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Abstract Given two linear projections of maximal rank from P
k to P

h1 and P
h2 , with k ≥ 3

and h1 + h2 ≥ k + 1, the Grassmann tensor introduced by Hartley and Schaffalitzky (Int
J Comput Vis 83(3):274–293, 2009. doi:10.1007/s11263-009-0225-1), turns out to be a
generalized fundamental matrix. Such matrices are studied in detail and, in particular, their
rank is computed. The dimension of the variety that parameterizes such matrices is also
determined. An algorithmic application of the generalized fundamental matrix to projective
reconstruction is described.

Keywords Multiview geometry · Computer vision · Projective reconstruction · Grassmann
tensors

Mathematics Subject Classification 15A63 · 14N05 · 14M15

1 Introduction

In the context of computer vision, the encoding of the essential geometry of situations in
which multiple images of the same scene are taken frommultiple cameras leads to interesting
families of tensors, [1]. These multiview tensors have been introduced, in their most general
form, by Hartley and Schaffalitzky [2], and they describe the multiview geometry of scenes
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in higher-dimensional spaces, with views taken as projections onto multiple target spaces
of different dimensions. Special cases of these tensors are the classical fundamental matrix
for two projections from P

3 to P
2, and the trifocal and quadrifocal tensor for, respectively,

three and four projections from P
3 to P

2. Properties of the classical fundamental matrix,
the trifocal, and quadrifocal tensors, including the computation of their rank, (see [3] for a
thorough discussion of the intricacy of the notion of rank of a tensor), and the dimension and
equations of the variety that parameterizes these objects, have been investigated by several
authors, [4–12]. Nothing is known in general about the rank of these tensors and about the
variety that parameterizes them, as soon as the dimension of the ambient space is greater than
or equal to 4. This paper is intended as a first step in the investigation of these questions for
higher dimensions, and thus it is concerned with the Grassmann tensor for two projections
from P

k to P
h1 and P

h2 , with h1 + h2 ≥ k + 1, and k ≥ 3. In this case, the tensor of
interest is a matrix, that is a generalization of the classical fundamental matrix. As in the
classical case, this matrix gives a correspondence between proper linear subspaces of the two
views and thus represents a map between suitable Grassmannians. Theorem 1 shows that,
generalizing the classical case, the rank of such a matrix is not maximal and it is given by an
explicit formula. In several significant cases, linear relations between rows (or columns) of
the matrix, responsible for the drop in rank, are explicitly given. Such relations turn out to
be obtained from generalized Plücker relations, [13].

Taking inspiration from [7], the dimension of the variety of generalized fundamental
matrices is computed and such variety is shown to be birational to the quotient of an affine
cone over a suitable Grassmannian. Moreover, as a generalization of a known result in the
classical case, generalized fundamental matrices of rank 2 are completely characterized.

As it is well known, the relevance of Grassmann tensors in computer vision is due to their
fundamental role in solving the problem of projective reconstruction, [2,4,14–17]. For this
reason, even if this work is primarily concerned with theoretical aspects in a complex pro-
jective setting, geometric algorithms to perform reconstruction in some cases are described.

The paper is structured as follows. Section 2 collects simple background material and sets
basic notation. In Sect. 3, the generalized fundamental matrix is introduced and studied. In
particular, its rank is computed in Theorem 1 and relations among its rows (columns) are
investigated in Sect. 3.3. Section 4 studies the variety of generalized fundamental matrices,
and, finally, Sect. 5 presents the algorithmic application of the generalized fundamentalmatrix
to projective reconstruction.

2 Notation and background material

In this section, we collect all the necessary notation and background material from classical
algebraic geometry and multiview projective geometry in the context of computer vision.

2.1 Projective spaces and Grassmannians

P
k denotes the k-dimensional complex (or real when specified) projective space. Whenever

multiplication by a nonzero scalar is utilized, the scalar will be complex or real accordingly.
Once a projective frame is chosen, coordinate vectorsX of points ofPk arewritten as columns,
and thus their transpose is XT = (X1, . . . , Xk+1). For sake of simplicity, sometimes we do
not distinguish between points in P

k and vectors of their coordinates and, in this context,
a basis for the underlying vector space C

k+1 (or Rk+1) will be called a basis for Pk . A
linear projective subspace Λ ⊆ P

k spanned by m + 1 linearly independent points will be
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Generalized fundamental matrices as Grassmann tensors 541

called m-space or subspace of dimension m. By convention, the empty set is considered as
a (−1)-space.

For integers 0 ≤ l ≤ m, G(l, m) = G(l,Pm) denotes the Grassmannian of the l-spaces
in P

m, i.e., the set parameterizing these subspaces. Each l-space L ⊂ P
m is determined by

l + 1 independent points Qi, i = 1, . . . , l + 1. Denoting by Qi
T = qi j , j = 1, . . . , m + 1,

the homogeneous coordinates ofQi, one can consider the (l +1)× (m +1)matrixQ = [qi j ]
and its

(m+1
l+1

)
essential (l + 1) × (l + 1) minors. One usually denotes by pi1,...,il+1 the

(l + 1) × (l + 1) minor of Q corresponding to the i1, . . . il+1-columns. Minors pi1,...,il+1

for which i1 < · · · < il+1 (in lexicographic order) are called Plücker coordinates of L and

determine a point L in a P
(m+1

l+1 )−1. In this projective space, the Plücker coordinates of all
l-spaces in P

m satisfy a set of algebraic equations defining a smooth algebraic variety of

dimension (l + 1)(m − l) which is called the Plücker embedding of G(l, m) in P
(m+1

l+1 )−1.

