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Abstract We describe explicitly all quaternionic contact hypersurfaces (qc-hypersurfaces)
in the flat quaternion space H

n+1 and the quaternion projective space. We show that up to
a quaternionic affine transformation a qc-hypersurface in H

n+1 is contained in one of the
three qc-hyperquadrics in H

n+1. Moreover, we show that an embedded qc-hypersurface in a
hyper-Kähler manifold is qc-conformal to a qc-Einstein space and the Riemannian curvature
tensor of the ambient hyper-Kähler metric is degenerate along the hypersurface.
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1 Introduction

It is well known that the sphere at infinity of a non-compact symmetric space M of rank one
carries a natural Carnot–Carathéodory structure, see [20,22]. Quaternionic contact (abbr.
qc) structures were introduced by Biquard [3] modeling the conformal boundary at infinity
of the quaternionic hyperbolic space. Biquard showed that the infinite dimensional fam-
ily of complete quaternionic-Kähler deformations of the quaternion hyperbolic metric [18]
have conformal infinities which provide an infinite dimensional family of examples of qc-
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structures. Conversely, according to [3,6] every real analytic qc-structure is the conformal
infinity of a unique quaternionic-Kähler metric defined in a neighborhood of M .

The basic concrete examples of qc-manifolds are provided by the extensively studied
3-Sasakian spaces and the quaternionic version of the Heisenberg group. As well known
[5], see also [4] for a recent complete account, 3-Sasakian manifolds are characterized as
Riemannian manifolds whose cone is a hyper-Kähler manifold. In terms of the Riemannian
structure, [5] and [8] show that 3-Sasakian manifolds are extrinsic spheres (totally umbilic
hypersurfaceswith non-vanishing parallelmean curvature vector) in a hyper-Kählermanifold
and this is the only way a 3-Sasakian manifold embeds “naturally” in a hyper-Kähler mani-
fold. The considered embedding is “natural” in the sense that the 3-contact structure induced
on the hypersurface coincides with the one inducing the 3-Sasakian structure. Clearly, such
an embedding imposes rather stringent Riemannian conditions. Hypersurfaces with induced
geometric structures in complex and quaternion space forms have been studied imposing usu-
ally assumptions such as: (i) the maximal invariant subspace of the hypersurface invariant
under the complex or quaternion structure (called horizontal space in this paper) is invari-
ant space for the shape operator; (ii) the normal Jacobi operator commutes with the shape
operator; or (iii) the shape operator is parallel, see for example [1,2,15,16,21,23,24] among
many others.

The results in this paper are of different nature since the embeddings considered here are
the quaternion analog of those studied in the CR case where the horizontal (holomorphic)
geometry plays a fundamental role, replaced here by the quaternion structure of the qc-
manifold. In other words the qc geometry imposes no other restrictions on the maximal
quaternion invariant distribution besides some positivity which is the quaternion counterpart
of a strictly pseudo-convex CR structure. The “sub-Riemannian” nature of our problem
requires a rather intricate analysis.

A quaternionic contact hypersurface of a quaternionic manifold (N ,Q) was defined by
Duchemin [7] as a hypersurface M endowed with a qc-structure compatible with the induced
quaternion structure on the maximal quaternion invariant subspace H of the tangent space of
M . It was shown in [7, Theorem 1.1] that a qc-manifold can be realized as a qc-hypersurface
of an abstract quaternionicmanifold. In this paper we investigate qc-hypersurfaces embedded
in a hyper-Kähler manifold and, in particular, qc-hypersurfaces of the flat quaternion space
R
4n+4 ∼= H

n+1.
A hypersurface of a hyper-Kähler manifold inherits a quaternionic contact structure from

the ambient hyper-Kähler structure if the second fundamental form restricted to H is Sp(1)-
invariant and definite quadratic tensor, [7,14]. Considering H

n+1 as a flat hyper-Kähler
manifold, a natural question is the embedding problem for an abstract qc-manifold.

Our first main result describes the embedded in H
n+1 qc-hypersurfaces.

Theorem 1.1 If M is a connected qc-hypersurface of R
4n+4 ∼= H

n+1 then, up to a
quaternionic affine transformation of H

n+1, M is contained in one of the following three
hyperquadrics:

(i) |q1|2 + · · · + |qn |2 + |p|2 = 1, (ii) |q1|2 + · · · + |qn |2 − |p|2 = −1,

(iii) |q1|2 + · · · + |qn |2 + Re(p) = 0.

Here (q1, q2, . . . qn, p) denote the standard quaternionic coordinates of H
n+1.

In particular, if M is a compact qc-hypersurface of R
4n+4 ∼= H

n+1 then, up to a quater-
nionic affine transformation of H

n+1, M is the standard 3-Sasakian sphere.
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Quaternionic contact hypersurfaces in hyper-Kähler manifolds 247

The second main result of the paper concerns qc embeddings in a hyper-Kähler manifold,
which also imposes a restriction on the qc-structure. Recall that a conformal change of the
horizontal (sub-Riemannian) metric is called a qc-conformal transformations. We show

Theorem 1.2 If M is a qc-manifold embedded as a hypersurface in a hyper-Kählermanifold,
then M is qc-conformal to a qc-Einstein structure.

In other words, the qc-conformal class of M contains a qc-Einstein structure, i.e., a qc-
structure for which the horizontal Ricci tensor of the associated Biquard connection is
proportional to the metric on the horizontal distribution. Another geometric way of under-
standing qc-Einstein structures was provided in [10,11,13,14] where it was shown that a
qc-Einstein manifold M is of constant qc-scalar curvature and in the non-vanishing case M
is locally qc-homothetic to a 3-Sasakian or negative 3-Sasakian space, i.e., the Riemannian
cone over M is hyper-Kähler of signature (4n + 4, 0) or (4n, 4), depending on the sign of
the qc-scalar curvature.

We obtain our secondmain result in the course of the proof of a stronger result, cf. Theorem
3.1 and Lemma 3.7

We also find necessary conditions for the existence of a qc-hypersurface in a hyper-Kähler
manifold, namely, the Riemannian curvature R of the ambient space has to be degenerate
along the normal to the qc-hypersurface vector field, see Theorem 3.10. From this point of
view the “richest” ambient space is the flat space H

n+1 ∼= R
4n+1 in which case Theorem 1.1

provides a complete description.
Our approach to the considered problems is partially motivated by [19, Corollary B] who

showed that a non-degenerate CR manifold embedded as a hypersurface in C
n+1, n ≥ 2,

admits a pseudo-Einstein structure, i.e., there is a contact form forwhich the pseudo-hermitian
Ricci tensor of the Tanaka–Webster connection is proportional to the Levi form. A key insight
of [19, Theorem 4.2] is that a contact form θ defines a pseudo-Hermitian structure which is
pseudo-Einstein iff locally there exists a closed section of the canonical bundle with respect
to which θ is volume-normalized. In the considered here quaternionic setting, we show the
existence of a “calibrated” qc-structure which is volume normalizing in a certain sense, see
Lemma 3.3 and (3.4).

Convention 1.3 Throughout the paper, unless explicitly stated otherwise, we will use the
following notation.

a. The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3).
b. s, t are any numbers from the set {1, 2, 3}, s, t ∈ {1, 2, 3}.
c. For a given decomposition T M = V ⊕ H we denote by [·]V and [·]H the corresponding

projections to V and H.
d. A, B,C, etc. will denote sections of the tangent bundle of M, A, B,C ∈ T M.
e. X, Y, Z ,U will denote horizontal vector fields, X, Y, Z ,U ∈ H.

2 Preliminaries

2.1 QC-manifolds

We refer to [3,11,14] for a more detailed exposition of the definitions and properties of
qc-structures and the associated Biquard connection. Here, we recall briefly the relevant
facts needed for this paper. A quaternionic contact (qc)-manifold is a 4n + 3-dimensional
manifold M with a codimension three distribution H equipped with an Sp(n)Sp(1) structure
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locally defined by an R
3-valued 1-form η = (η1, η2, η3). Thus, H = ∩3

s=1Ker ηs carries
a positive definite symmetric tensor g, called the horizontal metric, and a compatible rank-
three bundle Q

M consisting of endomorphisms of H locally generated by three orthogonal
almost complex structures Is , satisfying the unit quaternion relations: (i) I1 I2 = −I2 I1 =
I3, I1 I2 I3 = −id|H ; (ii) g(Is ·, Is ·) = g(·, ·); and (iii) the compatibility conditions
2g(Is X, Y ) = dηs(X, Y ), X, Y ∈ H hold true. In particular, a quaternionic contactmanifold
is orientable.

