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Abstract In this paper, we study the analogue in Gauss space of Lord Rayleigh’s conjecture
for the clamped plate. We show that the first eigenvalue of the bi-Hermite operator in a
bounded domain is bounded below by a constantCV times the corresponding eigenvalue of a
half-space with the same Gaussian measure V . Similar results are established on unbounded
domains.We use rearrangement methods similar to Talenti’s for the Euclidean clamped plate.
We obtain our constant CV following the Euclidean approach of Ashbaugh and Benguria,
and we find a numerical bound CV ≥ 0.91 by solving an associated minimization problem
in terms of parabolic cylinder functions.

Keywords Symmetrization · Comparison results · Clamped plate · Gauss space · Parabolic
cylinder functions
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1 Introduction

In 1877, Lord Rayleigh conjectured that among all clamped plates of a given area, the lowest
frequency of vibration is minimized by a disk [28]. It took over one hundred years for this
conjecture to be proved in dimensions n = 2 and 3. Partial resultswere first obtained by Szegő
[31] and Talenti [32]. The proof for dimension n = 2 was attained by Nadirashvili [25,26]
based on Talenti’s rearrangement work, and Ashbaugh and Benguria [4] later extended the
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result to dimension n = 3. The problem remains open for dimensions n ≥ 4, with a partial
result by Ashbaugh and Laugesen [5]. For a survey of Euclidean plate problems, see [6].

For a clamped plate whose shape is a bounded region �, the frequencies and modes of
vibration are solutions to the bi-Laplace eigenvalue problem

⎧
⎪⎨

⎪⎩

�2u = λu in �,

u = 0 on ∂�,
∂u
∂ν

= 0 on ∂�.

In this paper, we consider the Gauss space analogue of the clamped plate. In place of the
bi-Laplace operator�2, we consider the bi-Hermite operatorL 2. If g is the standard normal
Gaussian over Rn , we may write the Hermite operator as L u = 1

g∇ · (g∇u). In addition,
Gaussian measure dγ = g dx replaces Lebesgue measure. See Sect. 2 for precise definitions.
The eigenvalue problem we consider can then be written as

⎧
⎪⎨

⎪⎩

L 2 u = �u in �,

u = 0 on ∂�,
∂u
∂ν

= 0 on ∂�,

(1)

where the domain � is possibly unbounded. We prove a lower bound on the first eigenvalue
�1(�) in terms of the first eigenvalue of a half-space of the same measure, namely:

Theorem 1 Let � ⊂ R
n be a C∞ domain with Gaussian measure V = γ (�) satisfying

0 < V < 1, and let �# be a half-space of the same Gaussian measure.

(i) If � is bounded, then there exists a constant 0 < CV ≤ 1 depending only on the
Gaussian measure V of � such that

�1(�) ≥ CV�1(�
#). (2)

(ii) If � is unbounded, then in terms of constants CV ′ from part (i),

�1(�) ≥
(

lim inf
V ′→V

CV ′
)

�1(�
#),

where the lim inf is taken over V ′ < V .

Our proof of Theorem 1 follows the approach of Talenti [32] and Ashbaugh and Ben-
guria [4]. Our value for CV is found using symmetrization methods, calculations involving
parabolic cylinder functions, and computations of eigenvalues of half-spaces. We plot our
constant CV numerically in Fig. 1 below. Observe that CV ≥ 0.91 for all Gaussian volumes
V ∈ (0, 1), andCV ≥ 0.98 for V ≥ 0.4.We conjecture that inequality (2) holds withCV = 1
for all Gaussian volumes.

Although balls are the usual extremal domains for Euclidean isoperimetric inequalities,
the half-space often (though not always) plays this role in Gauss space. Indeed, the perimeter-
minimizing domains in Gauss space are half-spaces, as was proved by Borell, Erhard, and
Ledoux [13,18,23]. More recently, Bette, Chiacchio, and Ferone [10] proved the Gauss
space analogue of the Faber–Krahn inequality, showing that minimizing domains for the first
Dirichlet Hermite eigenvalue are likewise half-spaces.