The map L �→ L, which associates with each l-space in P
m the vector of its coordinates as a

point of P(m+1
l+1 )−1, is called the Plücker map and it is one to one onto its image. For example:

G(1, 3) is the Grassmannian of lines in P
3. Its Plücker embedding is a four-dimensional

quadric in P
5, and the Plücker map is a one-to-one map from G(1, 3) to this quadric. As a

reference for all basic facts on Grassmannians, and more, we suggest [13].
In the sequel, we will need to consider some Schubert varieties in G(l, m), for which

we introduce the following notation. For a given s-space S ∈ P
m, s < l, we will denote by

Ω(l,m)(S) ⊂ G(l, m) the variety of all l-spaces in Pm containing S. It turns out thatΩ(l,m)(S)

is a variety of dimension (m − l)(l − s).
Some standard facts concerning duality among Grassmannians will also be useful. Denote

by P̌m = G(m −1, m) them- projective space which is the dual of Pm . Points of P̌m represent
hyperplanes of Pm . As seen above, a given l-space L ⊂ P

m defines a point L ∈ G(l,Pm),

but it can be dually described via (the intersection of) the set of all hyperplanes containing
it, i.e. as an (m − l − 1)-space in P̌m, or, which is the same, as a point of G(m − l − 1, P̌m).

This is the reason why Grassmannians G(l, m) and G(m − l − 1, m) are isomorphic and are
said to be dual of each other. For the explicit correspondence between usual and dual Plücker
coordinates of a given subspace, see [18, Vol I, Book II, p. 292],

2.2 Multiview geometry

For the convenience of the reader, we fix our notation for cameras, centers of projection, and
multiple views in the context of projective reconstruction from multiple views in computer
vision. A scene is a set of N points {Xi} ∈ P

k, i = 1 . . . N . A camera is represented as a
central projection P of points in k-space, from a linear center CP , onto a suitable Ph, h < k,

where in the traditional setting of real still images it is k = 3 and h = 2. The target space
P

h, which in the traditional setting is usually identified with a physical image, is usually
referred to as a view. We do not make any formal distinction between the projection map P
and one of its matrix representations, for which we use the same symbol P. Accordingly, if
X is a point in P

k, we denote its image in the projection equivalently as P(X) or P · X. The
center of projection is denoted by CP . In homogeneous coordinates, the projection mapping
P : Pk \ {CP } → P

h is described by μx = P · X, where μ is a nonzero constant, P is a
(h + 1) × (k + 1)-matrix with rk (P) = h + 1, and CP is the right annihilator of P, hence
a (k − h − 1)-space. For a given point X ∈ P

k, the projecting ray, i.e. the join 〈CP ,X〉, is a
(k−h)-space, asCP is a (k−h−1)-space. Let P+ denote a pseudoinverse for P, i.e. a matrix
such that P · P+ is the identity matrix. Then, for a given x ∈ P

h, P−1(x) = 〈P+(x), CP 〉.
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542 M. Bertolini et al.

While in many applications one naturally considers projections from P
k to several spaces

all of the same dimension (i.e. one considers a set of multiple images of the same kind
of a scene, traditionally 3 or 4 real projections from P

3 to P
2), the general setup allows

for projections P j : P
k \ CP j → P

h j to spaces of different dimensions. Two different
images P j (X) and Pm(X) of the same pointX are corresponding points, while 〈CP j ,X〉 and
〈CPm,X〉 are corresponding rays. More generally, r linear subspaces Si ⊂ P

hi , i = 1, . . . , r
are said to be corresponding if there exists at least one point X ∈ P

k such that Pi(X) ∈ Si

for i = 1, . . . , r.
Hartley and Schaffalitzky [2] gave a comprehensive theoretical framework for the study of

multiview geometry, in any dimension. Here we recall the basic elements of their approach.
Consider, again, a set of projections P j : Pk \ CP j → P

h j , j = 1, . . . , r, h j ≥ 2 and a
partition (α1, α2, . . . , αr ) of k + 1, i.e. 1 ≤ α j ≤ h j for all j, and

∑
α j = k + 1. Let {L j },

j = 1, . . . , r, be a set of general s j -spaces, with L j ⊂ P
h j , and s j = h j − α j.

Hartley and Schaffalitzky show that imposing to {L j } to be a set of corresponding sub-
spaces, with the assumption that

∑
α j = k + 1, one gets a multilinear relation among

the Grassmann (Plücker) coordinates of the L j . The rationale for the above assumption is
essentially an application of Grassmann formula. Indeed, if

∑
α j < k + 1, then any r -

tuple of general subspaces with the given codimension α j would be corresponding, while if∑
α j > k +1 imposing to an r -tuple of subspaces to be corresponding would generate more

than one multilinear constraint.
The coefficients of these relations are then packaged into a multi-view tensor, called a

Grassmann tensor with profile (α1, . . . , αr ). This Grassmann tensor in the case of two,
three, and four views from P

3 to P
2 is the classical fundamental matrix, trifocal tensor, and

quadrifocal tensor, respectively. As mentioned in the introduction, all these objects have
been widely studied in different contexts by many authors [4–12]. This work is concerned
with the Grassmann tensor in the case of projections from a space of any dimension onto two
views of possibly different dimensions.

3 Generalized fundamental matrix

3.1 Definition and explicit construction

Let us now consider two projections P1 = A and P2 = B from P
k to P

h1 and to P
h2 ,

respectively, where h1 + h2 ≥ k + 1, and where A and B are maximal rank matrices as
follows:

A =

⎛

⎜⎜⎜
⎝

a1,1 a1,2 · · · a1,k+1

a2,1 · · · · · · a2,k+1
...