The transformations preserving a given quaternionic contact structure η, i.e., η̄ = μ�η

for a positive smooth functionμ and an SO(3)matrix� with smooth functions as entries are
called quaternionic contact conformal (qc-conformal) transformations. The qc-conformal
curvature tensorW qc, introduced in [9], is the obstruction for a qc-structure to be locally qc-
conformal to the standard 3-Sasakian structure on the (4n + 3)-dimensional sphere [9,11].

It is a noteworthy and well known fact that, unlike the CR geometry, in the qc case the
horizontal space determines uniquely the qc-conformal class, see Lemma 5.1. Accordingly,
we will denote by (M, H, Q) a qc-conformal structure on the 4n + 3 dimensional manifold
M with a fixed horizontal space H equipped with the quaternionic structure Q = Q

M ; this
data determines (local) one-forms ηs , s = 1, 2, 3, annihilating H up to a local qc-conformal
transformation. On the other hand, (M, η) will denote a qc-manifold with a fixed R

3-valued
one form, which determines the horizontal space H and the quaternion structure Q on H
uniquely.

As shown in [3] there is a “canonical” connection associated to every qc-manifold of
dimension at least eleven. In the seven dimensional case the existence of such a connection
requires the qc-structure to be integrable [6]. The integrability condition is equivalent to
the existence of Reeb vector fields [6], which (locally) generate the supplementary to H
distribution V . The Reeb vector fields {ξ1, ξ2, ξ3} are determined by [3]

ηs(ξt ) = δst , (ξs�dηs)|H = 0, (ξs�dηt )|H = −(ξt�dηs)|H , (2.1)

where � denotes the interior multiplication. Henceforth, by a qc-structure in dimension 7,
we shall mean a qc-structure satisfying (2.1) and refer to the “canonical” connection as the
Biquard connection. The Biquard connection is the unique linear connection preserving the
decomposition T M = H ⊕V and the Sp(n)Sp(1) structure on H with torsion T determined
by T (X, Y ) = −[X, Y ]|V while the endomorphisms T (ξs, ·) : H → H belong to the
orthogonal complement (sp(n) + sp(1))⊥ ⊂ GL(4n, R).

The covariant derivatives with respect to the Biquard connection of the endomorphisms
Is and the Reeb vector fields are given by

∇ Ii = −α j ⊗ Ik + αk ⊗ I j , ∇ξi = −α j ⊗ ξk + αk ⊗ ξ j .

The sp(1)-connection 1-forms α1, α2, α3, defined by the above equations satisfy [3]

αi (X) = dηk(ξ j , X) = −dη j (ξk, X), X ∈ H.

Let R = [∇,∇]−∇[·,·] be the curvature tensor of ∇ and R(A, B,C, D) = g(RA,BC, D)

be the corresponding curvature tensor of type (0,4). The qc-Ricci tensor Ric and the normal-
ized qc-scalar curvature S are defined by

Ric(A, B) =
4n∑

a=1

R(ea, A, B, ea) 8n(n + 2)S = Scal =
4n∑

a=1

Ric(ea, ea),

where e1, . . . , e4n is a g-orthonormal frame of H .
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Quaternionic contact hypersurfaces in hyper-Kähler manifolds 249

We say that (M, η) is a qc-Einstein manifold if the restriction of the qc-Ricci tensor to the
horizontal space H is trace-free, i.e.,

Ric(X, Y ) = Scal

4n
g(X, Y ) = 2(n + 2)Sg(X, Y ), X, Y ∈ H.

The qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism of the
Biquard connection, T (ξs, X) = 0 [14]. It is also known [13,14] that the qc-scalar curvature
of a qc-Einstein manifold is constant.

The structure equations of a qc-manifold [10, Theorem 1.1] are given by

dηi = 2ωi − η j ∧ αk + ηk ∧ α j − Sη j ∧ ηk, (2.2)

where ωs are the fundamental 2-forms defined by the equations

2ωs|H = dηs|H , ξt�ωs = 0.

By [13, Theorem 5.1], see also [10] and [11, Theorem 4.4.4] for alternative proofs in the
case Scal 
= 0, a qc-Einstein structure is characterised by either of the following equivalent
conditions:

i) locally, the given qc-structure is defined by 1-form (η1, η2, η3) such that for some constant
S we have

dηi = 2ωi + Sη j ∧ ηk; (2.3)

ii) locally, the given qc-structure is defined by a 1-form (η1, η2, η3) such that the corre-
sponding connection 1-forms vanish on H and (cf. the proof of Lemma 4.18 of [14])

αs = −Sηs . (2.4)

2.2 QC-hypersurfaces

Let (K ,Q) be a quaternionicmanifoldwith quaternionic bundleQ. Thus,Q is a 3-dimensional
subbundle of the endomorphism bundle End(T K ) that is locally generated by a pointwise
quaternionic structure J1, J2, J3, such that there exists a torsion free connection ∇Q on T K
with ∇Q

AQ ⊂ Q for all tangent vectors A ∈ T K .
Let M be a hypersurface of K and H be the maximal Q-invariant subspace of T M . M is

a qc-hypersurface if it is a qc manifold with respect to the induced quaternionic structure on
the horizontal space H . Formally, we rely on the following definition [7, Proposition 2.1]
which uses the notation introduced at the beginning of Sect. 2.1.

Definition 2.1 Let (M, H,QM ) be a qc-manifold, and ι : M → K an embedding. We say
that M is a qc-embedded hypersurface of K if ι∗(H) is a codimension four subbundle of T K
and the map ι∗ intertwines QM and Q.

In order to simplify the notation, we will frequently identify the corresponding points and
tensor fields on M with their images through the map ι in K . In particular, in the embedded
case, we will use Q

M = Q for the quaternion structure on H . We note that the above
definition determines the conformal class of the given qc-structure rather than a particular
qc-structure inside this conformal class, cf. Lemma 5.1. An equivalent characterization of
a qc-hypersurface M is that the restriction of the second fundamental form of M to the
horizontal space is a definite symmetric form,which is invariantwith respect to the quaternion
structure, see [7, Proposition 2.1]. After choosing the unit normal vector N toM appropriately
we can and will assume that the second fundamental form of M is negative definite on the
horizontal space.
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Remark 2.2 For practical purposes, it is useful to keep in mind the description through a
locally defining function ρ with a non-vanishing differential dρ for which M = ρ−1(0).
By [7, Proposition 2.1], M is a qc-hypersurface iff pointwise ∇Qdρ(X, Y ) is a Q-invariant
positive or negative definite quadratic form on the maximal Q-invariant subspace H of T M .

For the rest of this section we shall assume K is a hyper-Kähler manifold with hyper-
complex structure (J1, J2, J3), quaternionic bundle Q, and hyper-Kähler metric G. In
particular, the Levi–Civita connection D will be used as the torsion free connection on
K preserving the quaternion bundle of Q. We note that the qc-structure on the hypersurface
M is generated by globally defined 1-forms η̂s determined by the unit normal N to M as
follows. With |.| denoting the length of a tensor determined by the metric G, consider

η̂s(A) = G(Js N , A) = 1

|dρ| Jsdρ(A), A ∈ T M, (2.5)

so that H = ∩3
s=1Ker η̂s . Let I I (A, B) be the second fundamental form of M , I I (A, B) =

−G(DA N , B). Since the complex structures Js are parallel with respect to the Levi–Civita
connection D, it follows

dη̂s(A, B) = (DAη̂s)(B) − (DB η̂s)(A) = G(Js(DAN ), B) − G(Js(DBN ), A)

= I I (A, [Js B]T M ) − I I (B, [Js A]T M ), A, B ∈ T M . (2.6)

Defining ĝ(X, Y ) = −I I (X, Y ), X, Y ∈ H , (2.6) yields dη̂s(X, Y ) = 2g(Is X, Y ),
which defines a qc-structure (M, η̂s, Is, ĝ) in the qc-conformal class determined by the
qc-embedding.

The associated Reeb vector fields ξ̂s , fundamental 2-forms ω̂s , and sp(1)-connection 1-
forms α̂s are determined easily as follows. For r̂s = ξ̂s − Js N , since η̂t (r̂s) = 0 we have
r̂s ∈ H . Using the equation dη̂s(ξ̂s, X) = 0, X ∈ H and (2.6) we obtain

2I I (r̂i , X) = −I I (Ji N , X).