Other closely related results have recently made spectral theory in Gauss space a lively
area of research. Bounds on the first nonzero Neumann Hermitian eigenvalue μ1(�) include
a universal lower bound μ1 ≥ 1, proved by Brandolini, Chiacchio, Henrot, and Trombetti
[14], and a sharp lower bound when the corresponding eigenfunction is odd with respect to
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Fig. 1 Left, a graph of our CV plotted against volume. Right, a graph of our CV plotted against L , where
HL = {x ∈ R

n | x1 > L} is the half-space with volume V . Note the axes cross at the point (0, 0.9) rather
than the origin

a fixed axis, proved by Brandolini, Chiacchio, and Trombetti [15]. As a partial Gauss space
version of the Kornhauser–Stäkgold inequality, Chiacchio and di Blasio [16] proved the ball
maximizes μ1(�) for regions symmetric about the origin. Benguria and Linde [8] discussed
the relationship between the Dirichlet Shrödinger operator with certain potentials and the
Payne–Pólya–Weinberger inequality in both Gauss and inverse-Gauss space.

We finally remark that the rearrangement techniques used in this paper are similar to those
employed by Betta, Brock, Mercaldo, and Posteraro in [11] and di Blasio, Feo, and Posteraro
in [17], who proved comparison results involving the Hermite operator.

Our paper is organized as follows: Sects. 2, 3, and 4 lay out the foundation of the bi-
Hermite Dirichlet problem, introducing notation, proving properties of the spectrum and
eigenfunctions, and discussing more general plate problems in Gauss space. Section 5 con-
tains our symmetrization argument, which allows us to bound �1(�) below by the related
Ja,b minimization problem (notation to be defined). Sections 6, 7, and 8 are focused on
explicit solutions of the Ja,b minimization problem and half-space computations in terms of
parabolic cylinder functions. Finally, we prove Theorem 1 in Sect. 9 and conclude with a
discussion of our numerical work to obtain CV .

2 Preliminaries and notation

In this section, we collect notation and definitions used throughout the paper.
First note that we only consider domains � ⊆ R

n that are C∞ and have measure
0 < γ (�) < 1.

2.1 The Hermite operator and Gaussian Sobolev spaces

We begin by noting that the Hermite operator is defined as

L u = 1

g
∇ · (g∇u) where g = cn e

−|x |2/2,

with the normalizing constant cn chosen so that
∫

R
n g dx = 1.

Direct computation allows us to write the Hermite and bi-Hermite operators in terms of
the more usual gradients and Laplacians, along with x = (x1, x2, . . . , xn), as follows:

L u = �u − x · ∇u,

L 2 = �2u − 2x · ∇(�u) − 2�u + x�(D2u)x + x · ∇u.
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The Gauss measure γ with

dγ = g dx

is the absolutely continuous measure on R
n with density g given above.

Given a domain � ⊆ R
n , we define the L p(�, γ ) norm in the expected manner:

‖u‖L p(�,γ ) =
(∫

�

|u|p dγ
)1/p

.

The space L p(�, γ ) consists of all measurable functions u with finite norm. Sobolev spaces
are defined analogously to their Euclidean counterparts. For example, H1(�, γ ) denotes
the collection of functions in L2(�, γ ) with weak first-order partials that also belong to
L2(�, γ ). The corresponding norm on such functions is

‖u‖H1(�,γ ) =
(∫

�

|∇u|2 + |u|2 dγ
)1/2

.

Write C∞
c (�) for the collection of smooth functions compactly supported in �. Then

H1
0 (�, γ ) denotes the closure of C∞

c (�) in H1(�, γ ) with respect to the above norm.
Similarly, the Sobolev space H2(�, γ ) is defined as the collection of functions in L2(�, γ )

with weak partials up to second order, all of which belong to L2(�, γ ). The norm for such
functions is

‖u‖H2(�,γ ) =
(∫

�

|D2u|2 + |∇u|2 + |u|2 dγ
)1/2

.

The space H2
0 (�, γ ) is then the closure of C∞

c (�) in H2(�, γ ) with respect to the above
norm.

2.2 Symmetrization

Given a real number L , write HL for the half-space

HL = {x = (x1, . . . , xn) ∈ R
n | x1 > L}.

Let 	 : R → (0, 1) denote the function where 	(L) is the Gaussian measure of HL . Then

	(L) = γ (HL ) = cn
cn−1

∫ ∞

L
e−s2/2 ds.