...
...

...

ah1+1,1 · · · · · · ah2+1,k+1

⎞

⎟⎟⎟
⎠

B =

⎛

⎜⎜⎜
⎝

b1,1 b1,2 · · · b1,k+1

b2,1 · · · · · · b2,k+1
...

...
...

...

bh2+1,1 · · · · · · bh2+1,k+1

⎞

⎟⎟⎟
⎠

.

Grassmann formula shows that our assumption h1 + h2 ≥ k + 1, in particular, implies
that, for generic choices of A and B, the projection centers CA and CB do not intersect. Their
images E1 = A(CB) and E2 = B(CA) are subspaces of dimension k − hi − 1 of the view
spaces, usually called epipoles.

Following [2], we choose a profile (α1, α2), where, without loss of generality, α1 ≥ α2,

and with α1 + α2 = k + 1, in order to obtain the constraints necessary to determine the
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Generalized fundamental matrices as Grassmann tensors 543

corresponding tensor. In this case, the tensor is simply a matrix which we will call, following
the classical case, generalized fundamental matrix.

Let L ⊂ P
h1 , L ′ ⊂ P

h2 be linear subspaces of dimension s1 = h1 − α1, s2 = h2 − α2,

respectively, and let L ∈ G(s1, h1) ⊆ P
(h1+1

s1+1)−1
and L′ ∈ G(s2, h2) ⊆ P

(h2+1
s2+1)−1

be their
associated points in the appropriate Grassmannians.

Choose coordinates (x1, . . . , xh1+1) and (y1, . . . , yh2+1) in the two views Ph1 and P
h2 ,

respectively. Given s1 + 1 points xj = (x j
1 , . . . , x j

h1+1), j = 1, . . . , s1 + 1 in P
h1 generating

L and s2 + 1 points yl = (yl
1, . . . , yl

h2+1), l = 1, . . . , s2 + 1 in P
h2 generating L ′, consider

the following (h1 + h2 + 2) × (h1 + h2 + 2) square matrix:

ML ,L ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜
⎝

a1,1 · · · a1,k+1 x11 · · · xs1+1
1 0 · · · 0

a2,1 · · · a2,k+1 x12 · · · xs1+1
2 0 · · · 0

...
...

...
...

...
...

...
...

...

ah1+1,1 · · · ah1+1,k+1 x1h1+1 · · · xs1+1
h1+1 0 · · · 0

b1,1 · · · b1,k+1 0 · · · 0 y11 · · · ys2+1
1

b2,1 · · · b2,k+1 0 · · · 0 y12 · · · ys2+1
2

...
...

...
...

...
...

...
...

...

bh2+1,1 · · · bh2+1,k+1 0 · · · 0 y1h2+1 · · · ys2+1
h2+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟
⎠

Remark 1 a) If L and L ′ are corresponding spaces then the linear system

ML ,L ′ ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

X
λ1
...

λs1+1

μ1
...

μs2+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= 0 (1)

has a non-trivial solution, hence det(ML ,L ′) = 0. Indeed L and L ′ are corresponding if
and only if there exists a point X ∈ P

k such that A · X ∈ L and B · X ∈ L ′.
b) If either L ∩ E1 
= ∅, or L ′ ∩ E2 
= ∅, then det(ML ,L ′) = 0. Indeed, if, e.g., e2 ∈ L ′ ∩ E2,

then e2 = B ·X̂, for some X̂ ∈ CA and e2 = ∑
j μ jyj, for someμ j .Then one can replace

ys2+1 with e2 in the matrix ML ,L ′ . In this case, the last column of ML ,L ′ is

[
A · X̂
B · X̂

]

which is clearly linearly dependent from the first k + 1 columns.
c) If L ∩ E1 = ∅, L ′ ∩ E2 = ∅ and det(ML ,L ′) = 0, then L and L ′ are corresponding.

Indeed, with these assumptions, the linear system (1) has a non-trivial solution with, in
particular, X 
= 0. Indeed, if X = 0 either λ j 
= 0 for some j or μ j 
= 0 for some j.
Either of these cases would contradict the linear independence of the points chosen to
generate L and L ′.

In view of Remark 1, one sees that det(ML ,L ′) = 0 is indeed the bilinear constraint that
encodes the correspondence between subspaces of the two views.

Let I = (i1, . . . , is1+1), J = ( j1, . . . , js2+1), Ĵ = (h1 + 1 + j1, . . . , h1 + 1 + js2+1)

with 1 ≤ i1 < · · · < is1+1 ≤ h1 + 1 and 1 ≤ j1 < · · · < js2+1 ≤ h2 + 1. Denote by
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I ′, Ĵ ′ the (ordered) sets of complementary indices I ′ = {r ∈ {1, . . . , h1 + 1} such that
r /∈ I } e Ĵ ′ = {s ∈ {h1 + 2, . . . , h1 + h2 + 2} such that s /∈ Ĵ }. Moreover denote by AI

and BJ , respectively, the matrices obtained from A and B deleting rows i1, . . . , is1+1 and
j1, . . . , js2+1, respectively.

Computing det(ML ,L ′)with an iterated application of the generalized Laplace expansion,
one gets:

det (ML ,L ′) =
∑

I,J

λI FI,J λ′
J

where λI = pi1,...,is1+1 are Plücker coordinates of L , and similarly for λ′
J and L ′, and where

the FI,J are given by:

FI,J = ε(I, J ) det

(
AI

BJ

)
(2)

where ε(I, J ) is +1 or −1 according to the parity of the permutation (I, Ĵ , I ′, Ĵ ′).

