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Abstract We show that φ-invariant submanifolds of metric contact pairs with orthogonal
characteristic foliations make constant angles with the Reeb vector fields. Our main result is
that for the normal case such submanifolds of dimension at least 2 are all minimal. We prove
that an odd-dimensional φ-invariant submanifold of a metric contact pair with orthogonal
characteristic foliations inherits a contact form with an almost contact metric structure, and
this induced structure is contact metric if and only if the submanifold is tangent to one Reeb
vector field and orthogonal to the other one. Furthermore, we show that the leaves of the two
characteristic foliations of the differentials of the contact pair are minimal. We also prove
that when one Reeb vector field is Killing and spans one characteristic foliation, the metric
contact pair is locally the product of a contact metric manifold with R.

Keywords Metric contact pair · Minimal invariant submanifold · Metric f -structure ·
Almost contact metric manifold

Mathematics Subject Classification 53C25 · 53B20 · 53D10 · 53B35 · 53C12

1 Introduction

On a Riemannian manifold endowed with a tensor field ϕ of type (1, 1), a submanifold is
said to be ϕ-invariant (or invariant) when its tangent bundle is preserved by ϕ. Under some
compatibility conditions between ϕ and the metric, as is for example the case for almost
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Hermitian manifolds, the questions concerning the minimality of the submanifold and the
nature of the induced structure are natural and interesting. It is well known that invariant
submanifolds of a contact metric manifold are minimal, and the same holds for those of
a Kähler manifold. However, Vaisman in [20] proved that a J -invariant submanifold of
a Vaisman manifold (J being the complex structure) is minimal if and only if it inherits
a Vaisman structure. These manifolds are a subclass of locally conformally Kähler (lcK)
manifolds. Dragomir and Ornea in [13] generalized this result by showing that a J -invariant
submanifold of an lcKmanifold is minimal if and only if the submanifold is tangent to the Lee
vector field (and therefore tangent to the anti-Lee vector field). By a statement of Bande and
Kotschick [8], normal metric contact pairs of type (h, 0) are nothing but non-Kähler Vaisman
manifolds, so the results of Vaisman and Dragomir–Ornea apply to these manifolds.

A metric contact pair is a manifold of even dimension endowed with a special case of a
metric f -structure with two complemented frames in the sense of Yano [21]. It carries an
endomorphism field φ of corank 2 and two natural commuting almost complex structures J
and T of opposite orientations. When J and T are both integrable, the structure is said to be
normal. For J -invariant or T -invariant submanifolds on a normal metric contact pair with
decomposable φ, the problem was solved by Bande and the first author [7] by proving that
these submanifolds are minimal if and only if they are tangent to both the two Reeb vector
fields of the structure, and they gave an example of such submanifold on which the contact
pair of the ambient manifold does not induce a contact pair. Regarding the φ-invariant case,
they gave partial results.

In this paper, we study φ-invariant submanifolds of a metric contact pair (M, α1, α2, φ, g)
of any type (h, k) with decomposable φ (or equivalently with orthogonal characteristic foli-
ations), by looking at the angles that Reeb vector fields make with these submanifolds. We
prove that these two angles are constant; then, we solve completely the problem ofminimality
and that of induced structures. First we show the following.

A connected φ-invariant submanifold N of a metric contact pair with decomposable φ

and Reeb vector fields Z1 and Z2 satisfies one of the following properties:

– N is even-dimensional and tangent to both Z1 and Z2.
– N is one-dimensional and contained in one of the two-dimensional leaves of the vertical

foliation spanned by Z1 and Z2.
– N is of odd dimension≥3 everywhere tangent to one Reeb vector field Z1 and orthogonal

to the other one Z2, or vice versa.
– N is of odd dimension ≥3, nowhere tangent and nowhere orthogonal to Z1 and Z2

making two constant angles with them. In this case, the dimensions of the characteristic
foliations are ≥dim N .

For the minimality problem, as a consequence we prove the following.
Anyφ-invariant submanifold of dimension≥2 of a normalmetric contact pairwith decom-

posable φ is minimal.
The one-dimensional case is obvious since it concerns vertical geodesics, i.e., those which

are integral curves of c1Z1 + c2Z2 with ci constant functions.
Now let us return to the question concerning the induced structure on a φ-invariant sub-

manifold N of a metric contact pair. When N is even-dimensional, it is tangent to the Reeb
vector fields and then it is J -invariant (and T -invariant). Although it does not always inherit
a contact pair [7], we observe that it carries at least a metric f -structure with two comple-
mented frames. By normality on the ambient manifold, we get a K-structure (see [10] for a
definition) on N .
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For the case N of odd dimension along which the Reeb vector fields are nowhere tangent
and nowhere orthogonal, when φ is decomposable, we prove that N carries a contact form
and an almost contact metric structure which is not contact metric, while for the other cases
(N tangent to one Reeb vector field and orthogonal to the other one) it has been shown in
[11] that N is a contact metric submanifold of one of the characteristic leaves of the contact
pair. By normality on the ambient manifold, the induced structure on N will be normal.

Furthermore, we prove that the leaves of the characteristic foliations of dα1 and dα2 of
a metric contact pair (M, α1, α2, φ, g) with decomposable φ are minimal. Their leaves are
φ-invariant and tangent to both the two Reeb vector fields, but for our proof the integrability
of J or T is not needed. We give an example where one of these two foliations is not totally
geodesic. When the type numbers of the contact pair are (h, 0), i.e., when the Reeb vector
field Z2 spans the characteristic distribution of α1, we prove the following.

If Z2 isKilling, then the two characteristic foliations of the contact pair are totally geodesic,
and then, the metric contact pair is locally product of a contact metric manifold with R. By
normality, the first factor will be Sasakian.

