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Abstract We prove that each semialgebraic subset of R” of positive codimension can be
locally approximated of any order by means of an algebraic set of the same dimension. As a
consequence of previous results, algebraic approximation preserving dimension holds also
for semianalytic sets.
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1 Introduction

If A and B are two closed subanalytic subsets of R”, the Hausdorff distance between their
intersections with the sphere of radius » centered at a common point P can be used to
“measure” how near the two sets are at P. We say that A and B are s-equivalent (at P) if the
previous distance tends to 0 more rapidly than r* (if so, we write A ~; B).

In the papers [3,4] and [5], we addressed the question of the existence of an algebraic
representative Y in the class of s-equivalence of a given subanalytic set A at a fixed point P.
In this case, we also say that Y s-approximates A.
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The answer to the previous question is in general negative for subanalytic sets (see [4]).

On the other hand, in [3], it was proved that, for any real number s > 1 and for any
closed semialgebraic set A C R” of codimension >1, there exists an algebraic subset Y
of R” such that A ~; Y. The proof of the latter result consists in finding equations for Y
starting from the polynomials appearing in a presentation of A. For instance, if A = {x €
R™ | f(x) =0, h(x) > 0} with f, h € R[x], then A can be s-approximated by the algebraic
setY = {x € R" | (f2—h")(x) = 0} for any sufficiently large odd integer m. This procedure
does not guarantee that Y has the same dimension as A at P as the following trivial example
shows.

Let A be the positive x3-axis in R3 presentedas A = {(x1, x2, x3) € R3 | x%—i—x% =0,x3 >
0}. Then, according to the previous procedure, for any sufficiently large odd integer m, A is s-
approximated at the origin O by the algebraic set ¥ = {(x1, x2, x3) € R3] (xl2 —Hc%)2 — x5 =
0}, whose germ at O has dimension 2. However, we can also s-approximate A at O by the
one-dimensional algebraic set W = {(x1, x2, x3) € R3 | xl2 — x5 = 0,x2 = 0} for any
sufficiently large odd integer m. This algebraic set can be obtained by a similar construction
as before, but starting from the different presentation A = {(x1, x2, x3) € R3 [x1 =0,x =
0, x3 > 0}.

In [5], we proved that, for any s > 1, any closed semianalytic subset A C R” is s-
equivalent to a semialgebraic set Y C R” having the same local dimension as A. However,
the arguments used in the proof of this latter result do not guarantee that, even if A is analytic,
it can be approximated by means of an algebraic one of the same dimension.

In this paper, we prove in Theorem 4.1 that any semialgebraic set of codimension >1 is
s-equivalent to an algebraic one of the same dimension. Using the mentioned result of [5], we
obtain (Corollary 4.3) that any semianalytic set of codimension >1 can be s-approximated by
an algebraic one preserving the local dimension. The proof of Theorem 4.1 works provided
that the semialgebraic set is described by means of a suitable presentation, as in the previous
example. Therefore, Sect. 3 is devoted to introduce the notion of “regular presentation” and
to prove that one can reduce to work with regularly presented sets.

We wish to thank the referee for his useful comments and suggestions.

2 Basic properties of s-equivalence

In this section, we recall the definition and some basic properties of s-equivalence of sub-
analytic sets at a common point which, without loss of generality, we can assume to be the
origin O of R". We refer the reader to [4] for the proofs of the results that we only mention.

If A, B are non-empty compact subsets of R", let §(A, B) = sup,.pd(x, A). Thus,
denoting by D(A, B) the classical Hausdorff distance between the two sets, we have that
D(A, B) = max{§(A, B), §(B, A)}.

Definition 2.1 Let A and B be closed subanalytic subsets of R” with O € AN B. Let s be
areal number >1. Denote by S, the sphere of radius r centered at the origin.
(a) We say that A <; B if one of the following conditions holds:
(i) O isisolatedin A,
(i) O is non-isolated both in A and in B and
. 8BNS, ANS)
lim —m78M = =
r—0 rs

(b) We say that A and B are s-equivalent (and we will write A ~; B)if A <; Band B <; A.

0.
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Algebraic approximation preserving dimension 521

It is easy to check that <j is transitive and that ~ is an equivalence relation.

Let B(O, R) denote the open ball centered at O of radius R. Observe that if there exists
R > O suchthat AN B(O, R) € B,then A <; B forany s > 1.

