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Abstract In this paper, we estimate the area of the graph of a map u : Ω ⊂ R
2 → R

2

discontinuous on a segment Ju, with Ju either compactly contained in the bounded open set
�, or starting and ending on ∂�. We characterize A∞

(u,Ω), the relaxed area functional in
a sort of uniform convergence, in terms of the infimum of the area of those surfaces in R

3

spanning the graphs of the traces of u on the two sides of Ju and having what we have called
a semicartesian structure. We exhibit examples showing that A(u,Ω), the relaxed area in
L1(Ω;R2), may depend on the values of u far from Ju and also on the relative position of
Ju with respect to ∂Ω . These examples confirm the highly non-local behavior ofA(u, ·) and
justify the interest in the study of A∞

. Finally we prove that A(u, ·) is not subadditive for a
rather large class of discontinuous maps u.
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1 Introduction

Given a bounded open set Ω ⊂ R
2 = R

2
(x,y) and a map v := (v1, v2) : Ω → R

2 = R
2
(ξ,η)

of class C1, the (nonparametric) area functional is defined as

A(v,Ω) :=
∫

Ω

|M(∇v)| dx dy,

where ∇v is the Jacobian matrix of v, M(ζ ) is the vector of R6 having as entries the deter-
minant of all minors1 of the (2 × 2)-matrix ζ , and | · | denotes the Euclidean norm: hence,

|M(∇v)| =
√
1 + |∇v1|2 + |∇v2|2 + (

∂xv1∂yv2 − ∂yv1∂xv2
)2.

The functional A(·,�) is polyconvex [5] and A(v,�) is the area of

graph(v) := {(x, y, ξ, η) : (x, y) ∈ Ω, (ξ, η) = v(x, y)} ⊂ R
4 := R

2
(x,y) × R

2
(ξ,η),

a smooth two-dimensional manifold of codimension two.
For the purposes of the modern calculus of variations, it is useful to extend the area

functional also to non-smoothmaps. A rather natural idea consists in considering its L1-lower
semicontinuous envelope (or L1-relaxed functional) [1,7,9,10]; thus, for any v ∈ L1(Ω;R2),
we set

A(v,�) := inf

{
lim inf
h→+∞ A(vh,Ω)

}
,

where the infimum is taken among all sequences (vh) ⊂ C1(Ω;R2) converging to v in
L1(Ω;R2). The aim of the present paper is to studyA(v,�) for certain classes of non-smooth
maps v. As we shall see, another (i.e., with respect to a different and stronger convergence)
relaxed functional will be of interest, in this two-codimensional situation.

In [1, Theorem 3.7] it is proven that the domain of A(·,�) is contained2 in the space
BV(Ω;R2) of maps with bounded variation in �, and for any v ∈ BV(Ω;R2) it turns out
that

A(v,Ω) ≥
∫

Ω

|M(∇v)| dx dy + |Dsv|(Ω),

where∇v and Dsv denote the absolutely continuous and the singular part of the distributional
gradient Dv, respectively.Moreover, in [1, Theorem6.4] the subset of BV(Ω;R2) of all maps
v for which

A(v,Ω) =
∫

Ω

|M(∇v)| dx dy < +∞

is characterized; from now onwe shall use the symbolA in place ofA to denote the area of the
graph of a map in this class. It is worth to notice that A(v,Ω) = ∫

Ω
|M(∇v)| dx dy < +∞

for every v ∈ H1(Ω;R2).
One of the major issues on the functional A(v, ·) is its non-subadditivity [7]. In [1, The-

orems 4.1 and 5.1] the authors exhibit two examples of maps v for which there exist three
bounded open sets Ω1, Ω2, and Ω3 such that Ω3 ⊂⊂ Ω1 ∪ Ω2 and

A(v,Ω3) > A(v,Ω1) + A(v,Ω2). (1.1)

1 Including the minor of order 0, whose determinant is by definition taken equal 1.
2 This inclusion is strict. For example, consider the map u(x) = x

|x|3/2 , for x in the unit disk B1((1, 0))

centered at (1, 0). Since u ∈ C1(B1((1, 0));R2) ∩ W 1,1(B1((1, 0));R2), it belongs to BV(B1((1, 0));R2).
Nevertheless det(∇u) is not integrable, and thus A(u, B1((1, 0)) = +∞.
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Semicartesian surfaces and the relaxed area of maps from... 2133

In the first theorem v = uT ∈ BV(Ω;R2), a piecewise constant map taking three non-
collinear values around a triple point, while in the second one3 v(x, y) = uV (x, y) := (x,y)

|(x,y)|
(vortex map), and thus v ∈ W 1,p(Ω;R2) for any p ∈ [1, 2). Notice that inequality (1.1)
implies thatA(v,�) cannot be written as an integral, over �, of a local integrand, integrated
with respect to some measure; recall that, on the contrary, this integral representation holds
in codimension one (see [6,11,12]).

In [3] the authors provide an upper bound forA(uT ,Ω) that improves the estimate of [1].
They are able to control the singular contribution of the relaxed area functional, namely

A(uT ,Ω) −
∫

Ω

|M(∇uT )| dx dy,

through the area of a suitable graph-type area-minimizing two-dimensional surface of codi-
mension one, entangled at the triple point with two other similar surfaces.

In [4], the authors explore further the idea of estimating the above-mentioned singular
contribution through the area of solutions of a suitable Plateau’s-type problem in R

3. More
specifically, they study the case of a map u that is regular enough out of a simple smooth jump
curve Ju compactly contained in Ω . Then they consider the closed curve Γ = Γ [u] ⊂ R

3,
supposed to be simple, obtained as the union of the graphs of the traces of u on the two sides
of Ju; the regularity of u implies the existence of an area-minimizing immersion Xmin ∈
C2(B;R3)∩Cω(B;R3), mapping the boundary of the unit disk B monotonically onto Γ , see
for example [13] and [8]. In [4, Theorem 4.1] it is proven that, if 
min := Xmin(B) admits a
semicartesian parametrization, then

A(u,Ω) ≤
∫

Ω

|M(∇u)| dx dy + H2(
min), (1.2)

whereH2 denotes the two-dimensional Hausdorff measure. AmapΦ : O → R
3, O ⊂ R

2
(t,s)

a bounded, open, connected and simply-connected set, is said to be semicartesian if it is the
identity in the first coordinate, that is if Φ(t, s) := (t, Φ2(t, s),Φ3(t, s)), see Definition
2.3 for more details. In [4, Theorem 5.1] sufficient conditions on Γ , i.e., Γ analytic with
further non-degeneracy hypotheses, are given in order that 
min admits a semicartesian
parametrization, and it is also conjectured that (1.2) could be an equality, at least when Ju
is far enough from ∂Ω . With the methods employed in [4], it seems not easy to weaken
the analyticity and non-degeneracy assumptions (a part from the case when Γ admits a
graph-type solution of the corresponding Plateau’s problem).

In this paper, we continue the analysis on the singular contribution of the nonparametric
area functional formapsu having a line discontinuity Ju, in terms of suitable area-minimizing
semicartesian surfaces. We shall analyze both the case when Ju is compactly contained in Ω

as well as when both its endpoints belong to ∂Ω . These two cases are quite different from
each other; in particular, as we shall see, the latter turns out to be related to minimal surfaces
with a partially free boundary. Notice that we do not suppose a priori that the union of the
graphs of the traces of u on Ju is a Jordan curve. Since we deal with maps with Lipschitz
traces, even when Γ is a Jordan curve, it does not satisfy the sufficient conditions of [4] that
guarantee the existence of a semicartesian parametrization for a solution of the corresponding
Plateau’s problem.

Before stating our main results, we need to fix some notation and give some definitions,
referring to Sect. 2 for the details.

3 The authors prove the result in dimension n ≥ 3, but their proof holds also when n = 2.
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2134 G. Bellettini et al.

Given two maps γ ± ∈ Lip([a, b];R2), we consider their graphs Γ ± ⊂ R
3 := Rt ×

R
2
(ξ,η). Let R := (a, b) × (−1, 1) ⊂ R2

(t,s). We denote by semicart(R;Γ −, Γ +) the class of

semicartesian maps on R spanning Γ := Γ − ∪Γ +, that is the class of mapsΦ ∈ H1(R;R3)

such that
Φ(t, s) := (t, Φ2(t, s),Φ3(t, s)), Φ(t,±1) = (t, γ ±(t)).

In particular, Φ(R) is a surface that intersects any plane {t} × R
2
(ξ,η) in a (not necessarily

simple) curve connecting the points (t, γ −(t)) and (t, γ +(t)), for any t ∈ [a, b].
Since semicart(R;Γ −, Γ +) is non-empty (Lemma 2.8), we can define

m(R;Γ −, Γ +) := inf
Φ∈semicart(R;Γ −,Γ +)

∫
R

|∂tΦ ∧ ∂sΦ| dt ds. (1.3)

If Γ is a closed (not necessarily simple) curve, we can consider also another class of maps.
Let

D := {(t, s) ∈ R
2 : t ∈ (a, b), s ∈ (σ−(t), σ+(t))},

with σ± ∈ Lip([a, b]), σ−(t) < 0 and σ+(t) > 0 for t ∈ (a, b) and σ±(a) = 0 =
σ±(b). Then semicart(D;Γ −, Γ +) denotes the class of semicartesian maps defined on D
and spanning Γ := Γ − ∪ Γ +, that is maps Φ ∈ H1(D;R3) such that

Φ(t, s) := (t, Φ2(t, s),Φ3(t, s)), Φ(t, σ±(t)) = (t, γ ±(t)).

For such a Φ, the image Φ(D) is a surface whose intersection with any plane {t} × R
2
(ξ,η),

t belonging to the open interval (a, b), is a curve connecting (t, γ −(t)) and (t, γ +(t)), but
whose intersection with the plane {a} × R

2
(ξ,η) (resp. with {b} × R

2
(ξ,η)) is the singleton

(a, γ −(a)) (resp. (b, γ −(b))).
Also semicart(D;Γ −, Γ +) is non-empty and then we can define

m(D;Γ −, Γ +) := inf
Φ∈semicart(D;Γ −,Γ +)

∫
D

|∂tΦ ∧ ∂sΦ| dt ds.

We observe that when Γ is closed, m(R;Γ −, Γ +) ≤ m(D;Γ −, Γ +), since a surface
that is image of a map in semicart(D;Γ −, Γ +) can be obtained also as the image of a map in
semicart(R;Γ −, Γ +) (see (2.6)). If Γ is closed and simple we could ask about the relations
between m(D;Γ −, Γ +), m(R;Γ −, Γ +), and a(Γ ), the area of a solution of the classical
Plateau’s problem for Γ . In general a(Γ ) ≤ m(D;Γ −, Γ +), but one could expect also that
the equal sign holds (see Remark 2.11), while we exhibit in Example 2.13 a curve Γ for
which

m(R;Γ −, Γ +) < a(Γ ).

In the study of the L1-lower semicontinuous envelope of the area functional A(·,�), it
would be important to have an L1-lower semicontinuity result for m(R; ·, ·), compare also
with Remark 4.7. More precisely, if Γ ± := graph(γ ±), Γ ±

h := graph(γ ±
h ) with γ ±, γ ±

h ∈
Lip([a, b];R2), it would be desirable to prove that

m(R;Γ −, Γ +) ≤ lim inf
h→+∞ m(R;Γ −

h , Γ +
h ) (1.4)

whenever γ ±
h → γ ± in L1((a, b);R2). We are able to prove (1.4) only under the further

assumption that
sup
h∈N

||γ̇ ±
h ||L∞((a,b);R2) < +∞. (1.5)
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Semicartesian surfaces and the relaxed area of maps from... 2135

This is, in some sense, coherent with the lower semicontinuity of a(·) with respect to the
Fréchet convergence (see [8,13, §301]); we shall show that a(·) is not lower semicontinuous
with respect to the L1-convergence, see Example 4.8 for the details. Proving the validity
of (1.4) without assuming (1.5) seems not to be easy and would imply a characterization
of A(u,�) for certain non-smooth maps u. The lack of a proof of (1.4) under the mere
L1-convergence forced us to define another extension of the functionalA(·,�) with respect
to a stronger notion of convergence, that we now describe.

Definition 1.1 (Uniform convergence out of a closed set) Let v ∈ BV(�;R2) and J ⊂ Ω be
a closed set with zero Lebesgue measure. A sequence (vh) ⊂ L1(Ω;R2) is said to converge
to v uniformly out of J , if vh → v uniformly in any compact set of Ω\J , as h → +∞.

We shall always consider maps u ∈ BV(�;R2) so that, at any point of the (approximate)
jump set [2], the approximate two-sided limits, denoted by u±, coincide with the pointwise
two-sided limits, and from now on, with a small abuse of notation, Ju stands for the closure
in � of the set {(x, y) ∈ Ω : u−(x, y) �= u+(x, y)}.

We are now in a position to define another notion of relaxation of the area functional.

Definition 1.2 (The functional A∞
) For any v ∈ BV(Ω;R2) we define

A∞
(v,Ω) := inf

{
lim inf
h→+∞ A(vh,Ω)

}
,

where the infimum is taken among all sequences (vh) ⊂ C1(Ω;R2) converging to v in
L1(Ω;R2) and uniformly out of Jv.

It is clear that
A∞

(v,Ω) ≥ A(v,Ω), v ∈ BV(Ω;R2).

For every v in the domain of the functional A(·,Ω) it is also worth to define the singular
parts

As(v,Ω) := A(v,Ω) −
∫

Ω

|M(∇v)| dx dy,

A∞
s (v,Ω) := A∞

(v,Ω) −
∫

Ω

|M(∇v)| dx dy.

The aim of this paper is to study the functionals As and A∞
s , and also to characterize

A∞
s (u,Ω), for u in a suitable class of maps.

1.1 Main results

We shall consider two rather different cases:Ω and u satisfying either condition I or condition
II (see Definitions 2.15 and 2.16, respectively). Condition I takes into account maps u ∈
W 1,∞(Ω\Ju;R2) having as jump set Ju a horizontal segment with both endpoints belonging
to ∂Ω; namely, the fracture “traverses” the whole domain �. Condition II deals with maps
u ∈ W 1,∞(Ω\Ju;R2) with Ju ⊂⊂ Ω . We denote by

Γ ±[u]
the graphs of the traces of u on the two sides of Ju (Sect. 2.1).

Our first result characterizes the lower semicontinuous envelope of A in the sense of
Definition 1.2.
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2136 G. Bellettini et al.

Theorem 1.3 (I: characterization of A∞
) Let Ω and u satisfy condition I. Then

A∞
s (u,Ω) = m(R;Γ −[u], Γ +[u]). (1.6)

The inequality A∞
s (u,Ω) ≤ m(R;Γ −[u], Γ +[u]) is obtained using the same strategy pro-

posed in [4], and it is proven in Proposition 3.1. The proof of the converse inequality (lower
bound), presented in Sect. 4, is more interesting. As already noticed, in order to prove this
inequality we use a lower semicontinuity result for m(R; ·, ·) with respect to a convergence
that is stronger than the one induced by the L1-convergence, see Definition 1.1. Since we
miss the proof of the L1((a, b);R2)-lower semicontinuity of m(R; ·, ·), we are not able to
conclude the reasonable conjecture that As(u,Ω) = m(R;Γ −[u], Γ +[u]), for Ω and u
satisfying condition I and such that Γ −[u] ∩ Γ +[u] = ∅.

