p−1
v {ξ}. In particular, for each such indecomposable component, Hn−k(p−1

v {ξ}) > 0,
so ξ ∈ 
v . Hence, 〈Gw, qβ, y〉 is carried by p−1

v 
v . We combine this fact with (3.30) to
deduce (3.29).
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4. We now prove (3.23). Thus, for β ∈ I (k, �), ψ ∈ Dn−k(� × R
�
v) and χ ∈ C∞(R�

v),
we find from (3.19), (3.27), (3.29) and the coarea formula [8] 3.2.22 that

Gw(χ dξβ ∧ ψ) =
∫
p−1
v 
v

〈dξβ ∧ ψ, τ 〉χ dHn

=
∫
p−1
v 
v

〈ψ, τh(x, ξ)〉〈dξβ, τv(ξ)〉Jk pv(x, ξ)χ(ξ) dHn

=
∫


v

(∫
p−1
v {ξ}

〈ψ, τh〉dHn−k
)

〈dξβ, τv〉 χ dHk

This is (3.23).
5. Since ∂Gw = 0 in � × R

�, it follows from (3.23) that
∫


v

∂Hξ (ψ) 〈dξβ, τv〉χ(ξ) dHk = 0

for allψ ∈ Dn−k−1(�×R
�), χ ∈ C∞(R�), and β ∈ I (k, �). For every suchψ , it follows that

∂Hξ (ψ) = 0 forHk a.e. ξ ∈ 
v . By considering a countable dense subset ofDn−k−1(�×R
�),

we conclude that

∂Hξ = 0 in � × R
�, for Hk a.e. ξ ∈ 
v. (3.32)

Then, a standard blow-up argument shows that at any point (x, ξ) of 
h(ξ) × {ξ} which is
a Lebesgue point of τh and at which 
h(ξ) × {ξ} has an n − k-dimensional approximate
tangent space P , suitable rescalings of Hξ converge to the current

T (ψ) =
∫
P
〈ψ(y), τh(x, ξ)〉dHn−k(y),

and moreover that ∂T = 0. It follows that at such points, which comprise Hn−k almost all
of 
h(ξ) × {ξ}, the approximate tangent space P is oriented by τh(x, ξ). Projecting this
statement onto the horizontal component, and recalling the choice of {τi } in Step 1 above,
we deduce that

Tx
h(ξ) = span{phτi }ni=k+1 = span{bi }ni=k+1 = ker(Dw(x)).

This completes the proof of (3.8), recalling that we have already verified (3.26).
6. Finally, comparing (3.16) and (3.23),

∫
�w

φ(x, w(x))Mβ
ᾱ (Dw) dx = ±

∫

v

(∫
{ξ}×
h(ξ)

φ(x, ξ)〈dxα, τh〉dHn−k
)

〈dξβ, τv〉 dHk

if |β| = n − |α| = k, for φ ∈ C∞
c (� × R

�). By an approximation argument, this also holds
for φ ∈ L∞(� × R

�) with compact support. Also, we may replace 
v by 
∗
v , defined in

(3.10), since it follows from what we have already proved that the latter has fullHk measure
in 
v . We deduce that for any compact set K ⊂ � × R

�, if we define

�k
α,β,K := {x ∈ �w : (x, w(x)) ∈ K , Mβ

ᾱ (Dw(x)) �= 0}
then

Ln
(
�k

α,β,K \ ∪ξ∈
∗
v

h(ξ)

)
= 0.
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Since

�k =
⋃

|β| =n−|α|=k

⋃
Kcompact

�k
α,β,K ,

and indeed this can be written as a countable union via a suitable sequence of compact sets
{K j }∞j=1, this implies (3.9). ��

4 Dense weak flat foliation

The main result of this section is the following.

Proposition 4.1 Assume that � is a bounded, open subset of Rn and that

w ∈ W 1,k+1
loc (�), rank (Dw) ≤ k a.e. (4.1)

for some k ∈ {1, . . . , n − 1}, and
w = (Du1, . . . , Duq) for some q ≥ 1. (4.2)

Then, w is densely weakly (n − k)-flatly foliated.

This will be a straightforward consequence of the following lemma, which gives a more
detailed description of w in the set �k in which Dw has maximal rank k, see (3.6).

Lemma 4.2 Assume that w satisfies the hypotheses of Proposition 4.1.
Then, for Ln a.e. x ∈ �k , w−1{w(x)} coincides, up to a Hn−k null set, with a countable

union of (n − k)-planes in �, all of them parallel to ker(Dw(x)).
In particular, for Ln a.e. x ∈ �k , w is Hn−k a.e. constant on the n − k-plane in � that

passes through x and whose tangent space is ker(Dw(x)).