Note that the fraction cn/cn−1 is independent of dimension n.
For a domain � ⊆ R

n , we shall write �# for the half-space

�# = HL ,

where L is chosen so that γ (HL) = γ (�). If Per denotes the Gaussian perimeter of a set,
then for sufficiently regular sets � ⊆ R

n , we have

Per(�) =
∫

∂�

g dHn−1 .

The isoperimetric inequality in Gauss space [13,18,23] then states

Per(�) ≥ Per(�#).
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The clamped plate in Gauss space 1981

Given u ∈ L1(�, γ ), wewrite u∗ for the decreasing rearrangement of u, defined on [0, γ (�)]
by

u∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ess sup
�

u if t = 0,

inf{s | γ ({x ∈ � | s < u(x)}) ≤ t} if 0 < t < γ (�),

ess inf
�

u if t = γ (�).

We define the Gauss symmetrization of u as the function u# ∈ L1(�#, γ ) given by

u#(x) = u∗ (	(x1)) ,

where x1 is the first coordinate of x . Note that u# is increasing in x1 and that the upper
level sets {u# > t} are half-spaces. Further information on rearrangements can be found in
[21,22,24].

3 Existence of the spectrum and regularity of solutions

The goal of this section is to establish properties of the eigenvalues and eigenfunctions for
the problem ⎧

⎪⎨

⎪⎩

L 2 u = �u in �,

u = 0 on ∂�,
∂u
∂ν

= 0 on ∂�,

(3)

where we recall � ⊆ R
n is a C∞ domain with 0 < γ (�) < 1, and L 2 is the bi-Hermite

operator. In particular, we show that the above PDEproblem admits a sequence of eigenvalues
�1 ≤ �2 ≤ · · · whose corresponding eigenfunctions are smooth up to the boundary ∂�

(Proposition 5). These results essentially follow from the coercivity and continuity of the
bilinear form

a(u, v) =
∫

�

(L u)(L v) dγ, u, v ∈ H2
0 (�, γ ). (4)

Our choice of form parallels the usual form for the Euclidean clamped plate problem, but
this choice is a simplification of a more general characterization of plates and cannot be used
for other boundary conditions. We discuss this issue and more general Gauss space plate
problems in Sect. 4.

It is not immediately clear that the above form is well defined, i.e., that the integral
converges for all u and v. It turns out that convergence of a(u, v) follows from, and is
closely linked with, the logarithmic Sobolev inequality of Gross [20]. Related results and
generalizations may be found in the work of Adams [2] and Feissner [19]; we need only the
following, narrower result.

Proposition 2 Let � ⊆ R
n be a domain and say u ∈ H1

0 (�, γ ). Then
∫

�

|u|2 log |u| dγ ≤
∫

�

|∇u|2 dγ + ‖u‖2L2(�,γ )
log ‖u‖L2(�,γ ).

Proof Let u ∈ H1
0 (�, γ ) and choose a sequence of test functions φk ∈ C∞

c (�) where
φk → u in the H1 norm. Then according to the classical logarithmic Sobolev inequality due
to Gross [20],

∫

�

|φk |2 log |φk | dγ ≤
∫

�

|∇φk |2 dγ + ‖φk‖2L2(�,γ )
log ‖φk‖L2(�,γ ).
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By passing to a subsequence, we may assume the φk converge pointwise γ−a.e. to u. Since
the function x2 log x is bounded below on [0,∞), we may apply Fatou’s lemma to deduce

∫

�

|u|2 log |u| dγ =
∫

�

lim inf
k→∞ |φk |2 log |φk | dγ

≤ lim inf
k→∞

∫

�

|φk |2 log |φk | dγ

≤ lim inf
k→∞

(∫

�

|∇φk |2 dγ + ‖φk‖2L2(�,γ )
log ‖φk‖L2(�,γ )

)

=
∫

�

|∇u|2 dγ + ‖u‖2L2(�,γ )
log ‖u‖L2(�,γ ).

��
The following result is an immediate consequence of the logarithmic Sobolev inequality.

Proposition 3 Let � ⊆ R
n be a domain and say u ∈ H1

0 (�, γ ). Then xi u ∈ L2(�, γ ) for
1 ≤ i ≤ n.

Proof Define sets E and F by

E = {
x ∈ �

∣
∣ log |u(x)| ≥ x2i /8

}
,

F = {
x ∈ �

∣
∣ log |u(x)| < x2i /8

}
.