2 Preliminaries

Blair et al. [11] introduced in Hermitian geometry the notion of bicontact structure. This
topic was formulated again as contact pair by Bande in his PhD thesis in 2000 and then
together with the first author in [3]. A pair of 1-forms (α1, α2) on a manifold M is said to be
a contact pair of type (h, k) if

α1 ∧ (dα1)
h ∧ α2 ∧ (dα2)

k is a volume form,

(dα1)
h+1 = 0 and (dα2)

k+1 = 0.

The latter two conditions guarantee the integrability of the two subbundles of the tangent
bundle

TFi = {X : αi (X) = 0, dαi (X, Y ) = 0 ∀Y } , i = 1, 2.

They determine the characteristic foliations F1 of α1 and F2 of α2 which are transverse and
complementary. The leaves of F1 and F2 are contact manifolds of dimension 2k + 1 and
2h + 1, respectively, with contact forms induced by α2 and α1 (see [3]). We also define the
(2h + 2k)-dimensional horizontal subbundle H to be the intersection of the kernels of α1

and α2.
The equations

α1(Z1) = α2(Z2) = 1, α1(Z2) = α2(Z1) = 0 ,

iZ1dα1 = iZ1dα2 = iZ2dα1 = iZ2dα2 = 0 ,

where iX is the contraction with the vector field X , determine uniquely the two vector fields
Z1 and Z2, called Reeb vector fields. Since they commute [3], they give rise to a locally free
R
2-action, an integrable distribution called Reeb distribution, and then a foliation V of M by

surfaces. The subbundle TV = RZ1 ⊕ RZ2 is called the vertical subbundle and the tangent
bundle of M splits as:

TM = TF1 ⊕ TF2 = H ⊕ RZ1 ⊕ RZ2.
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A contact pair structure [4] on a manifold M is a triple (α1, α2, φ), where (α1, α2) is a
contact pair and φ a tensor field of type (1, 1) such that:

φ2 = −I d + α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0.

The rank of φ is dim M − 2 and αi ◦ φ = 0, for i = 1, 2.
The endomorphism φ is said to be decomposable if φ(TFi ) ⊂ TFi , for i = 1, 2. This is

a natural condition that allows to have on each leaf of F1 and F2 an induced almost contact
structure.

In [5], the notion of normality for a contact pair structure is defined as the integrability
of both of the two natural commuting almost complex structures of opposite orientations
J = φ − α2 ⊗ Z1 + α1 ⊗ Z2 and T = φ + α2 ⊗ Z1 − α1 ⊗ Z2 on M . This is equivalent to
the vanishing of the tensor field

N 1(X, Y ) = [φ, φ](X, Y ) + 2dα1(X, Y )Z1 + 2dα2(X, Y )Z2

where [φ, φ] is the Nijenhuis tensor of φ.
A Riemannian metric g on a manifold endowed with a contact pair structure is said to be

associated [4] if

g(X, φY ) = (dα1 + dα2)(X, Y ) and g(X, Zi ) = αi (X) for i = 1, 2.

Such a metric is necessarily compatible with respect to the contact pair structure, which
means that

g(φX, φY ) = g(X, Y ) − α1(X)α1(Y ) − α2(X)α2(Y ).

Moreover, the subbundles RZ1, RZ2 and H are pairwise orthogonal.
A metric contact pair on a manifold M is a four-tuple (α1, α2, φ, g) where (α1, α2, φ) is

a contact pair structure and g an associated metric with respect to it. Such a manifold M will
also be called a metric contact pair for short.

On a metric contact pair, the endomorphism field φ is decomposable if and only if the
characteristic foliations F1, F2 are orthogonal [4]. In this case, the leaves of F j are minimal
submanifolds [6]; they carry contact metric structures induced by (φ, Zi , αi , g), for j 	= i
(see [4]), and by the normality they becomeSasakian [5].Of course, the product of two contact
metric manifolds (or a contact metric manifold with R) gives rise to a metric contact pair
with decomposable endomorphism, and the structure is normal if and only if the two factors
are Sasakian. It is important to note that there exist metric contact pairs with decomposable φ

which are not locally products of contact metric manifolds as shown in the following example
(see also [6] for a similar construction).

Example 1 Consider the simply connected six-dimensional nilpotent Lie group G6 with
structure equations:

dα1 = α3 ∧ α5, dα2 = α4 ∧ α6, dα6 = α4 ∧ α5,

dα3 = dα4 = dα5 = 0

The pair (α1, α2) is a contact pair of type (1, 1) with Reeb vector fields (Y1, Y2), the Yi ’s
being dual to the αi ’s. The characteristic distribution of α2 (respectively, α1) is spanned by
Y4, Y6 and Y2 (respectively, Y3, Y5 and Y1). Take the metric

g = α2
1 + α2

2 + 1

2

(
α2
3 + α2

4 + α2
5 + α2

6

)
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and the decomposable endomorphism φ defined to be zero on Y1, Y2, and

φY5 = Y3, φY3 = −Y5, φY6 = Y4, φY4 = −Y6

Then (α1, α2, φ, g) is a left invariant metric contact pair on the Lie group G6. We can easily
see that the leaves of the two characteristic foliations are Sasakian, though the metric contact
pair is not normal because N 1(Y3, Y4) = [φ, φ](Y3, Y4) = Y4 	= 0. We also remark that the
characteristic foliation of α1 is totally geodesic, while from g

(∇Y4Y6, Y5
) = − 1

2 follows
that the characteristic foliation of α2 is not totally geodesic.