This is essentially proved in [18] in the case k = 1, n = 2.
Note that for w ∈ W 1,k+1

loc , the set of points that fail to be Lebesgue points of w has
dimension less than n−k, as discussed in Remark 1.11, so the conclusions of the proposition
make sense.

The proof of Lemma uses the geometric measure theory results of the previous section
to give a rigorous version of the formal argument sketched in the introduction. It is the only
point in this paper at which we use the gradient structure (4.2) of w.

In the proof,wewill identifyRn
h andR

n
v via the natural isomorphism e j ↔ ε j . In particular,

for each i ∈ {1, . . . , q}, we use the identity ker(D2ui (x)) = [Im(D2ui (x))]⊥.
Proof of Lemma 4.2 1. We fix ξ ∈ 
∗

v , defined in (3.10), and we first claim that

Tx
h(ξ) is Hn−ka.e.constant f or x ∈ 
h(ξ). (4.3)

Indeed, since D2ui (x) is symmetric for every i , at Hn−k a.e. x ∈ 
h(ξ) we have

Tx
h(ξ)
(3.8)= ker(Dw(x))

(4.2)= ∩q
i=1 ker(D

2ui (x)) = ∩q
i=1[Im(D2ui (x))]⊥.

Moreover, if we write Pi : (Rn)q → R
n to denote orthonormal projection of Rnq = (Rn)q

onto the i th copy of Rn , then D2ui (x) = Pi ◦ Dw(x). Thus,

Im(D2ui (x)) = Im(Pi ◦ Dw(x)) = Pi (Im(Dwi ))
(3.8)= Pi (Tξ
v).
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The term on the right depends only on ξ , so (4.3) follows from the previous two identities.
2. For ξ ∈ 
∗

v , we will write T (ξ) := ∩ j
i=1[Pi (Tξ
v)]⊥ = Tx
h(ξ) for a.e. x ∈ 
h(ξ).

We next claim that

if ξ ∈ 
∗
v , then 
h(ξ) is a union of (n − k)-planes in �, all parallel to T (ξ). (4.4)

Since the current Hξ from Proposition 3.1 is represented by integration over 
h(ξ) × {ξ}, it
suffices to show that every indecomposable component of Hξ is supported on exactly a set
of the form P × {ξ}, where P is an (n − k)-plane in � with tangent space T (ξ).

This follows from (4.3) and the fact that ∂Hξ = 0 in � × R
n , by classical arguments

that we have already seen in the proof of Proposition 3.6. In detail, by changing coordinates
we may arrange that Tx
h(ξ) = span{e1, . . . , en−k} for a.e. x ∈ 
h(ξ). Since Hξ is carried
by 
h(ξ) × {ξ}, it follows that for Hξ (φ ∧ d f ) = 0 for every n − k − 1-form φ with
compact support in �, whenever f has the form f (x) = x j for some j ∈ {n − k +
1, . . . , n}. In this situation, Solomon’s Separation Lemma (Lemma 3.3 of [33]) states that
every indecomposable component of Hξ is carried by a level set of f . It follows that every
indecomposable piece of Hξ is contained in an n − k plane in which x j is constant for all
j = n − k + 1, . . . , n (in the coordinates we have chosen, which depended on ξ .) described
above. This completes the proof of (4.4).

3. Now the conclusions of the lemma follow directly from (4.4), the definition (3.4) of

h(ξ), which implies in particular that w is a.e. constant in each of these sets, and (3.9),
which asserts that ∪ξ∈
∗

v

h(ξ) contains almost every point of �k . ��

Having Lemma 4.2 at hand, the proof that w is densely weakly flatly foliated is straight-
forward.