The following result shows the behavior of s-equivalence with respect to the union of sets:

Proposition 2.2 Let A, A’, B and B’ be closed subanalytic subsets of R".

1. fA<yBand A’ <¢ B', then AUA’ <, BUB'.
2. IfA~; Band A’ ~; B', then AUA" ~; BUB'.

A useful tool to test the s-equivalence of two subanalytic sets is introduced in the following
definition:

Definition 2.3 Let A be a closed subanalytic subset of R”, O € A. For any real 0 > 1, we
will call horn-neighborhood with center A and exponent o the set

H(A,0) ={x e R" | d(x, A) < |Ix]|°}.

Remark 2.4 If A is a closed semialgebraic subset of R” and o is a rational number, then
H(A, o) is semialgebraic. Moreover, if O is isolated in A, then H(A, o) is empty near O.

Proposition 2.5 Let A, B be closed subanalytic subsets of R" with O € AN B andlets > 1.
Then, A <; B if and only if there exist real constants R > 0 and o > s such that

(A\{O})NB(O,R) C H(B, o).

An essential tool will be the following version of Lojasiewicz’ inequality, proved in [5];
henceforth, for any map f: R” — R”, we will denote by V (f) the zero-set f ~-1(0).

Proposition 2.6 Let A be a compact subanalytic subset of R". Assume f and g are subana-
Iytic functions defined on A such that f is continuous, V(f) C V(g), g is continuous at the
points of V (g) and such that sup |g| < 1. Then, there exists a positive constant « such that
181* = [flon Aand|g|* < |flon A\ V(f).

The following consequences of Proposition 2.6 will be very useful for us:

Proposition 2.7 Let A, B be closed subanalytic subsets of R"* with AN B C {O}. Then,
there exist positive constants R and By such that, for any 8 > By, we have

H(A,B)NBNB(O,R) =90.

Proof Let ¢: B — R be the function defined by ¢ (x) = d(x, A) for every x € B. The
function ¢ is subanalytic, continuous and V (¢) = AN B < {O}. Hence, by Proposition 2.6,
there exist positive constants R and By such thatd(x, A) > ||x |0 forall x € BN B(O, R) \
{O}. So, for any 8 > Bp, no x can lie in H(A, 8) N BN B(O, R). m}

Proposition 2.8 Assume that A and B are closed subanalytic subsets of R" with B C A and
O € B. If there exists so > 1 such that A <; B for every s > s, then there exists R > 0
such that AN B(O,R) = BN B(O, R).

Proof Assume by contradiction that A N B(O, R) ¢ B N B(O, R) for every R > 0. In
particular, this implies that O € A\ B and so, by the curve selection lemma, there exists an
analytic curve y: (—1,1) — R" such that y(0) = O and y(¢) € A\ B fort € (0, 1). We
can assume that the arc y intersects each sphere centered at O of sufficiently small radius,
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i.e., there exists rop < 1 such that for any 0 < r < rg there exists x, € Im(y) NS, C
(A\ B) N S,. Since d(x,, BN S,;) > 0, the subanalytic function ¢: [0, r9] — R, defined by
@(r) = supycans, d(x, BNS,) =8(BN S, ANS,) if r > 0 and ¢(0) = 0, vanishes only
at 0. Hence, by Proposition 2.6, there exists a real © > 1 (and we can assume (& > so) such
that ¢(r) > r* forall r € (0, ro), thatis 2B252A05) 4 forall € (0, rg]. Then, A £, B,
which is a contradiction. O

The following technical result shows that it is possible to modify a subanalytic set by
means of a suitable horn-neighborhood producing a new subanalytic set s-equivalent to the
original one:

Lemma 2.9 Let X C A C R” be closed subanalytic sets such that O € X and let s > 1.
Then:

1. forany o > s, we have A ~; AU H(X,0);
2. if A\ X = A, there exists 0 > s such that A\ H(X, o) ~ A.

Let us now present a generalization of the previous result that will be used later on:

Lemma 2.10 Let X C A C R” be closed subanalytic sets such that O € X N A\ X and let
s > 1. Then, there exists c > s such that A\ H(X,o0') ~; A\ X forallo’ > o.

