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Abstract We describe explicitly all quaternionic contact hypersurfaces (qc-hypersurfaces)
in the flat quaternion space H"*! and the quaternion projective space. We show that up to
a quaternionic affine transformation a qc-hypersurface in H"*! is contained in one of the
three qc-hyperquadrics in H"*!. Moreover, we show that an embedded qc-hypersurface in a
hyper-Kihler manifold is qc-conformal to a qc-Einstein space and the Riemannian curvature
tensor of the ambient hyper-Kihler metric is degenerate along the hypersurface.
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1 Introduction

It is well known that the sphere at infinity of a non-compact symmetric space M of rank one
carries a natural Carnot—Carathéodory structure, see [20,22]. Quaternionic contact (abbr.
qe) structures were introduced by Biquard [3] modeling the conformal boundary at infinity
of the quaternionic hyperbolic space. Biquard showed that the infinite dimensional fam-
ily of complete quaternionic-Kéhler deformations of the quaternion hyperbolic metric [18]
have conformal infinities which provide an infinite dimensional family of examples of qc-
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structures. Conversely, according to [3,6] every real analytic qc-structure is the conformal
infinity of a unique quaternionic-Kéhler metric defined in a neighborhood of M.

The basic concrete examples of qc-manifolds are provided by the extensively studied
3-Sasakian spaces and the quaternionic version of the Heisenberg group. As well known
[5], see also [4] for a recent complete account, 3-Sasakian manifolds are characterized as
Riemannian manifolds whose cone is a hyper-Kéhler manifold. In terms of the Riemannian
structure, [5] and [8] show that 3-Sasakian manifolds are extrinsic spheres (totally umbilic
hypersurfaces with non-vanishing parallel mean curvature vector) in a hyper-Kihler manifold
and this is the only way a 3-Sasakian manifold embeds “naturally” in a hyper-Kéhler mani-
fold. The considered embedding is “natural” in the sense that the 3-contact structure induced
on the hypersurface coincides with the one inducing the 3-Sasakian structure. Clearly, such
an embedding imposes rather stringent Riemannian conditions. Hypersurfaces with induced
geometric structures in complex and quaternion space forms have been studied imposing usu-
ally assumptions such as: (i) the maximal invariant subspace of the hypersurface invariant
under the complex or quaternion structure (called horizontal space in this paper) is invari-
ant space for the shape operator; (ii) the normal Jacobi operator commutes with the shape
operator; or (iii) the shape operator is parallel, see for example [1,2,15,16,21,23,24] among
many others.

The results in this paper are of different nature since the embeddings considered here are
the quaternion analog of those studied in the CR case where the horizontal (holomorphic)
geometry plays a fundamental role, replaced here by the quaternion structure of the qc-
manifold. In other words the qc geometry imposes no other restrictions on the maximal
quaternion invariant distribution besides some positivity which is the quaternion counterpart
of a strictly pseudo-convex CR structure. The “sub-Riemannian” nature of our problem
requires a rather intricate analysis.

A quaternionic contact hypersurface of a quaternionic manifold (N, Q) was defined by
Duchemin [7] as a hypersurface M endowed with a qc-structure compatible with the induced
quaternion structure on the maximal quaternion invariant subspace H of the tangent space of
M . 1t was shown in [7, Theorem 1.1] that a qc-manifold can be realized as a qc-hypersurface
of an abstract quaternionic manifold. In this paper we investigate qc-hypersurfaces embedded
in a hyper-Kihler manifold and, in particular, qc-hypersurfaces of the flat quaternion space
R4l’l+4 o~ Hn+l .

A hypersurface of a hyper-Kéhler manifold inherits a quaternionic contact structure from
the ambient hyper-Kihler structure if the second fundamental form restricted to H is Sp(1)-
invariant and definite quadratic tensor, [7,14]. Considering H"*! as a flat hyper-Kihler
manifold, a natural question is the embedding problem for an abstract qc-manifold.

Our first main result describes the embedded in H"+! qc-hypersurfaces.

Theorem 1.1 If M is a connected gc-hypersurface of R4 = W't then, up 10 a
quaternionic affine transformation of H'*', M is contained in one of the following three
hyperquadrics:

W) g1+ +lalP +1pP =1, G) g+ +lgal* = IpP? = —1,
(iii) Iq11* + -+ -+ Ignl* + Re(p) = 0.

Here (g1, q2, .. .qn, p) denote the standard quaternionic coordinates of H't1.
In particular, if M is a compact qc-hypersurface of R¥ 4% = W' then, up to a quater-
nionic affine transformation of "', M is the standard 3-Sasakian sphere.
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The second main result of the paper concerns qc embeddings in a hyper-Kihler manifold,
which also imposes a restriction on the qc-structure. Recall that a conformal change of the
horizontal (sub-Riemannian) metric is called a gc-conformal transformations. We show

Theorem 1.2 If M is a gc-manifold embedded as a hypersurface in a hyper-Kdihler manifold,
then M is gc-conformal to a qc-FEinstein structure.

In other words, the qc-conformal class of M contains a qc-Einstein structure, i.e., a qc-
structure for which the horizontal Ricci tensor of the associated Biquard connection is
proportional to the metric on the horizontal distribution. Another geometric way of under-
standing qc-Einstein structures was provided in [10,11,13,14] where it was shown that a
gc-Einstein manifold M is of constant qc-scalar curvature and in the non-vanishing case M
is locally qc-homothetic to a 3-Sasakian or negative 3-Sasakian space, i.e., the Riemannian
cone over M is hyper-Kihler of signature (4n + 4, 0) or (4n, 4), depending on the sign of
the gc-scalar curvature.

‘We obtain our second main result in the course of the proof of a stronger result, cf. Theorem
3.1 and Lemma 3.7

We also find necessary conditions for the existence of a qc-hypersurface in a hyper-Kéhler
manifold, namely, the Riemannian curvature R of the ambient space has to be degenerate
along the normal to the qc-hypersurface vector field, see Theorem 3.10. From this point of
view the “richest” ambient space is the flat space H'+! = R*'*! in which case Theorem 1.1
provides a complete description.

Our approach to the considered problems is partially motivated by [19, Corollary B] who
showed that a non-degenerate CR manifold embedded as a hypersurface in ctln > 2,
admits a pseudo-Einstein structure, i.e., there is a contact form for which the pseudo-hermitian
Ricci tensor of the Tanaka—Webster connection is proportional to the Levi form. A key insight
of [19, Theorem 4.2] is that a contact form 6 defines a pseudo-Hermitian structure which is
pseudo-Einstein iff locally there exists a closed section of the canonical bundle with respect
to which 6 is volume-normalized. In the considered here quaternionic setting, we show the
existence of a “calibrated” qc-structure which is volume normalizing in a certain sense, see
Lemma 3.3 and (3.4).

Convention 1.3 Throughout the paper, unless explicitly stated otherwise, we will use the
following notation.

a. The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).

b. s, t are any numbers from the set {1,2,3}, s,t € {1,2, 3}.

c. For a given decomposition TM =V & H we denote by [-]ly and [-]1g the corresponding
projections to 'V and H.

d. A, B, C, etc. will denote sections of the tangent bundle of M, A, B,C € T M.

e. X,Y, Z, U will denote horizontal vector fields, X, Y, Z,U € H.