Proof of Proposition 4.1 1. We recall from Definition 1.9 that the definition of densely
weakly flatly foliated involves a partition of � into sets Fj such that � j := ∪ j

m=0Fm is
open for every j , and satisfying a property recalled in (4.8) below. We define these sets as
follows. As before,

�k := {x ∈ � : x is a Lebesgue point of w and Dw, and rank (D2u(x)) = k}.
We also let�k = �, and for j ∈ {k−1, . . . , 0}, we recursively define (working downwards)

� j = � j+1 − �̄ j+1 (4.5)

� j = {x ∈ � j : x is a Lebesgue point of Du and D2u, and rank (D2u) = j}, (4.6)

Finally, we set

Fj := �̄ j ∩ � j = � j \ � j−1. (4.7)

This indeed defines a partition of � such that every � j is open, as required.
Note that by our convention Fk = �̄k .
We must show that for every j ∈ {0, . . . , k},

for every x in a dense subset of Fj , there exists at least one n − j-plane P in � j

such that x ∈ P and w is Hn− ja.e. constant onP. (4.8)

Observe for every j ≤ k, � j is open, and w ∈ W 1, j+1
loc (� j ;R�) ⊂ W 1,k+1

loc (�;R�), with
rank(Dw) ≤ j a.e. in � j . In other words, w|� j satisfies (4.1) with k replaced by j , and
hence, Lemma 4.2 holds, with k replaced by j in � j ⊂ � j . It follows that
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for every x in a full measure subset of � j , there exists at least one n − j-plane P in � j

such that x ∈ P and w is Hn− j a.e. constant on P. (4.9)

Since � j is manifestly dense in Fj , to deduce (4.8) from (4.9) it suffices to prove that every
full measure subset of � j is in fact dense in � j .

To see this, consider some x0 ∈ � j , and fix δ > 0 such that rank(A) ≥ j for all matrices
with |A − Dw(x0)| < δ0. Then, for every r > 0 such that Br (x0) ⊂ � j , since x0 is a
Lebesgue point of w and Dw, the set

{x ∈ Br (x0) : x is a Lebesgue point of w and Dw, and |Dw(x) − Dw(x0)| < δ0}
has positive measure. Since rank(Dw) ≤ j a.e in Br (x0) ⊂ � j , the above set intersects � j

in a set of positive measure. Since x0 and r were arbitrary, this completes the proof of (4.8).
��

5 Pointwise weak developability

In this section, we will prove the following statement, which is an important step in estab-
lishing Theorem 4.

Proposition 5.1 Assume that

w ∈ W 1,p
loc (�;R�), rank (Dw) ≤ k a.e. (5.1)

for some k ∈ {1, . . . , n − 1} and some p > k. If w is densely weakly (n − k)-flatly foliated,
then w is pointwise weakly (n − k)-flatly foliated.

Remark 5.2 In view ofDefinition 1.6, we could say that Propositions 2.1, 4.1 and 5.1 together
imply a pointwiseweak developability result forW 2,k+1(�;Rn+k) isometric immersions and
also for such u ∈ W 2,k+1 such that rank(D2u) ≤ k a.e.

The proposition will follow from a couple of lemmas.

Lemma 5.3 Assume that k, n are integers such that 1 ≤ k < n. Let U be an open subset of
R
n−k , and for r > 0 let S := U × Bk

r for some r > 0.
Assume that w ∈ W 1,p(S;R�) for some p > k, and for i = 1, 2 let ζi : U → Bk

s be
continuous functions. Then, (writing points in S in the form x = (y, z) with y ∈ U, z ∈ Bk

s )(∫
U

|w(y, ζ1(y)) − w(y, ζ2(y))|pd
)1/p

≤ C‖w‖W 1,p(S)‖ζ1 − ζ2‖α
L∞(U )

for α = 1 − k
p , for a constant C depending only on k and p.

Proof We compute

‖w‖p
W 1,p(S)

≥
∫
U

‖w(y, ·)‖p
W 1,p(Bk

r )
d

≥ C−1
∫
U

|w(y, ζ1(y)) − w(y, ζ2(y))|p
|ζ1(y) − ζ2(y)|αp d

by the (k-dimensional) Sobolev Embedding, from which we also know that the constant C
depends only on p and k and in particular is independent of r . ��
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Our next lemma will be used again in Sect. 6.

Lemma 5.4 Assume that � is a bounded, open subset of Rn and that w ∈ W 1,p(�,R�) for
some p > j ∈ {1, . . . , n − 1} and some �.

Assume also that x0 ∈ � and that there exists a sequence of points (xm) ⊂ � and values
(ξm) ∈ R

� such that xm → x0 asm → ∞, andw = ξm atHn− j a.e. point on an (n− j)-plane
Pm in � that contains xm.

Then, w = limm→∞ ξm atHn− j a.e. point on some n − j plane P in � that contains x0.
(In particular, limm→∞ ξm exists).

As before, note that in view of Remark 1.11 the assumptions and the conclusion of the
lemma make sense for the considered class of mappings.