In addition, we have

α̂i (X) = dη̂k(r̂ j , X) + dη̂k(J j N , X) = 2I I (r̂ j , Ik X) + dη̂k(J j N , X)

= 2I I (r̂ j , Ik X) + I I (J j N , Ik X) + I I (X, Ji N )

= −I I (J j N , Ik X) + I I (J j N , Ik X) + I I (X, Ji N ) = I I (Ji N , X).

Notice that, unless the three 1-forms I I (Js N , ·) vanish on H , the qc-structure (η̂s, Is, ĝ)
does not satisfy the structure equations dη̂i = 2ω̂i + Ŝη̂ j ∧ η̂k, (cf. formula 2.2), and the
vector fields Js N differ from the Reeb vector fields ξ̂s .

3 QC-hypersurfaces of hyper-Kähler manifolds

Let M be a qc-hypersurface of the hyper-Kähler manifold K as in Sect. 2.2. Summarizing
the notation from Sect. 2.2 we have that the defining tensors of the embedded qc-structure
on M are given by

η̂s(A) = G(Js N , A), ξ̂s = Js N + r̂s, ω̂s(X, Y ) = −I I (Is X, Y ),

ĝ(X, Y ) = −ω̂s(Is X, Y ). (3.1)
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Quaternionic contact hypersurfaces in hyper-Kähler manifolds 251

Notice that Theorem 1.2 claims that the qc-conformal class of any embedded qc-
hypersurface in a hyper-Kählermanifold contains a qc-Einstein structure. In turn, this follows
from the following stronger result.

Theorem 3.1 Let ι : M → K be an oriented qc-hypersurface of a hyper-Kähler manifold
K with parallel quaternion structures Js , s ∈ {1, 2, 3}, and hyper-Kähler metric G. There
exists a unique up to a multiplicative constant symmetric Js-invariant bilinear form W on

the pull-back bundle TK|M def= ι∗(TK) → M such thatW is parallel with respect to the pull-
back of the Levi–Civita connection and whose restriction to TM is proportional to the second
fundamental form of M. Furthermore, the restriction ofW to H is the horizontal metric of a
qc-Einstein structure in the qc-conformal class defined by the (second fundamental form of
the) qc-embedding.

We note that the existence is the main difficulty in the above result, since the uniqueness
up to a multiplicative constant is trivial. Indeed, ifW1 andW2 are two such forms, then from
W1|TM = e2φW2|TM for some function φ on M , the Js-invariance implies the same relation
on TK|M . Therefore, dφ(A) = 0 for any A ∈ TM since the bilinear forms are parallel.

Before we turn to the proof of Theorem 3.1, we give an example of the above construction
and Theorem 3.1 by considering the standard embedding of the quaternionic Heisenberg
group in the n + 1-dimensional quaternion space.

Example 3.2 An embedding of the quaternionic Heisenberg group G (H), see [14, Sect. 5.2].

Let us identify G (H) with the boundary � of a Siegel domain in H
n × H, � = {(q ′, p′) ∈

H
n × H : � p′ = − |q ′|2}, by using the map ι

(
(q ′, ω′)

) = (q ′,− |q ′|2 + ω′) = (q, p) ∈
H
n × H, where p = t + ω = t + i x + j y + kz ∈ H, q = (q1, . . . , qn) ∈ H

n , and
qα = tα + i xα + j yα + kzα ∈ H, α = 1, . . . , n. The “standard” contact form on G (H),
written as a purely imaginary quaternion valued form, is given by


̃ = 1

2
(−dω + dq̄ · q − q · dq̄) = i

(
−1

2
dx − tαdxα + xαdtα + yαdzα − zαdyα

)

+ j

(
−1

2
dy − tαdyα − xαdzα + yαdtα + zαdxα

)

+ k

(
−1

2
dz − tαdzα + xαdyα − yαdxα + zαdtα

)
, (3.2)

where · denotes the quaternionmultiplication.We note that the complex structures J1, J2, J3
on R

4n+4 are, respectively, the multiplication on the right by −i, − j, −k in H
n+1, hence

J1dtα = −dxα, J1dyα = dzα, J1dt = −dx, J1dy = dz,

J2dtα = −dyα, J2dzα = dxα, J2dt = −dy, J2dz = dx .

Clearly, � is the 0-level set of ρ = |q|2 + t and we have

Jsdρ =
√
1+4|q|2 η̂s, N = 2√

1+4|q|2
(
1

2
∂t+ tα∂tα + xα∂xα + yα∂yα + zα∂zα

)
,

η̂ = i η̂1 + j η̂2 + kη̂3 = 1√
1 + 4|q|2 (−dω + dq̄ · q − q̄ · dq),
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I I (A, B) = − 1

|dρ| Ddρ (A, B) = − 2√
1 + 4|q|2 〈AH , BH 〉

= − 2√
1 + 4|q|2 (dtα � dtα + dxα � dxα + dyα � dyα + dzα � dzα) (A, B),

where for a tangent vector A we use AH = A − dt (A)∂t − dx(A)∂x − dy(A)∂y − dz(A)∂z
for the orthogonal projection from H

n+1 to the horizontal space, which is given by H =
Ker dρ ∩ {∩3

s=1Ker η̂s}. From the above formulas we see that 

de f= ι∗η̂ is conformal to


̃. Therefore, the qc-structure ηs =
√

1+4|q|2
2 η̂s , i.e., the standard qc-structure (3.2), has

horizontal metric given by the restriction of the bilinear form W = const�(dqα · dq̄α)|M ,
which is parallel alongM . This is the symmetric formwhose existence is claimed byTheorem
3.1, while the calibrating function is a certain multiple of

√
1 + 4|q|2, cf. (3.4).

It is worth noting that the qc-Einstein structures in the qc-conformal class of the standard
qc-structure were essentially classified in [14, Theorem 1.1] where it was shown that all
qc-Einstein structures of positive qc-scalar curvature globally conformal to the standard qc-
structure are obtained from the standard qc-structure on the quaternionic Heisenberg group
with a qc-automorphism, see also [12, Theorem 6.2] for the general case.

3.1 Proof of Theorem 3.1

A key point of our analysis is a volume normalization condition, which is based on Lemma
3.3. To this effect we consider a qc-conformal transformation ηs = f η̂s where f is a positive
smooth function on M . Let ξs , ωs , ∇ and αs be the Reeb vector fields, the fundamental 2-
forms, the Biquard connection and the sp(1)-connection 1-forms of the qc-structure defined
by θs . The orthogonal complement V = span{ξ1, ξ2, ξ3} of H and the endomorphism I1,
defined on the horizontal space H , induce a decomposition of the complexified tangent bundle
of M (we use the same notation T M for both the tangent bundle and its complexification),
T M = V ⊕ H1,0

I1
⊕ H0,1

I1
, and consequently of the whole complexified tensor bundle of M .

We shall need the type decomposition of the 1- and 2-forms on M ,

T ∗M = H∗
1,0 ⊕ H∗

0,1 ⊕ L∗, L∗ = span{η1, η2, η3},
�2(T ∗M) = �2(H∗

1,0) ⊕ �2(H∗
0,1) ⊕ (H∗

1,0 ⊗ H∗
0,1) ⊕ �2(L∗) ⊕ (L∗ ⊗ H∗).

In particular, H∗
1,0 is the 2n-dimensional space of all complex one-forms which vanish on

ξ1, ξ2, ξ3 and are of type (1, 0) with respect to I1 when restricted to H . Similarly, using the
endomorphism I2 or I3 we obtain corresponding decompositions. We shall write explicitly
the analysis with respect to I1, but keep in mind that the arguments remain true if we cyclicly
permute the indices 1, 2 and 3.

Consider the following complex 2-forms on M ,

γ̂i = ω̂ j + √−1 ω̂k, γi = f γ̂i = ω j + √−1 ωk,

�i (A, B) = G(J j A, B) + √−1G(Jk A, B).

We have ξt�γs = 0 and γ1, γ̂1|H , �1|H ∈ �2(H∗
1,0). Moreover, since K is a hyper-Kähler

manifold, the three 2-forms �s are closed, d�s = 0. The volume normalization relies on the
following algebraic lemma.

Lemma 3.3 Let H4n be a real vector space with hyper-complex structure (I1, I2, I3), i.e.,
I 21 = I 22 = I 23 = −Id, I1 I2 = −I2 I1 = I3 and ĝ and g be two positive definite inner
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products on H4n satisfying ĝ(Is X, IsY ) = ĝ(X, Y ), and g(Is X, IsY ) = g(X, Y ) for all
X, Y ∈ H4n, s = 1, 2, 3. If

γ̂i (X, Y ) = ĝ(I j X, Y ) + √−1 ĝ(Ik X, Y ), γi (X, Y ) = g(I j X, Y ) + √−1 g(Ik X, Y ),

then there exists a positive real number μ such that γ̂s ∧ · · · ∧ γ̂s︸ ︷︷ ︸
n times

= μ (γs ∧ · · · ∧ γs)︸ ︷︷ ︸
n times

,

s = 1, 2, 3.