2 Preliminaries
2.1 QC-manifolds
We refer to [3,11,14] for a more detailed exposition of the definitions and properties of
gc-structures and the associated Biquard connection. Here, we recall briefly the relevant

facts needed for this paper. A quaternionic contact (qc)-manifold is a 4n + 3-dimensional
manifold M with a codimension three distribution H equipped with an Sp(n)Sp(1) structure
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locally defined by an R3-valued 1-form n = (51, 52, 3). Thus, H = ﬂleKer ng carries
a positive definite symmetric tensor g, called the horizontal metric, and a compatible rank-
three bundle Q¥ consisting of endomorphisms of H locally generated by three orthogonal
almost complex structures I, satisfying the unit quaternion relations: (i) I1 [, = —h1I| =
I3, Lz = —idj,; (i) g(-, I;-) = g(-,); and (iii) the compatibility conditions
2g¢(I;X,Y) = dng(X,Y), X, Y € H holdtrue. In particular, a quaternionic contact manifold
is orientable.

The transformations preserving a given quaternionic contact structure 7, i.e., n = u\Wn
for a positive smooth function p and an SO (3) matrix W with smooth functions as entries are
called quaternionic contact conformal (qc-conformal) transformations. The gqc-conformal
curvature tensor W9°, introduced in [9], is the obstruction for a qc-structure to be locally qc-
conformal to the standard 3-Sasakian structure on the (4n + 3)-dimensional sphere [9,11].

It is a noteworthy and well known fact that, unlike the CR geometry, in the qc case the
horizontal space determines uniquely the qc-conformal class, see Lemma 5.1. Accordingly,
we will denote by (M, H, Q) a qc-conformal structure on the 4n + 3 dimensional manifold
M with a fixed horizontal space H equipped with the quaternionic structure Q = Q™ ; this
data determines (local) one-forms 7,, s = 1, 2, 3, annihilating H up to a local qc-conformal
transformation. On the other hand, (M, ) will denote a qc-manifold with a fixed R3-valued
one form, which determines the horizontal space H and the quaternion structure Q on H
uniquely.

As shown in [3] there is a “canonical” connection associated to every qc-manifold of
dimension at least eleven. In the seven dimensional case the existence of such a connection
requires the qc-structure to be integrable [6]. The integrability condition is equivalent to
the existence of Reeb vector fields [6], which (locally) generate the supplementary to H
distribution V. The Reeb vector fields {£1, &, &3} are determined by [3]

ns(&) =685, Esudng)g =0, (Eodn)ig = —(&odng) i, (2.1)

where _ denotes the interior multiplication. Henceforth, by a qc-structure in dimension 7,
we shall mean a qc-structure satisfying (2.1) and refer to the “canonical” connection as the
Biquard connection. The Biquard connection is the unique linear connection preserving the
decomposition TM = H @V and the Sp(n)Sp(1) structure on H with torsion 7" determined
by T(X,Y) = —[X, Y]}, while the endomorphisms T'(§,-) : H — H belong to the
orthogonal complement (sp(n) + sp()* c GL(4n, R).

The covariant derivatives with respect to the Biquard connection of the endomorphisms
I and the Reeb vector fields are given by

VIi=—a; Iy + o ® I, Véi=—a; @& + o ®§;.
The sp(1)-connection 1-forms o1, @2, a3, defined by the above equations satisfy [3]
a;(X) =dni(§;, X) = —dn; (&, X), X eH.

Let R = [V, V] — V| be the curvature tensor of V and R(A, B, C, D) = g(R4 pC, D)
be the corresponding curvature tensor of type (0,4). The qc-Ricci tensor Ric and the normal-
ized qc-scalar curvature S are defined by

4n 4n
Ric(A,B) =) R(es. A, B.es) 8n(n+2)S = Scal = »_ Ric(eq. ).
a=1 a=1
where e, . .., €4, is a g-orthonormal frame of H.
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We say that (M, n) is a qc-Einstein manifold if the restriction of the qc-Ricci tensor to the
horizontal space H is trace-free, i.e.,

Scal
4n

The qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism of the
Biquard connection, T (&, X) = 0 [14]. Itis also known [13, 14] that the qc-scalar curvature
of a qc-Einstein manifold is constant.

The structure equations of a qc-manifold [10, Theorem 1.1] are given by

Ric(X,Y) =

¢(X,Y)=2(n+2)Sg(X.Y), X,YeH.

dn; =2w; —nj Ao+ Aaj — Snj A g, (2.2)
where w; are the fundamental 2-forms defined by the equations
2w = dnga,  §owy =0.

By [13, Theorem 5.1], see also [10] and [11, Theorem 4.4.4] for alternative proofs in the
case Scal # 0, a qc-Einstein structure is characterised by either of the following equivalent
conditions:

i) locally, the given qc-structure is defined by 1-form (571, 12, n3) such that for some constant
S we have
dn; = 2w; + Snj A ng; (2.3)

ii) locally, the given qc-structure is defined by a 1-form (11, 72, n3) such that the corre-
sponding connection 1-forms vanish on H and (cf. the proof of Lemma 4.18 of [14])

oy = —Sn;. 2.4)
2.2 QC-hypersurfaces

Let (K, Q) be a quaternionic manifold with quaternionic bundle Q. Thus, Q is a 3-dimensional
subbundle of the endomorphism bundle End(T K) that is locally generated by a pointwise
quaternionic structure Ji, J2, J3, such that there exists a torsion free connection V2 onTK
with VEQ C Q for all tangent vectors A € TK.

Let M be a hypersurface of K and H be the maximal Q-invariant subspace of TM. M is
a qc-hypersurface if it is a qc manifold with respect to the induced quaternionic structure on
the horizontal space H. Formally, we rely on the following definition [7, Proposition 2.1]
which uses the notation introduced at the beginning of Sect. 2.1.

Definition 2.1 Let (M, H, Q™) be a gc-manifold, and ¢ : M — K an embedding. We say
that M is a qc-embedded hypersurface of K if ¢, (H) is a codimension four subbundle of T K
and the map t, intertwines 9 and Q.

In order to simplify the notation, we will frequently identify the corresponding points and
tensor fields on M with their images through the map ¢ in K. In particular, in the embedded
case, we will use Q¥ = Q for the quaternion structure on H. We note that the above
definition determines the conformal class of the given qc-structure rather than a particular
gc-structure inside this conformal class, cf. Lemma 5.1. An equivalent characterization of
a qc-hypersurface M is that the restriction of the second fundamental form of M to the
horizontal space is a definite symmetric form, which is invariant with respect to the quaternion
structure, see [7, Proposition 2.1]. After choosing the unit normal vector N to M appropriately
we can and will assume that the second fundamental form of M is negative definite on the
horizontal space.
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Remark 2.2 For practical purposes, it is useful to keep in mind the description through a
locally defining function p with a non-vanishing differential dp for which M = p~1(0).
By [7, Proposition 2.1], M is a qc-hypersurface iff pointwise V2dp(X, Y) is a Q-invariant
positive or negative definite quadratic form on the maximal Q-invariant subspace H of T M.