When Ω and u satisfy condition II the situation is less clear. The proof of the next result
is given in Proposition 5.1 and Theorem 6.1.

Theorem 1.4 (II: characterization of A∞
) Let Ω and u satisfy condition II. Then

A∞
s (u,Ω) = m(D;Γ −[u], Γ +[u]).

What is interesting is that it may happen that

As(u,Ω) < m(D;Γ −[u], Γ +[u]),
and thus there exist Ω and u for which

A(u,Ω) < A∞
(u,Ω).

In Sect. 7 we collect some examples proving that sequences (uh) converging to u only in
L1(Ω;R2) can bemore “convenient” than any other sequence converging to u also uniformly
out of Ju. More specifically, in Sect. 7.1 we adapt to our case the construction used in [1,
Lemma 5.3] concerning the area of the graph of the vortex map uV . The singular contribution
of the area that we obtain can be interpreted as the area of a semicartesian parametrization
defined on a suitable rectangle and spanning the graphs of the traces of u on a suitable
extension Jext of Ju that reaches ∂Ω . Example 7.4 proves that this construction can possibly
provide an upper bound lower than m(D;Γ −[u], Γ +[u]). This suggests that it could be
convenient to “extend” Ju up to the boundary by what we have called a virtual jump. As
observed in Remark 7.5, we can manipulate the result in Example 7.4 and show that, if Ju
has two connected components, the virtual jump could join one connected component to the
other, instead of joining Ju to ∂Ω . In Sect. 7.2 we exhibit an example where it is even more
convenient to consider a virtual jump connecting an internal point of Ju to ∂Ω .

All these examples reveal that the singular contribution of the area functional depends not
only on the values of u near the jump set, but also on the values of u far from the jump and
on the position of the jump with respect to ∂Ω , confirming the deep non-local behavior of
A(u, ·).

Our last result, Theorem 8.1, concerns the non-subadditivity ofAwith respect of the open
set.

Theorem 1.5 There exist Ω and u satisfying condition I such that A(u, ·) is not subadditive.

The class of maps u for which Theorem 8.1 holds is rather large, and those maps can be
written explicitly (see (8.1)). From Theorem 1.5, one deduces that the non-local character
of A(u, ·) is not necessarily due to the presence of a vortex or of a triple junction, but it is a
much more general fact.
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We underline that in order to prove Theorem 1.5 we do not use the results in Sects. 4–6,
but only the upper bound in Proposition 3.1, and some (limited) results concerning cartesian
currents (Proposition 8.6).

The plan of the paper is the following. In Sect. 2 we introduce the definitions and the main
properties concerning the semicartesian setting, and we fix the hypotheses on the class of
maps we consider in this work. In Sects. 3 and 4, we prove the upper and the lower bound
that, coupled together, yield the proof of Theorem 1.3. Section 4 contains also the discussion
on the semicontinuity of m(R; ·, ·). Sections 5 and 6 deal with the case whereΩ and u satisfy
condition II and contain the proof of the upper and the lower bound needed to prove Theorem
1.4. In Sect. 7, we exhibit some examples of pairs (Ω,u) for which A(u,Ω) < A∞

(u,Ω).
Finally in Sect. 8 we prove the non-subadditivity of A(u, ·) for a rather large class of maps.

2 Semicartesian structure

Let us start with some definitions. From now on we take a, b ∈ R = Rt , with a < b.

Definition 2.1 (Union of two graphs) Let Γ ⊂ R
3 = Rt ×R

2
(ξ,η); we say that Γ is union of

two graphs on [a, b] if Γ = Γ − ∪ Γ +, where Γ ± := graph(γ ±) with γ ± ∈ C([a, b];R2) ∩
Liploc((a, b);R2). We say that Γ is union of two Lipschitz graphs on [a, b] if furthermore
γ ± ∈ Lip([a, b];R2).

Remark 2.2 Depending on the values of γ ± at t = a and t = b, Γ could be either a closed
curve, or an open curve, or the union of two open curves. Notice that we do not exclude that
γ −(t) = γ +(t) for some t ∈ (a, b). We shall be mostly interested in the cases when either
Γ is closed, or when γ −(a) �= γ +(a) and γ −(b) �= γ +(b). The latter case will be related to
a partially free boundary problem.

Definition 2.3 (Semicartesian map) A semicartesian map on O is a continuous map Φ :
O → R

3 of the form

Φ(t, s) = (t, φ(t, s)) = (t, φ1(t, s), φ2(t, s)), (t, s) ∈ O, (2.1)

where
O := {(t, s) ∈ R

2 : σ−(t) < s < σ+(t), t ∈ (a, b)},
with σ± ∈ C([a, b]) ∩ Liploc((a, b)) and σ− < σ+ in (a, b).

If we need to stress the dependence on the functions σ±, we shall use the notation O =
[[σ−, σ+]].
Definition 2.4 (Semicartesian parametrizations) Given Γ = Γ − ∪Γ + union of two graphs
on [a, b], Γ ± := graph(γ ±), a semicartesian parametrization spanning Γ is a pair (O, Φ)

where O = [[σ−, σ+]] andΦ is a semicartesianmap on O satisfying the boundary condition

Φ(t, σ±(t)) = (t, γ ±(t)), t ∈ [a, b].
We notice that, if γ −(a) �= γ +(a), the domain O = [[σ−, σ+]] of a semicartesian

parametrization (O, Φ) spanning Γ = Γ − ∪ Γ + has to satisfy σ−(a) < σ+(a). Similarly,
if γ −(b) �= γ +(b), necessarily σ−(b) < σ+(b). On the other hand, if γ −(a) = γ +(a),
we can in principle choose either a domain O such that σ−(a) = σ+(a) or such that
σ−(a) < σ+(a). The trace on the plane {t = a} of the image of Φ is, in the first case, just
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2138 G. Bellettini et al.

the point (a, γ −(a)); while in the second case, it is a not necessarily simple, closed, curve.
Similar considerations are valid at t = b.

In the following, we shall need more regularity on Φ, since we need the area of a semi-
cartesian parametrization to be finite; in Sects. 3 and 5 we will need Φ and its derivatives
to be square integrable, in order to build maps uh ∈ H1(Ω;R2). This is, in some sense,
coherent also with the classical theory of Plateau’s problem [8], where an area-minimizing
immersion of the disk is found by minimizing the Dirichlet functional.

Finally we will fix special domains O . In Lemma 2.14 we will show that this can be done
without loss of generality.

Definition 2.5 (The domains R and D) We set

R := (a, b) × (−1, 1),

namely R = [[σ−
R , σ+

R ]], with σ−
R ≡ −1 and σ+

R ≡ 1.
We also fix two maps σ± ∈ Lip([a, b]) so that σ− < σ+ on (a, b) and

– σ−(a) = σ+(a) = 0 and σ±(t) = O(t − a), for t ∈ (a, a + δ), δ > 0 small enough;
– σ−(b) = σ+(b) = 0 and σ±(t) = O(b − t), for t ∈ (b − δ, b), δ > 0 small enough,4

and we define
D := [[σ−, σ+]].

Definition 2.6 (The classes semicart) Let Γ = Γ − ∪ Γ + be union of two Lipschitz graphs
on [a, b]. We set

semicart(R;Γ −, Γ +) := {Φ ∈ H1(R;R3) :
(R, Φ) semicartesian parametrization spanning Γ },

semicart(D;Γ −, Γ +) := {Φ ∈ H1(D;R3) :
(D, Φ) semicartesian parametrization spanning Γ }.

Remark 2.7 (Area integrand for semicartesian maps) For a semicartesian map Φ as in (2.1)
belonging either to semicart(R;Γ −, Γ +) or to semicart(D;Γ −, Γ +), we have

|∂tΦ ∧ ∂sΦ| =
√

|∂sφ|2 + (∂tφ1∂sφ2 − ∂tφ2∂sφ1)2. (2.2)

The area of a semicartesian parametrization is therefore∫
|∂tΦ ∧ ∂sΦ| dtds =

∫ √
|∂sφ|2 + (∂tφ1∂sφ2 − ∂tφ2∂sφ1)2 dt ds,

where the domain of integration of the integrals is either R or D. If in particular φ1(t, s) =
s, the right hand side of (2.2) reduces obviously to

√
1 + |∂tφ2|2 + |∂sφ2|2, namely the

integrand of the area functional in the one-codimensional cartesian case.

Notice that, if Γ ± = graph(γ ±) with either γ −(a) �= γ +(a) or γ −(b) �= γ +(b), then
the class semicart(D;Γ −, Γ +) is empty.

Lemma 2.8 Let Γ = Γ − ∪ Γ + be union of two Lipschitz graphs on [a, b]. Then

semicart(R;Γ −, Γ +) �= ∅.

If in addition Γ is closed, then also semicart(D;Γ −, Γ +) �= ∅.

4 These growth assumptions are needed in order to prove that the linear interpolating map Φ�D defined in
Lemma 2.8, see (2.3), has the right regularity. Lemma 2.14 shows that this assumption is not restrictive.
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Proof Write Γ ± = graph(γ ±). Let us define the following R
2-valued Lipschitz continuous

linear interpolating map:

�R(t, s) := 1 − s

2
γ −(t) + 1 + s

2
γ +(t), (t, s) ∈ R.

Then �R(t,±1) = γ ±(t); thus the map Φ�R (t, s) := (t, �R(t, s)) belongs to
semicart(R;Γ −, Γ +).

Now, suppose that γ −(a) = γ +(a) and γ −(b) = γ +(b) (i.e., Γ is closed) and define

�D(t, s) :=
{

σ+(t)−s
σ+(t)−σ−(t) γ

−(t) + s−σ−(t)
σ+(t)−σ−(t) γ

+(t) (t, s) ∈ D,

γ ±(t) s = σ±(t), t ∈ [a, b].
Thus for (t, s) ∈ D

∂t�(t, s) = σ+(t) − s

σ+(t) − σ−(t)
γ̇ −(t) + s − σ−(t)

σ+(t) − σ−(t)
γ̇ +(t)

+ (γ +(t) − γ −(t))(σ̇+(t)σ−(t) − σ+(t)σ̇−(t))

(σ+(t) − σ−(t))2

− s(γ +(t) − γ −(t))(σ̇+(t) − σ̇−(t))

(σ+(t) − σ−(t))2
,

∂s�(t, s) = γ +(t) − γ −(t)

σ+(t) − σ−(t)
.

Since γ ± ∈ Lip([a, b];R2), the properties on σ± in Definition 2.5 ensure that∣∣∣∣γ
+(t) − γ −(t)

σ+(t) − σ−(t)

∣∣∣∣ ≤ C < +∞ t ∈ (a, a + δ),

and similarly for t ∈ (b − δ, b). Noticing also that |σ̇+σ− − σ+σ̇−| ≤ C(σ+ − σ−)

(for a possibly different positive constant C), and recalling that γ ± and σ± are Lipschitz
continuous, we get that ∂t�D and ∂s�D are bounded. It follows that the map

Φ�D (t, s) := (t, �D(t, s)) (2.3)

belongs to W 1,∞(D;R3), and in particular to semicart(D;Γ −, Γ +). ��
Remark 2.9 If γ +(t) = γ −(t) for some t ∈ (a, b), Φ�R (resp. Φ�D ) maps the segment
{t} × [−1, 1] (resp. {t} × [σ−(t), σ+(t)]) to the point (t, γ +(t)), hence it is not injective.
More generally, a semicartesian map could be possibly not injective even if γ −(t) �= γ +(t)
for every t ∈ (a, b).

As a consequence of Lemma 2.8, we can introduce the following quantities.

Definition 2.10 (Minimal values m) Let Γ = Γ − ∪ Γ − be union of two Lipschitz graphs
on [a, b]. We define

m(R;Γ −, Γ +) := inf
Φ∈semicart(R;Γ −,Γ +)

∫
R

|∂tΦ ∧ ∂sΦ| dt ds. (2.4)

If furthermore Γ is closed we define

m(D;Γ −, Γ +) := inf
Φ∈semicart(D;Γ −,Γ +)

∫
D

|∂tΦ ∧ ∂sΦ| dt ds. (2.5)
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It is worthwhile to observe that (2.4) may become a partially free boundary problem, on the
planes {t = a} and {t = b}.

Trivially, if Γ is closed, then

m(R;Γ −, Γ +) ≤ m(D;Γ −, Γ +).

Indeed, supposing without loss of generality that |σ±| < 1, we can find, for any Ψ ∈
semicart(D;Γ −, Γ +), a map Φ ∈ semicart(R;Γ −, Γ +) having the same area, defined as

Φ(t, s) :=

⎧⎪⎨
⎪⎩

Ψ (t, s) if (t, s) ∈ D,

γ +(t) if (t, s) ∈ R\D, s > 0,

γ −(t) if (t, s) ∈ R\D, s < 0.

(2.6)

Remark 2.11 (Semicartesian parametrizations and Plateau’s problem) The problem of the
existence of a minimum in (2.4) and (2.5) seems to be open and requires further investigation.
If Γ = Γ − ∪ Γ + is a closed simple curve, it is natural to compare m(D;Γ −, Γ +) with the
area a(Γ ) of a solution of the classical Plateau’s problem for Γ , that is an area-minimizing
immersion of the disk, that maps the boundary of the disk onto Γ monotonically, see for
instance [13] and [8]. It is possible5 to see that

m(D;Γ −, Γ +) ≥ a(Γ ). (2.7)

It is plausible that (2.7) holdswith equal sign, and thatm(D;Γ −, Γ +) is actually aminimum.
To substantiate these assertions, we recall that in [4] it is proven that solutions of the classical
Plateau’s problem admit a semicartesian parametrization ifΓ is an analytic curvewith further
non-degeneracy properties at (a, γ ±(a)) and (b, γ ±(b)) (a case that does not fit in our
setting). On the other hand, for what concerns the semicartesianmaps defined on the rectangle
R, even assuming that Γ is a closed simple curve, the existence of an area-minimizing
semicartesian parametrization in semicart(R;Γ −, Γ +) does not follow from the existence
of a solution for the Plateau’s problem. Indeed since the class of surfaces parametrized
by maps in semicart(R;Γ −, Γ +) strictly contains (due to the free boundary on the planes
{t = a} and {t = b}) the ones parametrized by maps in semicart(D;Γ −, Γ +), we could
expect that in general it contains also the class of surfaces considered in the classical setting.
Moreover, we shall prove that possibly a(Γ ) > m(R;Γ −, Γ +): in Example 2.12 we build a
semicartesian parametrization whose image is not in the class of surfaces considered for the
classical Plateau’s problem; in Example 2.13 we exhibit γ ± ∈ Lip([a, b];R2) such that the
union of their graphs is a Jordan curve for which the semicartesian parametrization built in
Example 2.12 has as area which is less than a(Γ ).