Since the structure constants of the nilpotent Lie algebra of G6 are rational, there exist
cocompact lattices� ofG6. Now themetric contact pair onG6 descends to all these quotients
G6/� and we obtain closed nilmanifolds carrying the same type of structure. All the remarks
concerning the structure we constructed on G6 still remain valid on the metric contact pairs
G6/�.

For the normal case, we can give the following.

Example 2 As a manifold consider the product H6 = H3 × H3 where H3 is the three-
dimensional Heisenberg group. Let {α1, α2, α3} (respectively, {β1, β2, β3}) be a basis of the
cotangent space at the identity for the first (respectively, second) factor H3 satisfying

dα3 = α1 ∧ α2, dα1 = dα2 = 0,

dβ3 = β1 ∧ β2, dβ1 = dβ2 = 0.

The pair (α3, β3) determines a contact pair of type (1, 1) on H6 with Reeb vector fields
(X3, Y3), the Xi ’s (respectively, the Yi ’s) being dual to the αi ’s (respectively, the βi ’s). The
left invariant metric

g = α2
3 + β2

3 + 1

2

(
α2
1 + β2

1 + α2
2 + β2

2

)

is associated to the pair with decomposable endomorphism φ given by φ(X2) = X1 and
φ(Y2) = Y1. The metric contact pair (H6, α3, β3, φ, g) is normal because it is the product
of two Sasakian manifolds. Also here H6 admits cocompact lattices � and the structure
descends to the nilmanifolds H6/� as normal metric contact pairs.

Some other interesting examples and properties of such structures were given in [2–7].
In the following remark, we describe how metric contact pairs relate to other well-known
structures.

Remark 1 Normalmetric contact pairswith decomposable endomorphismwere already stud-
ied in [11] under the name bicontact Hermitian manifolds of bidegree (1, 1). They were
regarded as a generalization of the Calabi–Eckmann manifolds. A metric contact pair of type
(h, k) is a special case of metric f -structure of rank 2h + 2k with two complemented frames
in the sense of Yano [21]. The normality condition of metric contact pairs, i.e., the integra-
bility of both almost complex structures J and T is equivalent to the normality condition
as an f -structure which consists exactly on the vanishing of the tensor field N 1 described
before. We can also observe that a normal metric contact pair is a special case ofK-structures
in the sense of Blair, Ludden and Yano [10]. Normal metric contact pairs of type (h, 0) are
necessarily S-structures (see [10] for a definition), but those of type (h, k) with h > 0 and
k > 0 are not. Furthermore, it has been shown in [8] that normal metric contact pairs of type
(h, 0) are nothing but non-Kähler Vaisman manifolds (called PK-manifolds in [19]). The
P-manifolds of Vaisman [19] are necessarily metric contact pairs of type (h, 0) where the
Reeb vector fields are Killing, and they include the subclass of PK-manifolds.
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In the course of our work, we will need the following lemmas.

Lemma 1 (Bande et al. [2]) On a manifold endowed with a contact pair structure with
decomposable φ and a compatible metric, for every X we have that ∇X Z1 and ∇X Z2 are
horizontal.

Lemma 2 On a manifold endowed with a contact pair structure with decomposable φ and
a compatible metric, for every X horizontal we have that ∇Z1X and ∇Z2 X are horizontal.

Proof By the previous lemma, α j (∇X Zi ) = 0 for i, j = 1, 2, giving

α j (∇Zi X) = α j ([Zi , X ])
= Ziα j (X) − Xα j (Zi ) − 2dα j (Zi , X)

= 0.

��

3 φ-Invariant submanifolds

A submanifold N of a metric contact pair is said to be φ-invariant if its tangent bundle TN
is preserved by the endomorphism field φ. We will denote by ZT

i (respectively, Z⊥
i ) the

tangential (respectively, normal) component of the two Reeb vector fields Z1 and Z2 along
N . In the following proposition, we recall some properties from [7] we need and concerning
the positions of the Reeb vector fields along a φ-invariant submanifold N .

Proposition 1 (Bande et al. [7])

1. Along the φ-invariant submanifold N the four sections ZT
1 , Z

T
2 , Z

⊥
1 and Z⊥

2 are vertical.
2. There is no point p of N such that the tangent vectors (Z1)p and (Z2)p are both orthog-

onal to the tangent space TpN.
3. If at a point p of N one Reeb vector field is tangent to N and the second one is transverse,

then the second one is orthogonal to N at p.

To this, we can add the following.

Proposition 2 If at a point p of the φ-invariant submanifold N one of the Reeb vector fields
is orthogonal to N, then the second one is tangent to N at p.

Proof Suppose that (Z1)p is orthogonal to TpN . First by Proposition 1-(2) we have (ZT
2 )p 	=

0. Moreover, (ZT
2 )p is orthogonal to (Z1)p . Next by Proposition 1-(1) the vector (ZT

2 )p lies
in the plane

(
(Z1)p, (Z2)p

)
and we get (ZT

2 )p = (Z2)p . ��
Now after these observations, we can state the following proposition.

Proposition 3 A φ-invariant submanifold which is tangent to both the Reeb vector fields has
even dimension. Otherwise, its dimension is odd and its tangent bundle intersects the Reeb
distribution along a line bundle.

Indeed, it is clear that when a submanifold is tangent to both Z1 and Z2 at a point, since
its tangent space at that point is preserved by φ it is also preserved by J which is almost
complex. Thus, the dimension is even.