For the rest of this section we shall assume K is a hyper-Kéhler manifold with hyper-
complex structure (Jy, J2, J3), quaternionic bundle Q, and hyper-Kihler metric G. In
particular, the Levi—Civita connection D will be used as the torsion free connection on
K preserving the quaternion bundle of Q. We note that the qc-structure on the hypersurface
M is generated by globally defined 1-forms 7y determined by the unit normal N to M as
follows. With |.| denoting the length of a tensor determined by the metric G, consider

1
5(A) = G(JsN, A) = mlsdp(A), AeTM, (2.5
0

so that H = ﬂle Ker 7;. Let I1(A, B) be the second fundamental form of M, [1(A, B) =
—G(Dy N, B). Since the complex structures J; are parallel with respect to the Levi—Civita
connection D, it follows

dijs(A, B) = (Dans)(B) — (Dpijs)(A) = G(Js(DaN), B) — G(Js(DgN), A)
=1I(A,[JsBlrm) — 1I1(B,[JsAlTm), A,BeTM. (2.6)
Defining g(X,Y) = —I1I(X,Y), X,Y € H, (2.6) yields dn;(X,Y) = 2g(I,X,Y),
which defines a qc-structure (M, 7y, I, ) in the gc-conformal class determined by the
gc-embedding.
The associated Reeb vector fields é s, fundamental 2-forms @y, and sp(1)-connection 1-

forms & are determined easily as follows. For 7y = & — J;N, since #;(7;) = 0 we have
7y € H. Using the equation d7; (&5, X) =0, X € H and (2.6) we obtain

211, X) =—11(J;N, X).
In addition, we have

& (X) = die (7, X) + die (J; N, X) =211 (7}, 1 X) + dijix (J; N, X)
=211GF;, kX)+1I(J;N, [ X)+ I1(X, J;N)
=—II(JjN, [ X)+II(J;N, ;X)) +1I(X,J;N)=1I(J;N, X).
Notice that, unless the three 1-forms I7(J;N, -) vanish on H, the qc-structure (7, Iy, &)

does not satisfy the structure equations dn; = 2@; + i i A N, (cf. formula 2.2), and the
vector fields Jy N differ from the Reeb vector fields .;gs.

3 QC-hypersurfaces of hyper-Kihler manifolds

Let M be a qc-hypersurface of the hyper-Kéhler manifold K as in Sect. 2.2. Summarizing
the notation from Sect. 2.2 we have that the defining tensors of the embedded qc-structure
on M are given by

is(A) = G(UsN, A), & = JN +7;, &5(X,Y) =—11(LX,Y),
gX,Y) = —os(I,X,Y). (3.1
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Notice that Theorem 1.2 claims that the gc-conformal class of any embedded qc-
hypersurface in a hyper-Kéhler manifold contains a qc-Einstein structure. In turn, this follows
from the following stronger result.

Theorem 3.1 Lett : M — K be an oriented qgc-hypersurface of a hyper-Kdihler manifold
K with parallel quaternion structures Js, s € {1, 2, 3}, and hyper-Kdihler metric G. There

exists a unique up to a multiplicative constant symmetric Jg-invariant bilinear form 25 on
def . ,

the pull-back bundle TK |y =2 ("(TK) — M such that 20 is parallel with respect to the pull-

back of the Levi—Civita connection and whose restriction to TM is proportional to the second

fundamental form of M. Furthermore, the restriction of 20 to H is the horizontal metric of a

qc-Einstein structure in the gc-conformal class defined by the (second fundamental form of

the) qc-embedding.

We note that the existence is the main difficulty in the above result, since the uniqueness
up to a multiplicative constant is trivial. Indeed, if 207 and 20, are two such forms, then from
1 |7 = €205 | 73 for some function ¢ on M, the Js-invariance implies the same relation
on TK] ;. Therefore, d¢p(A) = 0 for any A € TM since the bilinear forms are parallel.

Before we turn to the proof of Theorem 3.1, we give an example of the above construction
and Theorem 3.1 by considering the standard embedding of the quaternionic Heisenberg
group in the n + 1-dimensional quaternion space.

Example 3.2 Anembedding of the quaternionic Heisenberg group G (H), see [14, Sect. 5.2].

Let us identify G (H) with the boundary ¥ of a Siegel domain in H" x H, £ = {(¢, p/) €
H" x H: % p’ = —|q'|*}, by using the map ¢ (¢, ")) = (¢'.—¢'|> + @) = (q. p) €
H" x H, where p =t +w =t +ix+ jy+kz € H, g = (q1,...,9,) € H", and
Go = toq +ixyg + jyog + kze € H, « = 1, ..., n. The “standard” contact form on G (H),
written as a purely imaginary quaternion valued form, is given by

.1 !
e = 3 (—do+dg -qg—q-dg) =i (—de — todxy + Xodty + Yodze — Zadya)
1
+] (_Edy — tadyot - xadza + yadt& + Zadxo‘)
1
+k _EdZ — 194z + XgdYe — YadXe + zodly ), (3.2)

where - denotes the quaternion multiplication. We note that the complex structures Jy, J2, J3
on R¥+4 are, respectively, the multiplication on the right by —i, —j, —k in H"t!, hence

Jidty = —dxy, Jidyy =dzq, Jidt = —dx, Jidy =dz,
Jodty = —dyy, Jodzg = dxy, Jodt = —dy, Jodz = dx.

Clearly, X is the O-level set of p = |q|2 + t and we have

2 1
JsdIO:\/ 1+4|Q|2 sy N=———— (*at‘*' 1o 0p, + X0y, + )’aay + 240; )»
\/— 2 o o o o

14+4|q|?

(=do + dg -q — g-dg),

1
n=im+jn+kiy=——=—=
V1+4|q?
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1
~——Ddp (A, B) = —

2
|dpl V1 +4|q)?

2
=——— (dty O dty +dxg O dxg +dy, ©dyy +dzqg ©®dzg) (A, B),

VT+4lgP

where for a tangent vector A we use Ay = A — df(A)9; — dx(A)dy — dy(A)dy —dz(A)d;
for the orthogonal projection from H"*! to the horizontal space, which is given by H =

II(A, B)

(An, Bu)

~ d ~ .
Ker dp N {ﬂz’z Ker 7;}. From the above formulas we see that © ef (*7 is conformal to

o. Therefore, the qc-structure n; = 7@-;4@2 ns, 1.e., the standard qc-structure (3.2), has
horizontal metric given by the restriction of the bilinear form 25 = const R(dq, - dgu)| M,
which is parallel along M. This is the symmetric form whose existence is claimed by Theorem
3.1, while the calibrating function is a certain multiple of /1 + 4|q|?, cf. (3.4).

It is worth noting that the qc-Einstein structures in the qc-conformal class of the standard
gc-structure were essentially classified in [14, Theorem 1.1] where it was shown that all
gc-Einstein structures of positive qc-scalar curvature globally conformal to the standard qc-
structure are obtained from the standard qc-structure on the quaternionic Heisenberg group
with a qc-automorphism, see also [12, Theorem 6.2] for the general case.