The next example is also strictly related to the construction made in Proposition 7.1.

Example 2.12 (Partially free boundary on {t = b}) Let γ ± ∈ Lip([a, b];R2) and suppose
that γ −(a) = γ +(a); let us denote byC the (connected) set γ −([a, b])∪γ +([a, b]) ⊂ R

2
(ξ,η).

In Fig. 1 we draw a case when γ + is not injective.
We want to define the map Φ ∈ semicart(R;Γ −, Γ +) which, for every t ∈ (a, b), maps

the segment {t} × [−1, 1] ⊂ R onto the portion of {t} × C bounded by the points (t, γ −(t))
and (t, γ +(t)) and containing (t, γ −(a)).

5 For instance, as a consequence of the Riemann mapping theorem.
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b

a

γ−(a) = γ+(a)

γ+(b)

γ−(b)

ξ

η

t

Fig. 1 Example 2.12. In the plane {0}×R
2
(ξ,η)

we represent the curve C; C is the projection of the curves Γ ±

(in bold) on the plane {0}×R
2
(ξ,η)

. In light gray we draw the copies of C in the planes {t}×R
2
(ξ,η)

, t ∈ [a, b].
The surface Φ(R) is the union of all portions of {t} × C bounded by (t, γ −(t)) and (t, γ +(t)), when t varies
in [a, b]

If for convenience we parametrize C by a curve γ ∈ Lip([−1, 1];R2), defined by

γ (λ) :=
{

γ −(−(b − a)λ + a) if λ ∈ [−1, 0],
γ +((b − a)λ + a) if λ ∈ (0, 1],

so that γ (−1) = γ −(b), γ (0) = γ −(a) = γ +(a) and γ (1) = γ +(b), then

Φ({t} × [−1, 1]) must be equal to
{
(t, γ (λ)) : λ ∈

[
− t−a

b−a , t−a
b−a

]}
. Thus we can define

Φ ∈ semicart(R;Γ −, Γ +) as

Φ(t, s) :=
(

t, γ

(
t − a

b − a
s

))
, (t, s) ∈ R. (2.8)

We observe that, if Γ := graph(γ −)∪graph(γ +) is a closed simple curve, the surface Φ(R)

is not the image of an immersion of the disk mapping the boundary of the disk monotonically
onto Γ , because Φ(∂ R) = Γ ∪ ({b} × C). Moreover,

m(R;Γ −, Γ +) ≤
∫
R

|∂tΦ ∧ ∂sΦ| dt ds ≤ (b − a)

∫ b

a

(|γ̇ −| + |γ̇ +|) dt.

Note that, if γ ± are injective, we have that Φ(R) lies on the lateral part of the surface of the
cylinder (a, b) × C.

We now exhibit maps γ ± ∈ Lip([a, b];R2) so that Γ := graph(γ −) ∪ graph(γ +) is a
closed simple curve and m(R;Γ −, Γ +) < a(Γ ).
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a b

Γ

t

Γ

a b t

Fig. 2 The curveΓ defined in Example 2.13. The left picture is the image of the semicartesian parametrization
(R, Φ) spanning Γ built as in Example 2.12; we notice that it lies on the lateral surface of the cylinder of
base the disk of radius ρ and height b − a. The right picture represents the image of an embedding of the disk
mapping the boundary of the disk onto Γ : the area of such a surface is greater than or equal to the area of its
orthogonal projection on a plane orthogonal to the t axis, that is a disk of radius ρ

Example 2.13 (m(R;Γ −, Γ +) < a(Γ ))Let ρ be a positive real number with

ρ > 2(b − a). (2.9)

Let us define the maps γ ± ∈ Lip([a, b];R2) as follows: if t ∈ [a, b],
γ −(t) := (1, 0),

γ +(t) := ρ (cos(θ(t)), sin(θ(t))) + (1 − ρ, 0),
(2.10)

where θ : [a, b] → [0, 2π ] is given by

θ(t) := 2π(t − a)

b − a
, t ∈ [a, b], (2.11)

see the second picture of Fig. 2. Then Γ := graph(γ −) ∪ graph(γ +) is a Lipschitz closed
simple curve. Moreover, any disk-type surface spanning Γ has area greater than or equal to
the area πρ2 of its orthogonal projection (a disk of radius ρ) on the coordinate plane R2

(ξ,η),
hence

a(Γ ) ≥ πρ2.

On the other hand, the image Φ(R) of the semicartesian parametrization (R, Φ) defined in
(2.8) has area strictly less than 2πρ(b − a) (see the first picture in Fig. 2). From our choice
(2.9), it then follows

m(R;Γ −, Γ +) < a(Γ ).

We conclude this section proving that fixing R and D as in Definition 2.5 is not restrictive.

Lemma 2.14 (Choice of domain) Let Γ = Γ − ∪ Γ + be union of two Lipschitz graphs
on [a, b], Γ ± = graph(γ ±). Let O1 = [[σ−

1 , σ+
1 ]] be such that σ−

1 (a) < σ+
1 (a) and

σ−
1 (b) < σ+

1 (b). If (O1, Ψ ) is a semicartesian parametrization spanning Γ such that Ψ ∈
H1(O1;R3), then there exists a map Φ ∈ semicart(R;Γ −, Γ +) such that

∫
R

|∂tΦ ∧ ∂sΦ| dt ds =
∫

O1

|∂tΨ ∧ ∂sΨ | dt ds. (2.12)
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If moreover Γ is closed, O2 = [[σ+
2 , σ+

2 ]] is such that σ−
2 (a) = σ+

2 (a) and
σ−
2 (b) = σ+

2 (b), and (O2, χ) is a semicartesian parametrization spanning Γ such that
χ ∈ H1(O2;R3), then there exists a map Φ ∈ semicart(D;Γ −, Γ +) such that

∫
D

|∂tΦ ∧ ∂sΦ| dt ds =
∫

O2

|∂tχ ∧ ∂sχ | dt ds. (2.13)

Proof Let us define the map T1 : R → O1 as

T1(t, s) :=
(

t,
1 − s

2
σ−
1 (t) + 1 + s

2
σ+
1 (t)

)
.

Since σ±
1 ∈ Lip([a, b]), we have that T ∈ Lip(R; O1) and thus the mapΦ := Ψ ◦T1 belongs

to semicart(R;Γ −, Γ +); moreover T1 is injective and thus (2.12) holds.
Let us suppose that Γ is closed. Recall that D = [[σ−, σ+]]. We define the map T2 :

D → O2 as

T2(t, s) :=
(

t,
σ+(t) − s

σ+(t) − σ−(t)
σ−
2 (t) + s − σ−(t)

σ+(t) − σ−(t)
σ+
2 (t)

)
.

One can show that T2 ∈ Lip(D; O2) with a computation similar to the one in Lemma 2.8,
and thus the mapΦ := χ ◦T2 belongs to semicart(D;Γ −, Γ +). The injectivity of T2 implies
(2.13). ��
2.1 Maps from a planar domain to the plane and jumping on a curve

From now on we set

R− := (a, b) × (−1, 0), R+ := (a, b) × (0, 1).

Let � ⊂ R
2
(x,y) be a bounded open connected set. Let u : � → R

2
(ξ,η) be a map belonging

to BV(�;R2) ∩ W 1,∞(�\Ju;R2), where Ju ⊂ � is a C2 simple curve parametrized by an
arc-length parametrization α : (a, b) ⊂ Rt → R

2
(x,y). Two cases are possible (remember our

convention on the set Ju in the Introduction): either Ju ⊂⊂ � or Ju ∩ ∂� �= ∅.
We denote by u± the two Lipschitz traces on the two sides of the jump, and we define

γ ±[u] ∈ Lip((a, b);R2) as
γ ±[u](t) := u±(α(t)).

In accordance with our previous notation, we denote with Γ ±[u] ⊂ R
3 = Rt × R

2
(ξ,η) the

graph of γ ±[u]. When there is no ambiguity, we shall write γ ± and Γ ± in place of γ ±[u]
and Γ ±[u], respectively.

In this paper, we will deal with pairs (�,u) satisfying one of the two conditions specified
in Definitions 2.15 and 2.16. In both the two conditions, the jump Ju is a horizontal segment;
this assumption allows to identify the plane R2

(x,y) (containing the domain � of u) with the

space of the parameters R2
(t,s), thus simplifying the presentation.6

6 When Ju is a simple curve of class C2, this identification cannot be made; however there exist δ > 0
and an open set N ⊃ Ju such that N = �((a, b) × (−δ, δ)), with (a, b) × (−δ, δ) ⊂ R(t,s) and � is

the C1 diffeomorphism defined by �(t, s) := α(t) + sα̇(t)⊥ for (t, s) ∈ Rδ := (a, b) × (−δ, δ), where
v⊥ := (−v2, v1). Thus, with some technicalities, we expect to be possible to extend our results also to this
case. In [4] the upper bound to A(u, Ω) is provided for a map jumping on a C2 smooth curve compactly
contained in Ω .
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Definition 2.15 (Condition I) We say that Ω and u ∈ BV(Ω;R2) satisfy condition I if
Ω = R, Ju = (a, b) × {0}, and u ∈ Lip(R−;R2) ∩ Lip(R+;R2).

Definition 2.16 (Condition II) We say that Ω and u ∈ BV(Ω;R2) satisfy condition II if
Ju := [a, b] × {0} ⊂⊂ Ω , u ∈ W 1,∞(Ω\Ju;R2), and there exist the pointwise limits (still
denoted by u±) of u at all points of Ju.

3 Condition I: upper bound

The next proposition provides an upper bound forA∞
(u,Ω) (and hence forA(u,Ω)), when

Ω and u satisfy condition I, proving one of the two inequalities (i.e., (3.2)) of Theorem 1.3.
We shall suitably modify the construction made in [4] in a different context.

Proposition 3.1 (Upper bound, I) Let Ω and u satisfy condition I. Then there exists a
sequence (uh) ⊂ H1(R;R2) converging to u in L1(R;R2) and uniformly out of Ju such
that

lim inf
h→+∞ A(uh,R) =

∫
R

|M(∇u)| dt ds + m(R;Γ −[u], Γ +[u]). (3.1)

Hence
A∞

s (u,R) ≤ m(R;Γ −[u], Γ +[u]). (3.2)

Proof Let (Φh) ⊂ semicart(R;Γ −, Γ +) be a minimizing sequence for (1.3), that is
∫
R

|∂tΦh ∧ ∂sΦh | dt ds → m(R;Γ −, Γ +) as h → +∞, (3.3)

and write Φh(t, s) = (t, φh(t, s)) with φh ∈ H1(R;R2). For any ε ∈ (0, 1) set Rε :=
(a, b) × (−ε, ε), and define the map uh,ε ∈ H1(R;R2) as

uh,ε(t, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(t, s) if (t, s) ∈ R\R2ε,

u(t, 2(s − ε)) if (t, s) ∈ (a, b) × (ε, 2ε),

u(t, 2(s + ε)) if (t, s) ∈ (a, b) × (−2ε,−ε),

φh(t, s/ε) if (t, s) ∈ Rε.

With a computation similar to the one in [4], we get

lim inf
ε→0+ A(uh,ε,R) =

∫
R

|M(∇u)| dt ds +
∫
R

|∂tΦh ∧ ∂sΦh | dt ds.

IndeedA(uh,ε, (a, b) × (ε, 2ε)) andA(uh,ε, (a, b) × (−2ε,−ε)) are negligible as ε → 0+,
as a consequence of the hypothesis u ∈ Lip(R+;R2) ∩ Lip(R−;R2). Moreover, a direct
computation gives:

A(uh,ε,Rε)=
∫ b

a

∫ ε

−ε

√
1+

∣∣∣∂tφh

(
t,

s

ε

)∣∣∣2+ 1

ε2

∣∣∣∂sφh

(
t,

s

ε

)∣∣∣2+ 1

ε2

(
det∇φh

(
t,

s

ε

))2
ds dt

=
∫ b

a

∫ 1

−1

√
|∂sφh (t, s)|2 + (det∇φh (t, s))2 + O(ε2) ds dt

ε→0+−→
∫
R

|∂tΦh ∧ ∂sΦh | dt ds.
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By a diagonalization process, and using (3.3), we can choose a sequence (uh) := (uh,εh )

such that

lim
h→+∞A(uh,R) =

∫
R

|M(∇u)| dt ds + m(R;Γ −, Γ +),

which implies (3.1).7 ��

4 Condition I: lower bound

The main result of this section is the following inequality that, coupled with Proposition 3.1,
concludes the proof of Theorem 1.3.

Theorem 4.1 (Lower bound, I) Let Ω and u satisfy condition I. Let (uh) ⊂ Lip(R;R2) be
a sequence converging to u in L1(R;R2) and uniformly out of Ju. Then

lim inf
h→+∞ A(uh,R) ≥

∫
R

|M(∇u)| dt ds + m(R;Γ −[u], Γ +[u]).

Hence
A∞

s (u,R) ≥ m(R;Γ −[u], Γ +[u]). (4.1)

The proof of Theorem 4.1 will be achieved in two steps: the first step gives the result if
the sequence uh coincides with u far enough from Ju.

Theorem 4.2 Let Ω and u satisfy condition I. If (uh) ⊂ Lip(R;R2) converges to u in
L1(R;R2) and

uh = u in R\Nh,

for some decreasing sequence (Nh) of neighborhoods of Ju such that
⋂
h∈N

Nh = Ju, then

lim inf
h→+∞ A(uh,R) ≥

∫
R

|M(∇u)| dt ds + m(R;Γ −[u], Γ +[u]).

The second step shows that, given any sequence (uh) satisfying the hypotheses of Theorem
4.1, we can build a sequence (vh) satisfying the hypotheses of Theorem 4.2 and whose area
is, in the limit, not larger than the area of (uh).

Theorem 4.3 Let Ω and u satisfy condition I. Let (uh) ⊂ Lip(R;R2) be a sequence converg-
ing tou in L1(R;R2) and uniformly out of Ju. Then there exists a sequence (vh) ⊂ Lip(R;R2)

satisfying the hypotheses of Theorem 4.2 and such that

lim inf
h→+∞ A(uh,R) ≥ lim inf

h→+∞ A(vh,R). (4.2)

4.1 Proof of Theorem 4.2

We need some preliminary lemmas.

7 Indeed (see [4, Appendix 3]) A(·,R) can be obtained by relaxing in L1 the functional v →∫
R |M(∇v)| dt ds from H1(R;R3). Similar results hold forA∞

(·,R), with the corresponding convergence.
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Lemma 4.4 (Lower bound of m via interpolation) Let α, β ∈ Lip([a, b];R2), and set Γα :=
graph(α) and Γβ := graph(β). Then there exists a constant C > 0 independent of α and β,
such that

m(R;Γα, Γβ) ≤ C ||α − β||L1((a,b);R2)

(
1 + max

[||α̇||L∞((a,b);R2), ||β̇||L∞((a,b);R2)

])
.