Notice that FI,J are suitablemaximalminors of thematrix

[
A
B

]
so that they can be thought

of as some of the Plücker coordinates of the k-subspace ΛAB ⊂ P
h1+h2+1, spanned by the

columns of the above matrix. From the construction above, and recalling the relationship
between Plücker and dual Plücker coordinates, see [18, Vol I, Book II, p.292], one sees that
FI,J are the dual Plücker coordinates qI, Ĵ (ΛAB).

The above discussion laid the groundwork for the following definition, using the same
notation.

Definition 1 The generalized fundamental matrix for two projections A, B from P
k to P

h1

and P
h2 , with profile (α1, α2), is, up to a multiplicative nonzero constant, the

( h1+1
h1−α1+1

) ×
( h2+1

h2−α2+1

)
matrix F, whose entries are FI,J are the dual Plücker coordinates qI, Ĵ (ΛAB) with

lexicographical order of I for the rows and Ĵ for the columns.

Example 1 In the classical case of two projections from P
3 to P

2, with α1 = α2 = 2, the

matrix

[
A
B

]
has dimension 6 × 4. The subspace ΛAB is in G(3, 5) ⊂ P

14, hence its 15

Plücker coordinates are qr1,r2 with 1 ≤ r1 < r2 ≤ 6, while the entries of the fundamental
matrix are only the nine coordinates qi1, j1 with 1 ≤ i1 ≤ 3 and 4 ≤ j1 ≤ 6, indeed one has:

F =
⎛

⎝
q1,4 q1,5 q1,6
q2,4 q2,5 q2,6
q3,4 q3,5 q3,6

⎞

⎠ .

Example 2 Consider two projections from P
4 to P3 with profile (3, 2). In this case, thematrix[

A
B

]
has dimension 8× 5. The subspace ΛAB is in G(4, 7) ⊂ P(85)−1, and the fundamental

matrix F is:

F =

⎛

⎜⎜
⎝

q1,5,6 q1,5,7 q1,5,8 q1,6,7 q1,6,8 q1,7,8
q2,5,6 q2,5,7 q2,5,8 q2,6,7 q2,6,8 q2,7,8
q3,5,6 q3,5,7 q3,5,8 q3,6,7 q3,6,8 q3,7,8
q4,5,6 q4,5,7 q4,5,8 q4,6,7 q4,6,8 q4,7,8

⎞

⎟⎟
⎠ .
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Generalized fundamental matrices as Grassmann tensors 545

Example 3 Finally, we consider two projections from P
5 to P

h1 = P
4 and P

h2 = P
3 with

profile (3, 3). In this case the fundamental matrix F has dimension 9 × 6 and is of the form

F =

⎛

⎜
⎜
⎜
⎝

q1,2,6 q1,2,7 q1,2,8 q1,2,9
q1,3,6 q1,3,7 q1,3,8 q1,3,9
...

...
...

...

q4,5,6 q4,5,7 q4,5,8 q4,5,9

⎞

⎟
⎟
⎟
⎠

.

The classical fundamental matrix F for two projections from P
3 to P

2, besides its role
as a bilinear form xT · F · x′, vanishing on pairs of corresponding points on the two views,
can also be viewed as a map. Indeed F can be interpreted as mapping a point x 
= E1 in
the first view to the line xT · F, passing through E2, and containing all points x′ who are

corresponding to x. Hence F defines a rational map P
2 ��� P̌2 whose image is the pencil of

lines through E2.

Similarly, the generalized fundamental matrix is, on the one hand, the matrix of a bilinear
form acting on pairs (L , L ′)where L and L ′ are corresponding linear spaces in the two views
and, on the other hand, can also be viewed as a rational map associating to a linear space L ,

such that L ∩ E1 = ∅, the linear space B(A−1(L)) which, for a generic L , has dimension
k−α1.This interpretation ofF as amap is investigated in the next sectionwhere, in particular,
it will be useful in computing rk (F).

3.2 Geometric determination of rk (F)

The determination of the rank of a tensor is an interesting and usually quite intricate problem.
The rank of the classical fundamental matrix is well known to be 2. The rank of the trifocal
tensor was determined to be 4, while the rank of the quadrifocal tensor turns out to be 9,
[10]. Nothing is known in general about the ranks of generalized Grassmann tensors. In this
section, we compute the rank of the generalized fundamental matrix as a first step in this
direction. In the same notation as the previous section, one has the following Theorem.

Theorem 1 The generalized fundamental matrix F for two projections of maximal rank
and whose centers do not intersect each other, with profile (α1, α2), defines a rational map
Φ : G(s1, h1) ��� G(k − α1, h2) whose image is the Schubert variety Ω(k−α1,h2)(E2).

Moreover it is:

rk (F) =
(

(h1 − α1 + 1) + (h2 − α2 + 1)

h1 − α1 + 1

)
.

Proof Consider F as the matrix of a rational map Φ : G(s1, h1) ��� G(k − α1, h2) defined
asΦ(L) = L̂ ∈ G(k −α1, h2) = G(α2+1, h2) ⊆ P

N2 ,where L̂ are the Plücker coordinates
of B(A−1(L)). As we have seen in Remark 1, this map is not defined on the points of
G(h1 −α1, h1)which correspond to linear spaces which intersect E1. Due to the assumption
α1 + α2 = k + 1, the open subset of G(h1 − α1, h1) where the map is defined is not empty.