3.1 Proof of Theorem 3.1

A key point of our analysis is a volume normalization condition, which is based on Lemma
3.3. To this effect we consider a gc-conformal transformation ny, = f'7; where f is a positive
smooth function on M. Let &, wy, V and o be the Reeb vector fields, the fundamental 2-
forms, the Biquard connection and the sp(1)-connection 1-forms of the qc-structure defined
by 6. The orthogonal complement V = span{&;, &, &3} of H and the endomorphism /i,
defined on the horizontal space H, induce a decomposition of the complexified tangent bundle
of M (we use the same notation 7 M for both the tangent bundle and its complexification),
TM=V®H 111’0 @ HIOI‘I, and consequently of the whole complexified tensor bundle of M.
We shall need the type decomposition of the 1- and 2-forms on M,

T*M = H{(® Hy, ®L*,  L* = span{ni, n2, n3},
ANT*M) = A (H{y) @ A*(Hi)) © (Ho ® Hy ) © A*(LY) @ (L* ® HY).
In particular, H 1* o 18 the 2n-dimensional space of all complex one-forms which vanish on
&1, &, & and are of type (1, 0) with respect to /1 when restricted to H. Similarly, using the
endomorphism /5 or I3 we obtain corresponding decompositions. We shall write explicitly
the analysis with respect to /1, but keep in mind that the arguments remain true if we cyclicly
permute the indices 1, 2 and 3.
Consider the following complex 2-forms on M,
vi=oj+v=lax, vyvi=fyi=wj+v-1u,
[i(A, B) =G(J;A, B) + ~v—1G(J; A, B).

We have & .y, = 0 and 1, 711g, Ty € AZ(HﬁO). Moreover, since K is a hyper-Kéhler
manifold, the three 2-forms I'y are closed, dI'y = 0. The volume normalization relies on the
following algebraic lemma.

Lemma 3.3 Let H*" be a real vector space with hyper-complex structure (I1, I, I3), i.e.,
112 = 122 = 132 = —Id, 1 I = —ILhI} = Is and g and g be two positive definite inner

@ Springer



Quaternionic contact hypersurfaces in hyper-Kiahler manifolds 253

products on H*" satisfying §(I; X, I,Y) = §(X,Y), and g(I, X, I,Y) = g(X,Y) for all
X, Y eHY s=1,2,3.1If

VX Y) =8 X Y) + V18X, Y), vi(X,Y) =g X, Y)+V-1g(LX,Y),

then there exists a positive real number |1 such that s A+ APy = w(Ys A+ AYs),

n times n times

s=1,2,3.

Proof A small calculation shows that both y; and y, are of type (2, 0) with respect to /1. The
complex vector space A2 (K 1.0) is one dimensional, and y{" and p{" are non zero elements of
it, hence there exists a non zero complex number p such that y|' = p p/'. Note that Ly, = 71
and the same holds true for y;. It follows that

- An

(Ly)" =yl e, up =y,

thus u = & # 0. The group GL(n, H) acts transitively on the set of all positive definite
inner products g of 3, compatible with the hyper-complex structure, and hence also on the
set of all corresponding 2-forms y;. The group G L (n, H) is connected, therefore each orbit
is connected as well, which implies ;& > 0. It remains to show that the constant x in the
equation p' = p ;' is independent of s. For this we use that the 4n-form y* A )/T” equals
the volume form of the metric g and hence it is independent of s. This implies that > does
not depend on s, and therefore the same is true for j. O

From Lemma 3.3 applied to the metrics ¢ and G|y on H it follows that there exists a positive
function p on M such that I'} |5 = uplw, s = 1,2, 3 ie,

Iy =wpp mod {n1, 2, n3}. (3.3)

At this point we define the “calibrated” qc-structure using the function f defined by

f = (3.4)

The reminder of this section is devoted to showing that with this choice of f the qc-structure
determined by 7 satisfies all the requirements of the theorem.

We start by proving in Lemma 3.5 a few important preliminary technical facts. Let us
define the following three vector fields ry

1
=& — — JN. 35
rg=§ 7 (3.5)

Since 0, (rg) = 85 — n;(JyN) = 0, it follows that r, are horizontal vector field, r; € H. We
will denote by r also the corresponding 1-forms, defined by rs(A) = G(rg, A), A e TM.

Remark 3.4 Note that in general expressions of the type n; A 72 A 13 A 8, with § being
differential form on M, depend only on the restriction of § to H. This fact will be used
repeatedly hereafter.

Lemma 3.5 We have
mATT =@+ D AmAn Ay (3.6)
Mt = V=1 + Dy A (7)2 + V—1773) 2

Fnm+D) 20 Am Az A (—J3r3+«/—1J2r3+12r2+«/—113r2)/\F?_l.
3.7)
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Furthermore, the above equations hold after any cyclic permutation of the indices 1, 2 and
3.

Proof Let us define F; and FI to be 2-forms on M which coincide with the 2-form I'; when
restricted to the distribution H and satisfy the additional conditions & 41"/1 =0, (JsN )41"/1/ =
0. In order to find the relation between I'| and F/l , We compute

T1(A, B) = T1(A — n;(A)és, B — 0 (B)&:)
=T1(A, B) = ns(B)I'1(A, &) — ns (A1 (&, B) + T'i (&5, )05 (A)n: (B)

1
=T1(A, B) = A (§)(A, B) + ST (s §)ns Ami(A, B).
A short calculation gives

(&TD(A) = G(h&, A) + V=1G ()&, A)

e (12 (r, + %JtN) , A) +VTI+G (13 (r, 4 %J;N) , A)
= (Jory + J311)(A)  mod {n1, n2, 3},

which shows that for some functions Ff’t on M we have

Ty 0 A (3.8)
1

3
Iy =r - DomA (Jm +v-1 J3rt) +
i=1

3
s, 1=

Similarly to the derivation of (3.8) we can find the relation between F/I, and I'y,
ry=r; — f2 (773/\771 ++=1n /\772),
which gives
m\ "
P = V=T D2 A (2 4+ V=Tms) A ()
=1+ Df2n A +~—=1np) AT (3.9)

’ A\ n+l A\ n+1
Clearly, I'y € A? (HI*,O) and (Fs) = (I‘ ) = 0. Noting that (3.3) are equivalent to

S
the equations

N
(r) = r2n

we obtain from (3.8) the identity

3
N\ A\ n—1
= (10)" 0 X ne A (dars + V=T ) A (T5) modns A i)
s=1

3
A\ n—1
= P +nd A (Jgrx—i—\/—l J3rs) A (Fl) mod (s A ). (3.10)
s=1

Finally, a substitution of (3.10) in (3.9) gives
P = V=104 D A (n2 4+ /=Tis) Ay

A n—1
+n(+1) 7 A Az A (—J3r3+v—ler3+er2+\/—113r2) A (Fl) ,
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A\ n—1
which, in view of the relation 11 A7z Anz A (rl) = m A AN AT ) yields (3.7). The
Eq. (3.6) follows now by taking the wedge products of both sides of (3.7) with the 1-form
n2. O

Following is a technical lemma which will be used in the proof of Lemma 3.7 below.