(4.3)

Proof Let us define the map � ∈ W 1,∞(R;R2) interpolating α and β, as in Lemma 2.8, that
is

�(t, s) := 1 − s

2
α(t) + 1 + s

2
β(t), (t, s) ∈ R.

Setting Φ�(t, s) := (t, �(t, s)), we get ∂tΦ�(t, s) = (
1, 1−s

2 α̇(t) + 1+s
2 β̇(t)

)
and

∂sΦ�(t, s) =
(
0, β(t)−α(t)

2

)
. Thus

|∂tΦ� ∧ ∂sΦ�| = 1

2

√
|α − β|2 +

[(
1 − s

2
α̇ + 1 + s

2
β̇

)
· (α − β)⊥

]2
, (4.4)

where, for z = (z1, z2) ∈ R
2, we set z⊥ := (−z2, z1). Hence∫

R
|∂tΦ� ∧ ∂sΦ�| dt ds

≤ C ||α − β||L1((a,b);R2)

(
1 + max

[||α̇||L∞((a,b);R2), ||β̇||L∞((a,b);R2)

])
, (4.5)

and, since Φ� ∈ semicart(R;Γα, Γβ), also (4.3) follows. ��
The computations in Lemma4.4 allow to prove a semicontinuity result form(R;Γ −

h , Γ +
h ).

Lemma 4.5 (Lower semicontinuity of m(R; ·, ·)) Let (γ ±
h ) ⊂ Lip([a, b];R2) and γ ± ∈

Lip([a, b];R2) be such that:

– there exists C1 > 0 such that ||γ̇ ±
h ||L∞((a,b);R2) ≤ C1 for any h ∈ N,

– γ ±
h → γ ± in L1((a, b);R2) as h → +∞.

Then, setting Γ ±
h := graph(γ ±

h ) and Γ ± := graph(γ ±), we have

m(R;Γ −, Γ +) ≤ lim inf
h→+∞ m(R;Γ −

h , Γ +
h ).

Proof For any h ∈ N, let
(
Φh

k

) ⊂ semicart(R;Γ −
h , Γ +

h ) be such that

lim
k→+∞

∫
R

|∂tΦ
h
k ∧ ∂sΦ

h
k | dt ds = m(R;Γ −

h , Γ +
h ). (4.6)

Let us denote by �+
h , �−

h : R → R
2 the linear interpolating maps, such that, for any t ∈ [a, b],

�+
h (t,−1) = γ +

h (t), �+
h (t, 1) = γ +(t),

�−
h (t,−1) = γ −

h (t), �−
h (t, 1) = γ −(t).

Following the notation of Lemma 2.8 we also write Φ�±
h
(t, s) := (t, �±

h (t, s)). We define the

maps (Ψ h
k ) ⊂ semicart(R;Γ −, Γ +) as

Ψ h
k (t, s) :=

⎧⎪⎨
⎪⎩

Φ�+
h
(t, 4s − 3) if t ∈ (a, b), s ∈ [1/2, 1),

Φh
k (t, 2s) if t ∈ (a, b), s ∈ (−1/2, 1/2),

Φ�−
h
(t,−4s − 3) if t ∈ (a, b), s ∈ (−1,−1/2].
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We have, using also (4.6),∫
R

|∂tΨ
h
k ∧ ∂sΨ

h
k | dt ds

=
∫
R

|∂tΦ
h
k ∧ ∂sΦ

h
k | dt ds +

∫
R

|∂tΦ�+
h

∧ ∂sΦ�+
h
| dt ds +

∫
R

|∂tΦ�−
h

∧ ∂sΦ�−
h
| dt ds

k→+∞−→ m(R;Γ −
h , Γ +

h ) +
∫
R

|∂tΦ�+
h

∧ ∂sΦ�+
h
| dt ds +

∫
R

|∂tΦ�−
h

∧ ∂sΦ�−
h
| dt ds.

Now, recalling inequality (4.5) and our first assumption, we have∫
R

|∂tΦ�+
h

∧ ∂sΦ�+
h
| dt ds +

∫
R

|∂tΦ�−
h

∧ ∂sΦ�−
h
| dt ds

≤ C
(‖γ +

h − γ +‖L1((a,b);R2) + ‖γ −
h − γ −‖L1((a,b);R2)

)
(1 + C1) ,

and the right hand side is infinitesimal as h → +∞ by our second assumption. Hence, we

can select a subsequence (kh) and obtain a sequence
(
Ψ h

kh

)
⊂ semicart(R;Γ −, Γ +) so that

lim inf
h→+∞

∫
R

|∂tΨ
h
kh

∧ ∂sΨ
h
kh

| dt ds = lim inf
h→+∞ m(R;Γ −

h , Γ +
h ).

The inclusion Ψ h
kh

∈ semicart(R;Γ −, Γ +) implies that
∫
R

|∂tΨ
h
kh

∧ ∂sΨ
h
kh

| dt ds ≥ m(R;Γ −, Γ +),

and the assertion of the lemma follows. ��
The last result that we need before proving Theorem 4.2 provides an estimate from below

of the area of the graph of a sufficiently smooth map on a strip.

Lemma 4.6 (Lower bound of area on a strip) Let ε ∈ (0, 1) and Rε := (a, b) × (−ε, ε).
Given a map v ∈ Lip(Rε;R2), let Γ ±

ε denote the graphs on [a, b] of the sections v(·,±ε) ∈
Lip([a, b];R2). Then

A(v,Rε) ≥ m(R;Γ −
ε , Γ +

ε ).

Proof Set v = (v1, v2). Neglecting the constant 1 and the term |∂tv|2 in the expression of
|M(∇v)|, we deduce

A(v,Rε) ≥
∫
Rε

√
|∂sv|2 + (∂tv1∂sv2 − ∂sv1∂tv2)2 dt ds. (4.7)

On the other hand we can define the map Φ ∈ semicart(R;Γ −
ε , Γ +

ε ) as

Φ(t, s) := (t, v(t, εs)), (t, s) ∈ R,

and (2.2) shows that
∫
R |∂tΦ ∧ ∂sΦ| dt ds equals the right hand side of (4.7). Hence

A(v,Rε) ≥
∫
R

|∂tΦ ∧ ∂sΦ| dt ds ≥ m(R;Γ −
ε , Γ +

ε ).

��
Now, we can prove Theorem 4.2.
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Proof Recalling the properties of the sequence (uh), we can choose an infinitesimal sequence
(εh) of positive numbers such that Rεh := (a, b) × (−εh, εh) ⊇ Nh . We have

A(uh,R) = A(u,R\Rεh ) + A(uh,Rεh ).

Set γ ±
h (·) := uh(·,±εh) and γ ± := γ ±[u]. We observe that, by assumption, γ ±

h =
u(·,±εh) and thus γ ±

h and γ satisfy the hypotheses of Lemma 4.5. Hence, applying also
Lemma 4.6, we get

lim inf
h→+∞ A(uh,R) ≥ lim inf

h→+∞
[
A(u,R\Rεh ) + m(R;Γ −

h , Γ +
h )
]

≥
∫
R

|M(∇u)| dt ds + m(R;Γ −, Γ +),

that is the thesis. ��
Remark 4.7 The strategy of the proof of Theorem 4.2 would prove the lower bound (4.1)
for any sequence (uh) ⊂ C1(R;R2) converging to u in L1(R;R2), if we would be able to
remove the bound on the L∞-norm of γ̇ ±

h in the hypotheses of Lemma 4.5. Indeed, as a
consequence of Fubini’s theorem, the convergence of (uh) to u in L1(R;R2) implies that
uh(·, ε) → u(·, ε) in L1((a, b);R2) for almost every level ε ∈ (0, 1).

Lemma 4.5 is in some sense coherent with the lower semicontinuity of the area of solutions
of Plateau’s problem (when Γh and Γ are Jordan curves); indeed lower semicontinuity is
usually guaranteed when Γh → Γ in the sense of Fréchet, [8,13], that would be implied by
our hypotheses. On the other hand, in Example 4.8 we exhibit a sequence (Γh) of curves,
union of two Lipschitz graphs, converging in L1 to a union Γ of two Lipschitz graphs, for
which the lower semicontinuity fails. In this context Γh → Γ in L1 means that Γh :=
graph(γ −

h ) ∪ graph(γ +
h ), Γ := graph(γ −) ∪ graph(γ +), γ ±

h , γ ± ∈ Lip([a, b];R2), and
γ ±

h → γ ± in L1((a, b);R2) as h → +∞.

Example 4.8 (Lack of L1-lower semicontinuity for the Plateau’s problem) Let Γ ⊂ R
3

be a closed simple rectifiable curve. As already recalled in Remark 4.7, it is known that
a(·) is Fréchet lower semicontinuous. We show here that if Γ is union of the graphs of
γ ± ∈ Lip([a, b];R2), it may happen that

a(Γ ) > lim inf
h→+∞ a(Γh), (4.8)

where (Γh) is a sequence of closed simple space curves, Γh = graph(γ −
h ) ∪ graph(γ +

h ), and
γ ±

h → γ ± in L1((a, b);R2) as h → +∞.
Indeed, choose the maps γ ± as in (2.10). Let us define the maps γ ±

h ∈ Lip([a, b];R2)

converging to γ ± in L1((a, b);R2) as

γ −
h (t) = (1, 0) = γ −(t), γ +

h (t) = ρ
(
cos(θh(t)), sin(θh(t))

)+ (1 − ρ, 0),

where

θh(t) :=
{

θ(t) if t ∈ [a, b − h−1],
−2π b−a−h−1

b−a h(t − b) if t ∈ (b − h−1, b],
with θ defined in (2.11). Hence, in the short interval (b − h−1, b), the path made by γ +

h
is the same as the path it makes in (a, b − h−1), with reversed orientation. The curve Γh

is represented in Fig. 3. For any h ∈ N there exists an immersion of the disk, mapping
the boundary of the disk onto Γh whose image lies on the lateral boundary of the cylinder
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Fig. 3 One element of the
sequence (Γh) defined in
Example 4.8 that approximates in
L1 sense the curve Γ defined in
Example 2.13, and a disk-type
surface with boundary Γh that
lies on the cylinder a b

Γh

b−
h
1

[a, b] × Bρ((1− ρ, 0)); hence for any h ∈ N we have a(Γh) ≤ 2πρ(b − a) that, for ρ large
enough, gives (4.8), see Example 2.13.

This example does not exclude the lower semicontinuity of m(R;Γ −, Γ +) with respect
to the L1-convergence. Indeed the limit of the areas of the surfaces represented in Fig. 3 is
the area of the surface represented in the first picture of Fig. 2.

4.2 Proof of Theorem 4.3

In order to prove Theorem 4.3 we need the following technical result, inspired by [1, Propo-
sition 7.3], that provides a way to interpolate two maps on a strip, by controlling the amount
of area of the interpolating map with the thickness of the strip.

Proposition 4.9 (Interpolation, I) Let (uh) ⊂ Lip(R+;R2) be a sequence converging to
u ∈ Lip(R+;R2) in L1(R+;R2). Let εo ∈ (0, 1) be fixed, such that ∂tu(·, s)|s=εo exists
almost everywhere in (a, b). Let εi ∈ (0, εo) be such that:

(i) ||uh(·, εi ) − u(·, εi )||L∞((a,b);R2) → 0 as h → +∞;
(ii) ∂tuh(·, s)|s=εi exists almost everywhere in (a, b) for any h ∈ N;
(iii) lim inf

h→+∞ ||∂tuh(·, εi )||L1((a,b);R2) ≤ M, where the constant M may depend on εi .

Then the sequence (vh) ⊂ Lip(R+;R2) defined as

vh(t, s) :=

⎧⎪⎨
⎪⎩
u(t, s) if t ∈ (a, b) , s > εo,
εo−s
εo−εi

uh(t, εi ) + s−εi
εo−εi

u(t, εo) if t ∈ (a, b), s ∈ [εi , εo],
uh(t, s) if t ∈ (a, b) , s < εi

(4.9)

satisfies
lim inf
h→+∞ A

(
vh, (a, b) × (εi , εo)

) ≤ C
[
1 + M

]|εo − εi |, (4.10)

where C > 0 depends on lip(u) and b − a, and is independent of εo and εi .

Proof Let Sεo
εi := (a, b)× (εi , εo). The Jacobian matrix of vh at almost every (t, s) ∈ Sεo

εi is:

1

εo − εi

(
(εo − s)∂tuh(t, εi ) + (s − εi )∂tu(t, εo)

∣∣∣∣ u(t, εo) − uh(t, εi )

)
.
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We control the area of the graph of vh in Sεo
εi as

A(vh, Sεo
εi

) ≤ C
∫

Sεo
εi

[
[1 + |∂tvh | + |∂svh | + |det∇vh |

]
dt ds, (4.11)

where C > 0 is an absolute constant. We estimate each of the four integrals on the right hand
side of (4.11) as follows.

– The first term is obviously bounded by (εo − εi )(b − a).
– Concerning the second term, we have

∫ εo

εi

∫ b

a
|∂tvh | dt ds ≤ (εo − εi )

∫ b

a
(|∂tuh(t, εi )| + |∂tu(t, εo)|) dt

≤ (εo − εi )

[∫ b

a
|∂tuh(t, εi )| dt + lip(u)(b − a)

]
. (4.12)

– Similarly, for the third term we have
∫ εo

εi

∫ b

a
|∂svh(t, s)| dt ds ≤

∫ b

a

[
|u(t, εo) − u(t, εi )| + |u(t, εi ) − uh(t, εi )|

]
dt

≤ lip(u)(b − a)(εo − εi ) + ||u(·, εi ) − uh(·, εi )||L1((a,b);R2).

(4.13)
– Concerning the term with the determinant:

∫ εo

εi

∫ b

a
| det∇vh(t, s)| dtds

≤ 2
∫ b

a
|u(t, εo) − uh(t, εi )|

(|∂tuh(t, εi )| + |∂tu(t, εo)|
)
dt

=2
∫ b

a
|u(t, εo)−uh(t, εi )||∂tu(t, εo)| dt+2

∫ b

a
|u(t, εo) − uh(t, εi )||∂tuh(t, εi )| dt

=: Ih + IIh .

We have

Ih ≤2lip(u)

∫ b

a
(|u(t, εo) − u(t, εi )| + |u(t, εi ) − uh(t, εi )|) dt

≤2(lip(u))2(b − a)(εo − εi ) + 2lip(u)||u(·, εi ) − uh(·, εi )||L1((a,b);R2).

(4.14)

Next

IIh ≤2
∫ b

a
|u(t, εo)−u(t, εi )||∂tuh(t, εi )| dt+2

∫ b

a
|u(t, εi )−uh(t, εi )||∂tuh(t, εi )| dt

≤ 2
(
lip(u)(εo − εi ) + ||u(·, εi ) − uh(·, εi )||L∞((a,b);R2)

) ∫ b

a
|∂tuh(t, εi )| dt.