Then

1

8

∫

�

x2i u
2 dγ ≤

∫

E
u2 log |u| dγ + 1

8

∫

F
x2i e

x2i /4 dγ.

In the inequality above, the first integral converges by Proposition 2. The second integral is
bounded by the convergent integral

∫

Rn |x |2e−|x |2/4 dx . ��
We next deduce the following corollary, which together with Cauchy–Schwarz gives

convergence of our form a(·, ·) on H2
0 (�, γ ).

Corollary 1 Let � ⊆ R
n be a domain and say u ∈ H2

0 (�, γ ). Then L u ∈ L2(�, γ ).

Proof Observe that L u = �u − x · ∇u. Now, �u ∈ L2(�, γ ) by assumption. By Propo-
sition 3, xi uxi ∈ L2(�, γ ) for each 1 ≤ i ≤ n, since uxi ∈ H1

0 (�, γ ). We deduce
x · ∇u ∈ L2(�, γ ), which completes our proof. ��

We next collect several related results used in the remainder of the paper.

Proposition 4 Let � ⊆ R
n be a domain and suppose u, uk ∈ H1

0 (�, γ ) with uk → u in the
H1 norm. Then for each 1 ≤ i ≤ n, there exists a subsequence of xi uk that converges to xi u
in L2(�, γ ).

Proof First, pass to a subsequence with uk → u pointwise γ−a.e. Fix an index i and define
the sets

Ek = {
x ∈ �

∣
∣ log |u(x) − uk(x)| ≥ x2i /8

}
,

Fk = {
x ∈ �

∣
∣ log |u(x) − uk(x)| < x2i /8

}
.
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Then as before, we have

1

8

∫

�

x2i (u − uk)
2 dγ ≤

∫

Ek

(u − uk)
2 log |u − uk |dγ + 1

8

∫

Fk
x2i |u − uk |ex2i /8 dγ.

Now observe that
∫

Ek

(u−uk)
2 log |u−uk | dγ =

∫

�

(u − uk)
2 log |u − uk | dγ −

∫

Fk
(u−uk)

2 log |u − uk | dγ.

In the limit as k → ∞, the integral over� vanishes by Proposition 2. By Egoroff’s Theorem,

lim sup
k→∞

(

−
∫

Fk
(u − uk)

2 log |u − uk | dγ
)

< ε

for every ε > 0. By Cauchy–Schwarz,

∫

Fk
x2i |u − uk |ex2i /8 dγ ≤

(∫

�

x4i e
x2i /4 dγ

)1/2 (∫

�

|u − uk |2 dγ
)1/2

,

which vanishes as k → ∞ by assumption. We deduce xi uk → xi u in L2(�, γ ). ��

Corollary 2 Let � ⊆ R
n be a domain and suppose u, uk ∈ H2

0 (�, γ ) with uk → u in the
H2 norm. Then there is a subsequence of L uk that converges to L u in L2(�, γ ).

Proof Note �uk → �u in L2(�, γ ) by assumption. Since the partials of uk belong to
H1
0 (�, γ ), Proposition 4 allows us to pass to a subsequence for which x · ∇uk → x · ∇u in

L2(�, γ ). ��

We may finally address the spectrum of the bi-Hermite eigenvalue problem.

Proposition 5 Let � ⊆ R
n be a C∞ domain with γ (�) < 1. The spectrum of the operator

associated with the form

a(u, v) =
∫

�

(L u)(L v) dγ, u, v ∈ H2
0 (�, γ )

consists entirely of isolated eigenvalues of finite multiplicity satisfying

�1 ≤ �2 ≤ · · · ≤ �n ≤ · · · → ∞ as n → ∞,

and whose associated weak eigenfunctions form a complete orthonormal basis of L2(�, γ ).
Moreover, the eigenfunctions belong to C∞(�) and are real analytic in �.