Lemma 3.6 Forany » € H 1* o (considered with respect to I1) we have

v —1
A AN w1 N ')/]n_l = 7(12)\,) VAN )/ln

Proof We can take a basis of the cotangent space of M in the form
N, M2, N3, €1, -5 €, D1€1, .. T1€n, Der, ..., ey, Ber, ..., I3€y,

where &6, = 0,s = 1,2,3,t = 1,2, ..., n, which is orthonormal in the sense that the
following equations hold

n n
w1 = D (e A&+ hes Ales), w2 =D (6 A Des + e A 1y)

s=1 s=1

n
w3 = ) (€ A Iyeg + Nés A Dés) .

s=1
For ¢; = ¢, + ~/—111€; and ¥, = e, + /—113¢, the forms ¢y, ..., ¢, V1, ..., ¥, form
a basis of Hl* o- Moreover, we have
hLos = KZ’sa Ly = _&S! s=1,...,n,
V=1

W=

Z(¢s A G5+ s A &Y) » V1= 24’9 A Ys,
s=1

s=1

Y =nl@r AV A Ay Ay,

W = = DI G AYLA - AG AT Ay A Y,

s=1

IRRVAS [ I _ }
OV AYT = S TG AYI A A (b A+ Ys AT A A b A Y.
2
s=1
Since ) € Hy  there exist constants as, bs,s = 1, ..., nsuchthat A = 3°0_ (as@s +bss).
It follows that LA = >"_, (as¥s — bss). Finally we compute (omitting the sum symbols)
AN A
v=1(n—-1)! _ _
=D (ardi+bi) A QL AYL A A (s APsHVs AVg)Av Ay A Yy)
V=1l -1), - } J=1
= f (as‘ps _bs¢’s) ANPLAYI A ANy Ay = 7([2)0/\)/1"'

[m}

Lemma 3.7 The calibrated gc-structure ng = f1ns, where f is given by (3.4), satisfies the
structure equations (2.3). In particular, (M, H, ny) is a qc-Einstein structure. Furthermore,
we have

Ilrl = 12”'2 = 13r3.
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Proof Taking the exterior derivative of (3.6) and recalling that I'; is a closed form, we obtain
0= nm+DmAm A Ady Ay
dn A (D7 4 0+ D A O3 = V=) A7)
=+ D (dm A A (s = V=Tm) + m A Ad(s = V=Tn) Ay
(3.11)

The structure equations (2.2) and the identities wy = %(yl + 1), w3 = @()71 — y1) and
w1 Ayl = 0imply

dn =0 mod {n2, n3, H o},

dpp =y mod {n,n3, Hi g}, dnz = V=1p1 mod {n1, n, HY o},
d(13 = vV=1m) = =2v/=Iy1 +V=Ins At mod {n1, 12},

dy1 = —vV—=lai Ayt + (a3 + v/ —laz) Aoy mod {n1, n2, 13}

From (3.7) and the above identities applied to (3.11) we find

0=dn A (n(n-l-l)f*zm A AN A (=J3r3+ v =1hrs+Jory + /= 1J3r2) A F?_l>
—(m+ Dy Am A=z Aay Ay —n+ D Anp Anz Av/—lagyf
+ a4+ D Am AR A (—a3 + V—l1az) Awp A )/]"_1
= nn+Df2mAmAm A7 ATV A (=Jar3 + V=123 + Jora + V= 1J3r2)
+ n+Dm Am AN A (—az +V—=laz) Awp Ayl
— V=l + D Am A AV A

The last expression is a (2n+4)-form which belongs to the space (decomposition with respect
to 1)

ALY @ A*(Hy ) ® A7 (Hf ) & ALY @ Al (Hg ) ® AY (Hf ).
Hence, we obtain the next two identities
VI + D m Am Am AV A
=nm+Dnm Am AN A % (—a3 —=1hLos + v/—1ay — Ila2) Awp A )/1"_1.
(3.12)
and also
—nm+Df2m Am A AT ATT YA (=J3r3 + V=1dor3 + Jory + v —1J312)

1
=nn+Dn Am Anz A 5(—0[3 +~—=1haz +~—1lay + o) Awy A yln_l.

(3.13)
Equation (3.12) yields
n(—az — =11z + v/—lay — Lao) A w1 A )’1"_1
= V=10 + Dy{' A (@1 —v/=1lar) mod {n1, 2, n3}. (3.14)
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With the help of Lemma 3.6 we can write (3.14) in the form

V=1
5 I (—O{3 —v—1llaz+~—lay — 11052)

= V=10 +1) (@1 = v=Ther)  mod {n1, 2, m3).

Taking the real part of the last identity we come to 2(n + 1)/jo; + Doy + laz = 0
mod {n1, n2, n3}.

A cyclic rotation of the indices 1, 2, 3 in the above arguments gives the following system
mod{ni, n2, n3}

2m + Doy + hay + a3 =0
Loy +2n+ 1) har + a3 =0
Ly + hay +2(n+ 1) 303 =0,

which has the unique solution I1o; = hay = a3 = 0 mod {1, 72, n3}. Therefore, the
calibrated gc-structure has vanishing sp(1)-connection 1-forms

(a)lw = (2)|ln = (3)|lg =0, (3.15)
hence by (2.4) it is a qc-Einstein structure. From (3.13) (and a cyclic rotation of the indeces)
we also conclude that I1r| = lhry = I3r3. o

We shall denote by r the common vector defined above by I;rg in Lemma 3.7, see also
(3.5,
r=—Iyry € H, hence ry = Igr.

The calibrated gc-structure constructed in Lemma 3.7 enjoys further useful technical prop-
erties recorded below.

Lemma 3.8 The second fundamental form I1 of the gc-embedding M C K and the cali-
brating function f defined by (3.4) satisfy the identities:

i II(X,Y)=—f""g(X,Y);

i. IT(JN,J;X)=—f"'df(X) =g, X), X € H;
iii. TI(JsN, J;N) = =84 f(S/2+ g(r,r);

iv. df(JsN) =df(&) =0.

Proof (i) The identity I1(X,Y) = —f~!g(X, Y) holds by the definition of g, also recall
3.1).

(i1) Using the fact that the complex structures J; are D-parallel, the relation ny; =
fG(JgN, .) and the formula dns(A, B) = (Dans)(B) — (Dgns)(A) we find

dng(A, B) = f'df Ans(A, B) + fII(A, [JsBlrm) — fI1(B, [JsAlrm).  (3.16)

p—

The above formula implies

dn;(JiN, kX)) =— fII(J;N, J;X) — f1I(JyN, Ji X),

(3.17)
dni(JiN, X) = —=df(X) + fII(JiN, J; X).
On the other hand, since & = iJSN + Jyr and o g = (§j2dng) g = 0, we have
0 =dni(&, JiX) = f~'dni(J;N, ik X) + 2g(r, X), G1s)

0=dn; (&, X) = f~'dni(JiN, X) — 2g(r, X).
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The first of the above identities together with the first identity in (3.17) imply the equation
II(J;N, J; X) = g(r, X), which together with the second identity in (3.17) and (3.18) give
the identities in (ii).
(iii) and (iv). From (3.16)
we have
dni(JiN, JiN) =—df(JjN)+ fII(JiN, JgN),
dn;i(JiN, JkxN) = —df(JkN) — f1I(JiN, JjN), (3.19)
dn;(J;jN, iN) =— fI1I(J;N,J;N) — f1I(JiN, JyN),

which give the wanted identities. From (3.15) and (2.2)—~(2.4) we have dn,(§;, &) = 25,; S.
Therefore, we obtain

0=dni(&,&) =dni(f "IN+ Jir, f7UN + Jir) = f72dni(UiN, J;N)
0=dni&, &) =dn(f T LN+ Jir, fTURN + Jgr) = f2dni(iN, JkN) - (3.20)
S =dn; (&, &) = f2dni(JjN, JkN) — 2g(r, ).