Proof LetZ = A\ X.Since Z \ (ZN X) = Z, the sets Z and Z N X satisfy the hypothesis
of Lemma 2.9 (2). Hence, there exists ¢ > s such that Z \ H(Z N X, t) ~; Z. Since
(Z\H(ZN X, t))NX < {0}, by Proposition 2.7 there exist positive constants R and o > s
such that

H(X, o) N(Z\H(ZNX,t))NB(O,R) =9,
ie, (Z\H(ZN X,t))NB(O,R) € Z\ H(X, o) and hence
Z<,Z\H(ZNX,t) <, Z\H(X,0) < Z.
Therefore,
Z~s Z\H(X,0)=A\ H(X, o).
Moreover, since for any ¢’ > o near the origin we have H(X, 0’) € H(X, o), then
AVX <, A\H(X,0) <, A\ H(X o)) <y AN X

which yields the thesis. O

3 Presentations of semialgebraic sets

This section is devoted to the first crucial step in our strategy, that is reducing ourselves to
prove the main theorem for semialgebraic sets suitably presented.

Definition 3.1 Let A be a closed semialgebraic subset of R” with dimp A = d > 0. We
will say that A admits a good presentation if

(a) the Zariski closure XZ of A is irreducible
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(b) there exist generators fi, ..., f, of the ideal I(XZ) C Rlxy,...,x,]and hy, ..., ~y
polynomial functions such that

A={xeR"|fix)=0,hj(x)>0, i=1,....,p,j=1,...,q}
(c) hi(0O) =0anddimp(V(h;) N V(f)) <d, foreachi, where f = (f1,..., fp).

Lemma 3.2 Let A be a closed semialgebraic subset of R" with dimp A = d > 0. Then,
there exist closed semialgebraic sets I, ..., I, I such that

. A= (U, )ur’

2. foreachi,dimp I't = d, and dimp I'' < d

3. foreach i, I'; admits a good presentation.

Proof Arguing as in [5, Lemma 3.2] in the semialgebraic setting, there exist semialgebraic
sets I, ..., I, I’ fulfilling conditions (1) and (2) of the thesis and such that, for each i, I}
admits a presentation satisfying conditions (a) and (b) of Definition 3.1. In order to achieve
also condition (c), it suffices to drop from the presentation of each I all the inequalities
hj(x) = 0 such that & ; vanishes identically on I7. ]

Since we are interested in preserving dimension, we will reduce ourselves to work with a
set presented by as many polynomial equations as its codimension and with the critical locus
of the associated polynomial map nowhere dense.

Notation 3.3 Let 2 be an open subset of R". For any smooth ¢ : 2 — RP, denote X, (¢) =
{(x € 2] 1k dvp <r}and X(p) = X)(p).

Definition 3.4 Let A be a closed semialgebraic subset of R” with dimp A = d > 0. We will
say that A admits a regular presentation if there exist a polynomial map F: R* — R*~4
and polynomial functions A1, ..., hy such that

(@ A={xeR'"|F(x)=0,hj(x) >0, j=1,...,q},

(b) dimp(X(F)NA) <d

(¢) hij(O) =0and dimgp(V(h;) N A) < d, foreach i.

A useful tool to pass from a good presentation to a regular one will be the following result
(for a proof see for instance [1, Lemma 7.7.10]):

Lemma 3.5 Let A be a closed semialgebraic subset of R" and let h, g be polynomial func-
tions on R". Then, there exist polynomial functions ¢, ¥ with ¢ > 0 and v > 0 such
that

1. sign(ph + ¥ g) = sign(h) on A
2. V) S V) NAZ.

Proposition 3.6 Let A be a closed semialgebraic subset of R" with dimp A = d > 0 which
admits a good presentation. Let s > 1. Then, there exists a closed semialgebraic subset A of
R” with dimp A = d > 0 such that

1. A: admits a regular presentation
2. A~ A

Proof By hypothesis, we have that
A=xeR"| fx)=0,hj(x) =0, j=1,...,q9)
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with f = (f1,..., fp) such that V(f) is irreducible, V(f) = ZZ and fi,..., f, gener-
ate the ideal 7 (V (f)). In particular, dimo (X,—4(f) N V(f)) < d (see for instance [1,
Definition 3.3.3]).

If p = n — d, we have the thesis with A= A;thus,let p > n —d.

Denote by I7 the set of surjective linear maps from R? to R”~¢ and consider the smooth
map®: R"—V(f)) xIT — R4 defined by @ (x, 7) = (wo f)(x) forallx € R" =V (f)
andmw € I1.