Proof A small calculation shows that both γ1 and γ̂1 are of type (2, 0)with respect to I1. The
complex vector space�2n(H∗

1,0) is one dimensional, and γ n
1 and γ̂ n

1 are non zero elements of
it, hence there exists a non zero complex numberμ such that γ n

1 = μ γ̂ n
1 .Note that I2γ1 = γ1

and the same holds true for γ̂1. It follows that

(I2γ1)
n = γ n

1 i.e., μγ̂ n
1 = μ̄ γ̂ n

1 ,

thus μ = μ̄ 
= 0. The group GL(n, H) acts transitively on the set of all positive definite
inner products g of H, compatible with the hyper-complex structure, and hence also on the
set of all corresponding 2-forms γ1. The group GL(n, H) is connected, therefore each orbit
is connected as well, which implies μ > 0. It remains to show that the constant μ in the
equation γ̂ n

s = μγ n
s is independent of s. For this we use that the 4n-form γ n

1 ∧ γ n
1 equals

the volume form of the metric g and hence it is independent of s. This implies that μ2 does
not depend on s, and therefore the same is true for μ. ��
From Lemma 3.3 applied to the metrics ĝ and G|H on H it follows that there exists a positive
function μ on M such that �n

s |H = μγ̂ n
s |H , s = 1, 2, 3 i.e.,

�n
s ≡ μγ̂ n

s mod {η1, η2, η3}. (3.3)

At this point we define the “calibrated” qc-structure using the function f defined by

f = μ
1

n+2 . (3.4)

The reminder of this section is devoted to showing that with this choice of f the qc-structure
determined by ηs satisfies all the requirements of the theorem.

We start by proving in Lemma 3.5 a few important preliminary technical facts. Let us
define the following three vector fields rs

rs = ξs − 1

f
Js N . (3.5)

Since ηt (rs) = δts − η̂t (Js N ) = 0, it follows that rs are horizontal vector field, rs ∈ H . We
will denote by rs also the corresponding 1-forms, defined by rs(A) = G(rs, A), A ∈ T M .

Remark 3.4 Note that in general expressions of the type η1 ∧ η2 ∧ η3 ∧ δ, with δ being
differential form on M , depend only on the restriction of δ to H . This fact will be used
repeatedly hereafter.

Lemma 3.5 We have

η2 ∧ �n+1
1 = (n + 1) η1 ∧ η2 ∧ η3 ∧ γ n

1 (3.6)

�n+1
1 = √−1(n + 1)η1 ∧

(
η2 + √−1η3

)
∧ γ n

1

+n(n+1) f −2η1 ∧ η2 ∧ η3 ∧
(
−J3r3+

√−1J2r3+ J2r2+
√−1J3r2

)
∧�n−1

1 .

(3.7)
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Furthermore, the above equations hold after any cyclic permutation of the indices 1, 2 and
3.

Proof Let us define �
′
1 and �

′′
1 to be 2-forms on M which coincide with the 2-form �1 when

restricted to the distribution H and satisfy the additional conditions ξs��
′
1 = 0, (Js N )��′′

1 =
0. In order to find the relation between �1 and �

′
1, we compute

�′
1(A, B) = �1(A − ηs(A)ξs, B − ηt (B)ξt )

= �1(A, B) − ηs(B)�1(A, ξs) − ηs(A)�1(ξs, B) + �1(ξs, ξt )ηs(A)ηt (B)

= �1(A, B) − ηt ∧ (ξt��1)(A, B) + 1

2
�1(ξs, ξt )ηs ∧ ηt (A, B).

A short calculation gives

(ξt��1)(A) = G(J2ξt , A) + √−1G(J3ξt , A)

= G

(
J2

(
rt + 1

f
Jt N

)
, A

)
+ √−1 + G

(
J3

(
rt + 1

f
Jt N

)
, A

)

= (J2rt + J3rt )(A) mod {η1, η2, η3},
which shows that for some functions �

s,t
1 on M we have

�
′
1 = �1 −

3∑

t=1

ηt ∧
(
J2rt + √−1 J3rt

)
+

3∑

s, t=1

�
s,t
1 ηs ∧ ηt . (3.8)

Similarly to the derivation of (3.8) we can find the relation between �
′′
1 and �1,

�
′′
1 = �1 − f −2

(
η3 ∧ η1 + √−1 η1 ∧ η2

)
,

which gives

�n+1
1 = √−1 (n + 1) f −2 η1 ∧

(
η2 + √−1 η3

)
∧

(
�

′′
1

)n

= √−1 (n + 1) f −2 η1 ∧ (η2 + √−1 η3) ∧ �n
1 . (3.9)

Clearly, �
′
s ∈ �2

(
H∗
1,0

)
and

(
�

′
s

)n+1 =
(
�

′′
s

)n+1 = 0. Noting that (3.3) are equivalent to

the equations (
�

′
s

)n = f 2γ n
s

we obtain from (3.8) the identity

�n
1 =

(
�

′
1

)n + n
3∑

s=1

ηs ∧
(
J2rs + √−1 J3rs

)
∧

(
�

′
1

)n−1
mod〈ηs ∧ ηt 〉

= f 2γ n
1 + n

3∑

s=1

ηs ∧
(
J2rs+

√−1 J3rs
)

∧
(
�

′
1

)n−1
mod 〈ηs ∧ ηt 〉. (3.10)

Finally, a substitution of (3.10) in (3.9) gives

�n+1
1 = √−1(n + 1)η1 ∧

(
η2 + √−1η3

)
∧ γ n

1

+ n(n+1) f −2η1 ∧ η2 ∧ η3 ∧
(
−J3r3+

√−1J2r3+ J2r2+
√−1J3r2

)
∧

(
�

′
1

)n−1
,
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which, in view of the relation η1∧η2∧η3∧
(
�

′
1

)n−1 = η1∧η2∧η3∧�n−1
1 , yields (3.7). The

Eq. (3.6) follows now by taking the wedge products of both sides of (3.7) with the 1-form
η2. ��

Following is a technical lemma which will be used in the proof of Lemma 3.7 below.

Lemma 3.6 For any λ ∈ H∗
1,0 (considered with respect to I1) we have

λ ∧ ω1 ∧ γ n−1
1 =

√−1

2n
(I2λ) ∧ γ n

1 .

Proof We can take a basis of the cotangent space of M in the form

η1, η2, η3, ε1, . . . , εn, I1ε1, . . . , I1εn, I2ε1, . . . , I2εn, I3ε1, . . . , I3εn,

where ξs�εt = 0, s = 1, 2, 3, t = 1, 2, . . . , n, which is orthonormal in the sense that the
following equations hold

ω1 =
n∑

s=1

(εs ∧ I1εs + I2εs ∧ I3εs) , ω2 =
n∑

s=1

(εs ∧ I2εs + I3εs ∧ I1εs) ,

ω3 =
n∑

s=1

(εs ∧ I3εs + I1εs ∧ I2εs) .

For φt = εt + √−1I1εt and ψt = I2εt + √−1I3εt the forms φ1, . . . , φn, ψ1, . . . , ψn form
a basis of H∗

1,0. Moreover, we have

I2φs = ψ̄s, I2ψs = −φ̄s, s = 1, . . . , n,

ω1 =
√−1

2

n∑

s=1

(
φs ∧ φ̄s + ψs ∧ ψ̄s

)
, γ1 =

n∑

s=1

φs ∧ ψs,

γ n
1 = n!φ1 ∧ ψ1 ∧ · · · ∧ φn ∧ ψn,

γ n−1
1 = (n − 1)!

n∑

s=1

φ1 ∧ ψ1 ∧ · · · ̂∧φs ∧ ψs∧ · · · ∧ φn ∧ ψn,

ω1 ∧ γ n−1
1 =

√−1(n − 1)!
2

n∑

s=1

φ1 ∧ ψ1 ∧ · · · ∧ (φs ∧ φ̄s + ψs ∧ ψ̄s) ∧ · · · ∧ φn ∧ ψn .

Since λ ∈ H∗
1,0 there exist constants as , bs , s = 1, . . . , n such that λ = ∑n

s=1(asφs + bsψs).