Now let us describe a little more a φ-invariant submanifold N which is not tangent to
the Reeb distribution. We have seen that the four sections ZT

1 , Z
⊥
1 , Z

T
2 and Z⊥

2 are vertical.
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When at a point p of N one of the two Reeb vector fields is not tangent to N , the second one
is not orthogonal to the submanifold N (Proposition 2), and this occurs on a whole open set
of N . Moreover, at those points both families {ZT

1 , ZT
2 } and {Z⊥

1 , Z⊥
2 } have rank one. Any

tangent vector of N at p which is orthogonal to {ZT
1 , ZT

2 } is horizontal, since it is orthogonal
to {Z⊥

1 , Z⊥
2 } too and then orthogonal to {Z1, Z2}. Then by the φ-invariance of N , φ is

almost complex when acting on horizontal vectors tangent to N , i.e., on the horizontal part
H∩ T N of TN. This explains the odd dimension of N and the fact that the Reeb distribution
still remains nowhere tangent to the submanifold. Notice that {ZT

1 , ZT
2 } spans a line bundle

which is the intersection of the tangent bundle TN with the Reeb distribution that can be
called the vertical part of TN. Moreover, we have

TN = (TV ∩ TN) ⊕ (H ∩ TN) .

When N is a one-dimensional φ-invariant submanifold, then it is any one-dimensional
submanifold of any two-dimensional leaf of the vertical foliation V . So in the sequel, we will
suppose that the dimension of N is at least 3.

For simplicity, suppose that Z2 is nowhere tangent to N , so that Z1 is nowhere orthogonal
to N (by Proposition 2). Normalizing ZT

1 , we get on N a unit vector field spanning the vertical
part TV ∩ TN of TN:

ζ = 1
∥∥ZT

1

∥∥ ZT
1 .

Now along N , the equation

ζ = (cos θ1)Z1 + (sin θ1)Z2

defines a smooth function θ1 on N taking values in ] − π/2, π/2[. This function is the
measure of the angle that Z1 makes with the submanifold, i.e., the oriented angle (Z1, ZT

1 )

in the plane (Z1, Z2) oriented by the almost complex structure J . When Z1 is nowhere
tangent to the submanifold, similarly we get a function θ2 measuring the oriented angle
(Z2, ZT

2 ) that is the angle between Z2 and the submanifold, and satisfying ZT
2 /‖ZT

2 ‖ =
(cos θ2)Z2 + (sin θ2)(−Z1) with −π/2 < θ2 < π/2.

We will say that the submanifold N is leaning when both Reeb vector fields are leaning
along N , i.e., when they are nowhere tangent and nowhere orthogonal to N . This means that
the functions θ1 and θ2 are well defined and take nonvanishing values.

Theorem 1 Let (M, α1, α2, φ, g) be a metric contact pair of type (h, k) with decomposable
φ. Suppose that M carries a leaningφ-invariant submanifold N of odd dimension 2n+1 ≥ 3.
Then,

1. for the angle (Z1, ZT
1 ), we have 0 < θ1 < π/2,

2. for the angle (Z2, ZT
2 ), we have θ2 = θ1 − π/2,

3. each nonzero horizontal tangent vector X of N decomposes as X = X1 + X2, Xi being
nonzero horizontal vector tangent to the characteristic foliation F j for j 	= i , with
‖X2‖2/‖X1‖2 = tan θ1,

4. for the type numbers, we have h ≥ n and k ≥ n, i.e., the dimensions of the two charac-
teristic foliations are at least 2n + 1.

In this theorem, Property 3means that X makeswith TF2 (ormore preciselywithH∩TF2)
an angle of absolute value θ ′

1 = arctan
√
tan θ1, and of course with H ∩ TF1 an angle

θ ′
2 = π/2 − θ ′

1. Property 1 states that along N the vertical part of TN separates the vertical
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plane (Z1, Z2) into two half-planes, each one containing one Reeb vector field, and for ζ we
also have

ζ = 1
∥
∥ZT

2

∥
∥ ZT

2 = (cos θ2)Z2 + (sin θ2)(−Z1).

Proof Take any local horizontal nonvanishing vector field X of N . Such a vector field always
exists since the dimension of N is at least 3. Along N , it decomposes as X = X1 + X2 with
Xi horizontal and tangent to F j , for j 	= i . By the φ-invariance of N , φX is also tangent to
N , and φXi is horizontal and tangent to F j , for j 	= i , by decomposability of φ. In order to
compute the vertical part of [X, φX ], we have
g([X, φX ], Z1) = α1([X1, φX1]) + α1([X1, φX2]) + α1([X2, φX1]) + α1([X2, φX2]).
For the first term, we have α1([X1, φX1]) = −2dα1(X1, φX1) = 2g(X1, X1), and the last
three terms vanish. Thus, we have

g([X, φX ], Z1) = 2‖X1‖2
and similarly

g([X, φX ], Z2) = 2‖X2‖2
so that the vertical part of [X, φX ] is the vector field 2‖X1‖2Z1 + 2‖X2‖2Z2.

Since [X, φX ] is also tangent to N , its vertical part is then collinear with ζ = (cos θ1)Z1+
(sin θ1)Z2. Now from cos θ1 > 0 and sin θ1 	= 0, we obtain that sin θ1 > 0, i.e., 0 < θ1 <

π/2, and θ2 = θ1 − π/2. Moreover, X1, X2 do not vanish. For the measure of the angle
(X, X1), we obtain its tangent which is ‖X2‖/‖X1‖ = √

tan θ1.
Regarding the dimensions of the characteristic foliations, take at any point p of N a basis