The map @ is transverse to {O}: namely the partial Jacobian matrix of @ with respect
to the variables in I7 (considered as an open subset of RP"=D)Y s the (n — d) x pn—d)
matrix

fx)y O 0] 0
0 fx) 0O 0
b 0] o ... fx

thus, for all x € R” — V(f) and for all & € [T, the Jacobian matrix of @ has rank n — d.
As a consequence, by a well-known result of singularity theory (see for instance [2,
Lemma 3.2]), we have that the map @, : R"—V (f) — R4 definedby @, (x) = ®(x, ) =
(r o f)(x) is transverse to {0} for all 7 outside a set I” C IT of measure zero, and hence,
7 o fisasubmersionon V(o f)\ V(f) for all such .
Let x € V(f) be a point at which f has rank n — d. Then, there is an open dense set
U C II such that, for all 7 € U, the map m o f is a submersion at x, and hence off some
subvariety of V (f) of dimension smaller than d.
Thus, if we choose mg € (IT\ I') N U,the map F = mpo f: R" — R4 gatisfies the
following properties:
— dimp V(F) =dimp V(f) =d,
- X(F)NV(F) CV(f) S V(F),
— dimp(X(F)NV(F)) <d.
We want to show that there exist polynomials /; such that

- A={xeR"'| fx)=0,h;(x) >0, i=1,...,q}
- dimp(V(F)NUL, V(r) < d.
Namely, foreachi € {1, ..., g} denote by W; the union of the irreducible components ¥
of V(F) suchthatdimo (V(h;)NY) < d;letalso T; = V(F) \ WiZ. Note that V(f) € W;.
If we apply Lemma 3.5 choosing & = h; and g = || f||?> on W;, then there exist ¢, ¥ with
¢ > 0 and ¢ > 0 such that the function h; = @h; + ¥ || f]1* has the same sign as h; on W;

and V() € V(i) N W; . Then,

- V(h:) NW; =Vh;)NW;
— since k)|, = (W[ fID)7,. then V(R)NT; = (V) NTH UV (F)NT;) S WiNT;.

Thus, dimo (V (k) N V(F)) < d for any i and
A={xeR'"| f(x)=0,hi(x)>0, i=1,...,q}
For each m € N denote
Ap={x eR"| F(x) =0, |x|*" = [ f@I* = 0,hj(x) =0, i=1,....q}. (1)
Since A C Zm C V(F), then dimg Zm =d.
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Algebraic approximation preserving dimension 525

We claim that there exists m such that A ~s A.Since A C Xm, we trivially havethat A <g

m for any m. Thus, it is sufficient to prove that there exists m such that A,, <, A. Namely,
let A={x eR"| h:(x) >0,i=1,...,q}.Since V(|| fh)NA=A= V(a’(x, A) N A,
by Proposition 2.6 there exist a rational number 7 and a real number R > 0 such that

dx, AT <If®I Vx e (A\V(f)NBO,R) = (A\A)NBO,R).

Letm > st. Then d(x, A) < ||f(x)|| © < |x||7 forall x € (A, \ A) N B(O, R). This
implies that (A \{OHhNB(O,R) < H(A m) and hence, by Proposition 2.5, A <5 A.
Up to increasing m, we can also assume that dimgo (V (F) N V(llx|?" — ||f(x)||2)) <d
and hence that (1) is a regular presentation of Am.
It is thus sufficient to choose m as above and A = Xm. O

4 Main result

Since s-equivalence depends only on the germs at O, we are allowed to identify a subanalytic
set with a realization of its germ at the origin in a suitable ball B(O, R) with R < 1.
Henceforth, we will even omit to explicitly indicate the intersection of our sets with B(O, R);
in particular, given two sets U and U’, when we write that U C U’ we mean that U N
B(0, R) C U’ for a suitable radius R.

Theorem 4.1 For any real number s > 1 and for any closed semialgebraic set A C R" of
codimension >1 with O € A, there exists an algebraic subset S of R" such that A ~¢ S and
dimp S = dimgp A.

Proof We will prove the thesis by induction on d = dimg A.

If d = 0 the result holds trivially. So let d > 1 and assume that the result holds for all
semialgebraic sets of dimension smaller that d.