It follows that I2λ = ∑n
s=1(asψ̄s − bs φ̄s). Finally we compute (omitting the sum symbols)

λ ∧ ω1 ∧ γ n
1

=
√−1(n − 1)!

2
(atφt+btψt ) ∧ (

φ1 ∧ ψ1 ∧ · · · ∧ (
φs ∧ φ̄s+ψs ∧ ψ̄s

)∧· · ·∧φn ∧ ψn
)

=
√−1(n − 1)!

2

(
asψ̄s − bs φ̄s

) ∧ φ1 ∧ ψ1 ∧ · · · ∧ φn ∧ ψn =
√−1

2n
(I2λ) ∧ γ n

1 .

��
Lemma 3.7 The calibrated qc-structure ηs = f η̂s , where f is given by (3.4), satisfies the
structure equations (2.3). In particular, (M, H, ηs) is a qc-Einstein structure. Furthermore,
we have

I1r1 = I2r2 = I3r3.
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Proof Taking the exterior derivative of (3.6) and recalling that�1 is a closed form, we obtain

0 = n(n + 1)η1 ∧ η2 ∧ η3 ∧ dγ1 ∧ γ n−1
1

+ dη2 ∧
(
�n+1
1 + (n + 1)η1 ∧ (η3 − √−1η2) ∧ γ n

1

)

− (n + 1)
(
dη1 ∧ η2 ∧ (η3 − √−1η2) + η1 ∧ η2 ∧ d(η3 − √−1η2)

)
∧ γ n

1 .

(3.11)

The structure equations (2.2) and the identities ω2 = 1
2 (γ1 + γ̄1), ω3 =

√−1
2 (γ̄1 − γ1) and

ω1 ∧ γ n
1 = 0 imply

dη1 ≡ 0 mod {η2, η3, H∗
1,0},

dη2 ≡ γ̄1 mod {η1, η3, H∗
1,0}, dη3 ≡ √−1γ̄1 mod {η1, η2, H∗

1,0},
d(η3 − √−1η2) ≡ −2

√−1γ1 + √−1η3 ∧ α1 mod {η1, η2},
dγ1 ≡ −√−1α1 ∧ γ1 + (−α3 + √−1α2) ∧ ω1 mod {η1, η2, η3}.

From (3.7) and the above identities applied to (3.11) we find

0 = dη2 ∧
(
n(n+1) f −2η1 ∧ η2 ∧ η3 ∧ (−J3r3+

√−1J2r3+ J2r2 + √−1J3r2) ∧ �n−1
1

)

− (n + 1)η1 ∧ η2 ∧ √−1η3 ∧ α1 ∧ γ n
1 − n(n + 1)η1 ∧ η2 ∧ η3 ∧ √−1α1γ

n
1

+ n(n + 1)η1 ∧ η2 ∧ η3 ∧ (−α3 + √−1α2) ∧ ω1 ∧ γ n−1
1

= n(n + 1) f −2η1 ∧ η2 ∧ η3 ∧ γ̄1 ∧ �n−1
1 ∧ (−J3r3 + √−1J2r3 + J2r2 + √−1J3r2)

+ n(n + 1)η1 ∧ η2 ∧ η3 ∧ (−α3 + √−1α2) ∧ ω1 ∧ γ n−1
1

− √−1(n + 1)2η1 ∧ η2 ∧ η3 ∧ γ n
1 ∧ α1.

The last expression is a (2n+4)-formwhich belongs to the space (decompositionwith respect
to I1)

�3(L∗) ⊗ �2(H∗
0,1) ⊗ �2n−1(H∗

1,0) ⊕ �3(L∗) ⊗ �1(H∗
0,1) ⊗ �2n(H∗

1,0).

Hence, we obtain the next two identities
√−1(n + 1)2η1 ∧ η2 ∧ η3 ∧ γ n

1 ∧ α1

= n(n + 1)η1 ∧ η2 ∧ η3 ∧ 1

2

(
−α3 − √−1I1α3 + √−1α2 − I1α2

)
∧ ω1 ∧ γ n−1

1 .

(3.12)

and also

−n(n + 1) f −2η1 ∧ η2 ∧ η3 ∧ γ̄1 ∧ �n−1
1 ∧ (−J3r3 + √−1J2r3 + J2r2 + √−1J3r2)

= n(n + 1)η1 ∧ η2 ∧ η3 ∧ 1

2
(−α3 + √−1I1α3 + √−1α2 + I1α2) ∧ ω1 ∧ γ n−1

1 .

(3.13)

Equation (3.12) yields

n(−α3 − √−1I1α3 + √−1α2 − I1α2) ∧ ω1 ∧ γ n−1
1

≡ √−1(n + 1)γ n
1 ∧ (α1 − √−1I1α1) mod {η1, η2, η3}. (3.14)
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With the help of Lemma 3.6 we can write (3.14) in the form
√−1

2
I2

(
−α3 − √−1I1α3 + √−1α2 − I1α2

)

≡ √−1(n + 1)
(
α1 − √−1I1α1

)
mod {η1, η2, η3}.

Taking the real part of the last identity we come to 2(n + 1)I1α1 + I2α2 + I3α3 ≡ 0
mod {η1, η2, η3}.

A cyclic rotation of the indices 1, 2, 3 in the above arguments gives the following system
mod{η1, η2, η3}

2(n + 1)I1α1 + I2α2 + I3α3 ≡ 0

I1α1 + 2(n + 1)I2α2 + I3α3 ≡ 0

I1α1 + I2α2 + 2(n + 1)I3α3 ≡ 0,

which has the unique solution I1α1 ≡ I2α2 ≡ I3α3 ≡ 0 mod {η1, η2, η3}. Therefore, the
calibrated qc-structure has vanishing sp(1)-connection 1-forms

(α1)|H = (α2)|H = (α3)|H = 0, (3.15)

hence by (2.4) it is a qc-Einstein structure. From (3.13) (and a cyclic rotation of the indeces)
we also conclude that I1r1 = I2r2 = I3r3. ��

We shall denote by r the common vector defined above by Isrs in Lemma 3.7, see also
(3.5),

r = −Isrs ∈ H, hence rs = Isr.

The calibrated qc-structure constructed in Lemma 3.7 enjoys further useful technical prop-
erties recorded below.

Lemma 3.8 The second fundamental form I I of the qc-embedding M ⊂ K and the cali-
brating function f defined by (3.4) satisfy the identities:

i. I I (X, Y ) = − f −1g(X, Y );
ii. I I (Js N , Js X) = − f −1d f (X) = g(r, X), X ∈ H;
iii. I I (Js N , Jt N ) = −δst f (S/2 + g(r, r));
iv. d f (Js N ) = d f (ξs) = 0.

Proof (i) The identity I I (X, Y ) = − f −1g(X, Y ) holds by the definition of g, also recall
(3.1).

(ii) Using the fact that the complex structures Js are D-parallel, the relation ηs =
f G(Js N , .) and the formula dηs(A, B) = (DAηs)(B) − (DBηs)(A) we find

dηs(A, B) = f −1d f ∧ ηs(A, B) + f I I (A, [Js B]T M ) − f I I (B, [Js A]T M ). (3.16)

The above formula implies

dηi (J j N , Jk X) = − f I I (J j N , J j X) − f I I (Jk N , Jk X),

dηi (Ji N , X) = − d f (X) + f I I (Ji N , Ji X).
(3.17)

On the other hand, since ξs = 1
f Js N + Jsr and αi |H = (ξ j�dηk)|H = 0, we have

0 = dηi (ξ j , Jk X) = f −1dηi (J j N , Jk X) + 2g(r, X),

0 = dηi (ξi , X) = f −1dηi (Ji N , X) − 2g(r, X).
(3.18)
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The first of the above identities together with the first identity in (3.17) imply the equation
I I (Ji N , Ji X) = g(r, X), which together with the second identity in (3.17) and (3.18) give
the identities in (ii).

(iii) and (iv). From (3.16)
we have

dηi (Ji N , J j N ) = − d f (J j N ) + f I I (Ji N , Jk N ),

dηi (Ji N , Jk N ) = − d f (Jk N ) − f I I (Ji N , J j N ),

dηi (J j N , Jk N ) = − f I I (J j N , J j N ) − f I I (Jk N , Jk N ),

(3.19)

which give the wanted identities. From (3.15) and (2.2)–(2.4) we have dηs(ξ j , ξk) = 2δsi S.
Therefore, we obtain

0 = dηi (ξi , ξ j ) = dηi ( f
−1 Ji N + Jir, f −1 J j N + J jr) = f −2dηi (Ji N , J j N )

0 = dηi (ξi , ξk) = dηi ( f
−1 Ji N + Jir, f −1 Jk N + Jkr) = f −2dηi (Ji N , Jk N )

S = dηi (ξ j , ξk) = f −2dηi (J j N , Jk N ) − 2g(r, r).