{e1, . . . , e2n} of the horizontal partH∩ TpN of the tangent space TpN . Each vector el being
horizontal decomposes as el = el1 + el2 with eli ∈ H ∩ TpF j for j 	= i . Let λ1, . . . , λ2n

any real numbers such that
∑2n

l=1 λl el1 = 0. Put X = ∑2n
l=1 λl el . Then X = X1 + X2

with Xi = ∑2n
l=1 λl eli lying in TpF j for j 	= i . Applying Property 3 of this theorem

to the horizontal vector X , we get X = 0 since X1 is supposed to be zero. Hence, from∑2n
l=1 λl el = 0 we obtain that λl = 0 for all l. Finally the vectors e11, . . . , e2n 1 are linearly

independent inH∩TpF2 and then h ≥ n. In the same way, we get k ≥ n, and this completes
the proof. ��
Example 3 Consider the metric contact pairs on the nilpotent Lie group G6 and its closed
nilmanifolds G6/� described in Example 1. For any two arbitrary nonzero real numbers a
and b, the three vectors

X = aY3 + bY6, φX = −aY5 + bY4 and Z = [X, φX ] = a2Y1 + b2Y2

span a φ-invariant subalgebra of the Lie algebra ofG6 which determines a three-dimensional
foliation N in G6 (and also in the nilmanifolds G6/�). Each leaf N of N is φ-invariant,
leaning, minimal and non totally geodesic. The vertical part of TN is spanned by Z restricted
to N , and the angle θ1 that the Reeb vector field Y1 makes with N satisfies

cos θ1 = a2/
√
a4 + b4 and sin θ1 = b2/

√
a4 + b4.

By a suitable choice of a and b, we can see that the angle θ1 can take any value in ]0, π/2[.
In the same way, we can have φ-invariant submanifolds on the normal metric contact pairs

H6 and its nilmanifolds described in Example 2.
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Example 4 Take again any nonzero real numbers a and b. The three vectors X = aX2+bY1,
φX = aX1 − bY2 and Z = [X, φX ] = a2X3 + b2Y3 span a φ-invariant subalgebra of the
Lie algebra of H6 which determines a three-dimensional foliationN in H6 (and also in each
nilmanifold H6/�). Each leaf is φ-invariant, leaning and totally geodesic. Moreover, the
angle that the Reeb vector field X3 makes with the leaf has tangent equal to b2/a2.

In order to obtain an example of a closed φ-invariant leaning submanifold, we have just to
choose suitably a lattice of H6. Indeed let Le be the leaf passing through the identity element
of the Lie group H6.We can see that the Lie subgroup Le is nothing but the Heisenberg group
that admits cocompact lattices (see, e.g., [7] or [15] to get an explicit one). Take any of such
lattices which we will call �. Because Le is a subgoup of H6, we have that � is also a lattice
of H6. Now the closed nilmanifold N 3 = Le/� of Le is a submanifold of the nilmanifold
M6 = H6/� of H6. As explained before since the normal contact pair on H6 is left invariant,
it descends to the quotient M6 as a normal metric contact pair (α̃3, β̃3, φ̃, g̃) of type (1, 1)
with decomposable endomorphism φ̃. Finally we obtain a normal metric contact pair M6

with a decomposable endomorphism, carrying a closed leaning φ̃-invariant submanifold N 3.

Before stating our main theorem concerning minimality of φ-invariant submanifolds on
normal metric contact pairs, we first give an important lemma which allows us to describe
more the angles between odd-dimensional φ-invariant submanifold and the Reeb vector
fields.

Lemma 3 Let (M, α1, α2, φ, g) be a metric contact pair with decomposable φ, and N a
connected φ-invariant submanifold of odd dimension ≥3. If at a point of N the Reeb vector
field Z2 is not tangent to N, then Z2 is everywhere transverse to N, the measure θ1 of the
oriented angle that Z1 makes with N is constant and 0 ≤ θ1 < π/2.

Actually for the leaning case the four angles θ1, θ2, θ ′
1 and θ ′

2 described above are all
constant. For θ1 = 0, at each point Z1 is tangent and Z2 is orthogonal to the submanifold. As
amatter of fact, Z2 must be transverse to N because of the odd dimension and then orthogonal
to N by Proposition 1-(3). For example, this is the case for the leaves of the characteristic
foliation F2.

Proof The proof will be given in two stages. Let N ′ be the nonempty open set of points of N
on which Z2 is transverse to N . The function θ1 is well defined on N ′ and we have obviously
0 ≤ θ1 < π/2. We will first prove that θ1 is locally constant on N ′ (Stage 1). Next we will
prove that N ′ is nothing but N (Stage 2).
Stage 1, step 1:
Let X be any (local) unit vector field of N ′ orthogonal to ζ . Then it is horizontal because it
is also orthogonal to Jζ . Since ζ is unit, g(∇X ζ, ζ ) = 0. We also have

g(∇X ζ, Jζ ) = g(∇ζ X, Jζ ) + g([X, ζ ], Jζ ) = 0

since ∇ζ X is horizontal by Lemma 2, and [X, ζ ] is tangent to N ′. Because ζ and Jζ span
the vertical bundle, ∇X ζ is horizontal along N ′.
Stage 1, step 2:
Differentiating ζ = (cos θ1)Z1 + (sin θ1)Z2, we obtain

∇X ζ = X (θ1)Jζ + cos θ1∇X Z1 + sin θ1∇X Z2. (1)

By step 1 and Lemma 1, we have that∇X ζ ,∇X Z1 and∇X Z2 are horizontal; then, (1) implies
that along N ′

X (θ1) = 0.
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Stage 1, step 3:
Take an X as above. The dimension of N ′ being ≥3 such an X always exists. By the φ-
invariance of N ′, φX and [X, φX ] are also tangent to the submanifold. Using the fact that X
and φX are horizontal, we have

g(Z1 + Z2, [X, φX ]) = (α1 + α2)([X, φX ]) = −2(dα1 + dα2)(X, φX) = 2g(X, X) = 2.