By Lemma 3.2, there exist closed semialgebraic sets I}, ..., I'., I’ such that

L A= (Ui nur
2. foreach i, dimgp I; = d and I'; admits a good presentation
3. dimp I’ <d.
By Proposition 2.2, by Proposition 3.6 and by the inductive hypothesis, we can assume
that A is described by means of a regular presentation as

A={x eR"|Fo(x)=0,hj(x)>0, j=1,....q)

with Fy = (f1, ..., fu—a)- We can assume g > 1, because otherwise there is nothing to
prove.
We will use the following notation:
—Zi:U_lHV(h)forz—O g—1, and Z, =9,

- {{=(E(F0)UZ0)0A N
fF= ., foea): R" > R="land V = V(f),
- Ai={xeR"|hj(x) >0, j=i+1,...,q}foranyi =0,...,¢g — 1, and A; = R".

In order to avoid trivial cases, we can consider only the case when O € X.
Since the presentation of A is regular, we have that

dimp (X (Fp) NA) <d and dimp(ZpNA) <d.
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LetY =X\A\X,then A=A\ XUY.Sincedimp X < d, thendimp Y < d too and
thus, by the inductive hypothesis, there exists an algebraic subset 7 of R” such that Y ~; T
and dimp T = dimgp Y.

In particular,

A=A\XUY ~;, A\XUT.

Since dimp X < dimg A, then O is a non-isolated point in A \ X and Lemma 2.10
ensures that there exists o > s such that, for any ¢’ > o, we have

A\ H(X,0') ~; A\ X.

We claim that there exists a rational number oy > o such that O is an accumulation
point for A \ H(X, op). Otherwise for any integer n > 2, there exists R, > 0 such that
(A\H(X,n))NB(O,R,) =0,ie., ANB(O,R,) € H(X,n) € H(X,n—1)U{O0}. By
Proposition 2.5, it follows that A <, X for any ¢ > 1. Then, by Proposition 2.8, there exists
R > Osuchthat ANB(O, R) = XNB(O, R),whichisnotpossiblesincedimp X < dimp A.

If we denote Ko = R" \ H(X, 0p), then

ANKg~; A\ X

and, moreover, O is an accumulation point for A N IO( 0, Where IO( o denotes the interior part
of Ky.

Let go = f1. We will recursively construct polynomial functions g1 ..., g, and closed
semialgebraic sets K ..., K, such that

- Ki CK;j+1U{0} foranyi =0,...,q —1
— if F; = (gi, f2, ..., fu—a), thenforany i =0, ..., g the semialgebraic subset
Ai={x eR"|Fi(x)=0,h;(x) >0, j=i+1,...,q}=V(E)NVNA
satisfies the following properties:
P1(i): ANKy~s A\ X }fl.=0
AiNK; ~Ai.1NKi—y ifi=1,...,q
P2(G): ZiNA;NK; C {0}
P3(): X (F)NA;NK; C{0}
P4(i): O is an accumulation point for A; N K.

Evidently, the set Ag = A satisfies the properties P1(0), P2(0), P3(0) and P4(0). Thus,
assume that 0 < i < ¢ — 1, assume that we have already constructed A; fulfilling the four
previous properties and let us construct g; 1 in such a way that A; ;| satisfies properties
PI1(G + 1), P2(i + 1), P3(i + 1) and P4(i + 1).

For any positive integer m, let g; 1 = gi2 —hi

We will see that there exists m; € Nsuch that for any odd integer m > m the semialgebraic
set Ait1 = V(gi+1) NV N A;4 satisfies properties P1(i + 1), P2(i 4+ 1), P3( + 1) and
P4G + 1).

Properties P2(i) and P3(i) guarantee that (A; N K;) N (X' (F;) U Z;) € {O}. Hence, by
Proposition 2.7, there exists a rational number B > s such that (near the origin)

H(Ai NKi, BYN(Z(F)U Z) = 0.
Let Hg = H(A; N K;, B). Up to increasing B, we can assume that
Hg N (X(F) U Z;) < {0} (2)
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Property P1(i + 1). Consider the set £ = R" \ Hg.
Evidently, the closed semialgebraic set W = (V N A;41 N K; N E) N {h;41 > 0} fulfills
the condition

V(gD NW=(A;NK;)NE ={0}.

Thus, by Proposition 2.6 there exists m € N such that, for any integer number m > m1, we
have g; (x)% > hiy1(x)" forall x € W and g; (x)? > hj41(x)" forall x € W\ {O}.

If we take m an odd integer > m1, by construction g;+1 = gl2 — h;”+] is strictly positive
on W\ {O}andon {h;y; < 0}, hence g;+ is strictly positiveon (VN A;;+1 NK; N E)\{O}.
Since A;j 11 = V(gi+1) NV N Aj41, it follows that

Aip1 NK; € R"\ E) U{0} = Hg U {0} 3
and therefore, by Proposition 2.5, we have
Al'+1 NK; <, Ai NK;.