As in the classical case, the linear space B(A−1(L)) contains E2. This implies that when
L varies in G(s1, h1), the imageΦ(L) varies inΩ(k−α1,h2)(E2),which turns out to be a (h2+
α1−k)(h1−α1+1)-variety spanning a linear space Pω where ω = (

(h1−α1+1)+(h2−α2+1)
h1−α1+1

)−
1 = (

(h1+h2−k+1)
h1−α1+1

) − 1. This dimension can be computed using Proposition 3 in [13] to
determine the number of independent linear conditions which define Ω(k−α1,h2)(E2) inside
the Grassmannian.
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546 M. Bertolini et al.

In Plücker coordinates, the map Φ is defined by Φ(L) = LT · F and extends to a rational
map Φ̃ : PN1 ��� P

N2 ,where N1 = ( h1+1
h1−α1+1

)−1 and N2 = ( h2+1
h2−α2+1

)−1.The image of Φ̃ is
contained in P

ω because the Grassmannian G(s1, h1) is not contained in any hyperplane and
hence it spans all of PN1 . Moreover, it is not difficult to see that I m(Φ) = Ω(k−α1,h2)(E2),

hence Φ is dominant on Ω(k−α1,h2)(E2) and this implies that Φ̃ is dominant on P
ω. Indeed

for any � ∈ Ω(k−α1,h2)(E2) one has � = Φ(L) = Φ̃(L), for any L ⊂ A(B−1(Λ)), where,
according to our notation, � denotes the vector of Plücker coordinates of the linear space Λ.

This implies that the fundamental matrix has rank: rk (F) = ω + 1. ��

Remark 2 Notice that, as in the classical case, the generalized fundamental matrix is not of
maximal rank. From the geometric point of view, this corresponds to the fact that the fiber
Φ−1(�), for a given generic � ∈ Ω(k−α1,h2)(E2), turns out to be the Grassmann variety
G(h1 − α1, α2 − 1) of the (h1 − α1)-spaces contained in A(B−1(Λ)). This implies that the
dimension of the fiber Φ−1(�) and, a fortiori, of the fiber Φ̃−1(�) is positive.

Remark 3 When the hypothesis of Theorem 1 on skew centers of projections and maximal
rank of the projection matrices are not satisfied, the generalized fundamental matrix could
a priori have rank lower than the expected one. In reality, either F is identically zero or it
cannot even be constructed.

If P ∈ CA ∩ CB , one can assume, up to projective transformations in P
k , that P = (1 :

0 : · · · : 0). In this case, both projection matrices must have a null first column and hence
from (2) it follows F = 0.

In the case of projection matrices with non-maximal rank, one can see that the Grassmann
tensor cannot even be constructed. Indeed, for a given profile (α1 = h1 − s1, α2 = h2 −
s2), with α1 + α2 = k + 1, as the dimension of the subspaces P

h′
1 and P

h′
2 of Ph1 and

P
h2 respectively, which are the images of the two projections, decreases, the corresponding

codimensions (α′
1 = h′

1 − s1, α′
2 = h′

2 − s2) do not satisfy the condition α′
1 + α′

2 = k + 1
under which it is possible to define a Grassmann tensor.

3.3 Plücker relations among rows of F

Theorem 1 shows that F does not have maximal rank. It is natural to wonder about the nature
of the linear relations existing among rows (or columns) of the generalized fundamental
matrix, responsible for the dropping of the rank. In this section we determine such relations,
under suitable assumptions on hi and αi , showing that they are consequences of well-known
generalized Plucker relations (in dual coordinates). In order to do that, we recall, [13, p.
1076], that for a Grassmannian G(d, n), the following relations hold:

∑

σ

sgn(σ )qi1...iλ,σ iλ+1...σ id+1qσ j1...σ jλ+1, jλ+2... jd+1 = 0, (3)

where the sum ranges over all permutations σ of (iλ+1 . . . id+1, j1 . . . jλ+1) such that
σ iλ+1 < · · · < σ id+1 and σ j1 < · · · < σ jλ+1.

3.3.1 Case h1 = h2 = h and profile (h, h)

In this situation, the matrix F is a square matrix of order h + 1, of rank 2 (by Theorem 1),
whose entry in position (i, j) is fi j = qi,(h+1)+ j . Considering any three rows of F:
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Ra = [qa,(h+1)+1, qa,(h+1)+2, . . . , qa,(h+1)+h+1]
Rb = [qb,(h+1)+1, qb,(h+1)+2, . . . , qb,(h+1)+h+1]
Rc = [qc,(h+1)+1, qc,(h+1)+2, . . . , qc,(h+1)+h+1]

with 1 ≤ a, b, c ≤ h + 1, the generalized Plucker relations (3) imply the relation:

qb,c Ra − qa,c Rb + qa,b Rc = 0.

Notice that when k = 3 and h = 2, one has the classical scenario described in Example 1.