Proof Let ξm ∈ R
� denote the value of w on Hn− j a.e. point of Pm , and let Pm denote the

(n − j)-plane such that Pm is a connected component of Pm ∩ �.
Since theGrassmannian of unoriented (n− j)-dimensional subspaces inRn is compact, we

may assume, after passing to subsequences (still labelled (Pm), (ξm)), that there is a (n− j)-
plane P passing through x0 such that Pm → P in the Hausdorff distance on BR(0) ⊂ R

n as
m → ∞, for every R > 0. Now let P be the (n − j)-plane in � consisting of the connected
component of P ∩ � that contains x0.

We may arrange, after a translation and a rotation, that x0 = 0 and P = R
n− j × {0}, and

we write R
n = R

n− j
y × R

j
z as in Lemma 5.3. Fix a connected, relatively open set U ⊂ P ,

containing x0 and having compact closure in �. Then, there exists an open ball B j
r such that

S := U × B j
r � �. The convergence Pm → P implies that for every sufficiently large m,

there is an affine function ζm : U → B j
r such that Pm ∩ S = {(y, ζm(y)) : y ∈ U } and

moreover that ‖ζm‖L∞(U ) → 0 as m → ∞.
Also, for m large enough that xm ∈ S, we have that Pm ∩ S is nonempty and hence (since

S ⊂ � is convex and Pm is a connected component of Pm ∩�) that Pm ∩ S = Pm ∩ S ⊂ Pm .
So w = ξm Hn− j a.e. in Pm ∩ S, and by applying Lemma 5.3 to ζ = 0 and ζm , we find that∫

U
|w(y, 0) − ξm |pd =

∫
U

|w(y, 0) − w(y, ζm(y))|pd
≤ C‖w‖p

W 1,p(S)
‖ζm‖αp

L∞(U ) → 0 as m → ∞,

where α = 1 − j
p . It follows that there exists some ξ ∈ R

� such that ξm → ξ and moreover

that w(·, 0) = ξ a.e. on U . Since U was arbitrary, it follows that w = ξ at Hn− j a.e. point
of P . ��

Now we complete the

Proof of Proposition 5.1 By assumption, � is partitioned into sets Fj , j = 0, . . . , n − k

such that � j := ∪ j
m=0Fm is open for every j , and in addition, there is a dense subset of Fj

in which every point is contained in a n − j-plane in � j on which w is Hn− j a.e. constant.
To prove the proposition (with the same partition (Fj ) of �), it suffices to show that every

point in Fj is contained in a n− j-plane in� j on whichw isHn− j a.e. constant. This follows
directly from Lemma 5.4, since every point in Fj satisfies the hypotheses of the lemma, with
� replaced by � j . ��
Remark 5.5 We note in passing that a slightly more careful version of the above argument
would prove the following statement: For every x ∈ � j as defined in (4.6), w is Hn− j

a.e. constant on the n − j-plane in � j that passes through x and whose tangent space is
ker(Dw(x)), and the constant value is equal to w(x).
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6 Strong developability

In this section, we prove the following

Proposition 6.1 Assume that� is an open subset ofRn and thatw ∈ W 1,p
loc (�;R�) for some

p ≥ min{2k, n}. If w is pointwise weakly (n − k)-flatly foliated, then w is continuous. As a
result, if P is any n− j -plane in� j (as in Definition 1.10) on whichw isHn− j a.e. constant,
then in fact w is constant on P. In particular, w is (n − k)-flatly foliated.

For the convenience of the reader, the proof will be split in a series of Lemmas which will
follow and will be completed in Lemma 6.7. This will complete the proof of Theorems 3
and 4, which follow immediately from combining Propositions 4.1, 5.1 and 6.1 and, for
Theorem 3 only, Proposition 2.1 as well.

The following examples show that the condition p ≥ min{2k, n} cannot be weakened, at
least for certain values of n and k.

Example 6 Consider the map w : R4 → S2 ⊂ R
3 defined by

w(x) = H

(
x

|x |
)

if x �= 0, w(0) = 0,

where H : S3 → S2 is the Hopf fibration. Recall that every level set of H has the form
{(z, ζ ) ∈ C

2 ∼= R
4 : |z|2 + |ζ |2 = 1, αz = βζ } for some fixed α, β ∈ C (one of which can

always be taken to equal 1). From this, one easily checks that w is a 2-plane passing through
the origin and that the intersection of any two level sets is {0}. Thus, w is pointwise weakly
(n − k)-flatly foliated (see Definition 1.10) with n = 4, k = 2 and F2 = R

4, F0 = F1 = ∅,
and w ∈ W 1,p for all p < 4 = min{2k, n}. But clearly w is not continuous.