Claim: There exists a closed semialgebraic set K; 1 such that

1. Ki €Kiy 1 U{0O}
2. (AjUA ) NK;p1 € HgU{O}.

Proof of the Claim Since A; N K; € Hg U {0} and by (3), we have that
(A;UA; 1) NK; € HgU{O}. 4

Then, the set ((Ai UAi+) \ (K U H,g)) U{O} = (A; UA;41)\ Hg is closed and intersects
K; only at O. Hence, by Proposition 2.7, there exists a rational number o’ > s such that

((Aj U A1) \ (K; U Hp)) NH(K;,0') = 0.
Up to increasing ¢’, we can assume that

((Ai UAipD) \ (K;i U Hp)) N H(K;, 0') = 0.
Thus, if we let K; 1 = ‘H(K;, o'), we have

((A; U A1)\ (Ki UHp)) NKip1 =0
and hence
(A UA; 1) N (K1 \ K;i) € Hg.

Then, recalling (4), we have
(AiVUA D) NKip = (A UA D) NK)U WA UA L) N (Kirr \ Ky)) € Hg U {0},

which concludes the proof of the Claim. O
In particular, the previous Claim ensures that A; 1 N K; 1 € Hg U {0}, and hence

A1 NKiyp <y AiNK;.

It remains to prove that A; N K; <g Aj41 N Ki41.
Consider the set B; = VN A; D A;.
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By the Claim and by (2), for any x € (A; N K;41) \ {O}, we have dim, A; = d and
dim, B; = d + 1. Moreover, since A; N K; ~; AN Ko, O is a non-isolated point in A; N K;
and hence in A; N K; 4 too.

Then, if welet £2; = K; 1\ K;,forany x € A; N K ;41\ {O} at least one of the following
facts holds:

- dimX(Bi N Kl‘) =d+1
— dim,(B;N§2;) =d + 1.

It will be useful to consider the following closed semialgebraic sets

(BiNK) =x € BiNK; | dimy(Bi NK;) =d + 1]
(AiNK)" = A;N(B; NK*
(BiNQ2)* =[x € BN | dim,(B; N2) =d + 1)
(AiN2)* = A; N (B; N2)*.

Since K; € K;4+1 U {0}, the previous considerations imply that
AiNK;\ {0} S (AiNK)*"U(A; N 2)*.
Moreover, since A; N K; \ {0} € (A; N K;)* and using property P4(i), then O is an
accumulation point for (A; N K;)* and hence a non-isolated point of (A; N K;)*. Therefore,
AiNK; C (A NK)*UA; N2

‘We also have that

(BiNK)*\ (AiNK)*=(B;NK;)" Q)

Namely, if x € (A; N K;)*, there exists a sequence x,, € (B; N K;) \ {O} converging to x
and such that dim, (B; N K;) = d + 1. If definitively x,, ¢ A;, then x is a limit point of
(Bi N K;i)*\ (Ai N K;)*. Otherwise, for any x,, € A;, since dimy, (A; N K;) < d, there exists
Y € (Bi NK;)\ (A; N K;) such that dimy, (B; N K;) =d + 1 and [|x, — y,|| < % Then, x
is a limit point of the sequence y, € (B; N K;)* \ (A; N K;)*.

Let d, be the geodesic distance on (B; N K;)* and denote by B (xp,7) = {y € (B; N
Ki)* | dg(y, x0) < r} the geodesic ball centered at xo € (B; N K;)*.

By [6, Proposition 3, page 70], there exist constants Rp > 0, C > 0and 0 < @ < 1 such
that, for any y;, y2 € (B; N K;)* N B(O, Rp), we have that

[yt = y2ll < dg(y1, y2) < Cliyr = y2ll*.
Therefore, for xy € (B; N K;)* N B(O, ﬁ) and for r < %, we have
By (x0,7) S B(xo,7) N (B; N K;)* € Bg(xo, Cr).

Up to decreasing Rp and « if necessary, we can assume that C = 1. We emphasize that, by
the convention settled at the beginning of this section, we can assume that the ball B(O, R)
where we are working is contained in B(O, @).