3.3.2 Case h1 = h2 = h and profile (h, h − 1)

In this case, F has dimension (h + 1) × h(h+1)
2 and rank 3 (by Theorem 1). It is:

F =

⎛

⎜
⎜⎜
⎝

q1,(h+1)+1,(h+1)+2 q1,(h+1)+1,(h+1)+3 · · · q1,(h+1)+h,(h+1)+(h+1)
q2,(h+1)+1,(h+1)+2 q2,(h+1)+1,(h+1)+3 · · · q2,(h+1)+h,(h+1)+(h+1)

...
... · · · ...

qh+1,(h+1)+1,(h+1)+2 qh+1,(h+1)+1,(h+1)+3 · · · qh+1,(h+1)+h,(h+1)+(h+1)

⎞

⎟
⎟⎟
⎠

For any four rows of F:

Ra = [qa,(h+1)+1,(h+1)+2, qa,(h+1)+1,(h+1)+3, . . . , qa,(h+1)+h,(h+1)+(h+1)]
Rb = [qb,(h+1)+1,(h+1)+2, qb,(h+1)+1,(h+1)+3, . . . , qb,(h+1)+h,(h+1)+(h+1)]
Rc = [qc,(h+1)+1,(h+1)+2, qc,(h+1)+1,(h+1)+3, . . . , qc,(h+1)+h,(h+1)+(h+1)]
Rd = [qd,(h+1)+1,(h+1)+2, qd,(h+1)+1,(h+1)+3, . . . , qd,(h+1)+h,(h+1)+(h+1)]

with 1 ≤ a, b, c, d ≤ h + 1, the generalized Plucker relations (3) imply the relation:

qb,c,d Ra − qa,c,d Rb + qa,b,d Rc − qa,b,c Rd = 0.

Notice that for k = 4 and h = 3 one has the same situation as in Example 2.

3.3.3 Case h1 = h2 = h, k = h + 1 and any profile (α1, α2) = (h − t, t + 2)

In this case, we can consider any profile (α1, α2) = (h − t, t + 2), with 0 ≤ t ≤ h−2
2 . Notice

that the assumption k = h + 1 is equivalent to the condition that the number of rows of F,( h+1
h−α1+1

)
, is exactly the number

(d+2
λ+1

)
of summands appearing in relations (3). Hence, in this

case, each Plücker relation involves all of the rows of F.

Theorem 1 gives rk(F) = ( h
t+1

)
. Here we show, by induction on t , that all relations

among the rows of F are generated by generalized Plücker relations as in (3). Notice that
one can consider relations (3) as linear equations in the entries of the fundamental matrix
qσ j1...σ jλ+1, jλ+2... jd+1 ,with coefficientsqi1...iλ,σ iλ+1...σ id+1 ,which are themselves Plücker coor-
dinates, and which do not depend on jλ+2 . . . jd+1, so that they are invariant for all the
elements of a given column of F.

Hence relations (3) give rise to linear relations among the rows of F. More precisely, under
the above assumptions, for a profile (h − t, t + 2), the matrix F has dimension

(h+1
h−t

)× (h+1
t+2

)

and its entries are f I,J with I = (i1, . . . , it+1) and J = ( j1, . . . , jh−t−1), so that, in the
generalized Plucker relations (3), with λ = t and d = h −1, the entries of F can be identified
with the elements qσ j1...σ jt+1, jt+2... jh+2 and the coefficients of (3) can be organized in the
following

(2h+2
t+2

) × (h+1
t+3

)
matrix R(F) = [qi1...it ,σ it+1...σ ih+2 ]. The rows of R(F) depend on

123



548 M. Bertolini et al.

the choice of the indices i1 . . . it among 2h + 2 elements corresponding to the rows of the

matrix

[
A
B

]
. The proof hinges on the fact that, if we restrict the choice only to the h +1 rows

of the matrix A, we obtain a
(h+1

t+2

) × (h+1
t+3

) = ( h+1
h−t−1

) × (h+1
t+3

)
submatrix R0 which comes

out to be the fundamental matrix corresponding to the two projections B and A, in reversed
order, with profile α1 = h − (t − 1), α2 = (t − 1) + 2. Hence one can apply induction on
t to prove that rk(Ft ) = ( h

t+1

)
, where Ft denotes the generalized fundamental matrix for the

profile (h − t, t + 2). Analogously, let us denote by R0t the matrix of the Plücker relations
considered above, for the profile (h − t, t + 2).

– If t = 0, then F0 has dimension (h + 1) × (h+1
2

)
and R00 is a row vector, as λ = 0.

Hence this Plucker relation is enough to show that the rank of F0 is h.
– By induction, at step t − 1, we assume the statement is true for the profile (h − (t −

1), (t − 1) + 2), i.e. rk(Ft−1) = (h
t

)
.

At step t we recall that rk(R0t ) = rk(Ft−1) = (h
t

)
, so that

rk(Ft ) =
(

h + 1

t + 1

)
− rk(R0t ) =

(
h + 1

t + 1

)
−

(
h

t

)
=

(
h

t + 1

)
.

4 The variety of generalized fundamental matrices

In this section, we want to investigate the geometrical properties of the variety,X = X(α1 ,α2 ),
parameterizing the fundamental matrices corresponding to a given profile (α1, α2) for two
projections from P

k to P
h1 and P

h2 with k = α1 + α2 − 1, 1 ≤ α1 ≤ h1, 1 ≤ α2 ≤ h2,
h1 + h2 ≥ k + 1, and α1 ≥ α2. In particular, we prove the following Proposition:

Proposition 1 In the notation and setting above, X is an algebraic variety with:

dim(X) = k(h1 + h2) + h1 + h2 − k2.

Proof The construction of this variety can be accomplished drawing inspiration from the
setting of Aholt and Oeding in [7]. Let U1 and U2 be the vector spaces of dimension respec-
tively h1 + 1 and h2 + 1 of the rows of A and of B, and let W be the vector space U1 ⊕ U2,

of dimension h1 + h2 + 2. The matrix

[
A
B

]
can be thought of as a point in the Grassmann

variety, G(k,P(W )) ⊂ P(
∧k+1W ).