The first two identities of (3.19) and the first two equations in (3.20) give

II(J;iN,J;jN) = —df(JN), II(JjN,J;N) =df(JN),

hence d f (Jx N) = 0. Finally, recalling (3.5), we compute

4n

df &) =df (s + fTHIN) = dfUsr) = D df (sea)g(r eq)

a=1
4n

=—f7' D> dfUsea)d f(eq) = 0.

a=1
The third identity of (3.19) and the third line of (3.20) imply
TI(JiN,JiN) = —f(S/2+ g(r, 1)),

which completes the proof of parts (iii) and (iv) of Lemma 3.8. O

The next lemma gives an explicit formula for the horizontal metric of the calibrated qc-
Einstein structure.

Lemma 3.9 The horizontal metric g of the calibrated by (3.4) gc-structure is related to the
second fundamental form of the qc-embedding by the formula

g3
g(AH,BH)Z—f”(A,B)—EZm(A)ns(B), A, B eTM, (3.21)

s=1

where for A € TM we let Ay = A — Zi:l ns (A)&s be the horizontal part of A.
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Proof A few calculations give the next three identities
(&, X) = U(I;r + f~UIN, X)
= (I, X) — £ IIGN, Jo(Jg X))
=—f"eUsr, X) = f7g(r [;X) =0,
(&, &) = U(Ir + f N, Ir + f71IN)
= U(Isr, Ir) + 2f "IN, Jgr) + f72(JgN, JyN)
=—flet ) +2f et ) = £7N(S/2+ g(r )
=—s7's/2,
(&) = I(Lir + fY N, Lir + f71IN)
= II(Lir, Ijr) + fUI(N, J;r)
+ £ Jir, JiN) + f2HJN, J;N) = 0.
The above identities together with II(X,Y) = — f “le(X,Y) yield (3.21), which completes
the proof. O

At this point we are ready to complete the proof of Theorem 3.1. We proceed by showing
that there exists a unique section 20 of the pullback bundle (T*K ® T*K)|y — M, which
is Jg-invariant, and whose restriction to 7 M coincides with the tensor — f11. It will be
convenient to consider the calibrated transversal to M vector field

Ep)= Y PINP) +r(p), peM, (3.22)

which is a section of the vector bundle TK|y; — M. Clearly, Ji& = & by (3.5), which
together with the J; invariance of /1 on the horizontal space H gives the existence of J;-
invariant bilinear formon 7 K |y — M by adding a bilinear form on the complement V@R &.
In fact, with the obvious identifications, since the fiber of TK |y overany p € M C K
decomposes as a direct sum of subspaces as H, ® V), ® R&(p), forav € T,K we define

3
V' =v—AEP) €T M =H,®V,, v =0 = n (V)& €Hy,
s=1

where A is a 1-form, A = fG(N,.), so that v’ is the projection of v on T,M = H,®V,
parallel to the calibrated transversal field £. We can rewrite formula (3.21) in terms of the
introduced decomposition as follows

3
S
—fII(A, B) =g (A", B") + EZnS(A)nS(B), A,BeT,M,

s=1

which leads to the following definition of the symmetric bilinear form 20,

W, w) Y 11 (v, w) + gk(v))»(w)

3
S S
=g (v w")+5 2 ns (V) ns () + SAWAW). v w € T,K. (3.23)
s=1
We shall prove that this symmetric form is parallel as required, i.e, for any A € T M and
v, w € TK we have (D420)(v, w) = 0. From the symmetry and Sp(1) invariance of 20 we
have trivially for v, w € T K the identities
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(DA) (v, w) = (DAW)(w, v),  (DAW) (S5, Jyw) = (DAW) (v, w). (3.24)

Furthermore, the restrictions of 20(Jy-, -) to T M are closed 2-forms on M. Indeed, let 27,
be the 2-form on M defined by

Wi (A, B) = W(JsA, B).
Using the identity (J; A)’ = (J; A)” + n; (A& — nk(A)&; in (3.23) we see that
S < s
W; (A, B) =w;(A, B) + 5 Zns ((JiA)) ns(B) = (wi + 37 A ﬂk) (A, B)

s=1
1
= Ednl (Av B)v

which implies d20; (A, B, C) = 0. On the other hand, the exterior derivative d20; can be
expressed in terms of the covariant derivative D2U; through the well know formula

d2; (A, B, C) = (Da20:)(B, C) + (Dp2;)(C, A) + (Dc2;)(A, B). (3.25)

Since by assumption DJ; = 0 we have (Do205)(B, C) = (DA20)(JsB, C), Eq. (3.25)
gives

(DAW)(JsB, C) + (DpW)(J;C, A) + (DcW)(J5A, B) =0, A,B,CeTM. (3.26)

We will show that the identities (3.24) and (3.26) yield (D 420) (v, w) = 0. An application
of (3.26) gives

— (DxW)(Y, Z) + (DyyW)(Ji Z, X) + (DzW)(X, Y) =0,
— Dy xWY(Y, Z) + (DyyW) (i Z, X) + (DzW)(X,Y) = 0.

Therefore, (D, x20)(JsY, Z) = (DxW)(Y,Z) = (Dx2)(J,Y, JsZ), which by (3.24),
implies (D, x20)(Y, JsZ) = (Dx20)(Y, Z). It follows

(DyxW)(Y, Z) = —(DxW)(Y, JsZ) = (DxW)(JsY, Z) = —(Dy;xW) (Y, Z),

thus (Dx20)(Y, Z) = 0.
Another use of (3.26) gives

(D, W) (JiY, Z) + (DyW)(Z. &) — (D W)(N, Y) =0, (3.27)
which implies
(Dg, W) (N1Y, Z) = (D, W)(N2Y, Z) = (Dg, W)(J3Y, Z),
(Dg W) (Y, 1Z2) = (De, W) (Y, L Z) = (De; W) (Y, J32).
Therefore, we have
(D, W) (Y, Z) = (Dg,W)(J; Y, J; Z)
= (D, W)(J;Y, Ji Z) = (Dg; W) (J;Y, J; I Z) = (D, W) (J; Y, Ji Jk Z)
= — (DgW)(J;Y, J; Z) = — (D5 W) (Y, 2),

thus
(D, 20)(Y, Z) = 0. (3.28)

Now, a substitution in (3.27) gives

(DyW)(Z,§) = (Dz2W)(Y, §). (3.29)
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Invoking again (3.26) we find
(Dg; W)(J;iY, Z) + (DyW)(Ji Z, §) — (DzW)(N, JY) =0,

which together with (3.28) and (3.29) give (D, x20)(Y, &) = (Dx20)(J,Y, &). In addition,
it also follows

D xW)(Y, &) = (DxW)(J; J;Y, N) = Dy, x2)(Y, §) = —(Dy xW)(Y, §),

thus (Dx20)(Y, &) = 0 as well.
Next, we apply (3.26) as follows

— (Dg; W), Z) — (Dg, W) (x, Z) + (DzW)(N, N) =0,
— (DgW) (i, Z) — (Dg; W) (&5, Z) — (DJ,-Z)QIT(N, §)=0.
Since, (Dy;z2)(&,§j) = (Dy;z2)(§, Jj§) = 0, the second equation in (3.30) implies
(Dg,20) (&5, X) = 0, which togéther with the first equation in (3.30) give (Dg, 20)(§, X) =
(Dx)(&, ) = 0. )
Finally, from (3.26) we have (Dg20)(§, §) + (Dg;20)(Ji§, N) — (Dg ) (€, J;§) = 0,
which implies (Dg,20)(§, &) = 0. This completes the proof of Theorem 3.1.