By (5) and by Lemma 2.9, there exists a closed semialgebraic subset L € (B; N K;)* such
that

LN(ANK)*={0} and (BiNK;)* ~yp L.
Evidently,
Vg)NL=V(g)NLN(B; N KH)Y =A,NLnN (Bi N K,')* =LNA;N Kl')* ={0}.
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Thus, by Proposition 2.6, there exists m> € N such that for any integer m > m> we have
gi(x)% > hj 1 (x)" forall x € L and g;(x)> > h;1(x)" forall x € L\ {O}.

If we take an integer m > m», by construction g;+; = gi2 — hi | is strictly positive on
L\ {0}.

Let x € (A; N K;)*\ {O}. By P2(i), we have h;11(x) > 0, so that g;+1(x) < 0. Since
(Bi N K;)* ~s+p L, by Proposition 2.5 there exist n > # andz € L C (B; N K;)* such
that ||x — z|| <u||x||" (and we can assume that z # O).

As g; 41 is strictly positive on L\{O}, then g;+1(z) > 0.Sincez € B(x, ||x||)N(B;NK;)*,
then z € Bg(x, [[x[|"). So, by the Intermediate Value Theorem on By (x, [|x||"*), there
exists w € By (x, [[x[|") € B (x, [x[|™) N (B; N K;)* such that g;1(w) = 0. Hence,
we (BiNK)*NV(git1) € Ai41 N K;; as aconsequence, x € H(A;11 N K;, na).

We have thus proved that (A; N K;)* \ {0} € H(A;+1 N K;, na) and therefore, since
na > s, that

(AiNK)* <s Aip1 NK; (6)

by Proposition 2.5.

If O € (A; N £2;)*, a slight modification of the previous argument allows one to obtain

that there exists m3 € N such that, for any integer m > m3, if g;+1 = gi2 — hﬁ 1> then
(Ai N 82" <5 Aiy1 N £2;.

The only needed change occurs to prove that (A; N 2;)* \ {0} € H(A;+1 N 2;, n'@)
for some 7', avoiding the use of P2(i). Namely, we can proceed as above to show that every
x € (A; N £2;)* \ {0} such that h;1(x) > 0 belongs to H(A;+1 N $2;, n’a); if instead
hi+1(x) =0, then g;4+1(x) = 0 too and therefore x € A; 1 N £2;.

Hence, if O € (A; N £2;)*, then, for any integer m > max{mo, ms},

AiNK; < (AiNKD)"UA;N2)" <g (Aig1 NKDU (A1 N82) =Aip1 NKiy1.
If instead O ¢ (A; N £2;)*, then, near O, we have A; N K; € (A; N K;)* and hence
AiNK; <s (AiNK)* < A1 NKi <5 Ai1 N Kiq

(in this case let m3 = 1).
Hence, if we let M = max{m1, m>, m3}, then, for any odd integer m > M, we have

Ait1 N Kiy1 ~5s AiNK;

and so P1(i 4 1) is proved.
Property P2(i 4+ 1). By (2) and by the Claim, we have that

Air1 NKiy1NZ; C {0}

Since Z; 41 € Z;, property P2(i 4+ 1) holds. In addition, we have obtained that /; | does not
vanishon A;+1 N K;41 \ {O}.

Property P3(i + 1). In order to prove P3(i + 1), consider the Jacobian matrix of F;;| =
(&i+1, J2, -+ fu—a)s 1€,

28iVgi —mh!''Vhiy

Vi
Y fod
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Evaluating it on the points of A; 11, we get the matrix

m m_
h2,QVg —mhZ | Vhis)
Vi

an—d
Since, as seen above, h;41 does not vanishon A; 11 N K;41 \ {O},
Y(Fit1) NAir1 N Kty
m_y
= {x €A1 NKiyr | (ng,‘ - mhi2+l Vh,qu) AVHLAN---AVf_qg= 0} .

Ifweletp =4|Vgi AVAA ... AV fu_gll?and ¥ = [[Vhi i AV LA AV fu_all? we
have that

Z(Fis) N A1 NKip1 € {x € Ajp1 N Koy | () = m? i ()" 29 ()} .

Since V(p) = X (F;), by (2) V(p) N HTg C {O}; then, by Proposition 2.6, there exists A
such that ¢(x) > ||x||* on Hiﬁ and hence, by the Claim, alsoon A; 11 N K;41.

Moreover, there exist constants i and N such that both |2; 1 (x)|* < ||x|| and ¢y < N on
a neighborhood of O.