Replacing Z1 + Z2 by (cos θ1 + sin θ1)ζ + (cos θ1 − sin θ1)Jζ and using 0 ≤ θ1 < π/2 we
obtain

g([X, φX ], ζ ) = 2

cos θ1 + sin θ1

because Jζ is orthogonal to the submanifold. Then we have

[X, φX ] = 2

cos θ1 + sin θ1
ζ + Y (2)

for some Y horizontal and tangent to the submanifold. By step 1, since X , φX and Y are
horizontal and tangent to N ′, we get X (θ1) = φX (θ1) = 0, then [X, φX ](θ1) = 0 and also
Y (θ1) = 0. Hence, (2) implies that along N ′

ζ(θ1) = 0.

Finally by steps 2 and 3 the function θ1 is locally constant on the open set N ′.
Stage 2:
Let N ′′ be the complement set of the open set N ′ in N , that is, the set of the points of N
where Z2 is tangent to N . At these points, Z1 is not tangent to N , and the function θ2 is well
defined on an open set of N containing N ′′. By the same arguments as before, θ2 is locally
constant, giving that N ′′ is open because it consists on the vanishing points of θ2. By the
connectedness of N , we have that N ′′ is empty and

N = N ′.

Now the function θ1 is well defined and constant on the whole N , and of course Z2 is
everywhere transverse to the submanifold, completing the proof. ��

A first immediate consequence of our Lemma 3, using Proposition 3, is the following
theorem which describes all possible relative positions of a φ-invariant submanifold with
respect to both the Reeb vector fields.

Theorem 2 Let N be a connected φ-invariant submanifold of a metric contact pair with
decomposable φ. Then N satisfies one of the following properties:

1. N is even-dimensional and tangent to both Reeb vector fields.
2. N is one-dimensional and contained in one of the two-dimensional leaves of the vertical

foliation.
3. N is of odd dimension≥3 everywhere tangent to one Reeb vector field Z1 and orthogonal

to the other one Z2, or vice versa.
4. N is of odd dimension ≥3, nowhere tangent and nowhere orthogonal to the Reeb vector

fields making two constant angles with them.

Remark 2 Except the one-dimensional case, a φ-invariant submanifold of a metric contact
pair with decomposable φ always makes a constant angle with each of the two Reeb vector
fields.
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4 Minimality

We now turn to our main result on minimality of φ-invariant submanifolds of normal metric
contact pairs with orthogonal characteristic foliations.

Theorem 3 Any φ-invariant submanifold of dimension ≥2 of a normal metric contact pair
with decomposable φ is minimal.

Proof Consider a connected φ-invariant submanifold N of a normal metric contact pair with
decomposable φ. When the dimension of N is ≥2, N satisfies one of the cases (1), (3) or (4)
enumerated in Theorem 2. Take then the question case by case and use some partial results
from [7] to conclude. Assume that N has even dimension (Case 1). Then it is tangent to both
the Reeb vector fields and one can readily show that N is also J -invariant. Moreover, the
normality of the metric contact pair implies the integrability of J . By Bande and Hadjar [7],
when J is integrable a J -invariant submanifold is minimal if and only if it is tangent to the
Reeb distribution. So this applies to N and then N is minimal.

Another result from [7] states that, on a normal metric contact pair with decomposable φ,
a φ-invariant submanifold tangent to one Reeb vector field and orthogonal to the other one
(Case 3) is minimal.

For the very remaining possible case (Case 4), i.e.,when N is leaning,we use the following.
On a normal metric contact pair with decomposable φ, a φ-invariant leaning submanifold is
minimal if and only if the angle between one Reeb vector field, say Z1, and its tangential
part ZT

1 is constant along the line curves of ZT
1 (see [7]). Now by Lemma 3, for our case this

angle is constant on the whole N , and then, N is minimal. ��
Observe that by Proposition 3, a connected one-dimensional submanifold is φ-invariant

if and only if it is contained in one leaf of the vertical foliation V . This foliation is totally
geodesic and the geodesics are integral curves of nonzero vertical vector fields c1Z1 + c2Z2

with ci constant functions, since we have ∇Zi Z j = 0 for i, j = 1, 2 (see [4]). Hence, for the
Case 2 of Theorem 2 we have

Theorem 4 A connected one-dimensional φ-invariant submanifold of a metric contact pair
is minimal if and only if it is tangent to a vector field of the form c1Z1 + c2Z2 with ci real
numbers.

This means that minimal one-dimensional φ-invariant submanifolds are exactly vertical
geodesics.

5 Induced structures on φ-invariant submanifolds

In general, an even-dimensional φ-invariant submanifold of a metric contact pair does not
inherit necessarily a contact pair structure [7]. Anyway we can observe that it still carries
some interesting structure.

Proposition 4 On a metric contact pair a φ-invariant submanifold N tangent to both Reeb
vector fields carries a metric f -structure with two complemented frames. A normal metric
contact pair on the ambient manifolds induces a K-structure on N.

Here the notion of f -structure is meant in the sense of Yano [21] with f = φ restricted
to N , and the complemented frames are the restrictions of the Reeb vector fields to N . For
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the definition of K-structure, see [10]. The proof of this proposition is a straightforward
computation and will be omitted.

For the odd-dimensional case, whenφ is decomposable, aφ-invariant submanifold tangent
to oneReeb vector field and orthogonal to the other one inherits a contactmetric structure, and
it is Sasakian when the metric contact pair is normal [11]. The following statement concerns
the remaining class of φ-invariant submanifolds, i.e., those which are leaning.

Theorem 5 Let (M, α1, α2, φ, g) be a metric contact pair of type (h, k) with decomposable
φ, and N a φ-invariant submanifold of M of dimension 2n + 1 ≥ 3 nowhere tangent and
nowhere orthogonal to the Reeb vector fields Z1 and Z2 (then h ≥ n and k ≥ n). Set
ζ = 1

‖ZT
1 ‖ Z

T
1 and ω = g(ζ, ·) along N, where ZT

1 is the tangential part of Z1. Then

1. ω induces a contact form on N with Reeb vector field ζ ,
2. (φ, ζ, ω, g) induces an almost contact metric structure on N, which is not contact metric.