(3.20)

The first two identities of (3.19) and the first two equations in (3.20) give

I I (Ji N , J j N ) = −d f (Jk N ), I I (J j N , Ji N ) = d f (Jk N ),

hence d f (Jk N ) = 0. Finally, recalling (3.5), we compute

d f (ξs) = d f (rs + f −1 Js N ) = d f (Isr) =
4n∑

a=1

d f (Isea)g(r, ea)

= − f −1
4n∑

a=1

d f (Isea)d f (ea) = 0.

The third identity of (3.19) and the third line of (3.20) imply

I I (Ji N , Ji N ) = − f (S/2 + g(r, r)) ,

which completes the proof of parts (iii) and (iv) of Lemma 3.8. ��

The next lemma gives an explicit formula for the horizontal metric of the calibrated qc-
Einstein structure.

Lemma 3.9 The horizontal metric g of the calibrated by (3.4) qc-structure is related to the
second fundamental form of the qc-embedding by the formula

g(AH , BH ) = − f I I (A, B) − S

2

3∑

s=1

ηs(A)ηs(B), A, B ∈ TM, (3.21)

where for A ∈ TM we let AH = A − ∑3
s=1 ηs(A)ξs be the horizontal part of A.

123



Quaternionic contact hypersurfaces in hyper-Kähler manifolds 259

Proof A few calculations give the next three identities

II(ξs, X) = II(Isr + f −1 Js N , X)

= II(Isr, X) − f −1II(Js N , Js(Js X))

= − f −1g(Isr, X) − f −1g(r, Is X) = 0,

II(ξs, ξs) = II(Isr + f −1 Js N , Isr + f −1 Js N )

= II(Isr, Isr) + 2 f −1II(Js N , Jsr) + f −2II(Js N , Js N )

= − f −1g(r, r) + 2 f −1g(r, r) − f −1(S/2 + g(r, r))

= − f −1S/2,

II(ξi , ξ j ) = II(Ii r + f −1 Ji N , I j r + f −1 J j N )

= II(Ii r, I j r) + f −1II(Ji N , J jr)

+ f −1II(Jir, J j N ) + f −2II(Ji N , J j N ) = 0.

The above identities together with II(X, Y ) = − f −1g(X, Y ) yield (3.21), which completes
the proof. ��

At this point we are ready to complete the proof of Theorem 3.1. We proceed by showing
that there exists a unique section W of the pullback bundle (T ∗K ⊗ T ∗K )|M → M, which
is Js-invariant, and whose restriction to T M coincides with the tensor − f I I . It will be
convenient to consider the calibrated transversal to M vector field

ξ(p) = f −1(p)N (p) + r(p), p ∈ M, (3.22)

which is a section of the vector bundle T K |M → M . Clearly, Jsξ = ξs by (3.5), which
together with the Js invariance of I I on the horizontal space H gives the existence of Js-
invariant bilinear formon T K |M → M by adding a bilinear formon the complement V⊕R ξ .
In fact, with the obvious identifications, since the fiber of T K |M over any p ∈ M ⊂ K
decomposes as a direct sum of subspaces as Hp ⊕ Vp ⊕ R ξ(p), for a v ∈ TpK we define

v′ = v − λ(v)ξ(p) ∈ TpM = Hp ⊕ Vp, v′′ = v′ −
3∑

s=1

ηs
(
v′) ξs ∈ Hp,

where λ is a 1-form, λ = f G(N , .), so that v′ is the projection of v on TpM = Hp ⊕ Vp

parallel to the calibrated transversal field ξ . We can rewrite formula (3.21) in terms of the
introduced decomposition as follows

− f I I (A, B) = g
(
A′′, B ′′) + S

2

3∑

s=1

ηs(A)ηs(B), A, B ∈ TpM,

which leads to the following definition of the symmetric bilinear form W,

W(v,w)
de f= − f I I

(
v′, w′) + S

2
λ(v)λ(w)

=g
(
v′′, w′′)+ S

2

3∑

s=1

ηs
(
v′) ηs

(
w′)+ S

2
λ(v)λ(w), v,w ∈ TpK . (3.23)

We shall prove that this symmetric form is parallel as required, i.e, for any A ∈ T M and
v,w ∈ T K we have (DAW)(v,w) = 0. From the symmetry and Sp(1) invariance ofW we
have trivially for v,w ∈ T K the identities
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(DAW)(v,w) = (DAW)(w, v), (DAW)(Jsv, Jsw) = (DAW)(v,w). (3.24)

Furthermore, the restrictions of W(Js ·, ·) to T M are closed 2-forms on M . Indeed, let Ws

be the 2-form on M defined by

Ws(A, B) = W(Js A, B).

Using the identity (Ji A)′ = (Ji A)′′ + η j (A)ξk − ηk(A)ξ j in (3.23) we see that

Wi (A, B) = ωi (A, B) + S

2

3∑

s=1

ηs
(
(Ji A)′

)
ηs(B) =

(
ωi + S

2
η j ∧ ηk

)
(A, B)

= 1

2
dηi (A, B),

which implies dWi (A, B,C) = 0. On the other hand, the exterior derivative dWi can be
expressed in terms of the covariant derivative DWi through the well know formula

dWi (A, B,C) = (DAWi )(B,C) + (DBWi )(C, A) + (DCWi )(A, B). (3.25)

Since by assumption DJs = 0 we have (DAWs)(B,C) = (DAW)(Js B,C), Eq. (3.25)
gives

(DAW)(Js B,C) + (DBW)(JsC, A) + (DCW)(Js A, B) = 0, A, B,C ∈ T M. (3.26)

We will show that the identities (3.24) and (3.26) yield (DAW)(v,w) = 0. An application
of (3.26) gives

− (DXW)(Y, Z) + (DJiYW)(Ji Z , X) + (DZW)(X, Y ) = 0,

− (DJk XW)(JkY, Z) + (DJiYW)(Ji Z , X) + (DZW)(X, Y ) = 0.

Therefore, (DJs XW)(JsY, Z) = (DXW)(Y, Z) = (DXW)(JsY, Js Z), which by (3.24),
implies (DJs XW)(Y, Js Z) = (DXW)(Y, Z). It follows

(DJs XW)(Y, Z) = −(DXW)(Y, Js Z) = (DXW)(JsY, Z) = −(DJs XW)(Y, Z),

thus (DXW)(Y, Z) = 0.
Another use of (3.26) gives

(DξiW)(JiY, Z) + (DYW)(Z , ξ) − (DZW)(Ñ , Y ) = 0, (3.27)

which implies

(Dξ1W)(J1Y, Z) = (Dξ2W)(J2Y, Z) = (Dξ3W)(J3Y, Z),

(Dξ1W)(Y, J1Z) = (Dξ2W)(Y, J2Z) = (Dξ3W)(Y, J3Z).

Therefore, we have

(DξiW)(Y, Z) = (DξiW)(JiY, Ji Z)

= (Dξ jW)(J jY, Ji Z) = (Dξ jW)(J jY, J j Jk Z) = (DξiW)(J jY, Ji Jk Z)

= − (DξiW)(J jY, J j Z) = −(DξiW)(Y, Z),

thus
(DξsW)(Y, Z) = 0. (3.28)

Now, a substitution in (3.27) gives

(DYW)(Z , ξ) = (DZW)(Y, ξ). (3.29)
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Invoking again (3.26) we find

(Dξ jW)(JiY, Z) + (DYW)(Jk Z , ξ) − (DZW)(Ñ , JkY ) = 0,

which together with (3.28) and (3.29) give (DJs XW)(Y, ξ) = (DXW)(JsY, ξ). In addition,
it also follows

DJk XW)(Y, ξ) = (DXW)(Ji J j Y, Ñ ) = (DJj Ji XW)(Y, ξ) = −(DJk XW)(Y, ξ),

thus (DXW)(Y, ξ) = 0 as well.
Next, we apply (3.26) as follows

− (Dξ jW)(ξ j , Z) − (DξkW)(ξk, Z) + (DZW)(Ñ , Ñ ) = 0,

− (DξiW)(ξi , Z) − (Dξ jW)(ξ j , Z) − (DJj Z )W(Ñ , ξ j ) = 0.
(3.30)

Since, (DJj ZW)(ξ, ξ j ) = (DJj ZW)(ξ, J j ξ) = 0, the second equation in (3.30) implies
(DξsW)(ξs, X) = 0, which together with the first equation in (3.30) give (DξsW)(ξ, X) =
(DXW)(ξ, ξ) = 0.