We record an important relation between the calibrating function and the parallel bilinear
form,

W(N, A) = —fII (N',A) = f211(r, A) = —fg (. A") =df (A") =df(4), (331

which follows from Lemma 3.8 and the definition of 27, (3.23).
As an application of Theorem 3.1 we have the following result.

(3.30)

Theorem 3.10 Let (K, G) be a hyper-Kdhler manifold with Riemannian curvature tensor
R. If M is a gc-hypersurface of K with normal vector field N then we have that Iévw N = 0for
all p € M and v, w € T, K. In particular, the Riemannian curvature tensor Ris degenerate
at each point p of the hypersurface M.

Proof Let M be a qc-hypersurface of the hyper-Kéhler manifold (K, G, Ji, J2, J3). Let f
and 7, be the calibrating function and calibrated qc-structure determined in Theorem 3.1, see
also (3.4). Let us extend the second fundamental form /7 of the embedding to a section of
the bundle TK |y ® TK |y — M by setting [I(N, A) =II(N,N)=1I(A,N)=0, A€
TM C TK.For any v, w € TK we have

I11(v,w)=— %Qﬂ(v — G, N)N,w — G(w, N))

=— % (W, w) — G, N)W(N, w) — G(w, N)W(N, v)

+ G, N)G(w, N)XB(N, N)}.

Using the Levi—Civita connection D of the hyper-Kihler manifold K we differentiate the
above equation to obtain

df (A)
f2
=% {df(A)2(B, C) +df(B)W(C, A) +df(C)W(B, A)},

(DAl (B, C) = W(B,C) + % {G(B, DsAN)Af(C) + G(C, DsN)df(B)}

which, in particular, implies
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(DaAI)(B,C) — (DplI)(A, C) =0.
On the other hand we compute

(DAII)(B,C) =A(II(B,C)) — I1(DsB,C) — 11(B, D4C)
=—AG(DpN,C)+G(Dp,gN,C)+ G(DpN, DsC)
=—G(DsDgN,C)+ G(Dp,gN, C).

For the curvature tensor R of D we obtain

0=(DuII)B,C)— (DpII)(A,C)=—-G(DsDpN,C)+ G(Dp,pN,C)
+ G(DpDaN,C) —G(DpyaN, C)
=G(RagN., C),

thus R AN = 0, A, B € TM. Furthermore, s1nce R is the curvature of a hyper-Kahler
manlfold it has the property R(J v, Jw) R(v w), v,w € TK. Hence, RXNN =
R‘]_SX’]ANN 0 and RJ NNN = R‘]kN"] NN = 0, which completes the proof of the
theorem. m]

4 QC-hypersurfaces in the flat hyper-Kiihler manifold H"+!

As usual, we consider the flat hyper-Kihler quaternion space H"*! with its standard quater-
nionic structure Q = span{Ji, J2, J3}, determined by the multiplication on the right by —i,
—Jj and —k, respectively. Let

n+1
<q’q/> = Re (anq[,), Ga =ta +ixq + jya +kza,
a=1

be the flat hyper-Kihler metric of H' !, If M is a qc-hypersurface of H'*! and (A, w, o) €
GL(n + 1,H) x Sp(l) x H"*!, then the quaternionic affine map F : H*"t! — H"H!,
defined by F(g) = Aqd + qo, transforms M into another qc-hypersurface F (M) of H'*!
since F preserves the quaternion structure of H"*!. In this section we will prove, as another
application of Theorem 3.1, that in fact any qc-hypersurface of H"*! is congruent by the
action of the quaternion affine group GL(n + 1, H) x Sp(1) x H"*! to one of the standard
examples: the quaternionic Heisenberg group, the round sphere or the qc-hyperboloid, see
Example 3.2, (4.4) and (4.5), respectively.

4.1 Proof of Theorem 1.1

Lett : M — H''! be a qc-embedding, with N and I/ the unit normal and the second
fundamental form of M. Recall, we assume /] to be negative definite on the maximal J;-
invariant distribution H of M. From Theorem 3.1, we obtain a calibrating function f on M
and a parallel, Js-invariant section 20 of the bundle (7*K ® T*K)|y . Clearly, since 20 is
parallel, we can find an endomorphism of the real vector space R*'*4 = H"+! which we
denote again by 20, such that

W (v, w) = (W), w), v, w € R¥H4,
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By (3.23) in Theorem 3.1 and (3.31) we have the identities

Woldi=J;02, df(A)=(WN,wA), —fII(A, B)= (WA, B), A,BeTM.

4.1)
With the help of the matrix 20 and the above identities we can express the derivative of the
unit normal to M vector N along tangent fields as follows

1
DN = ?(m*A - df(A)N). (4.2)
Indeed, an orthogonal decomposition and the last equation of (4.1) give
1
(DAN,v) =(DaN, [vlrm) + (DaN, N){v, N) = =11 (A, [vlrm) = ?@ﬂL*A, [vlrm)
-l Wi, A Wi, A, N)(v, N
= (1A, v) = @A, M. 1)

using the second formula in (4.1). Moreover, formula (3.23) from the proof of Theorem 3.1
shows that, depending on the constant S, we have exactly one of the following three cases:
(i) 20 is positive definite; (ii) 20 is of signature (4n, 4); (iii) 20 is degenerate of signature
(4n,0).

Let us consider the most interesting case (iii). Assume 20U is degenerate of signature
(4n,0) and ker 20 = {vo, J1vo, Javo, J3vp} for some unit vg € R4, so that R*"+* =
im0 @ ker 20. We define the symmetric endomorphism 20’ of R*'*+* which is inverse to
20 on im 20 and satisfies ker 20’ = ker 20. Thus, we have

w

Wo W (v) =W oW (V) =v— (v, vo)vg — Z v, Jsvo)Jsvg, v € R4,
s=1

Consider the functions i, t,,, ,, : M — R, m =0, 1, 2, 3, defined by
h(p) =(Q'N, N), 1o(p) = (vo, t(p)), 1s(p) = (Jsvo, t(p)), lo(p) = (vo, N}, Is(p) = (Jsvo, N).
Invoking (4.2) we compute
dip(A) =(vo, Do N) = %(vo, Wi, (A) —df(A)N)
df(A)l _ _df(A)lo

=%(Qﬁvo, L(A)) —

0 =
f f
which implies that the product f [y is constant on M, f lp = Co, Co € R. Similarly we have
dly = —ls¥ and therefore f [, = Cy, s = 1, 2, 3, where Cj are constants. Furthermore,

dh(A) = 2(0'N, Dy N) = ;@n’N, Wi, (A) — df(A)N)

2 2hdf(A)
= Z(WW'N, 1,(4)) - ———
f( t(A)) 7
3 3
- A2 D lndty(A) = —% 2D bndtn(A) + hd(fH)(A) | .
f fm=0 f m=0
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It follows that f2dh 4 hd(f2) = =232 _, Cdty,, which implies that on the manifold M
we have