If the metric contact pair is normal, the induced almost contact structure on N is normal.

For an almost contact manifold (N , ω, ζ, φ), we use the terminology of [9]. A metric
is said to be associated when g(X, ζ ) = ω(X) and g(X, φY ) = dω(X, Y ) for all X, Y ,
while compatible means just that g(φX, φY ) = g(X, Y ) − ω(X)ω(Y ) for all X, Y . By the
conclusion (2) in our Theorem 5, the induced metric is compatible but it is not associated.
Actually at each point of N , we have g(X, φY ) 	= dω(X, Y ) for some X, Y tangent to N at
the same point.

Proof As we know ζ = (cos θ1)Z1 + (sin θ1)Z2 for some constant function θ1 with 0 <

θ1 < π/2, this gives along N

ω = (cos θ1)α1 + (sin θ1)α2.

The 1-form ω induces a contact form on N when for all X tangent to N , ω(X) = 0 and
iXdω = 0 imply that X = 0. Take any X tangent to N such that ω(X) = 0; then, X is
orthogonal to ζ so that X is horizontal. Put X = X1 + X2 with Xi ∈ H∩ TF j , for j 	= i . If
in addition iXdω = 0, we have

0 = −dω(X, φX) = −(cos θ1)dα1(X, φX) − (sin θ1)dα2(X, φX)

= −(cos θ1)dα1(X1, φX1) − (sin θ1)dα2(X2, φX2)

= −(cos θ1)(dα1 + dα2)(X1, φX1) − (sin θ1)(dα1 + dα2)(X2, φX2)

= (cos θ1)‖X1‖2 + (sin θ1)‖X2‖2.

Now since cos θ1 > 0 and sin θ1 > 0, we get X1 = X2 = 0 and then X = 0 as desired.
Hence, ω induces a contact form on N .

It is clear that ω(ζ ) = 1. We also have iζ dω = 0 because ζ is vertical and then lying in
the kernels of dα1 and dα2. Hence, ζ is the Reeb vector field of the contact form on N .

To prove that φ2 = −I + ω ⊗ ζ , first remark that φζ = 0 and ω(ζ ) = 1. Next any X
tangent to N and orthogonal to ζ is horizontal and then satisfies φ2X = −X = −X+ω(X)ζ .
Hence, (φ, ζ, ω) induces an almost contact structure on N .

To get the compatibility of the metric with the almost contact structure, we need to prove
that g(φX, φY ) = g(X, Y ) − ω(X)ω(Y ) for every X and Y tangent to N . Such a vector
X decomposes as X = ω(X)ζ + XH for some horizontal vector XH tangent to N , and the
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same for Y . Replacing in g(φX, φY ) = g(X, Y ) − α1(X)α2(Y ) − α1(Y )α2(X), we obtain

g(φX, φY ) = g(X, Y ) − α1(ω(X)ζ )α2(ω(Y )ζ ) − α1(ω(Y )ζ )α2(ω(X)ζ )

= g(X, Y ) − ω(X)ω(Y )
(
α2
1(ζ ) + α2

2(ζ )
)

= g(X, Y ) − ω(X)ω(Y )

Hence, (φ, ζ, ω, g) induces an almost contact metric structure on N .
Now we prove that the induced metric is not associated. Since N is of dimension ≥3,

at every point of N there exists a nonzero vector X tangent to N and orthogonal to ζ .
By Theorem 1, X = X1 + X2 with Xi nonzero horizontal and tangent to F j , for j 	= i .
Choosing Y = φX let us compare g(X, φY )with dω(X, Y ). On the one hand−g(X, φY ) =
g(X, X) = ‖X1‖2 + ‖X2‖2, and on the other hand as before we have

−dω(X, Y ) = −dω(X, φX)

= (cos θ1)‖X1‖2 + (sin θ1)‖X2‖2.
The difference being (1 − cos θ1)‖X1‖2 + (1 − sin θ1)‖X2‖2 > 0, we get g(X, φY ) 	=
dω(X, Y ). Hence, the metric is not associated for the almost contact structure of N .

When the contact pair structure (α1, α2, φ) is normal, for every X and Y tangent to N we
have

[φ, φ](X, Y ) + 2dα1(X, Y )Z1 + 2dα2(X, Y )Z2 = 0

and for its orthogonal projection on N using the φ-invariance of N we get

0 = [φ, φ](X, Y ) + 2(cos θ1)dα1(X, Y )ζ + 2 sin(θ1)dα2(X, Y )ζ

= [φ, φ](X, Y ) + 2dω(X, Y )ζ,

which means that the almost contact structure on N is normal. This completes the proof.
��

We can summarize our discussion above concerning the induced structures on φ-invariant
manifolds as follows.

Theorem 6 Let (M, α1, α2, φ, g) be a metric contact pair with decomposable φ and Reeb
vector fields Z1 and Z2, and N a connected φ-invariant submanifold of M of dimension ≥2.

1. When N has even dimension, it inherits a metric f -structure with two complemented
frames.

2. Suppose that N has odd dimension. Along N let ζ be the normalized vector field of a
nonzero vector field among ZT

1 and ZT
2 (the tangential parts of Z1 and Z2), and set

ω = g(ζ, ·). Then
(a) ω induces a contact form on N with Reeb vector field ζ , and (φ, ζ, ω, g) induces an

almost contact metric structure on N.
(b) the induced almost contact metric on N is contact metric if and only if N is tangent

to one Reeb vector field and orthogonal to the other one.