Finally, from (3.26) we have (DξiW)(ξ, ξ) + (Dξ jW)(Jkξ, Ñ ) − (DξkW)(ξ, J j ξ) = 0,
which implies (DξsW)(ξ, ξ) = 0. This completes the proof of Theorem 3.1.

We record an important relation between the calibrating function and the parallel bilinear
form,

W(N , A) = − f I I
(
N ′, A

) = f 2 I I (r, A) = − f g
(
r, A′′) = d f

(
A′′) = d f (A), (3.31)

which follows from Lemma 3.8 and the definition of W, (3.23).
As an application of Theorem 3.1 we have the following result.

Theorem 3.10 Let (K ,G) be a hyper-Kähler manifold with Riemannian curvature tensor
R̂. If M is a qc-hypersurface of K with normal vector field N then we have that R̂vwN = 0 for
all p ∈ M and v,w ∈ TpK . In particular, the Riemannian curvature tensor R̂ is degenerate
at each point p of the hypersurface M.

Proof Let M be a qc-hypersurface of the hyper-Kähler manifold (K ,G, J1, J2, J3). Let f
and ηs be the calibrating function and calibrated qc-structure determined in Theorem 3.1, see
also (3.4). Let us extend the second fundamental form I I of the embedding to a section of
the bundle T K |M ⊗ T K |M → M by setting I I (N , A) = I I (N , N ) = I I (A, N ) = 0, A ∈
T M ⊂ T K . For any v,w ∈ T K we have

I I (v,w) = − 1

f
W (v − G(v, N )N , w − G(w, N ))

= − 1

f
{W(v,w) − G(v, N )W(N , w) − G(w, N )W(N , v)

+G(v, N )G(w, N )W(N , N )} .

Using the Levi–Civita connection D of the hyper-Kähler manifold K we differentiate the
above equation to obtain

(DA I I )(B,C) =df (A)

f 2
W(B,C) + 1

f
{G(B, DAN )d f (C) + G(C, DAN )d f (B)}

= 1

f 2
{d f (A)W(B,C) + d f (B)W(C, A) + d f (C)W(B, A)} ,

which, in particular, implies
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(DA I I )(B,C) − (DB I I )(A,C) = 0.
On the other hand we compute

(DA I I )(B,C) =A(I I (B,C)) − I I (DAB,C) − I I (B, DAC)

= − AG(DBN ,C) + G(DDABN ,C) + G(DBN , DAC)

= − G(DADBN ,C) + G(DDABN ,C).

For the curvature tensor R̂ of D we obtain

0 = (DA I I )(B,C) − (DB I I )(A,C) = −G(DADBN ,C) + G(DDABN ,C)

+ G(DBDAN ,C) − G(DDB AN ,C)

=G(R̂AB N ,C),

thus R̂AB N = 0, A, B ∈ T M. Furthermore, since R̂ is the curvature of a hyper-Kähler
manifold, it has the property R̂(Jsv, Jsw) = R̂(v,w), v,w ∈ T K . Hence, R̂XN N =
R̂Js X,Js N N = 0 and R̂Ji N ,N N = R̂Jk N ,J j N N = 0, which completes the proof of the
theorem. ��

4 QC-hypersurfaces in the flat hyper-Kähler manifold H
n+1

As usual, we consider the flat hyper-Kähler quaternion space H
n+1 with its standard quater-

nionic structure Q = span{J1, J2, J3}, determined by the multiplication on the right by −i ,
− j and −k, respectively. Let

〈q, q ′〉 = Re

(
n+1∑

a=1

qaq ′
a

)
, qa = ta + i xa + j ya + kza,

be the flat hyper-Kähler metric of H
n+1. If M is a qc-hypersurface of H

n+1 and (A, ω, q0) ∈
GL(n + 1, H) × Sp(1) × H

n+1, then the quaternionic affine map F : H
n+1 → H

n+1,
defined by F(q) = Aqω̄ + q0, transforms M into another qc-hypersurface F(M) of H

n+1

since F preserves the quaternion structure of H
n+1. In this section we will prove, as another

application of Theorem 3.1, that in fact any qc-hypersurface of H
n+1 is congruent by the

action of the quaternion affine group GL(n + 1, H) × Sp(1) � H
n+1 to one of the standard

examples: the quaternionic Heisenberg group, the round sphere or the qc-hyperboloid, see
Example 3.2, (4.4) and (4.5), respectively.

4.1 Proof of Theorem 1.1

Let ι : M → H
n+1 be a qc-embedding, with N and I I the unit normal and the second

fundamental form of M . Recall, we assume I I to be negative definite on the maximal Js-
invariant distribution H of M . From Theorem 3.1, we obtain a calibrating function f on M
and a parallel, Js-invariant section W of the bundle (T ∗K ⊗ T ∗K )|M . Clearly, since W is
parallel, we can find an endomorphism of the real vector space R

4n+4 ∼= H
n+1, which we

denote again by W, such that

W(v,w) = 〈W(v), w〉, v, w ∈ R
4n+4.

123



Quaternionic contact hypersurfaces in hyper-Kähler manifolds 263

By (3.23) in Theorem 3.1 and (3.31) we have the identities

W ◦ Js = Js ◦ W, d f (A)=〈WN , ι∗A〉, − f I I (A, B) = 〈W ι∗A, ι∗B〉, A, B ∈ T M.

(4.1)
With the help of the matrix W and the above identities we can express the derivative of the
unit normal to M vector N along tangent fields as follows

DAN = 1

f

(
Wι∗A − d f (A)N

)
. (4.2)

Indeed, an orthogonal decomposition and the last equation of (4.1) give

〈DAN , v〉 =〈DAN , [v]T M 〉 + 〈DAN , N 〉〈v, N 〉 = −I I (A, [v]T M ) = 1

f
〈Wι∗A, [v]T M 〉

= 1

f

(
〈Wι∗A, v〉 − 〈Wι∗A, N 〉〈v, N 〉

)

using the second formula in (4.1). Moreover, formula (3.23) from the proof of Theorem 3.1
shows that, depending on the constant S, we have exactly one of the following three cases:
(i)W is positive definite; (ii)W is of signature (4n, 4); (iii)W is degenerate of signature
(4n, 0).

Let us consider the most interesting case (iii). Assume W is degenerate of signature
(4n, 0) and ker W = {v0, J1v0, J2v0, J3v0} for some unit v0 ∈ R

4n+4, so that R
4n+4 =

imW ⊕ ker W. We define the symmetric endomorphism W′ of R
4n+4 which is inverse to

W on imW and satisfies ker W′ = ker W. Thus, we have

W ◦ W′ (v) = W′ ◦ W (v) = v − 〈v, v0〉v0 −
3∑

s=1

〈v, Jsv0〉Jsv0, v ∈ R
4n+4.

Consider the functions h, tm, lm : M → R, m = 0, 1, 2, 3, defined by

h(p) =〈W′N , N 〉, t0(p) = 〈v0, ι(p)〉, ts (p) = 〈Jsv0, ι(p)〉, l0(p) = 〈v0, N 〉, ls (p) = 〈Jsv0, N 〉.

Invoking (4.2) we compute

dl0(A) =〈v0, DA N 〉 = 1

f
〈v0,Wι∗(A) − d f (A)N 〉

= 1

f
〈Wv0, ι∗(A)〉 − d f (A)

f
l0 = −d f (A)

f
l0,

which implies that the product f l0 is constant on M , f l0 = C0, C0 ∈ R. Similarly we have
dls = −ls

d f
f and therefore f ls = Cs, s = 1, 2, 3, where Cs are constants. Furthermore,

dh(A) = 2〈W′N , DA N 〉 = 2

f
〈W′N ,Wι∗(A) − d f (A)N 〉

= 2

f
〈WW′N , ι∗(A)〉 − 2hd f (A)

f

= −2hd f (A)

f
− 2

f

3∑

m=0

lmdtm(A) = − 1

f 2

{
2

3∑

m=0

lmdtm(A) + h d( f 2)(A)

}
.
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It follows that f 2dh + hd( f 2) = −2
∑3

m=0 Cmdtm, which implies that on the manifold M
we have

f 2h = c +
3∑

m=0

cmtm (4.3)

for some constants c, cm ∈ R, m = 0, . . . , 3. Now, consider the vector valued function
V ◦ ι : M → R

4n+4,

V (p) = f W′ N (p) + t0(p) v0 +
3∑

s=1

ts(p) Jsv0, p ∈ M.