(4.15)

Finally, using (4.12), (4.13), (4.14) and (4.15) we get:

A(vh, Sεo
εi

) ≤ C(εo − εi )
[
1 + ||u(·, εi ) − uh(·, εi )||L1((a,b);R2)

+ (1 + ||u(·, εi ) − uh(·, εi )||L∞((a,b);R2))

∫ b

a
|∂tuh(t, εi )| dt

]
.
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Using hypotheses (i)–(iii), and passing to the limit, we get

lim inf
h→+∞ A

(
vh, Sεo

εi

) ≤ C[1 + M](εo − εi ), (4.16)

where C depends just on b − a and lip(u). ��
We are now in the position to prove Theorem 4.3.

Proof We can suppose thatA(uh,R) is uniformly bounded with respect to h ∈ N, otherwise
the result is trivial. Moreover, passing to a not relabeled subsequence, we can suppose also
that there exist

lim
h→+∞A(uh,R) < +∞, lim

h→+∞A(uh,R+) < +∞, lim
h→+∞A(uh,R−) < +∞.

Since uh → u uniformly on every compact set of R+ as h → +∞, hypothesis (i) of
Proposition 4.9 is verified for any choice of the level ε1 ∈ (0, 1). Using Fatou’s lemma we
get ∫ 1

0
lim inf
h→+∞

(∫ b

a
|∂tuh(t, s)| dt

)
ds ≤ lim inf

h→+∞ A(uh,R+) < +∞.

Thus we can select a level ε1 ∈ (0, 1), a subsequence (uh j ) and a constant M(ε1) both
depending on ε1, such that

lim
j→+∞

∫ b

a
|∂tuh j (t, ε1)| dt ≤ M(ε1).

Repeating the argument a countably number of times and using the same procedure on
R−, we can select a subsequence (uh j ) of (uh), and an infinitesimal sequence (εk) of positive
levels such that uh j (·,±εk) satisfies the hypotheses (i)–(iii) of Proposition 4.9.

Let us choose also an infinitesimal sequence (δk) of positive numbers such that

δk M(εk)
k→+∞−→ 0 (4.17)

and such that ∂tu(t, s)|s=±(εk+δk ) exists for almost every t ∈ (a, b) for any k ∈ N.
Now, we define the maps vk

h j
similarly to (4.9):

vk
h j

(t, s) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(t, s) if t ∈ (a, b), εk + δk < |s| < 1,
εk+δk−s

δk
uh j (t, εk) + s−εk

δk
u(t, εk + δk) if t ∈ (a, b), εk ≤ s ≤ εk + δk ,

εk+δk+s
δk

uh j (t,−εk) + −s−εk
δk

u(t,−(εk + δk)) if t ∈ (a, b), − (εk + δk) ≤ s ≤ −εk ,

uh j (t, s) if t ∈ (a, b), |s| < εk .

We claim that for any k ∈ N we have

lim inf
j→+∞ A(vk

h j
,R) ≤ lim

h→+∞A(uh,R) + C [1 + M(εk)] δk, (4.18)

where C is the constant given in (4.10).
For any λ ∈ (0, 1) set R+

λ := (a, b) × (0, λ). Without loss of generality we can suppose
that there exists lim

h→+∞A(uh,R+\R+
εk+δk

) for any k ∈ N. Using the same notation as in the

proof of Proposition 4.9, and sinceA
(
uh j ,R

+
εk

) ≤ A
(
uh j ,R

+)−A
(
uh j ,R

+\R+
εk+δk

)
, we

get:
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A
(
vk

h j
,R+) = A

(
u,R+\R+

εk+δk

)
+ A

(
vk

h j
, Sεk+δk

εk

)
+ A

(
uh j ,R

+
εk

)

≤ A
(
u,R+\R+

εk+δk

)
− A

(
uh j ,R

+\R+
εk+δk

)
+ A

(
vk

h j
, Sεk+δk

εk

)

+ A
(
uh j ,R

+) .
Passing to the limit as j → +∞, recalling that A(·,R+\R+

εk+δk
) is lower semicontinuous,

using (4.10), and making similar computations also in R−, we get claim (4.18).
Finally, the proof of (4.2) is concluded by remembering (4.17), choosing a suitable sub-

sequence (kh j ) and defining vh j := v
kh j
h j

. ��

5 Condition II: upper bound

In this short section and in Sect. 6 we discuss the case where Ω and u satisfy condition II. In
Proposition 5.1, following the strategy of [4], we prove the upper bound in Theorem 1.4 (see
inequality (5.2)). We recall that D = [[σ−, σ+]] is the (fixed) domain defined in Definition
2.5. Similarly to the case when Ω and u satisfy condition I, this upper bound implies also
that As(u,Ω) ≤ m(D;Γ −, Γ +), since in general A(u,Ω) ≤ A∞

(u,Ω). In Sect. 7 we
describe some examples where the latter inequality is strict.

The proof of the next proposition is similar to the one in [4, Theorem 4.1]. We briefly
report it for the sake of completeness.

Proposition 5.1 (Upper bound, II) Let Ω and u satisfy condition II. Then there exists a
sequence (uh) ⊂ H1(Ω;R2) converging to u in L1(Ω;R2) and uniformly out of Ju, such
that

lim inf
h→+∞ A(uh,Ω) =

∫
Ω

|M(∇u)| dt ds + m(D;Γ −[u], Γ +[u]). (5.1)

Hence
A∞

s (u,Ω) ≤ m(D;Γ −[u], Γ +[u]). (5.2)

Remark 5.2 We notice that m(D;Γ −[u], Γ +[u]) is well defined; indeed the two traces of
u on the sides of Ju are defined and coincide at the endpoints of the jump, since Ju ⊂⊂ Ω ,
and u ∈ W 1,∞(Ω\Ju;R2).

Proof We can suppose without loss of generality that D = [[σ−, σ+]] with |σ±| < 1,
compare Definition 2.3, and hence D ⊂ R. Let �h ∈ semicart(D;Γ −, Γ +) be such that
limh→+∞

∫
D |∂tΦh ∧ ∂sΦh | dt ds = m(D;Γ −, Γ +). For any ε ∈ (0, 1) we set Rε :=

(a, b) × (−ε, ε) and Dε := [[σ−
ε , σ+

ε ]] with σ±
ε := εσ±; we define also the map Tε :

Rε\Dε → Rε\(a, b) × {0} as follows:

Tε(t, s) :=
⎧⎨
⎩
(

t, s−εσ+(t)
1−σ+(t)

)
if (t, s) ∈ (Rε \ Dε) ∩ {s > 0},(

t, s−εσ−(t)
1+σ−(t)

)
if (t, s) ∈ (Rε \ Dε) ∩ {s < 0}.

Next, let us consider the sequence (uh
ε ) ⊂ H1(Ω;R2) given by

uh
ε (t, s) :=

⎧⎪⎨
⎪⎩
u(t, s) if (t, s) ∈ �\Rε

u(Tε(t, s)) if (t, s) ∈ Rε\Dε

φh(t, s/ε) if (t, s) ∈ Dε,
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whereΦh(t, s) = (t, φh(t, s)). Since Tε and its derivatives are bounded by a constant depend-
ing only on lip(σ±), with computations similar to the ones in Proposition 3.1 we get

lim
ε→0+ A(uh

ε ,Ω) =
∫

Ω

|M(∇u)| dt ds +
∫

D
|∂tΦh ∧ ∂sΦh | dt ds.

Hence the required sequence is obtained as (uh) := (uh
εh

), for a suitable infinitesimal sequence
(εh) of positive numbers such that Rεh ⊂ Ω for every h ∈ N. ��

6 Condition II: lower bound

In this section we want to prove inequality (6.1) which, coupled with Proposition 5.1, con-
cludes the proof of Theorem 1.4.

Theorem 6.1 (Lower bound, II) Let Ω and u satisfy condition II. Let (uh) ⊂ Lip(Ω;R2)

be a sequence converging to u in L1(Ω;R2) and uniformly out of Ju. Then

lim inf
h→+∞ A(uh,Ω) ≥

∫
Ω

|M(∇u)| dt ds + m(D;Γ −[u], Γ +[u]).
Hence

A∞
s (u,Ω) ≥ m(D;Γ −[u], Γ +[u]). (6.1)

As in Sect. 4, we shall divide the proof in two steps: in the first step we prove the theorem
under the further hypothesis that

uh = u in �\Nh, (6.2)

where (Nh) is a decreasing sequence of neighborhoods of Ju such that
⋂
h∈N

Nh = Ju. In order

to prove this step, we shall need the analogous of Lemma 4.5. In the second step we prove
that for any sequence (uh) converging to u in L1(Ω,R2) and uniformly out of Ju, there exists
a sequence (vh) ⊂ Lip(Ω;R2) satisfying (6.2) and such that

lim inf
h→+∞ A(vh,Ω) ≤ lim inf

h→+∞ A(uh,Ω). (6.3)

In order to prove this step we shall need the analogous of Proposition 4.9.
Let us fix some notation. For any ε ∈ (0, b−a

2 ), let λε : Rt → Rt be defined as

λε(t) := b − a − 2ε

b − a + 2ε
(t − (a − ε)) + a + ε,

so that λε((a − ε, b + ε)) = (a + ε, b − ε). The map �ε : R2
(t,s) → R

2
(t,s) is, instead, defined

as
�ε(t, s) = (λε(t), s).

Weset Oε := [[σ−
ε , σ+

ε ]],whereσ±
ε ∈ Lip([a−ε, b+ε]) are such thatσ−

ε (a−ε) = σ+
ε (a−ε)

and σ−
ε (b + ε) = σ+

ε (b + ε), and such that �ε(Oε) ⊂⊂ D, see Fig. 4. If necessary, we
can require ∂Oε without horizontal cusps, in the sense that we can suppose that there is a
decreasing sequence (ti ) ⊂ (a, b) converging to a, along which σ±

ε are differentiable, and
lim inf i→+∞(σ+

ε )′(ti ) > 0, lim supi→+∞(σ−
ε )′(ti ) < 0 (and similarly near t = b).

Lemma 6.2 Let γ ± ∈ Lip([a, b];R2) be such that γ −(a) = γ +(a) and γ −(b) = γ +(b).
Let (εh) be an infinitesimal sequence of positive numbers and let γ ±

h ∈ Lip([a − εh, b +
εh];R2) be maps with the following properties:
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a a+εa−ε b b+εb−ε

Λε(Oε) Oε

D

Fig. 4 For any ε > 0 small enough, Oε = [[σ−
ε , σ+

ε ]] is such that its image through the map�ε is compactly
contained in the fixed domain D

(i) γ −
h (a − εh) = γ +

h (a − εh) and γ −
h (b + εh) = γ +

h (b + εh) for any h ∈ N;
(ii) lim

h→+∞ γ −
h (a − εh) = γ −(a) and lim

h→+∞ γ −
h (b + εh) = γ −(b);

(iii) lim
h→+∞ ||γ ±

h ◦ λ−1
εh

− γ ±||L1((a+εh ,b−εh);R2) = 0.

Moreover, we also suppose:

(iv) there exists a constant C1 > 0 such that ||γ̇ ±
h

||L∞((a−εh ,b+εh);R2) ≤ C1 for any h ∈ N.

Then
m(D;Γ −, Γ +) ≤ lim inf

h→+∞ m(Oεh ;Γ −
h , Γ +

h ), (6.4)

where Γ ± := graph(γ ±), Γ ±
h := graph(γ ±

h ).8

Proof Let Ψh be a semicartesian map in H1(Oεh ;R3) spanning Γh such that∫
Oεh

|∂tΨh ∧ ∂sΨh | dt ds ≤ m(Oεh ;Γ −
h , Γ +

h ) + εh, (6.5)

with Ψh(t, s) = (t, ψh(t, s)). Let us define Φh ∈ H1(�εh (Oεh );R3) as

Φh(t, s) := (t, ψh(λ−1
εh

(t), s)) =: (t, φh(t, s)), (t, s) ∈ �εh (Oεh ).

Inwords,we start fromapoint in�εh (Oεh ), we take its image in Oεh through the dilation�−1
εh

,
we pass to its image through the semicartesian map Ψh , and we contract in the t-direction
through the map (t, ξ, η) → (λεh (t), ξ, η). Recalling (6.5) and since the determinant of the
Jacobian of �εh tends to 1 as h → +∞, we get∫

�εh (Oεh )

|∂tΦh ∧ ∂sΦh | dt ds = m(Oεh ;Γ −
h , Γ +

h ) + O(εh). (6.6)

Recalling that �εh (Oεh ) ⊂⊂ D, we can extend Φh to a semicartesian map in
semicart(D;Γ −, Γ +): if �(Oεh ) := [[σ−

εh
, σ+

εh
]], we define Φh in S+

εh
:= {(t, s) ∈ D :

t ∈ (a + εh, b − εh), s ∈ (σ+
εh

(t), σ+(t))} as

Φh(t, s) :=
(

t,
s − σ+

εh
(t)

σ+(t) − σ+
εh (t)

γ +(t) + σ+(t) − s

σ+(t) − σ+
εh (t)

φh(t, σ+
εh

(t))

)
.

8 We denote by m(Oεh ; Γ −
h , Γ +

h ) the infimum of
∫

Oεh
|∂t Ψ ∧ ∂sΨ | dtds among all semicartesian parame-

trizations (Oεh , Ψ ) spanning Γh := Γ −
h ∪ Γ +

h such that Ψ ∈ H1(Oεh ;R3).
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Similarly, we define Φh on S−
εh

:= {(t, s) ∈ D : t ∈ (a + εh, b − εh), s ∈ (σ−(t), σ−
εh

(t))}.
Thanks to hypotheses and recalling Lemma 4.4 (see inequality (4.4)), we deduce

∫
S−
εh ∪S+

εh

|∂tΦh ∧ ∂sΦh | dt ds
h→+∞−→ 0. (6.7)

Now, we define Φh on the curved triangles T a
h := {(t, s) ∈ D : t ∈ (a, a + εh]} and

T b
h := {(t, s) ∈ D : t ∈ [b − εh, b)}. Let us define f a

h ∈ Lip([a, a + εh];R2) as

f a
h (t) := φh(a + εh, 0) − γ +(a)

εh
(t − a) + γ +(a),

so that its graph is the segment joining (a, γ +(a)) and (a + εh, φh(a + εh, 0)). Next, for
(t, s) ∈ T a

h , set

Φh(t, s) :=
⎧⎨
⎩
(

t, s
σ+(t) γ

+(t) + σ+(t)−s
σ+(t) f a

h (t)
)

if s ≥ 0,(
t, s

σ−(t) γ
−(t) + σ−(t)−s

σ−(t) f a
h (t)

)
if s < 0,

and similarly on T b
h . Again, Lemma 4.4 and our hypotheses imply

∫
T a

h ∪T b
h

|∂tΦh ∧ ∂sΦh | dt ds
h→+∞−→ 0. (6.8)

Thus, using (6.6), (6.7) and (6.8) we obtain, for any h ∈ N,

m(D;Γ −, Γ +) ≤
∫

D
|∂tΦh ∧ ∂sΦh | dt ds ≤ m(Oεh ;Γ −

h , Γ +
h ) + O(εh).