This example shows the hypothesis p ≥ min{2k, n}of Proposition 6.1 cannot beweakened
when n = 2k = 4.

Example 7 Next, for n ≥ 5 define w1 : R
n → R

3 by w1(x1, . . . , xn) = w(x1, . . . , x4)
wherew is the function from the above example. Then,w1 is pointwise weakly (n−k)-flatly
foliated with k = 2 and F2 = R

n , F0 = F1 = ∅. Also, w1 ∈ W 1,p
loc for all p < 4 =

min{2k, n}. But again w1 is not continuous.
So the condition p ≥ min{2k, n} cannot be weakened whenever k = 2 and n > 4.

Example 8 One can construct a function similar to that of Example 6 when n = 2k = 8 or
16 by using Hopf fibrations S7 → S4 and S15 → S8, and similarly a function similar to the
one in Example 7 when n > 2k = 8 or 16. It follows that the condition p ≥ min{2k, n}
cannot be weakened whenever k = 4 or 8 and n ≥ 2k.

Remark 6.2 One can check that the w : Rn → R
� constructed in the above examples are

not gradients of scalar functions. In fact, we conjecture that if we add to Proposition 6.1 the
assumption that w = Du for some scalar function u, then the conclusions of the proposition
should still be true if we merely assume p ≥ k + 1.

Before proceeding, we remind the reader once more that the assumptions of the next
couple of lemmas regarding the Hn−k a.e. value of w on n − k-planes are justified (see
Remark 1.11). The next lemma, whose proof is very similar to that of Lemma 5.3, still only
needs the minimal regularity assumptions p > k.
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Lemma 6.3 Assume that k, n are integers such that 1 ≤ k < n. Let � be an open subset
of Rn, and assume that w ∈ W 1,p

loc (�;R�) for some p > k. Finally, assume that P is an
n − k-plane in � such that w = ξ a.e. on P for some ξ ∈ R

�.
If x ∈ P is a Lebesgue point of |Dw|p, then x is a Lebesgue point of w, and w(x) = ξ .

Proof We may assume after a translation and a rotation that P is a connected component of
� ∩ (Rn−k × {0}) and that x = 0. Fix R > 0 such that Bn−k

R × Bk
R ⊂ � and let α = 1− k

p .
Then, for any positive r < R, writing [ f ]α to denote the α-Hölder seminorm,

∫
Bn−k
r ×Bk

r

|w − ξ |p dz =
∫
Bn−k
r

(∫
Bk
r

|w(y, z) − w(y, 0)|pdz
)
dy

≤
∫
Bn−k
r

(∫
Bk
r

|z|pα[w(y, ·)]pαdz
)
dy.

Also, by the k-dimensional Sobolev embedding,
∫
Bk
r

|z|pα[w(y, ·)]pαdz ≤ Crαp−k
∫
Bk
r

|Dw(y, z)|p dz = Crαp
∫
Bk
r

|Dw(y, z)|p dz

with a constant C independent of r . Thus,
∫
Bn−k
r ×Bk

r

|w − ξ |p dz ≤ rαp
∫
Bn−k
r ×Bk

r

|Dw|p dz.

Since x is a Lebesgue point of |Dw|p , the right-hand side is bounded by Cr pα for all small
r , proving the lemma.

��

The restriction p ≥ min{2k, n} in Proposition 6.1 arises from the following lemma.

Lemma 6.4 Assume that � is an open subset of Rn and that w ∈ W 1,p
loc (�,R�) for some �

and some p ≥ 1. Suppose that for i = 1, 2, there exist values ξ i ∈ R
n, planes Pi in � of

dimension n − k such that

P1 ∩ P2 �= ∅, and w = ξ i , Hn−ka.e.inPi

for i = 1, 2. If p ≥ min{n, 2k}, then ξ1 = ξ2.

Proof 1. We first consider the case 2k < n.
Let x0 ∈ � ∩ P1 ∩ P2. Any two planes of dimension n − k that intersect at a point must

intersect along a plane of dimension n − 2k. We may assume after a translation that x0 is the
origin, and after a rotation that P1 ∩ P2 = R

n−2k × {0}. We write y and z, respectively, to
denote points in R

n−2k and in R
2k , and we fix r and s such that Bn−2k

r × B2k
s ⊂ �. Then,

for Hn−2k+1 a.e. (y, σ ) ∈ Bn−2k
r × (0, s),

ess osc{y}×∂B2k
σ

|w| ≥ |ξ1 − ξ2|,
so that by the Sobolev embedding theorem,

|ξ1 − ξ2|2k ≤ Cσ

∫
{y}×∂B2k

σ

|Dw|2k dH2k−1.
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Thus, ∫
Bn−2k
r ×B2k

s

|Dw|2k =
∫
Bn−2k
r

∫ s

0

∫
{y}×∂B2k

σ

|Dw|2k dH2k−1 dσ dy

≥ c|ξ1 − ξ2|2k
∫
Bn−2k
r

∫ s

0

1

σ
dσ dy.