Formula (4.3) implies 〈WV, V 〉 = f 2h = c + ∑3
m=0 cmtm . On the other hand, using

(4.2), we have

(ι − V )∗A = ι∗A − d f (A)W′N − fW′
(
1

f
W(ι∗A) − d f (A)

f
N

)

− dt0(A) v0 −
3∑

s=1

dts(A) Jsv0

= ι∗A − W ◦ W′ι∗A − dt0(A) v0 −
3∑

s=1

dts(A) Jsv0 = 0, A ∈ T M.

Thus, there exists a point p0 ∈ H
n+1 such that for all p ∈ M we have

〈W (ι(p) − p0) , ι(p) − p0〉 = c +
3∑

m=0

cmtm(p).

A translation p = p̃ + p0 brings us to the case (identifying points on M with their images
by ι)

〈W p̃, p̃〉 = c̃ +
3∑

m=0

cmtm( p̃), p̃ ∈ M.

Let q̃0 ∈ ker W be such that
∑3

m=0 cmtm(q̃0) = c̃, which is possible since
∑3

m=0 cmtm 
≡
0. Indeed, otherwise cm = 0, m = 0, . . . , 3 implies that the ker W ⊂ H , which is a
contradiction with the non-integrability of H . We consider the translation p̃ = q̃ − q̃0 which
brings us to

〈Wq̃, q̃〉 =
3∑

m=0

cmtm(q̃), q̃ ∈ M.

Let εn+1 be a unit vector in the direction of the vector c0v0+∑3
s=1 cs Jsv0 ∈ ker W and con-

siderE={ε1, J1ε1, J2ε1 J3ε1, . . . , εn, J1εn, , J2εn, . . . , J3εn, εn+1, J1εn+1, J2εn+1, J3εn+1}
where the first 4n vectors are an orthonormal basis of eigenvectors of the symmetric Js-
invariant operatorW on imW. For this we note that by the Js-invariance ofW it follows that
if v is a (real) eigenvector of W so are the vectors Jsv. In the quaternion coordinate coor-
dinates qa determined by {εa, J1εa, J2εa, J3εa}, a = 1, . . . , n + 1 we come to the desired
form. Thus, there is a quaternionic affine transformation of H

n+1 which maps ι(M) into the
hypersurface |q|2 + t = 0 described in Example 3.2.
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Proceeding similarly in the cases where W is positive definite or of signature (4n, 4) we
will obtain, respectively,

n∑

a=1

|qa |2 + |p|2 = 1, (4.4)

i.e., the 4n + 3 dimensional round sphere in R
4n+4 = H

n+1 and the hyperboloid

n∑

a=1

|qa |2 − |p|2 = −1. (4.5)

In these two cases, however, a simpler prove is possible, by first applying an appropriate
transformation from the linear group GL(n + 1, H), which transforms W into a diagonal
matrix with entries +1 or −1. Then, the transformed hypersurface will be totally umbilical,
and one can use the corresponding classification theorem of totally umbilical hypersurfaces
in R

4n+4 to complete the proof.

4.2 QC-hypersurfaces in the quaternionic projective space HPn+1

Note that, as a quaternionicmanifold,Hn+1 is equivalent to an open dense subset of the quater-
nionic projective spaceHPn+1. Thus, all qc-hypersurfaces ofH

n+1 are also qc-hypersurfaces
of HPn+1. Also, it is well known that PGL(n + 2, H) is the group of quaternionic affine
transformations of [17] HPn+1. As a direct consequence of Theorem 1.1 we obtain

Corollary 4.1 If M is a connected qc-hypersurface of the quaternionic projective space
HPn+1, then there exists a transformation φ ∈ GL(n + 2, H) of HPn+1 which transforms
M into an open set φ(M) of the qc-hypersurface Mo, defined by

Mo = {[q1, . . . , qn+2] ∈ HPn+1 : |q1|2 + · · · + |qn+1|2 = |qn+2|2},

where [q1, . . . , qn+2] denote the quaternionic homogeneous coordinates of HPn+1.
In particular, as an abstract qc-manifold, every qc-hypersurface of HPn+1 is qc-

conformally equivalent to an open set of the quaternionic contact (3-Sasakian) sphere S4n+3.

Proof The proof relies on the preceding remarks and the fact that the quaternion structures of
the flat hyper-Kähler and the quaternion-Kähler spaces are identical. Thus, every affine part
of a qc-hypersurface of HPn+1 is one of the quadrics in Theorem 1.1 up to a quaternionic
affine transformation. By analytic continuation the quadric has to be the same.

Finally, the three quadrics in Theorem 1.1 are congruent modulo the GL(n+2, H) action
on the projective space HPn+1, which completes the proof. ��
Acknowledgements S. I. and I. M. are partially supported by Contract DFNI I02/4/12.12.2014 and by
Contract 148/2015 with the Sofia University “St.Kl.Ohridski”. I. M. is supported by a SoMoPro II Fellowship
which is co-funded by the European Commission (this article reflects only the author’s views and the EU is not
liable for any use that may be made of the information contained therein). From “People” specific programme
(Marie Curie Actions) within the EU Seventh Framework Programme on the basis of the grant agreement
REA No. 291782. It is further co-financed by the South-Moravian Region. DV was partially supported by
Simons Foundation Grant #279381. DV thanks the Masaryk University, Brno, for the hospitality and financial
support provided while visiting the Department of Mathematics.

123



266 S. Ivanov et al.

5 Appendix

The following property of the qc geometry observed in [3] clarifies the paragraph after
Definition 2.1. As well known, this property is particular for the quaternionic contact case in
contrast with the situation in the CR case. For completeness, we include the statement and a
complete proof.

Lemma 5.1 Let (M, H) be a qc-manifold and (ηs, Is, g), (η′
s, I

′
s, g

′) be two local qc-
structures on an open set U ⊂ M with the same horizontal space H. Then, there exist a
positive function f : U → R, f > 0 and a matrix-valued functionA = (ai j ) : U → SO(3)
such that

(
I ′
1, I

′
2, I

′
3

) = (I1, I2, I3)A,
(
η′
1, η

′
2, η

′
3

) = f (η1, η2, η3)A, g′ = f g.

Proof By assumption, H = ∩3
i=1ηi = ∩3

i=1η
′
i , thus there exists a matrix-valued function

A = (ai j ) : U → GL(3) with η′
s = ∑3

t=1 astηt , s = 1, 2, 3. Taking the exterior derivative
of the above equations we obtain

(dη′
s)|H =

∑

t

ast (dηt )|H . (5.1)

Let us fix a symmetric and positive definite section h of the bundle H∗ ⊗ H∗ which we will
use as a “background” metric on H. With respect to this metric, consider the restrictions of
the 2-forms (dη′

s)|H to H as endomorphisms of H , i.e., sections of the bundle End(H) =
H∗ ⊗ H. This identification depends on the choice of h. However, it is easy to see that the
composition of two endomorphisms of the form ((dη′

s)|H )−1 ◦ (dη′
t )|H , is an endomorphism

independent of the choice of h. For (i, j, k) a cyclic permutation of (1, 2, 3) and h = g′ we
have (

(dη′
j )|H

)−1 ◦ (
dη′

i

) |H = I ′
k . (5.2)

The above equation holds for any choice of the metric h on H , in particular, also for h = g.
Using 5.1, we conclude that

I ′
k =

(
(dη′

j )|H
)−1 ◦ (

dη′
i

) |H ∈ span
R

{idH , I1, I2, I3}.

Note that span
R

{idH , I1, I2, I3} ⊂ End(H) is an algebra with respect to the usual
composition of endomorphisms, which is isomorphic to the algebra of the quaternions
H = span

R
{1, i, j, k}. If an element of H has square −1 then this element belongs to

Im(H). Therefore, I ′
s ∈ Q = span {I1, I2, I3}, hence

span
R

{I1, I2, I3} = span
R

{I ′
1, I

′
2, I

′
3}.

Now, still identifying H∗ ⊗ H with End(H), using h = g and using that the metric g is Is-
and I ′

s-compatible, then each of the endomorphisms (dη′
k)H ∈ End(H) anti-commutes with

both I ′
i and I ′

j .This implies that, as an endomorphism, (dη′
k)H is proportional to I ′

k , which
gives g′ = f g for some f > 0. The fact that A = (ai j ) takes values in SO(3) follows
from the requirement that both (I1, I2, I3) and (I ′

1, I
′
2, I

′
3) satisfy the quaternionic identities.��
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