3
fPh=c+ Z Cmlm 4.3)
m=0
for some constants ¢, ¢, € R, m = 0,...,3. Now, consider the vector valued function

Vouir:M— R™H,

3
V(p) = f W N(p)+to(p)vo+ D t:(p) Jovo, p € M.

s=1

Formula (4.3) implies (0V, V) = fzh = c+ Zi:o Cmtm- On the other hand, using
(4.2), we have

/ e df(A)
(t=V)sA=1,A—df(A)WN - f0 (?QU(L*A) - 71\/)

!
3
— dto(A) vy — D dt(A) Jyvo

s=1

3
= 1A —WoW i, A —dig(A) vy — Zdts(A) Joup=0, AeTM.

s=1
Thus, there exists a point pg € H"*! such that for all p € M we have

3
(20 ((p) = po) »1(p) = po) =c+ D cmltm(p)-

m=0
A translation p = p + pg brings us to the case (identifying points on M with their images
by ¢)
3
(Wp, p) =+ D cmtn(p). p€M.

m=0

Let go € ker 20 be such that anzo ¢mtm (Go) = ¢, which is possible since an:o Cmtm #
0. Indeed, otherwise ¢,, = 0, m = 0,...,3 implies that the ker 29 C H, which is a
contradiction with the non-integrability of H. We consider the translation p = g — go which
brings us to

3
(WG.G) = D cmtn(@. §€M.

m=0

Let €,+1 be aunit vector in the direction of the vector covg + Z?: 1 ¢s Jsvo € ker 20 and con-
sider E ={ey, Ji€1, Jre1 J3€1, ..., €, J1€n,, J2€n, ..., J3€n, €ntt, J1€nt1, J2€ns1, J3€nt1)
where the first 4n vectors are an orthonormal basis of eigenvectors of the symmetric J-
invariant operator 20 on im 20. For this we note that by the Js-invariance of 20 it follows that
if v is a (real) eigenvector of 20U so are the vectors Jsv. In the quaternion coordinate coor-
dinates g, determined by {e,, Ji€4, Jo€4, J3€4},a = 1,...,n + 1 we come to the desired
form. Thus, there is a quaternionic affine transformation of H"*+! which maps ¢(M) into the
hypersurface |g|> + ¢ = 0 described in Example 3.2.
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Proceeding similarly in the cases where 20 is positive definite or of signature (4n, 4) we
will obtain, respectively,

n
D laal® +1plP =1, (4.4)
=1
i.e., the 4n + 3 dimensional round sphere in R*"** = H"*+! and the hyperboloid
n
> lgal* = 1plP =—1. (4.5)
=1

In these two cases, however, a simpler prove is possible, by first applying an appropriate
transformation from the linear group GL(n + 1, H), which transforms 20U into a diagonal
matrix with entries +1 or —1. Then, the transformed hypersurface will be totally umbilical,
and one can use the corresponding classification theorem of totally umbilical hypersurfaces
in R*"*4 to complete the proof.

4.2 QC-hypersurfaces in the quaternionic projective space HP"+1

Note that, as a quaternionic manifold, H" ! is equivalent to an open dense subset of the quater-
nionic projective space HHP"+!. Thus, all gc-hypersurfaces of H' ! are also qc-hypersurfaces
of HP"+!. Also, it is well known that PG L(n + 2, H) is the group of quaternionic affine
transformations of [17] HP"t!. As a direct consequence of Theorem 1.1 we obtain

Corollary 4.1 If M is a connected qc-hypersurface of the quaternionic projective space
HP"*!, then there exists a transformation ¢ € GL(n + 2, H) of HP"+! which transforms
M into an open set ¢ (M) of the qc-hypersurface M,, defined by

My = {[q1, ... qni2) € HP" T g2 + - 4 |gni P = gnsal?),

where [q1, . .., gn42] denote the quaternionic homogeneous coordinates of HP" 1.
In particular, as an abstract gc-manifold, every gc-hypersurface of HP"! is gc-
conformally equivalent to an open set of the quaternionic contact (3-Sasakian) sphere S*"+3,

Proof The proof relies on the preceding remarks and the fact that the quaternion structures of
the flat hyper-Kéhler and the quaternion-Kihler spaces are identical. Thus, every affine part
of a qc-hypersurface of HP"*! is one of the quadrics in Theorem 1.1 up to a quaternionic
affine transformation. By analytic continuation the quadric has to be the same.

Finally, the three quadrics in Theorem 1.1 are congruent modulo the G L (n + 2, H) action
on the projective space HIP"*!, which completes the proof. O
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5 Appendix

The following property of the qc geometry observed in [3] clarifies the paragraph after
Definition 2.1. As well known, this property is particular for the quaternionic contact case in
contrast with the situation in the CR case. For completeness, we include the statement and a
complete proof.

Lemma 5.1 Let (M, H) be a gc-manifold and (ns, Is, 8), (5, 1., g") be two local gc-
structures on an open set U C M with the same horizontal space H. Then, there exist a
positive function f : U — R, f > 0and a matrix-valued function A = (a;;) : U — SO(3)
such that

(.1, 1) =, L, A, (0. n5.n5) = f.m.m) A, g =Ffg.

Proof By assumption, H = 01-3:1771‘ = ﬂ?zlr];, thus there exists a matrix-valued function
A = (a;j) : U — GL(3) with n; = 23:1 age, s = 1,2, 3. Taking the exterior derivative
of the above equations we obtain

dn)lg =D as(dn)la-. (5.1)
t

Let us fix a symmetric and positive definite section % of the bundle H* ®@ H* which we will
use as a “background” metric on H. With respect to this metric, consider the restrictions of
the 2-forms (dn;)|y to H as endomorphisms of H, i.e., sections of the bundle End(H) =
H* ® H. This identification depends on the choice of 4. However, it is easy to see that the
composition of two endomorphisms of the form ((dn;)| ) Lo (dn})|u, is an endomorphism
independent of the choice of 4. For (i, j, k) a cyclic permutation of (1,2, 3) and h = g’ we
have

—1
((dn})lﬂ) o (dn)) lw = I}. (5.2)

The above equation holds for any choice of the metric 4 on H, in particular, also for 4 = g.
Using 5.1, we conclude that

—1
1= (@nln) o (@n) ln € spang lidw. I, I, 13},

Note that spang {idg, I, I, 3} C End(H) is an algebra with respect to the usual
composition of endomorphisms, which is isomorphic to the algebra of the quaternions
H = spang {1,i, j, k}. If an element of H has square —1 then this element belongs to
Im(H). Therefore, I; € Q = span{Ij, I, I3}, hence

spang {11, I, I3} = spang {I], I3, I}}.

Now, still identifying H* ® H with End(H), using h = g and using that the metric g is -
and [;-compatible, then each of the endomorphisms (dn,’c) u € End(H) anti-commutes with
both 1/ and I]{.This implies that, as an endomorphism, (dn;) g is proportional to I}, which
gives g’ = f g for some f > 0. The fact that A = (a;;) takes values in SO(3) follows
from the requirement that both (11, I, 13) and (I}, I}, I3) satisfy the quaternionic identities.

O
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