Passing to the limit as h → +∞, (6.4) follows. ��

For any d > 0, define J d
u := {(t, s) ∈ R

2 : dist((t, s), Ju) < d}. We parametrize the
curve {s > 0} ∩ ∂ J d

u on the interval (a − π
2 , b + π

2 ) by the map β+
d defined by

β+
d (θ) :=

⎧⎪⎨
⎪⎩

(a + d sin(θ − a), d cos(θ − a)) if θ ∈ (a − π/2, a),

(θ, d) if θ ∈ [a, b],
(b + d sin(θ − b), d cos(θ − b)) if θ ∈ (b, b + π/2),

and, similarly, we define the parametrization β−
d for {s < 0} ∩ ∂ J d

u . We can now introduce
the coordinates (θ, r) in R

2\{s = 0} such that (t, s) = β+
r (θ) if s > 0, and (t, s) = β−

r (θ)

if s < 0.

Proposition 6.3 (Interpolation, II) Let Ω+ := Ω ∩ {s > 0}, let (uh) ⊂ Lip(Ω+;R2),
u ∈ Lip(Ω+;R2), and suppose that uh → u in L1(Ω+;R2) as h → +∞. Let εo > 0
be fixed so that J εo

u ∩ {s > 0} ⊂ Ω+. For any ε ∈ (0, εo] we define γ ε
h := uh ◦ β+

ε and
γ ε := u ◦β+

ε . Let us suppose that γ̇ εo exists almost everywhere in I := (a − π
2 , b + π

2 ), and
let εi ∈ (0, εo) be such that:

(i) ||γ εi
h − γ εi ||L∞(I ;R2) → 0 as h → +∞;

(ii) γ̇
εi
h exists almost everywhere in I for any h ∈ N;

(iii) lim inf
h→+∞ ||γ̇ εi

h ||L1(I ;R2) ≤ M, where the constant M may depend on εi .
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Let us define the sequence (vh) ⊂ Lip(Ω+;R2) as vh := u on Ω+\J εo
u , vh := uh in

Ω+ ∩ J εi
u , and such that its representation in (θ, r) coordinates in the curvilinear strip

Sεo
εi := Ω+ ∩ (J εo

u \J εi
u
)

is

ṽh(θ, r) := εo − r

εo − εi
γ

εi
h (θ) + r − εi

εo − εi
γ εo(θ).

Then
lim inf
h→+∞ A

(
vh,Ω+ ∩ (J εo

u \J εi
u
) ) ≤ C(1 + M)|εo − εi |, (6.9)

where C = C(lip(u)).

Proof The term A(vh, Sεo
εi ∩ {t ∈ (a, b)}) can be estimated by the right hand side of (6.9)

using Proposition 4.9, since in Sεo
εi ∩ {t ∈ (a, b)} we have θ(t, s) = t and r(t, s) = s.

We prove the estimate forA(vh, Sεo
εi ∩{t < a}), the computations forA(vh, Sεo

εi ∩{t > b})
being similar. We have:

A(vh, Sεo
εi

∩ {t < a}) =
∫ εo

εi

∫ a

a−π/2

√
r2 + |∂θ ṽh |2 + r2|∂r ṽh |2 + (det∇θ,r ṽh)2 dθ dr

≤ C
∫ εo

εi

∫ a

a−π/2

[
r + |∂θ ṽh | + r |∂r ṽh | + |det∇θ,r ṽh |] dθ dr

where∇θ,r denotes the Jacobian with respect to (θ, r), andC is an absolute positive constant.
Again we estimate the right hand side as in the proof of Proposition 4.9 and using our
assumptions:

−
∫ εo

εi

∫ π

a−π/2
r dr dθ = π/2(ε2o − ε2i ),

−
∫ εo

εi

∫ a

a−π/2
|∂θ ṽh | dθ dr ≤

∫ εo

εi

∫ a

a−π/2

[|γ̇ εo | + |γ̇ εi
h |] dθ dr ≤ πεolip(u)(εo − εi ) + (εo − εi )M,

−
∫ εo

εi

∫ a

a−π/2
r |∂r ṽh | dθ dr =

∫ εo

εi

∫ a

a−π/2
r
|γ εo − γ

εi
h |

εo − εi
dθ dr

≤
∫ εo

εi

∫ a

a−π/2
r
|γ εo − γ εi | + |γ εi − γ

εi
h |

εo − εi
dθ dr ≤ π

4
lip(u)(ε2o − ε2i )

+ εo + εi

2

∫ a

a−π/2
|γ εi − γ

εi
h | dθ,

−
∫ εo

εi

∫ a

a−π/2
|det∇θ,r ṽh | dθ dr ≤ 2

∫ εo

εi

∫ a

a−π/2
|∂r ṽh ||∂θ ṽh | dθ dr ≤ 2

∫ a

a−π/2
|γ εo − γ

εi
h ||γ̇ εo +γ̇

εi
h | dθ

≤
∫ a

a−π/2
|γ̇ εo ||γ εo − γ

εi
h | dθ +

∫ a

a−π/2
|γ̇ εi

h ||γ εo − γ
εi
h | dθ

≤ εolip(u)
(
lip(u)|εo − εi | + ||γ εi − γ

εi
h ||L1(I,R2)

)+ M
(
lip(u)|εo − εi | + ||γ εi − γ

εi
h ||L∞(I ;R2)

)
.

Using our assumptions and the previous estimates, we get

lim inf
h→+∞ A(vh, Sεo

εi
∩ {t < a}) ≤ C(1 + M)|εo − εi |,

where C = C(lip(u)). ��

We are now in the position to prove Theorem 6.1.
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Proof Let us suppose first that (uh) satisfies (6.2). Let (εh) and (ε̃h) be two infinitesimal
sequences of positive numbers such that

Nh ⊂⊂
{
(t, s) :

(
t,

s

ε̃h

)
∈ Oεh

}
⊂ Ω,

where Oεh = [[σ−
εh

, σ+
εh

]] is defined as in Lemma 6.2. Let γ ±
h ∈ Lip([a − εh, b + εh];R2)

be defined as
γ ±

h (t) := uh
(
t, ε̃hσ±

εh
(t)
) = u

(
t, ε̃hσ±

εh
(t)
)
.

Following the same computation as in Lemma 4.6 we get

A
(
uh,

{
(t, s) :

(
t,

s

ε̃h

)
∈ Oεh

})
≥ m(Oεh ;Γ −

h , Γ +
h ),

whereΓ ±
h := graph(γ ±

h ). Due to the regularity assumptions on u, the sequences (γ ±
h ) satisfy

the hypotheses of Lemma 6.2, and thus we can conclude that

lim inf
h→+∞ A(uh,Ω) ≥

∫
Ω

|M(∇u)| dt ds + lim inf
h→+∞ m(Oεh ;Γ −

h , Γ +
h )

≥
∫

Ω

|M(∇u)| dt ds + m(D;Γ −, Γ +).

Now, we have to prove that for any sequence (uh) converging to u in L1(Ω;R2) and
uniformly out of Ju we can build a sequence (vh) satisfying (6.2) and (6.3). The proof
follows along the same lines of Theorem 4.3, where the choice of an infinitesimal sequence
(εk) ⊂ (0,+∞) satisfying hypotheses (i)–(iii) of Proposition 6.3 is guaranteed by Fatou’s
lemma applied to the area functional in the (θ, r) coordinates. ��

7 Examples for whichA < A∞

In this section we exhibit some examples of pairs (Ω,u) satisfying condition II and for which
A(u,Ω) < A∞

(u,Ω). The idea is that, under certain circumstances, sequences converging
to u in L1(Ω;R2), but not uniformly out of Ju, can provide an upper bound lower than the
right hand side of (5.1). What is suggested by these examples is that we could extend in
some way the jump, adding to Ju a sort of “virtual” jump, and build sequences converging
uniformly to u out of this extension. How choosing these extensions seems not easy. We
present different possibilities that confirm the strong non-local behavior of the functional
A(u, ·).
7.1 Virtual jump starting from an endpoint of Ju

In [1, Section 5] the authors study A(uV , BR), with uV (t, s) := (t,s)
|(t,s)| , (t, s) ∈ R

2\{0}
(the vortex map), providing two different upper bounds. In [1, Lemma 5.2] they bound
As(uV , BR) by the measure of the 2-dimensional unit disk, while in [1, Lemma 5.3] by the
lateral area of a cylinder, whose height is the distance between the vortex and the boundary
of BR (namely, R), and whose basis is the unit disk.

The idea of [1, Lemma 5.3] is the following. Let us express themapuV in polar coordinates
(r, θ), without renaming it, i.e., uV (r, θ) = (cos θ, sin θ). Let (θh) and (rh) be two infini-
tesimal sequences of positive numbers, and let us define the functions fh : [−π, π] → R,
gh : [0, R) → [0,+∞) as
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fh(θ) :=

⎧⎪⎨
⎪⎩

−π−θh
θh

(θ + π) if θ ∈ [−π,−π + θh),

θ if θ ∈ [−π + θh, π − θh),

−π−θh
θh

(θ − π) if θ ∈ [π − θh, π),

gh(r) :=
{

r
rh

if r ∈ (0, rh],
1 if r ∈ (rh, R).

Then, the sequence (uh) ⊂ Lip(BR;R2) defined by

uh(r, θ) :=
(
cos

(
gh(r) fh(θ)

)
, sin

(
gh(r) fh(θ)

))

converges to uV in L1(BR;R2) and limh→+∞ A(uh, BR) ≤ ∫
BR

|M(∇uV )| dt ds + 2π R.9

We adapt the procedure of [1, Lemma 5.3] when Ω and u satisfy condition II, and we
build a sequence (uh) ⊂ Lip(R;R2) converging to u in L1(Ω;R2) and uniformly out of a
curve containing Ju and having an endpoint on ∂Ω . In this case the virtual jump connects
one endpoint of Ju and ∂Ω . The singular contribution

lim
h→+∞A(uh,Ω) −

∫
Ω

|M(∇u)| dt ds

can be interpreted as the area of a suitable semicartesian parametrization (Remark 7.2)
with non-empty partially free boundary and, under certain circumstances, it is lower than
m(D;Γ −[u], Γ +[u]), see inequality (7.10); compare also with (1.6).

Proposition 7.1 Let Ω and u satisfy condition II, with the further conditions that Ω ∩ {s =
0} = (a1, b + δ) × {0} for some a1 < a and δ > 0, and

u ∈ C1
(
Ω ∩ {s > 0};R2) ∩ C1

(
Ω ∩ {s < 0};R2) . (7.1)

Then there exists a sequence (uh) ⊂ Lip(Ω;R2) converging to u in L1(Ω;R2) such that

lim
h→+∞A(uh,Ω) ≤

∫
Ω

|M(∇u)| dt ds

+(b + δ − a)

{∫ b

a

[
|γ̇ −[u]| + |γ̇ +[u]|

]
dt + 2

∫ b+δ

b
|∂tu(t, 0)| dt

}
. (7.2)

Hence

As(u,�) ≤ (b + δ − a)

{∫ b

a

[
|γ̇ −[u]| + |γ̇ +[u]|

]
dt + 2

∫ b+δ

b
|∂tu(t, 0)| dt

}
. (7.3)

Proof Given an infinitesimal sequence (εh) of positive numbers, define (Fig. 5)

Cεh := {(t, s) ∈ Ω : t > a, |s| < εh(t − a)}, (7.4)

and rεh : Ω → Ω\Cεh as

rεh (t, s) :=

⎧⎪⎪⎨
⎪⎪⎩

(t, s) (t, s) ∈ Ω\Cεh ,(
s
εh

+ a, s
)

(t, s) ∈ Cεh , s ≥ 0,(
− s

εh
+ a, s

)
(t, s) ∈ Cεh , s < 0,

(7.5)

9 It is possible to improve the estimate of [1, Lemma 5.3], obtaining, as singular contribution, the area of
a catenoid in place of the lateral area of a cylinder. Let us suppose R > 0 to be so small that there exists
a catenary c : (0, R) → (0, +∞) such that c(0) = c(R) = 1. Then, taken an infinitesimal sequence (ωh)

with ωh > θh and ωh/θh → 1 as h → +∞, we define ρh ∈ Lip(BR) such that ρh(r, θ) := c(r) if
θ ∈ [−π, −π + θh) ∪ [π − θh , θ) and ρh(r, θ) := 1 if θ ∈ (−π + ωh , π − ωh). Then the sequence (uh)

defined by uh(r, θ) := ρh(r, θ)
(
cos(gh(r) fh(θ)), sin(gh(r) fh(θ))

)
provides the desired estimate.
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a b + δa1

Ω

Cεh

b t

s

Fig. 5 The setΩ and, in gray, the triangleCεh built in Proposition 7.1. Themap uh defined in (7.6) is constant

on the horizontal segments in Cεh . The sequence (uh) converges to u in L1(Ω;R2) and uniformly out of the
segment Jext = (a, b + δ) × {0}, union of Ju (the bold segment) and of the virtual jump [b, b + δ] × {0},
represented by a bold dotted line

that is the retraction mapping each point (t, s) ∈ Cεh into the point of ∂Cεh ∩ Ω having s as
second coordinate.

Let us define the sequence (uh) ⊂ Lip(Ω;R2) as

uh(t, s) := u(rεh (t, s)), (t, s) ∈ �. (7.6)

We observe that (uh) converges to u in L1(Ω;R2) but not uniformly out of Ju, as h → +∞.
Incidentally, we notice that (uh) converges to u uniformly out of a suitable “extension” of
the jump, Jext := (a, b + δ) × {0}.

Denoting by ∂1u and ∂2u the derivative with respect to the first and second variable of u,
let us compute the area of the graph of uh on Cεh ∩ {s ≥ 0}10:

A(uh, Cεh ∩ {s ≥ 0})

=
∫ b+δ

a

∫ εh(t−a)

0

√
1 + 1

ε2h

∣∣∣∣∂1u
(

s

εh
+ a, s

)∣∣∣∣
2

+
∣∣∣∣∂2u

(
s

εh
+ a, s

)∣∣∣∣
2

ds dt

=
∫ b+δ

a

∫ εh(t−a)

0

1

εh

√∣∣∣∣∂1u
(

s

εh
+ a, s

)∣∣∣∣
2

+ O(ε2h) ds dt

=
∫ b+δ

a

∫ t

a

√
|∂1u(τ, εh(τ − a))|2 + O(ε2h) dτ dt

≤ (b + δ − a)

∫ b+δ

a

√
|∂1u(τ, εh(τ − a))|2 + O(ε2h) dτ.

Similarly

A(uh, Cεh ∩ {s < 0}) ≤ (b + δ − a)

∫ b+δ

a

√
|∂1u(τ,−εh(τ − a))|2 + O(ε2h) dτ.