The left-hand side is finite, so it follows that |ξ1 − ξ2| = 0.
2. The case 2k ≥ n is similar but easier. Here, all we can say about any two n − k-planes

with nonempty intersection is that their intersection must contain a point x0. Hence, the
essential oscillation of w on a.e. small sphere centred at x0 is bounded below by |ξ1 − ξ2|,
and as a result∫

Bn
s (x0)

|Dw|n =
∫ s

0

∫
∂Bn

σ (x0)
|Dw|n ≥ c|ξ1 − ξ2|n

∫ s

0

1

σ
dσ. (6.1)

We conclude as before that |ξ1 − ξ2| = 0. ��
Remark 6.5 If 2k ≥ n, then a smallmodification of the above proof shows that the conclusion
remains true if we assume w = ξ1 a.e. in P1 and that w = ξ2 atH1 a.e. point of a connected,
relatively open subset U ⊂ P2, with P1 ∩ Ū �= ∅. Indeed, these hypotheses imply the
existence of an open line segment containing x0 on which w = ξ1 a.e., and a second open
line segment with an endpoint at x0 on which w = ξ2 a.e., and these conditions imply that
the essential oscillation ofw on a.e. small sphere centred at x0 is bounded below by |ξ1−ξ2|,
allowing us to conclude as in (6.1).

Our next result follows rather easily from the above two lemmas.

Lemma 6.6 Assume that w ∈ W 1,p
loc (�;R�) for some p ≥ min{2k, n}. If w is pointwise

weakly (n − k)-flatly foliated, then there exists a function w : � → R
n such that

w|Fj is continuous for every j ∈ {0, . . . , k} (6.2)

and

w = w a.e. in �. (6.3)

In particular, for every x ∈ Fj , there is an n− j -plane in� j containing x onwhichw = w(x)
everywhere, where Fj and � j are given as in Definition 1.10.

Proof 1. We define w by requiring that

w(x) = ξ if x ∈ Fj and w = ξa.e.onsomen − j-plane P in � j passing through x .

We claim that w is well defined. Towards this end, note that every x belongs to a unique Fj

by (1.9) and hence by (1.11) belongs to at least one n − j-plane in Fj on which w is a.e.
constant. Then, by Lemma 6.4, the values of w on any two such planes must agree a.e., so
the claim follows.

2. It follows from the definition of w and Lemma 6.3 that w = w at every Lebesgue point
of |Dw|p , which implies (6.3).

3. To verify that (6.2) holds, assume towards a contradiction that w|Fj is not continuous
at some point x0 ∈ Fj . Then, there exists a sequence (xm) in Fj such that

|xm − x0| <
1

m
, |w(xm) − w(x0)| ≥ c0
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for some c0 > 0. Let ξm := w(xm), and let Pm be a n − j-plane in � j such that w = ξm on
Pm . Then,

Pm ∩ B1/m(x0) �= ∅ w = ξm a.e. on Pm . (6.4)

Then, Lemma 5.4 implies that there exists some exactly (n − j)-plane P ′ in � j and some
ξ ′ ∈ R

n such that

x0 ∈ P ′, ξm → ξ ′, and w = ξ ′ Hn− j a.e. on P ′.

The definition of w implies that w(x0) = ξ ′. This, however, is impossible, since ξm → ξ ′
and |ξm − w(x0)| ≥ c0 for all m. This contradiction shows that w|Fj is continuous on Fj .

��
Our next goal is to show that the function w found above is continuous in all of �. This

will directly imply the continuity of w and hence will conclude the proof of our main results.

Lemma 6.7 Assume thatw ∈ W 1,p
loc (�;R�) for some p ≥ min{2k, n} and thatw is pointwise

weakly (n−k)-flatly foliated. Letw be the function found in Lemma 6.6. Then,w is continuous
in �, and as a result, w is continuous in �.