As the projectionmatrices are defined up to independent projective transformations of the two
views, one is naturally lead to consider the group S = SL(U1)×SL(U2) ⊂ SL(W ) consisting
of the unit determinant blocks of dimensions (h1 + 1) × (h1 + 1) and (h2 + 1) × (h2 + 1)
on the diagonal of a (h1 + h2 + 2) × (h1 + h2 + 2) matrix, and its action on the affine cone
C(G(k,P(W ))) over G(k,P(W )).

In the decomposition of
∧k+1W as a S−module:

∧k+1
W =

⊕k+1

a=0

(∧a
U1 ⊗

∧k+1−a
U2

)
, (4)

the summand corresponding to the minors of

[
A
B

]
appearing in the fundamental matrix F is

∧α1U1 ⊗ ∧α2U2.
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Consider the projection π : P(
∧k+1

(U1 ⊕ U2)) ��� P(
∧α1U1 ⊗ ∧α2U2). Then

X = π(G(k,P(W ))).

As in the classical case of projections from P
3 to P

2 [7,10], we have that the projection π

induces a birational map

Π : C(G(k,P(W )))/(C∗ ⊕
C∗) ��� X ↪→ P(

∧k+1
(U1 ⊕ U2)).

Indeed Hartley and Shaffalitzky [2], prove that, but for the case h1 = h2 = 1, a Grassmann
tensor completely determines the set of projection matrices up to projective transformations.
The birationality of the map Π allows us to compute the dimension of X via counting the
number of essential parameters needed to determine A e B. This gives:

dim(X) = ((h1 + 1)(k + 1) − 1) + (h2 + 1)(k + 1) − 1) − ((k + 1)2 − 1)

= k(h1 + h2) + h1 + h2 − k2.

��
Remark 4 Note that, as expected, dimX is also the dimension of the quotient
C(G(k,P(W )))/(C∗ ⊕

C∗).

4.1 A characterization ofX with profile (h1, h2)

In particular, in the case of profile (α1, α2) = (h1, h2), under the usual assumptions of
projections of maximal ranks and skew centers, we get the following:

Theorem 2 A matrix G of dimension (h1 + 1) × (h2 + 1) is the fundamental matrix for
a suitable pair of projections from P

h1+h2−1 to P
h1 and P

h2 with profile (h1, h2) and skew
centers if and only if rank(G) = 2.

Proof Under the current assumptions, Theorem 1 gives rk (F) = 2. On the other hand, the
dimension of the variety of rank 2matrices of dimension (h1+1)×(h2+1) is 2(h1+h2)−1 =
dim(X). ��
This generalizes the well-known result for the classical case, [10, Theorem 4.1]. Notice that,
in general, one cannot expect to extend this result to other profiles. Indeed, in the previous
section we have shown that dim(X) = k(h1 + h2) + h1 + h2 − k2.

On the other hand, the dimension, δr , of the variety of the (N1 + 1) × (N2 + 1)-matrices
of rank r is

δr = (N1 + N2 + 2)r − r2 − 1.

As N1 = (h1+1
α1

) − 1 and N2 = (h2+1
α2

) − 1, generically this dimension turns out to be greater
than dim(X). For example, if h1 = h2 = h, and (α1, α2) = (h, h − 1), which implies
rk (F) = r = 3, one has dim(X) = 6h − 4 and δr = 3

2h2 + 9
2h − 7.

5 Application to reconstruction in computer vision

From the point of view of computer vision, the generalized fundamental matrix is relevant
because of its application to reconstruction problems.
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Given multiple images of an unknown scene, taken from unknown cameras, the goal of
the reconstruction problem is to determine the positions of the cameras and of the scene
points. Reconstruction problems can be posed in several geometric settings as metric, affine,
or projective. As this work has been conducted entirely within the projective framework,
reconstruction will always be assumed to be achieved up to projective transformations.

Within a projective setting, the center is the only property of a camera which is preserved
under homographies of the view spaces (e.g. see [19]), and hence projective reconstruction
of cameras consists only of the determination of their centers.

Therefore, given r views of a scene {Xi} ⊂ P
k , the reconstruction problem has two stages:

reconstructing the camera centers and reconstructing the scene, i.e. the position of the points
{Xi} in P

k, once cameras have been reconstructed.
Assuming that the scene to be reconstructed consists of a large enough number of points,

in general enough mutual positions, a first natural question is to determine the numerical
conditions on k, h j , for j = 1 . . . r, under which projective reconstruction is possible, both
for the cameras P j and for the scene {Xi} in P

k .

Both these conditions are implicitly given in [2] in the general setting and they are explicitly
highlighted in [20, Propositions 3.1, 3.2 and [21], Sect. 4.1] in the case h1 = · · · = hr.

We now recall these conditions in our more general setting, and we sketch the geometric
rationale for the statements.

a) Let Ph j , j = 1, . . . , r be r target views for projections from P
k, in which a large enough

set of corresponding subspaces, of dimensions s j = h j −α j , are given. Then the centers
of projections can be determined if and only if

∑r
j=1 α j ≥ k + 1.

The projective reconstruction of the associated cameras (hence of the centers of projec-
tion) is possible only if requiring the existence of a point in the intersection of all rays
projecting the given corresponding subspaces impose an actual non-trivial constraint on
the position of the centers in Pk . In this case, knowing enough sets of corresponding sub-
spaces, one can deduce the equations of the centers. For this to happen, the intersection
of r general (k − αi )-spaces, for i = 1, . . . r, must be empty. Grassmann formula shows
that the dimension of the iterated intersection of such (k −αi )-spaces drops by αi at each
step. Therefore

∑t
i=1 αi ≥ k + 1.

b) Let Ph j , j = 1, . . . , r be r target views for projections from P
k, in which a large enough

set of corresponding subspaces, of dimensions s j = h j − α j , are given. Assume camera
centers are known. Then a scene {Xi} can be reconstructed if and only if

∑t
i=1 αi ≥ k.