Thus, noticing that |∂1u(τ,±εh(τ − a))| are uniformly bounded and that ∂1u(τ,±εh(τ −
a)) → γ̇ ±[u](τ ) pointwise for τ ∈ (a, b), and ∂1u(τ,±εh(τ −a)) = ∂1u(τ, 0) in (b, b+δ),
possibly passing to a subsequence we get (7.2) ��
10 The computation is done supposing that the triangle {(t, s) : t ∈ (a, b + δ), |t | ≤ εh(t − a)} is contained
in Ω , but it can be easily arranged to a more general situation.
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Remark 7.2 (Semicartesian interpretation)The right hand side of (7.3) can be interpreted as
the area of the semicartesian parametrization built in Example 2.12, with b + δ in place of b
and with C := γ ([0, 2(b + δ − a)]), where γ : [0, 2(b + δ − a)] → R

2 is defined as follows:

γ (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(b + δ − t, 0) if t ∈ (0, δ),

γ +(b + δ − t) if t ∈ (δ, b + δ − a),

γ −(t + 2a − b − δ) if t ∈ (b + δ − a, 2(b − a) + δ),

u(t + 2a − b − δ, 0) if t ∈ (2(b − a) + δ, 2(b − a + δ)).

We notice also that this construction can be done even if � and u satisfy condition I and
γ −(a) = γ +(a) (or, symmetrically, if γ −(b) = γ +(b)). In this case the sequence (uh)

built in Proposition 7.1 would converge to u in L1(R;R2) and uniformly out of Ju, and
limh→+∞ A(uh,R) − ∫

R |M(∇u)| dt ds ≥ A∞
s (u,R) = m(R;Γ −[u], Γ +[u]).

Remark 7.3 (Relations with the vortex) Even if Proposition 7.1 has been inspired by the
construction in [1, Lemma 5.3], it is worth to underline some important differences. When
Ω = BR and u = uV , we could interpret the origin as a “collapsed” jump, and the radius
{(t, 0) : t ∈ (−R, 0)} as the virtual jump. Differently from the case where Ω and u satisfy
condition II, the vortex map uV (which belongs to W 1,p(BR; S1) for any p ∈ [1, 2)) does not
admit any limit as (t, s) → (0, 0), (t, s) ∈ BR\{(t, 0) : t ∈ (−R, 0)}. Intuitively if we would
interpret the bound As(uV , BR) ≤ 2π R in terms of area of semicartesian parametrizations,
this lack of continuity of uV at (0, 0)would force us to consider only surfaces having as trace
on the plane {t = 0} × R

2
(ξ,η) the unit circumference, covered with the right orientation. We

also notice that in [1, Lemma 5.3] the sequence (uh) is defined as the composition of uV and
a suitable retraction from BR to BR\Cεh , where (Cεh ) is a decreasing sequence of circular
sectors containing {(t, 0) : t ∈ (−R, 0)} and converging to it. In [1] the image of Cεh through
this retraction covers the whole of BR\Cεh , while in our case (for Cεh now as in (7.4)) it is
contained in ∂Cεh , see (7.5); this difference is due to the fact that, contrary to our case, the
trace of the vortex map on the boundary of each circular sector is not continuous.

In the next example, we exhibit a map u for which the sequence built in Proposition 7.1
provides an upper bound that is lower than m(D;Γ −, Γ +). This example, coupled with
Theorem 1.4, shows that A(u,�) < A∞

(u,�).

Example 7.4 (Difference in the two relaxations) Let� be as in Proposition 7.1, and define11

u(t, s) :=

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) in {(t, s) ∈ Ω : s ≥ 0},
(1, 0) in {(t, s) ∈ Ω : s < 0, t < a or t > b},
ρ
(
cos (θ(t)) , sin (θ(t))

)
+ (1 − ρ, 0) in {(t, s) ∈ Ω : s < 0, a ≤ t ≤ b},

(7.7)
where

ρ > 2(b + δ − a), (7.8)

and θ : [a, b] → [0, 2π ] is defined in (2.11). We observe that γ + is constant, γ − covers once
the circumference centered at (1− ρ, 0) with radius ρ, and ∂tu(t, 0) = 0 for t ∈ (b, b + δ).
In this case, formula (7.3) reads as

As(u,Ω) ≤ (b + δ − a)

∫ b

a
|γ̇ −| dt = (b + δ − a)2πρ. (7.9)

11 The map u defined in this way does not satisfy (7.1); anyway the fact that it does not depend on s in
Ω ∩ {s > 0} and in Ω ∩ {s < 0} allows to obtain (7.2).
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˜Ω

Ju

Fig. 6 Remark 7.5. The set Ω̃ is built by reflecting, with respect to the vertical axis in the figure, the set
Ω considered in Proposition 7.1. The map u : Ω̃ → R

2 is defined again by reflecting the map in (7.7), so
that Ju has two connected components. It is then possible to build a sequence (uh) ⊂ Lip(Ω;R2), again
by reflection, converging to u in L1(Ω̃;R2) and uniformly out of the curve composed of Ju and of the bold
dotted segment (the virtual jump) joining the two components of the jump. This sequence provides an upper
bound forA(u, Ω̃) lower than the one obtained by any sequence converging to u uniformly out of Ju

On the other hand, we have already observed in Example 2.13 that a(Γ ) ≥ πρ2. Thus,
from (7.8) we obtain that a(Γ ) is strictly greater than the right hand side of (7.9). Since in
general m(D;Γ −, Γ +) ≥ a(Γ ), see Remark 2.11, we have, using Theorem 1.4,

As(u,Ω) < m(D;Γ −[u], Γ +[u]) = A∞
s (u,�). (7.10)

Remark 7.5 (Joining two components of Ju) Example 7.4 suggests that, if the jump set of a
discontinuous map u : Ω → R

2 is not connected, it could be convenient (as far as only the
L1(Ω;R2)-convergence is involved) considering sequences (uh) ⊂ Lip(Ω;R2) converging
to u in L1(Ω;R2) and uniformly out of a connected curve containing Ju. Let Ω be as in
Example 7.4 and let Ω̃ be the union of Ω and of its symmetrized with respect to the axis
{t = c}, for some c ∈ (b, b + δ), see Fig. 6. Let us define u and (uh) in �̃ as in Example 7.4
for (t, s) ∈ Ω , and by reflection elsewhere in �̃. Then

lim
h→+∞A(uh, Ω̃) −

∫
Ω̃

|M(∇u)| dt ds ≤ 4πρ(c − a). (7.11)

If ρ > 2(c−a), the right hand side of (7.11) is smaller than 2m(D;Γ −, Γ +) (where Γ ± are
the graph of the traces of u on (a, b) × {0}), that would be the bound obtained reasoning as
in Proposition 5.1 in distinct neighborhoods of the two connected components of Ju. Indeed,
as observed in Example 7.4, m(D;Γ −, Γ +) ≥ a(Γ ) ≥ πρ2 > 4πρ(c −a). Moreover, if Ju
is far from ∂Ω̃ , the right hand side of (7.11) is also smaller than the upper bound obtained
by connecting each component of Ju with ∂Ω̃ , using the construction in Proposition 7.1.

7.2 Virtual jump starting from an interior point of Ju

In this section we show, for a particular pair (Ω,u) satisfying condition II, how to build a
sequence (uh) of maps converging to u in L1(Ω;R2) and uniformly out of Jext, union of
Ju and a virtual jump connecting an interior point of Ju and ∂Ω . Such phenomena indicate
that the characterization ofAs is involved, and justify, once more, the study of the functional
A∞

s .
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Let the bounded connected open set Ω be such that {(t, s) : s > 0} ∩ Ω = {t} × (0, δ)
for some t ∈ (a, b). Without loss of generality we can suppose t = 0 and a = −b; we take
Ω := (−L , L) × (−1, δ), for L > b > 0 and δ ∈ (0, 1), see Fig. 7. For ρ > 2(δ + b) we
define u : Ω → R

2 (similarly to Example 7.4) as

u(t, s) :=
{

ρ
(
cos

(π

b
t + π

)
, sin

(π

b
t + π

))
+ (1 − ρ, 0) if |t | ≤ b, s < 0,

(1, 0) otherwise.

Wewant to build a sequence (uh) ⊂ Lip(Ω;R2) converging tou in L1(Ω;R2) and uniformly
out of

Jext := Ju ∪ ({0} × (0, δ)
)
,

where Jext\Ju = {0} × (0, δ) takes the role of the virtual jump (see (7.13) below) and such
that

lim
h→+∞A(uh,Ω) =

∫
Ω

|M(∇u)| dt ds + 2πρ(δ + b). (7.12)

To this purpose, for ε ∈ (0,min{δ/2, b/2}) set (see Fig. 7)
Tε := {(t, s) ∈ Ω : |t | < b, s > 0, dist((t, s), Jext) < ε},
T

−
ε := Tε ∩ {t < 0}, T

+
ε := Tε ∩ {t > 0}.

The definitions will be given on T
+
ε and next extended on the whole of Tε by reflection

with respect to the s-axis. Let us parametrize the (closure of the) curve � ∩ {t > 0} ∩ ∂Tε

by the arc-length parametrization λε ∈ Lip([0, δ + 2b − ε];R2) with λε(0) = (ε, δ) and
λε(δ+2b−ε) = (0, 0). Let us also parametrize the (closure of the) set J+

ext := ({0}×[0, δ))∪
([0, b) × {0}) by the arc-length parametrization α̃ ∈ Lip([0, δ + b];R2), with α̃(0) = (0, δ)
and α̃(b + δ) = (b, 0).

On T
+
ε we consider the change of coordinates (p, d) : T+

ε → S+
ε defined as follows12:

– p(t, s) ∈ (0, δ + b) is the image through α̃−1 of the endpoint on J+
ext of the segment

represented in Fig. 7 passing through (t, s);
– d(t, s) is the distance between (t, s) and α̃(p(t, s)).

The set S+
ε is therefore {(p, d) ∈ R

2 : p ∈ (0, δ + b), d ∈ (0, dmax(p))}, where

dmax(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε if p ∈ (0, δ − ε],√
ε2 + (p − δ + ε)2 if p ∈ (δ − ε, δ],√
ε2 + (−p + δ + ε)2 if p ∈ (δ, δ + ε],

ε if p ∈ (δ + ε, δ + b).

Now, we define a function �ε : S+
ε → (0, δ + 2b − ε), linear on each segment {p} ×

(0, dmax(p)) and such that:

for p ∈ (0, δ − ε], �ε(p, 0) = δ + 2b − ε and �ε(p, dmax(p)) = p;
for p ∈ (δ − ε, δ], �ε(p, 0) = δ + 2b − ε and �ε(p, dmax(p)) = δ − ε;
for p ∈ (δ, δ + ε], �ε(p, 0) = 2δ + 2b − ε − p and �ε(p, dmax(p)) = δ − ε;
for p ∈ (δ + ε, δ + b), �ε(p, 0) = 2δ + 2b − ε − p and �ε(p, dmax(p)) = p − 2ε.

Thus we can define the retraction rε = (rε,1, rε,1) : Ω → Ω\Tε as:

12 Even if not explicitly written, the coordinates (p, d) depend on ε.
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– rε := id on Ω\Tε;
– rε(t, s) := λε

(
�ε

(
p(t, s), d(t, s)

))
if (t, s) ∈ T

+
ε ;

– rε(0, s) := (0, 0) if s ∈ [0, δ);
– rε(t, s) := (−rε,1(−t, s), rε,2(−t, s)) if (t, s) ∈ T

−
ε .

In words, on T
+
ε the map rε sends each segment in Fig. 7 into ∂Tε ∩ {t > 0} in such a way

that:

– if both the endpoints of the segment lie on ∂Tε ∩ {t > 0} (namely, the vertical segments
and the oblique segments below the diagonal), the image of the segment is the portion of
∂Tε ∩ {t > 0} bounded by the two endpoints;

– if only one of the endpoints of the segment lies on ∂Tε ∩ {t > 0}, the image of the
segment is the portion of ∂Tε ∩ {t > 0} bounded by that endpoint and (0, 0).

Let Aε := r−1
ε (Ju) ⊂ Tε;. the image of Aε ∩ T

+
ε through the coordinate change (p, d) is

the subset of S+
ε given by {(p, d) : p ∈ (0, δ + b), d ∈ (0, dJu (p)]}, where

dJu (p) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b
δ+2b−ε−p ε if p ∈ (0, δ − ε],
dmax(p)

2 if p ∈ (δ − ε, 0],
δ+b−p
δ+2b−p dmax(p) if p ∈ (0, δ + ε],

δ+b−p
2δ+2b−2p+ε

ε if p ∈ (δ + ε, δ + b).

We are now in the position to define (uh) ⊂ Lip(Ω;R2) as

uh(t, s) :=
{
u(rεh (t, s)) if (t, s) ∈ Ω\Aεh ,

γ −[u](rεh ,1(t, s)) if (t, s) ∈ Aεh ,
(7.13)

where (εh) ⊂ (0,min{δ/2, b/2}) is an infinitesimal sequence.
Since ∂2u = 0 almost everywhere,13 we have

A(uh,Ω) =
∫

Ω

√
1 + |∂1u(rεh )|2

(
(∂t rεh )

2 + (∂srεh )
2
)
dt ds.

We observe also that rεh (Tεh \Aεh ) ⊆ � ∩ (∂Tεh \Ju), where also ∂1u = 0.
Let us compute the area of the graph of the map uh on T

+
εh

∩ {s > εh}, on T
+
εh

∩ {t > εh}
and on (0, εh) × (0, εh), separately.

On T
+
εh

∩ {s > εh} we have that p(t, s) = δ − s and d(t, s) = t . Thus

Aεh ∩ (T+
εh

∩ {s > εh}) =
{
(t, s) ∈ T

+
εh

: s ∈ (ε, δ), t ∈
(
0,

bεh

2b − ε + s

)}
,

and for (t, s) in this set, uh(t, s) = γ −[u]
(
2b−εh+s

εh
t
)
. Hence

A(uh ,T+
εh

∩ {s > εh}) = A(uh , (T+
εh

\Aεh ) ∩ {s > εh}) + A(uh , Aεh ∩ T
+
εh

∩ {s > εh})

=
∫ δ

εh

∫ εh

bεh
2b+s−εh

1 dt ds +
∫ δ

εh

∫ bεh
2b+s−εh

0

√
1 +

∣∣∣∣γ̇ −
(
2b + s − εh

εh
t

)∣∣∣∣
2 ( (2b + s − εh)2

εh
2 + t2

εh
2

)
dt ds

= εh

∫ δ

εh

(
b + s − εh

2b + s − εh

)
ds +

∫ δ

εh

∫ b

0

√
O(εh

2) + |γ̇ −(τ )|2(1 + O(εh
2)) dτ ds

h→+∞−→ δ

∫ a

0
|γ̇ −(τ )| dτ = πρδ.