Before giving the proof, we recall that every f ∈ W 1,p(�,R�) is p-quasicontinuous,
which means that for every ε > 0, there exists an open set O ⊂ � such that Capp(O) < ε

and f |�\O is continuous. For the definition and the few properties of capacity that are needed
for our argument (e.g. the above statement) refer to [7], unless another reference is provided.

The idea of the proof below is to show that, given what we already know about w, if it
is discontinuous anywhere, then it must fail to be p-quasicontinuous, for p = min{2k, n},
which is impossible. That is, we will argue (in the more difficult case 2k < n) that, in view
of (6.2), any discontinuity of w would involve the intersection of (the closure of) portions of
planes on whichw is constant, one having dimension at least n−k and the other dimension at
least n− k + 1. This would lead to a discontinuity set for w of dimension at least n− 2k + 1,
along which the discontinuity cannot be eliminated by cutting out an open set of small
enough p-capacity, the point being that a set of p-capacity zero has dimension strictly less
than n − 2k + 1.

Proof of Lemma 6.7 First, since w = w a.e., if w is continuous, then every x ∈ � is a
Lebesgue point of w, and the Lebesgue value at x equals w(x). So w = w pointwise in �,
and the continuity of w follows. Thus, we only need to show that w is continuous.

It is convenient to write F≥ j := ⋃
m≥ j Fm , and similarly F> j := ⋃

�> j Fm = F≥ j+1.
With this notation, we will prove that by (downward) induction on j that

w|F≥ j is continuous for every j ∈ {k, . . . , 0} (6.5)

which in particular will imply that w is continuous on F≥0 = �.
FromLemma6.6we already know that (6.5) holds for j = k. Nowwe assume by induction

thatw|F> j is continuous for some nonnegative j < k, andwe prove thatw|F≥ j is continuous.
Step 1We first show that

if P is an n − j-plane in � j for which w = ξ on P, then w = ξ on P̄ ∩ F> j . (6.6)

This is a key point of the proof. In the case 2k ≥ n, this follows in a straightforward way
from Remark 6.5, so we focus on the case 2k < n.
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Step 1a. Assume towards a contradiction that (6.6) fails, so that for some n − j-plane P
in � j and x0 ∈ P̄ ∩ F> j such that

w = ξ on P, and w(x0) = ξ0, for some ξ �= ξ0 ∈ R
�. (6.7)

Then, x0 ∈ Fi for some i > j , so there exists an n − i-plane P0 in �i such that x0 ∈ P0 and
w = ξ0 in P0.

We may assume that

P ∩ P0 = ∅ (6.8)

because if there exists some y0 ∈ P ∩ P0, then since both P and P0 are relatively open, we
could apply Lemma 6.4 on a small ball containing y0 to conclude that ξ = ξ0.

We may also assume (after a translation) that x0 = 0. We write P and P0 to denote the
planes (of dimension n− j and n− i , respectively) that contain P and P0, and we let d denote
the dimension of P∩P0, so that d ≥ n − i − j ≥ n − 2k + 1, recalling that j < i ≤ k. Also,
d < n − i = dim(P0) < n − j .

We can arrange by a suitable rotation that

P = R
n− j × {0} ⊂ R

n, P ∩ P0 = R
d × {0} ⊂ R

n .

We will write points in R
n in the form x = (y, z) with y ∈ R

d , z ∈ R
n−d .

By the induction hypothesis, we may fix r > 0 so small that Bd
r × Bn−d

r ⊂ �i and

|w(x) − ξ | > δ := 1

2
|ξ0 − ξ | for all x ∈ (Bd

r × Bn−d
r ) ∩ F> j . (6.9)

Let B be a relatively open ball in P∩(Bd
r ×Bn−d

r ), and let B0 denote the orthogonal projection
of B onto R

d × {0}, so that B0 is a relatively open subset of Bd
r × {0}.

Step 1b.We claim that for every y ∈ B0, the restriction ofw to {y}×Bn−d
r is discontinuous.

This is a consequence of the following two facts, which we will prove below. First,

∀y ∈ B0, ({y} × Bn−d
r ) ∩ ∂PP is nonempty, (6.10)

where ∂PP denotes the boundary of P in P. Second,

w is discontinuous at every point of ∂PP ∩ (Bd
r × Bn−d

r ). (6.11)

(Recall that w is identified with its precise representative and that the complement of the set
of Lebesgue points has dimension less than n − p − ε for every ε > 0 and in particular is a
Hn−p+1 null set).