Ifm > Au + 2, then ¥ (Fjy1) N Ajx1 N Ki41 € {O}. Namely, if by contradiction
there exists a sequence of points x, € A;4+1 N K;41 converging to O such that ¢(x,) =
m2|hj1(x,)|" 29 (x,), then

A 2 -2
lleo I < m= NH flx, |™

which is a contradiction.
Let m4 be an integer such that m4 > A + 2. Thus, for any odd integer m > my4, we have
that A;4 satisfies property P3(i + 1).

Property P4(i + 1). By hypothesis, O is an accumulation point for A; N K;. Since A; N

I%,- \ {0} € (A; N K;)*, by (6) O is an accumulation point for A;+1 N K; and then also for
Ait1 N Kit1.

Finally, if we let my = max{M, m4}, then for any odd integer m > my, we have that A;
satisfies all the properties P1(i 4+ 1), P2(i + 1), P3(i 4+ 1) and P4(i + 1).

At the end of the recursive construction, the set A, is algebraic.

Forany x € A; N K, \ {0}, by the properties P2(q) and P3(q) we have that dim,; A; = d,
and hence, dim, (A4, N K,) < d. Then, dimp (A, N K,) < d.

On the other hand, forany x € A; N K, \ {0}, we have thatdim, (A, N K,) = dim, (A, N
K ) = d. Since, by property P4(q), O is an accumulation point for A; N K ;, thendimo (A, N

K,) > d. Hence, dimp (A; N K,) = d.
Moreover the following facts hold:

(@) A~y ANXUT ~; (ANK)UT ~; (A;NKHUT

(b) A, \ K, CR"\ Ko = H(X, 00), and thus, A, \ K, <, X
© Ay = (A \K) U(A,NK,) <, XUA\ X = A.

Asa consequence

(A, NK) UT <, A,UT <, AUY = A <, (A;NK,)UT <, (A4, NK,) UT.
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Thus, S = (A, N K,)~ U T satisfies the thesis. o

The previous theorem allows us to strengthen the following result on approximation pre-
serving dimension which can be found in [5]:

Theorem 4.2 Let A be a closed semianalytic subset of R" with O € A. Then, for any s > 1,
there exists a closed semialgebraic set B C R" such that A ~; B and dimp B = dimg A.

From Theorem 4.1 and from Theorem 4.2, we immediately obtain:

Corollary 4.3 For any real number s > 1 and for any closed semianalytic set A C R" of
codimension >1 with O € A, there exists an algebraic subset S of R" such that A ~; S and
dimo S = dimo A.

Example 4.4 It A = {(x, y,2) € R3|z=0,x >0, y > 0} and s > 1, the approximation
technique described in the proof of Theorem 4.1 yields a surface defined by (zZ —x™)?
0 for suitable odd integers m and p; the shape of such a surface is represented in Fig. 1.

—yP =

Fig. 1 Algebraic approximation
of a quadrant

Acknowledgements This research was partially supported by M.I.U.R. (Italy) through PRIN 2010-2011
“Varieta reali e complesse: geometria, topologia e analisi armonica” and by Gruppo Nazionale per le Strutture
Algebriche, Geometriche e le loro Applicazioni - LN.d.A.M.

References

1. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12. Springer, Berlin (1987)

2. Bruce, J.W., Kirk, N.P.: Generic projections of stable mappings. Bull. Lond. Math. Soc. 32, 718-728 (2000)

3. Ferrarotti, M., Fortuna, E., Wilson, L.: Local approximation of semialgebraic sets. Ann. Sc. Norm. Super.
Pisa Cl. Sci. I, 1-11 (2002)

4. Ferrarotti, M., Fortuna, E., Wilson, L.: Algebraic approximation of germs of real analytic sets. Proc. Am.
Math. Soc. 138, 1537-1548 (2010)

5. Ferrarotti, M., Fortuna, E., Wilson, L.: Local algebraic approximation of semianalytic sets. Proc. Am.
Math. Soc. 143, 13-23 (2015)

6. Lojasiewicz, S.: Ensembles semi-analytiques. Lecture note .H.E.S. , Bures-sur-Yvette; réproduit No A
66.765. Ecole Polytechnique, Paris (1965). cf. http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

@ Springer


http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

	Algebraic approximation preserving dimension
	Abstract
	1 Introduction
	2 Basic properties of s-equivalence
	3 Presentations of semialgebraic sets
	4 Main result
	Acknowledgements
	References