13 Again, ∂1 and ∂2 denote the derivative with respect to the first and the second variable, respectively.
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On T
+
εh

∩ {t > εh} we have p(t, s) = δ + t and d(t, s) = s. Thus

Aεh ∩ (T+
εh

∩ {t > εh}) =
{
(t, s) ∈ T

+
ε : t ∈ (εh, b), s ∈

(
0,

(b − t)εh

2b − 2t + εh

)}
,

and for (t, s) in this set, uh(t, s) = γ −[u]
(
2b−2t+εh

εh
s + t

)
. Hence

A(uh ,T+
εh

∩ {t > εh }) = A(uh , (T+
εh

\Aεh ) ∩ {t > εh }) + A(uh , Aεh ∩ T
+
εh

∩ {t > εh })

=
∫ b

εh

∫ εh
(b−t)εh
2b−2t+εh

1 dt ds+
∫ b

εh

∫ (b−t)εh
2b−2t+εh

0

√√√√1+
∣∣∣∣γ̇ −

(
t + 2b − 2t + εh

εh
s

)∣∣∣∣
2
((

1 − 2s

εh

)2
+ (2b − 2t + εh )2

εh
2

)
ds dt

= εh

∫ b

εh

(
b − t + εh

2b − 2t + εh

)
dt +

∫ b

εh

∫ b

0

√
O(εh

2) + |γ̇ −(τ )|2(1 + O(εh
2)) dτ dt

h→+∞−→ b
∫ b

0
|γ̇ −(τ )| dτ = πρb.

In order to estimate the area of the graph of uh on (0, εh) × (0, εh), is it enough to notice
that |∇rεh ,1| = O(ε−1

h ). Therefore

A(uh, (0, εh) × (0, εh)) =
∫ εh

0

∫ εh

0

√
1 + |∂1u(rεh )|2

(
(∂t rεh )

2 + (∂srεh )
2
)
dt ds

≤ ε−1
h

∫ εh

0

∫ εh

0

√
O(ε2h) + O(1)

h→+∞−→ 0.

Since by symmetry lim
h→+∞A(uh,T+

εh
) = lim

h→+∞A(uh,T−
εh

), (7.12) follows. This implies

that As(u,Ω) ≤ 2πρ(δ + b). Due to our choice of ρ, we conclude, as in Example 7.4, that
As(u,Ω) < m(D;Γ −[u], Γ +[u]).

8 Non-subadditivity of A
Let us suppose that Ω and u satisfy condition I, and choose a map u of the form

u(t, s) :=
{

( f (t), 0) if (t, s) ∈ R−,

( f (t), 1) if (t, s) ∈ R+,
(8.1)

where f ∈ Lip([a, b]) is a piecewise C1-function14; for simplicity, we fix f (a) = 0. Clearly
γ −(t) = ( f (t), 0) and γ +(t) = ( f (t), 1).

The aim of this section is to prove the following result.

Theorem 8.1 (Non-subadditivity ofA(u, ·)) Let u be as in (8.1) for a non-constant function
f . Then A(u, ·) is not subadditive.

Remark 8.2 It is worth to recall that in [1] it is proven that if f is constant then As(u, ·) =
|Dsu|(·), and thus A(u, ·) is subadditive.

In order to prove Theorem 8.1, we need some intermediate results: Proposition 8.3, that
provides an estimate from above ofAs(u,R), in terms of the area of a suitable semicartesian
parametrization (see Fig. 8); Proposition 8.4, wherewe show that, ifA(u, ·)were subadditive,
than As(u, ·) would be forced to coincide with |Dsu|(·) (see (8.3)); Proposition 8.6, that

14 That is, there exist t0 = a < t1 < · · · < t� < t�+1 = b so that f ∈ C1([t j , t j+1]) for j = 0, . . . , �.
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Fig. 8 The curves
Γ − = {(t, f (t), 0) : t ∈ [a, b]},
Γ + = {(t, f (t), 1) : t ∈ [a, b]}
for a linear non-constant function
f , the rectangle V , and the sets
T0, and T1 (in this case two
triangles at different heights). The
broken dotted curve is the image
through the map Φ of the vertical
segment R ∩ {t = t}

Γ−

Γ+

1

T1

T0

V

1

t

ξ

η

a

b

t

characterizes suitable “vertical” bidimensional currents in R
4, whose mass is controlled

from above.
We stress that from Proposition 8.4 it follows that there exist coplanar curves Γ ± such

that the image of an area-minimizing semicartesian parametrization (if it exists) spanning
Γ − ∪ Γ + is not planar, see Remark 8.5: this is a consequence of the fact that the area of
the rectangle E bounding Γ − and Γ + in Fig. 8 can be larger than the sum of the area of
its orthogonal projection on the tη-plane and the areas of the two triangles T0 and T1 (see
inequality (8.4)).

Proposition 8.3 Let u be as in (8.1). Then

A(u,R) ≤
∫
R

|M(∇u)| dt ds + |Dsu|(R) + lip( f )(b − a)2.

Proof Since |u+(t, 0) − u−(t, 0)| = 1 for any t ∈ (a, b), we have

|Dsu|(R) = b − a = H2(V ),

where V is the rectangle V := [a, b] × {0} × [0, 1] ⊂ R
3
(t,ξ,η) (see Fig. 8). Let

T0 := {(t, ξ, 0) : t ∈ (a, b), ξ ∈ (0, f (t)) if 0 ≤ f (t), ξ ∈ ( f (t), 0) otherwise}
and T1 := T0 + (0, 0, 1). We observe that, since f (a) = 0,

H2(T0) = H2(T1) ≤ lip( f )

2
(b − a)2,

and hence, if


 := T0 ∪ V ∪ T1, (8.2)

we have

H2(
) ≤ |Dsu|(R) + lip( f )(b − a)2.
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Recalling Proposition 3.1, the result follows if we prove that 
 can be parametrized by an
injective map Φ ∈ semicart(R;Γ −, Γ +). This is true, by considering for example the map
Φ(t, s) := (t, φ(t, s)), with φ ∈ H1(R;R2) defined by

φ(t, s) :=

⎧⎪⎨
⎪⎩

1−s
2/3 (0, 1) + s−1/3

2/3 γ +(t) in R ∩ {s ≥ 1/3},
s+1/3
2/3 (0, 1) in R ∩ {−1/3 ≤ s < 1/3},

− s+1/3
2/3 γ −(t) in R ∩ {−1 < s < −1/3},

which satisfies Φ(R) = 
. ��
Proposition 8.4 (Subadditivity and coincidence with |Dsu|) Let u be as in (8.1) for a non-
constant function f . If the functional A(u, ·) were subadditive, then

As(u,R) = |Dsu|(R). (8.3)

Proof Fix δ ∈ (0, (b−a)/2) and let N (δ) ∈ N be such that a+N (δ)δ < b ≤ a+(N (δ)+1)δ.
Define

Ri := [(a + iδ, a + (i + 1)δ) ∩ (a, b)] × (−1, 1), for i = 0, . . . , N (δ),

Pi := [(a + iδ − δ2, a + iδ + δ2) ∩ (a, b)] × (−1, 1), for i = 1, . . . , N (δ).

From Proposition 8.3, applied with Ri and Pi in place of R, it follows

A(u,Ri ) ≤
∫
Ri

|M(∇u)| dt ds + |Dsu|(Ri ) + lip( f )δ2,

A(u,Pi ) ≤
∫
Pi

|M(∇u)| dt ds + |Dsu|(Pi ) + 4lip( f )δ4.

If A(u, ·) were subadditive, we would get

A(u,R) ≤
N (δ)∑
i=0

A(u,Ri ) +
N (δ)∑
i=1

A(u,Pi )

≤
∫
R

|M(∇u)| dt ds + |Dsu|(R)

+
N (δ)∑
i=1

∫
Pi

|M(∇u)| dt ds +
N (δ)∑
i=1

|Dsu|(Pi ) + O(δ) + O(δ3)

≤
∫
R

|M(∇u)| dt ds + |Dsu|(R) + O(δ).

Since by [1, Theorem 3.7] we have

A(u,R) ≥
∫
R

|M(∇u)| dt ds + |Dsu|(R),

the thesis follows letting δ → 0+. ��
Remark 8.5 (Non-planarity) Let us consider a map as in (8.1), for a linear function
f (t) = c(t − a), c > 0 (Fig. 8). In this case the curves Γ ± are coplanar. The map
Ψ ∈ semicart(R;Γ −, Γ +) defined by

Ψ (t, s) :=
(

t, c(t − a),
s + 1

2

)
, t ∈ (a, b), s ∈ (−1, 1),
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parametrizes the rectangle E bounded by Γ − and Γ + and the two vertical segments
{(a, 0, η) : η ∈ (0, 1)}, and {(b, c(b − a), η) : η ∈ (0, 1)}. We have

H2(E) = (b − a)
√
1 + c2 =

∫
R

|∂tΨ ∧ ∂sΨ | dt ds.

On the other hand, the sets T0 and T1 built in Proposition 8.4 are two triangles of area c(b−a)2

2 ,
so that H2(
) = c(b − a)2 + (b − a), where 
 is defined in (8.2). A simple computation
shows that

H2(E) > H2(
) (8.4)

provided that b − a ∈
(
0,

√
1+c2−1

c

)
. Interestingly, this implies that an area-minimizing

semicartesian surface (if it exists, recall the beginning of Remark 2.11) spanning two coplanar
curves is not necessarily planar.

The next proposition is a modification of [1, Lemma 4.8]. We refer to [1] and [9] for all
notations and results concerning cartesian currents.

Proposition 8.6 (Mass lower bound of cartesian two-currents) Let T = τ(ST , θT , ζT ) be a
2-dimensional integer rectifiable current with bounded support in U := R × R

2 ⊂ R
2
(t,s) ×

R
2
(ξ,η). Denote by p : U → R

2
(t,s) the orthogonal projection. Suppose that

(i) L2(p(ST )) = 0,
(ii) ∂T = [[{(t, 0, f (t), 1)}t∈(a,b)]]−[[{(t, 0, f (t), 0)}t∈(a,b)]] in U, where f ∈ Lip([a, b])

is piecewise C1.

Then

f non-constant ⇒ MU (T ) >

∫ b

a
|( f (t), 1) − ( f (t), 0)| dt = b − a.

Proof Assume by contradiction thatMU (T ) ≤ b−a. Letπ : U → R×Rη and q : R×Rη →
R be the orthogonal projections, so that p = q ◦ π . Since T has bounded support in U , it
follows that ∂(π�T ) = π�(∂T ) (see [9, Sec2.3]) and thus, from assumption (ii), ∂(π�T ) =
[[{(t, 0, 1)}t∈(a,b)]]−[[{(t, 0, 0)}t∈(a,b)]] =: [[(a, 0), (b, 0)]]×[[1]]−[[(a, 0), (b, 0)]]×[[0]]
in R × Rη. Since T is rectifiable, also π�T is rectifiable, and π�T = τ(Sπ�T , θπ�T , ζπ�T ).
Moreover, Sπ�T ⊆ π(ST ) and thus, applying the projectionq and recalling assumption (i), we
get L2(q(Sπ�T )) = 0. Applying the one-codimensional result in [1, Lemma 4.7], we deduce
that π�T = [[(a, 0), (b, 0)]] × [[0, 1]]. In particular Sπ�T = (a, b) × {0} × {0} × [0, 1],
θπ�T = 1, and ζπ�T = (1, 0, 0, 0) ∧ (0, 0, 0, 1).

Now, we use the assumption on the mass of the current T , obtaining

b − a = H2(Sπ�T ) ≤ H2(π(ST )) ≤ H2(ST ) ≤ MU (T ) ≤ b − a;
hence the above inequalities are indeed equalities and in particular

π(ST ) � (a, b) × {0} × {0} × [0, 1]
in the sense ofH2. Moreover, sinceH2(π(ST )) = H2(ST ) = MU (T ), it follows that θT = 1
H2-almost everywhere on ST , and ζT = et ∧εη, where et = (1, 0, 0, 0) and εη = (0, 0, 0, 1),
see [1, Lemma 4.8].

Thus, if we write any smooth 2-form ω compactly supported in U as

ω := ωt,sdt ∧ds +ωt,ξ dt ∧dξ +ωt,ηdt ∧dη+ωs,ξ ds ∧dξ +ωs,ηds ∧dη+ωξ,ηdξ ∧dη,
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we have

T (ω) =
∫

ST

ωt,η.

Let α := αtdt + αsds + αξdξ + αηdη be a smooth 1-form compactly supported in U . Then

∂T (α) = T (dα) =
∫

ST

(∂tα
η − ∂ηα

t ). (8.5)

On the other hand, from assumption (ii) it follows

∂T (α) =
∫ b

a

[
αt (t, 0, f (t), 1) − αt (t, 0, f (t), 0)

]

+ f ′(t)
[
αξ (t, 0, f (t), 1) − αξ (t, 0, f (t), 0)

]
dt. (8.6)

Now, we choose the 1−form α such that αt = 0, αη = 0, so that the right hand side of (8.5)
vanishes, and (8.6) reduces to

∂T (α) =
∫ b

a
f ′(t)

[
αξ (t, 0, f (t), 1) − αξ (t, 0, f (t), 0)

]
dt.

Since f is not constant and piecewise C1, there exists a non-empty open interval I ⊂
(a, b) where f ′ is either positive or negative. It is then sufficient to choose αξ such that
αξ (t, 0, f (t), 1) �= αξ (t, 0, f (t), 0) for any t ∈ I , to obtain that the right hand side of (8.6)
is nonzero, which is a contradiction. ��
Now, we are in a position to prove Theorem 8.1

Proof Let us suppose by contradiction that A(u; ·) is subadditive. As a consequence of
Proposition 8.4 and [1, Lemma 3.3], we can select a sequence (uh) ⊂ C1(R;R2) converging
to u in L1(R;R2) and bounded in L∞(R;R2), and such that

A(uh,R) → A(u,R) =
∫
R

|M(∇u)| dt ds + |Dsu|(R) as h → +∞.

From [1, Theorem 2.6 and Remark 2.4] it follows that the sequence of the graphs [[Guh ]]
(as currents) of the maps uh converges weakly in the distributional sense to a cartesian
(integer rectifiable) 2-current T = τ(S, θ, ζ ), thus with zero boundary, in U := R × R

2,
decomposable in its regular part Tr = [[Gu]] and its singular part Ts = τ(Ss, θ, ζ ); recall
that L2(p(Ss)) = 0. By the lower semicontinuity of the mass we have

M(T ) ≤ lim inf
h→+∞ M([[Guh ]]) = A(u,R)

and

M(T ) = M(Tr ) + M(Ts) = M([[Gu]]) + M(Ts) =
∫
R

|M(∇u)| dt ds + M(Ts).

In addition, the support of Ts is bounded in U , since (uh) is bounded in L∞(R;R2), and
∂Ts = −∂Tr = −∂[[Gu]] = [[{(t, 0, f (t), 1)}t∈(a,b)]] − [[{(t, 0, f (t), 0)}t∈(a,b)]] in U .
Therefore Ts satisfies all hypotheses of Proposition 8.6, hence f has to be constant, providing
a contradiction. ��
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