To prove (6.10), we first note that the definition of B0 implies directly that

({y} × Bn−d
r ) ∩ P is nonempty for y ∈ B0. (6.12)

Also, the definitions imply that

Bd
r × {0} ⊂ P0. (6.13)

This is verified by noting that P0 ∩ (Bd
r × Bn−d

r ) is nonempty, since x0 = (0, 0) ∈ P0, and
that in addition P0 is a connected, relatively open subset of P0∩�i . Since (Bd

r ×R
n−d
r ) ⊂ �i ,

it follows that P0 contains P0 ∩ (Bd
r × Bn−d

r ), which implies (6.13).
From (6.13) and (6.8), we see that (y, 0) /∈ P and hence that

({y} × Bn−d
r ) ∩ (P \ P) is nonempty. (6.14)
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Since P is a connected, relatively open subset of P, the claim (6.10) follows from (6.12) and
(6.14).

To prove (6.11), fix z ∈ ∂PP ∩ (Bd
r × Bn−d

r ), and note that z ∈ �i \ � j , since P is
by definition a connected component of P ∩ � j , and � j is open. Thus, z ∈ Fm for some
j < m ≤ i , and so there exists an n − m-plane P1 in �m containing z, and on which
w = w(z) Hn−m a.e.. So every ball around z contains points at which w = w(z). Similarly,
(6.9) implies that every ball around z contains points at which w = ξ �= w(z). Therefore,
(6.11) follows, completing Step 1b.

We now establish (6.6). Since w is p-quasicontinuous, for any ε > 0, there exists a set
S such that the restriction of w to � \ S is continuous, and Capp(S) < ε. By Step 1b, the
orthogonal projection of S ontoRd ×{0}must contain the open ball B0. Note that p-capacity
is not increased by orthogonal projection, e.g. by [27, Theorem 3] (see also [1, Chapter 5] for
further discussion of this type of results). Therefore, it follows that Capp(B0) < ε for every
ε > 0 and hence that Capp(B0) = 0. This, however, is false, as a set with zero p-capacity has
Hs measure 0 for every s > n− p, and the dimension d of B0 satisfies d ≥ n−2k+1 > n− p.
So we have proved (6.6).

Step 2. We now use (6.6) to prove the continuity of w on F≥ j .
Clearly, F≥ j is partitioned as F> j ∪ Fj . Since � j is open and Fj = � j ∩ F≥ j , we see

that Fj is relatively open and F> j relatively closed in F≥ j . Thus, in view of the induction
hypothesis and Lemma 6.6, it suffices to check that if x0 ∈ F> j and (xm) is a sequence in
Fj converging to x0, then w(xm) → w(x0).

Thus, we fix some x0 ∈ Fi for some i > j , and we assume towards a contradiction that
there is a sequence (xm) in Fj such that

xm → x0, |w(xm) − w(x0)| ≥ c0 > 0 for all m.

The definition of w implies that there exists an n − i-plane P in �i such that x0 ∈ P ⊂ �i ,
w = w(x0) everywhere on P , and w = w(x0) almost everywhere on P . It further implies
that for each xm , there exists a n − j-plane Pm in � j such that xm ∈ Pm , and on which
w = ξm := w(xm) everywhere, and w = ξm almost everywhere.

For eachm, we write Pm to denote the n− j-plane such that Pm is a connected component
of � j ∩ Pm . We now consider two cases.

Case 1. There exists some δ > 0 and a subsequence (mq) such that Pmq ∩ Bδ(x0) ⊂ � j

for every q .
If this holds, then it follows from Lemma 5.4, with � replaced by Bδ(x0), that there exists

some n − j-plane in Bδ(x0) that contains x0, and on which w = lim ξmq a.e.. This, however,
would imply that w(x0) = lim ξmq , which is impossible.

Case 2. Next we suppose that Case 1 does not hold.
Then, for every q there is some mq such that

Pmq ∩ B1/q(x0) �⊂ � j .

For q large enough that B1/q(x0) ⊂ � = � j ∪ F> j , it must then be the case that P̄mq ∩
F> j ∩ B1/q(x0) �= ∅. Let ymq ∈ P̄mq ∩ F> j ∩ B1/q(x0).

By Step 1, we know that w(ymq ) = w(xmq ).
Also, by construction, ymq → x0 as q → ∞. Then, since ymq ∈ F>k for every q , it

follows from the induction hypothesis that w(x0) = limq→∞ w(ymq ) = limq→∞ w(xmq ),
which is impossible in view of the choice of the sequence (xm). Hence, w is continuous as
claimed. ��
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