A scene point X is determined by the intersection of a suitable number of corresponding
rays. Hence the reconstruction of a point is possible if and only if the intersection of r
generic (k − αi )-spaces, for i = 1, . . . r, is at most one point. Using again Grassmann
formula, we get

∑r
i=1 αi ≥ k.

In our case with two views, under the assumption of Sect. 3, it is α1 + α2 = k + 1, and
hence reconstruction of both cameras and scene points is indeed possible.

The role of the (generalized) fundamental matrix is better highlighted in the description of
the algorithms involved in projective reconstruction. In the classical case of two projections
from P

3 to P
2, the reconstruction procedure follows the following steps:

1) Fundamental matrix from correspondences: If a sufficient number of corresponding
points is known, one can determine the fundamental matrix F by solving the linear sys-
tem xT · F · x′ = 0. Note that, generically, 7 pairs of corresponding points are sufficient,
see [4], and a finer analysis can be found in [17].

2) Projections from the fundamental matrix: Once F is determined, projection matrices can
be reconstructed as in [4, Section 8.5.3].
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3) Scene from projection matrices and correspondences: Once projection matrices are
known, the scene points are determined intersecting corresponding rays.

In the following section, we describe the geometric-exact algorithmic procedures for
performing the above steps.

5.1 Reconstruction algorithms

All algorithms presented below are described for the general case of views of different dimen-
sions, but implemented, for the sake of simplicity, with h1 = h2 = h. Furthermore, as seen
in the previous sections, different profiles (α1, α2) could be chosen in the setup of projective
reconstruction. Our implementation uses α1 = h and α2 = k − h + 1. MATLAB�code is
available from the authors upon request.

5.1.1 Generalized fundamental matrix from correspondences

Recall that, for the profile (h1, k − h1 + 1), the generalized fundamental matrix is defined to
be the matrix F such that xT FW = 0, for any corresponding pair (x, W ), where x is a point
in the first view, W is a (h1 + h2 − k − 1)−space of the second view, andW is the vector of
Plücker coordinates of W . Assume a large enough set of pairs {(xi, Wi )} of corresponding
spaces in the two views are given. For each of them, one has a constraint xiT FWi = 0,where
the entries frs of F are unknown. The set of these constraints gives a linear system whose
solutions are entries of F.

5.1.2 Projection matrices from the generalized fundamental matrix

Assume the generalized fundamental matrix F is given and one wants to recover a pair of
projections A, B corresponding to it. As it is standard in this context, everything being defined
up to projective transformations, one can assume A = [I |O] where I is the identity matrix
of order h1 + 1 and O denotes a (h1 + 1) × (k − h1) zero-matrix. Thus one has only to
recover the matrix B.

First notice that, due to the results of Sect. 3, from F one can extract a set of generators for
the epipole E2 in the second view. Indeed we have seen that a set of generators for the pro-
jective space P

ω spanned by Ω(k−α1,h2)(E2) is {bT
1 F, . . . ,bT

h1+1F}, where {b1, . . . ,bh1+1}
denotes the standard basis for Ph1 . For the chosen profile, a dimension count shows that
Ω(k−α1,h2)(E2) = P

ω, hence each bT
i F is the vector of the Plücker coordinates of a (k −α1)-

subspace of the second view containing E2. From the Plücker coordinates of bT
i F = Wi ,

one can then recover a set of generators for the corresponding linear space Wi , with standard
techniques.

For any pair of corresponding point and space (xt, Ws), the constraint xtT FWs = 0 can
be written as det (Mt,s) = 0, where Mt,s = M(xt,Ws) is a (h2 + 1) × (h2 + 1)− matrix
whose columns M(1), . . . , M(h2 + 1) are:

– M( j) = e j , for j = 1, . . . , k − h1, where e1 . . . ek−h1 are vectors spanning the epipole
E2;

– M(k − h1 + 1) = y, where y = B(p) with p = A+(xr), and A · A+ = I ;
– M(i) = zi for i = k − h1 + 2, . . . , h2 + 1, where zi are points of Ph2 spanning W.

Then, up to a constant, one has flm = det(Ml,m) = xlT FWm where xl is the l-th element of
the standard basis of Ph1 and Wm is the m-th element of the standard basis of PN2 . Hence,
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one can compute det(Ml,m) and all the elements flm of F, by using generalized Laplace
expansion, considering the last s2 + 1 columns as a block, so that the minors of this block
represent the Plücker coordinates of Wm .

Hence, for a given pair (x, W ), all the columns of M are determined by F but the (k −
h1 + 1)-th which depends linearly on the entries buv of B.

Letting xl vary among elements of the standard basis of Ph and Wm among elements
of a basis of the projective space P

N2 , one gets a linear system flm = det(Ml,m) of (h1 +
1) × (N2 + 1) equations in (h2 + 1) × (k + 1) unknowns buv , which solves the problem.
Existence of solutions for the above system is guaranteed by the birationality of the map Π,

introduced in the proof of Proposition 1.Moreover, in case of an underdetermined systemwith
infinitely many solutions, the birationality ofΠ also implies that all solutions are projectively
equivalent.

5.1.3 Scene from projection matrices and correspondences

Once one has recovered a pair of projection matrices A and B, given a pair of corresponding
spaces {(x, W )}, it is possible to determine the scene point X in P

k . More explicitly one
simply solves the system (1) where ML ,L ′ has been populated with A, B, x and a set of
generators for W.
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