Proof The standard approach to such a problem is to first prove our form is coercive and
continuous. That is, we need to show there exist constants C1,C2, K > 0 such that:

C1‖u‖2H2(�,γ )
≤ a(u, u) + K‖u‖2L2(�,γ )

≤ C2‖u‖2H2(�,γ )
.
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Let φ ∈ C∞
c (�), and let �̃ denote a bounded C∞ domain which is precompact in � and

contains the support of φ. A straightforward calculation with integration by parts reveals

a(φ, φ) =
n∑

i, j=1

∫

�̃

(gφxi )xi (gφx j )x j
1

g
dx

=
∫

�̃

|∇φ|2 dγ +
n∑

i, j=1

∫

�̃

φ2
xi x j dγ

=
∫

�

|∇φ|2 dγ +
n∑

i, j=1

∫

�

φ2
xi x j dγ.

Nowwith u ∈ H2
0 (�, γ ), choose a sequence φk ∈ C∞

c (�)with φk → u in the H2 norm and
which, by Corollary 2, has the additional property L φk → L u in L2(�, γ ). As k → ∞
we have

a(φk, φk) → a(u, u).

By the definition of H2 convergence, we then have

∫

�

|∇φk |2 dγ +
n∑

i, j=1

∫

�

φ2
kxi x j

dγ →
∫

�

|∇u|2 dγ +
n∑

i, j=1

∫

�

u2xi x j dγ.

We deduce

a(u, u) + ‖u‖2L2(�,γ )
= ‖u‖2H2(�,γ )

whenever u ∈ H2
0 (�). The coercivity and continuity of the form is now established.

Next, the space H2
0 (�, γ ) is compactly embedded in L2(�, γ ). This follows since

H1
0 (�, γ ) is compactly embedded in L2(�, γ ) (see [16, Proposition 2.2]), andu ∈ H1

0 (�, γ )

whenever u ∈ H2
0 (�, γ ) with ‖u‖H1 ≤ ‖u‖H2 . By coercivity of our form and the compact

embedding of our space, we may apply [29, Corollary 7.8, p. 88] and conclude the form a has
a set of weak eigenfunctions which form an orthonormal basis of L2(�, γ ). Furthermore,
the corresponding eigenvalues are of finite multiplicity and satisfy the desired inequalities.

Smoothness of the eigenfunctions follows from standard regularity results [27, p. 668]
and the Trace Theorem [33, Prop 4.3, p. 286 and Prop 4.5, p. 287]. Real analyticity of the
eigenfunctions follows from the Analyticity Theorem [9, p. 136]. It follows that our weak
eigenfunctions are classical (strong) solutions to problem (3). ��

We close this section with a result essential to our proof of Theorem 1.

Proposition 6 Suppose �,�k ⊂ R
n are C∞ domains with γ (�) < 1 satisfying

�1 ⊆ �2 ⊆ �3 ⊆ · · · ⊆ � and
∞⋃

k=1

�k = �.

Let �1(�),�1(�k) denote the lowest eigenvalues for problem (3). Then

lim
k→∞ �1(�k) = �1(�).
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Proof We adapt the techniques of [7]. By Rayleigh–Ritz,

�1(�k) = inf
u∈H2

0 (�k ,γ )

∫

�k
(L u)2 dγ

∫

�k
u2 dγ

,

and similarly for �. Thus,

�1(�) ≤ �1(�k+1) ≤ �1(�k) ≤ · · · ,

and so the limit

�̃ := lim
k→∞ �1(�k)

exists with �1(�) ≤ �̃. We claim that the reverse inequality is also true. Let ε > 0 and use
Corollary 2 to choose φ ∈ C∞

c (�) with ‖φ‖L2(�,γ ) = 1 such that
∣
∣
∣
∣

∫

�

(L φ)2 dγ − �1(�)

∣
∣
∣
∣ < ε.

Choose N so that suppφ ⊂ �k for k ≥ N . Then for k ≥ N ,

�1(�k) ≤
∫

�

(L φ)2 dγ ≤ �1(�) + ε.

Letting k → ∞, and then sending ε → 0, we conclude �̃ ≤ �1(�). Our proof is complete.
��

4 Gaussian plate problems

The Rayleigh quotient for the Euclidean clamped plate is most frequently presented with
numerator

∫

�
(�u)2 dx and corresponding form A(u, v) = ∫

�
(�u)(�v) dx . However, this

is a simplification made possible due to the boundary conditions and does not generalize to
other boundary conditions. In fact, this form is not coercive when considered over the domain
H2(�) (for the free plate).