In all cases, if the metric contact pair on M is normal, the induced structure on N is normal.

6 Characteristic leaves of dα1 and dα2

Consider a metric contact pair (M, α1, α2, φ, g) of type (h, k) with decomposable φ and
Reeb vector fields Z1 and Z2. In [4], it has been shown that the two-dimensional vertical
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foliation V tangent to the Reeb distribution is totally geodesic. Actually, this is even true
in general for any compatible metric g with respect to a contact pair structure (α1, α2, φ)

without decomposability condition on φ. It is also known that the characteristic foliationsF1

and F2 of the 1-forms α1 and α2, respectively, are orthogonal, and their leaves are minimal
[6].

Now recall the existence of two other remarkable foliations in the manifold M , which
are the characteristic foliations G1 and G2 of the 2-forms dα1 and dα2, respectively. Their
corresponding subbundles are

TGi = {X : dαi (X, Y ) = 0 ∀Y }, i = 1, 2.

Each leaf of G1 (respectively, G2) inherits a metric contact pair of type (0, k) (respectively,
(h, 0)), and is foliated by leaves ofV and also by leaves ofF1 (respectively,F2) [4].Moreover,
the leaves of G1 and G2 are φ-invariant and tangent to both Z1 and Z2, and we have the
following minimality theorem.

Theorem 7 On a metric contact pair (M, α1, α2, φ, g) with decomposable φ, the leaves of
the characteristic foliations G1 and G2 of the 2-forms dα1 and dα2 are minimal.

By normality condition on the metric contact pair of the ambient manifold M , it has been
shown in [7] that the leaves of G1 and G2 are minimal. In our theorem, the normality condition
is not needed.

Proof To prove the minimality of the leaves of G1 in the Riemannian manifold (M, g), we
use the minimality criterion of Rummler [18]. If the type numbers of the contact pair are
(h, k), the dimension of this foliation is 2k + 2. The volume element of the metric g can be
written as [6]

dV = (−1)h+k

2h+kh!k!α1 ∧ (dα1)
h ∧ α2 ∧ (dα2)

k,

so that the characteristic (2k+2)-form of the foliation G1 is, up to a constant, ω = α1 ∧α2 ∧
(dα2)

k . Since the Reeb vector field Z1 is tangent to the foliation G1 and

iZ1dω = iZ1

(
dα1 ∧ α2 ∧ (dα2)

k
)

= 0,

the characteristic (2k + 2)-form of the foliation G1 is closed on the subbundle TG1, giving
that the leaves of G1 are minimal. The same argument applies to G2, completing the proof.

��
Example 5 In Example 1 the characteristic subbundle TG1 of dα1 (respectively, TG2 of dα2)
is spanned by Y1, Y2, Y4 and Y6 (respectively, Y1, Y2, Y3 and Y5). Observe that the leaves of
G2 are totally geodesic while those of G1 are minimal but not totally geodesic.

7 Metric contact pairs of type (h, 0)

On a metric contact pair with decomposable endomorphism φ the leaves of the two char-
acteristic foliations are φ-invariant submanifolds. They are minimal and a priori they are
not totally geodesic [6]. However, when the contact pair is of type (h, 0), we can state the
following.

Theorem 8 Consider a metric contact pair (M, α1, α2, φ, g) of type (h, 0) and Reeb vector
fields Z1 and Z2. If Z2 is Killing, then the metric contact pair M is locally the product of a
contact metric manifold with R.
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We observed that P-manifolds of Vaisman are metric contact pairs of type (h, 0) where
Reeb vector fields are Killing. Theorem 8 is a generalization to metric contact pairs of a result
stated for P-manifolds by Vaisman [19].

Proof The two characteristic foliations are orthogonal and complementary. The leaves ofF1

are the integral curves of Z2 which are geodesics [4]. We have just to prove that the leaves
of F2 are totally geodesic. Any leaf F of F2 is a submanifold of codimension one, and the
vector field Z2 restricted to F is the normal to the leaf. When Z2 is Killing, any geodesic γ

of (M, g) starting from a point p of F and tangent to F at p satisfies

γ̇ g (γ̇ , Z2) = g
(∇γ̇ γ̇ , Z2

) + g
(
γ̇ ,∇γ̇ Z2

) = 0.

Therefore, g(γ̇ , Z2) = 0 because γ̇ and Z2 are orthogonal at p. Hence, the geodesic γ

remains in the leaf F . ��
Here we used the simple fact that on a Riemannian manifold an immersed hypersurface
normal to a Killing vector field is totally geodesic.

We know that the normality of a metric contact pair implies that the Reeb vector fields are
Killing [2]. The following corollary is an immediate consequence of our previous theorem,
and it has been already stated in equivalent terms of PK-manifolds (nowadays called non-
Kähler Vaisman manifolds) by Vaisman.

Corollary 1 (Vaisman [19])A normal metric contact pair of type (h, 0) is locally the product
of a Sasakian manifold with R.

8 Comments

As we said in Remark 1, a normal metric contact pair is a special metric f -structure with
two complemented frames. A manifold carrying such a structure has even dimension and the
two corresponding frames are nothing but the Reeb vector fields Z1 and Z2 of the contact
pair. There are many papers studying submanifolds of f -manifolds. Among them, we can
cite [1,12,14,16,17].

The φ-invariant submanifolds, of metric contact pairs, for which the results of these papers
may apply are all Cauchy–Riemann submanifolds tangent to the Reeb distribution spanned
by Z1 and Z2, and then of even dimensions. In our work, the main results concern only
φ-invariant submanifolds of odd dimensions with their tangent bundles intersecting the Reeb
distribution along a line bundle.
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