The most general form for a plate in Euclidean space with uniform tension/rigidity con-
trolled by a parameter τ is

A(u, v) =
∫

�

⎛

⎝
n∑

i, j=1

uxi x j vxi x j + τ(∇u · ∇v)

⎞

⎠ dx .

Taken over H2
0 (�), this form corresponds to the clamped plate; extending our domain to

H2(�) gives the free (unconstrained) plate. Taking τ = 0 in the clamped case recovers the
familiar Dirichlet bi-Laplace eigenvalue problem.

Therefore, for the general plate problem in Gauss space, one should fix a constant B and
begin with the bilinear form

ã(u, v) =
∫

�

⎛

⎝
n∑

i, j=1

uxi x j vxi x j + B(∇u · ∇v)

⎞

⎠ dγ.

For the clamped plate, we should take our form domain to be H2
0 (�, γ ); if we were to

consider the free plate, our domain would be H2(�, γ ).
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As long as the constant B > 0, coercivity and continuity of this form over both H2
0 (�, γ )

(clamped plate) and H2(�, γ ) (free plate) is immediate, and sowe have the expected discrete
spectrum and orthonormal eigenbasis. The Euler–Lagrange equation for this form is easily
shown to be

L 2 u + (1 − B)L u = �u,

although of course the boundary conditions depend on our chosen form domain.
When we consider the form domain H2

0 (�, γ ), the boundary conditions u = ∂u/∂ν = 0
and a straightforward integration-by-parts argument allow us to rewrite the form ã(·, ·) as

∫

�

(
(L u)(L v) + (B − 1)(∇u · ∇v)

)
dγ.

Note that taking B = 1 recovers our chosen form (4) for the bi-Hermite problemL 2 u = �u.
Thus, we are justified in using our simplified form for the clamped plate problem.

5 Symmetrization

In this section, we assume � ⊂ R
n is a C∞ domain with measure 0 < γ (�) < 1. We take

�1 = �1(�) to be the first eigenvalue and u an associated principle eigenfunction for the
bi-Hermite problem ⎧

⎪⎨

⎪⎩

L 2 u = �u in �,

u = 0 on ∂�,
∂u
∂ν

= 0 on ∂�.

(5)

We additionally assume that u has the additional property:

L u belongs to L∞(�).

From the weak characterization of the above problem, we have

�1 =
∫

�
(L u)2 dγ
∫

�
u2 dγ

.

We remind the reader that HL denotes the half-space {x ∈ R
n | x1 > L}.

Talenti’s approach to the clamped plate problem in Euclidean space begins with a sym-
metrization argument [32]. In what follows, we adapt Talenti’s approach to the Gaussian
setting and establish comparison results for the positive and negative parts of a principle
eigenfunction u using symmetrization:

Theorem 7 Let � and u be as above. Then there exist a, b ∈ R such that γ (Ha)+γ (Hb)

= γ (�) and functions v ∈ H1
0 (Ha, γ )∩ H2(Ha, γ ) and w ∈ H1

0 (Hb, γ )∩ H2(Hb, γ ) such
that

u#+(x) ≤ v(x) on Ha and u#−(x) ≤ w(x) on Hb,

where u#+ and u#− denote the Gaussian symmetrizations of the positive and negative parts of
u, respectively. Moreover,

∫

�
(L u)2 dγ
∫

�
u2 dγ

≥
∫

Ha
(L v)2 dγ + ∫

Hb
(L w)2 dγ

∫

Ha
v2 dγ + ∫

Hb
w2 dγ

.

123



The clamped plate in Gauss space 1987

The functions v and w will be explicitly constructed in the proof that follows.
In what follows, we use comparison results to formulate a related minimization problem,

which we shall solve in later sections using special functions.
Before proceeding, the reader might find it useful to review the symmetrization notation

and definitions introduced in Sect. 2.

Proof The following argument is rather long, so for the sake of digestibility, we break it
down into several steps. ��
Step 1: The identity

∫
� L u dγ = 0

Using Corollary 2, choose a sequence of test functions φk ∈ C∞
c (�) where φk → u in the

H2 norm and L φk → L u in L2(�, γ ). Fix k and choose a bounded C∞ domain �̃ that
contains the support of φk and is precompact in �. By the Divergence Theorem,

∫

�

L φk dγ =
∫

�̃

L φk dγ =
∫

�̃

∇ · (g∇φk) dx =
∫

∂�̃

g∇φk · ν dHn−1 = 0.

We conclude
∫

�

L u dγ = lim
k→∞

∫

�

L φk dγ = 0.

Step 2: An inequality involving perimeter

We introduce the following notation for level sets of u:

{u > t} = {x ∈ � | u(x) > t},
{u = t} = {x ∈ � | u(x) = t},

{t < u ≤ s} = {x ∈ � | t < u(x) ≤ s}.
Let α denote the distribution function of u, so that α(t) = γ ({u > t}). Note that α is a.e.
differentiable and that the equality of sets

∂{u > t} = {u = t}
holds for almost every t > 0 by Sard’s Theorem [30, p.342].

For t, h > 0 fixed, Cauchy–Schwarz implies

(
1

h

∫

{t<u≤t+h}
|∇u| dγ

)2

≤ α(t) − α(t + h)

h

1

h

∫

{t<u≤t+h}
|∇u|2 dγ.

The coarea formula gives us

∫

{t<u≤t+h}
|∇u| dγ =

∫ t+h

t

(∫

{u=s}
g dHn−1

)

ds,

∫

{t<u≤t+h}
|∇u|2 dγ =

∫ t+h

t

(∫

{u=s}
|∇u|g dHn−1

)

ds.

Writing Per for the Gaussian perimeter and letting h → 0 in the first inequality of this step,
we have

(Per{u > t})2 ≤ −α′(t)
∫

{u=t}
|∇u|g dHn−1 . (6)
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Since u ∈ H2
0 (�, γ ), we apply Corollary 2 to conclude

∫

�

(−L u)φ dγ =
∫

�

∇u · ∇φ dγ for all φ ∈ H1
0 (�, γ ). (7)

Following the proof of Theorem 3.1 in [11], we fix t, h > 0 and define functions φh on � as

φh(x) =

⎧
⎪⎨

⎪⎩

1 on {u > t + h},
u(x)−t

h on {t < u ≤ t + h},
0 otherwise.

Using these φh in (7) and letting h → 0, we deduce that for almost every t > 0
∫

{u>t}
(−L u) dγ = − d

dt

∫

{u>t}
|∇u|2 dγ =

∫

{u=t}
|∇u| dγ.

Let u# : �# → R be the Gauss symmetrization of u. Then by the isoperimetric inequality
for Gauss space, the inequality (6) involving perimeter can be written as

(
Per{u# > t})2 ≤ (Per{u > t})2 ≤ −α′(t)

∫

{u>t}
(−L u) dγ.

Step 3: Expressing Per{u# > t} in terms of α(t)

Let r = r(t) be a function such that

{u# = t} = {x ∈ R
n : x1 = r(t)}.

Recalling the notation

HL = {x ∈ R
n | x1 > L},

the above definition of r is equivalent to saying

{u# > t} = Hr(t).

That is,

α(t) = 	(r(t)),

or equivalently

	−1(α(t)) = r(t).

By definition, we have Per{u# > t} = Per Hr = cn
cn−1

e−r2/2 = cn
cn−1

e−[	−1(α(t))]2/2. Squaring
gives

(
Per{u# > t})2 = c2n

c2n−1

e−[	−1(α(t))]2 .

Hence, the final inequality from Step 2 becomes

1 ≤ c2n−1

c2n
e[	−1(α(t))]2 (−α′(t)

)
∫

{u>t}
(−L u) dγ.

123



The clamped plate in Gauss space 1989

Step 4: The positive and negative parts of L u and their rearrangements

Write (L u)− and (L u)+ for the positive and negative parts ofL u, and (L u)∗− and (L u)∗+
for the decreasing rearrangements of (L u)− and (L u)+, respectively. Then

∫

{u>t}
(−L u) dγ =

∫

{u>t}
((L u)− − (L u)+) dγ

≤
∫ α(t)

0

(
(L u)∗−(s) − (L u)∗+(γ (�) − s)

)
ds.

If we define

f (s) = (L u)∗−(s) − (L u)∗+(γ (�) − s), 0 ≤ s ≤ γ (�),

then we have

1 ≤ c2n−1

c2n
e[	−1(α(t))]2(−α′(t))

∫ α(t)

0
f (s) ds.

Observe that f is the sum of two decreasing functions, and so is itself decreasing. Integrating
the above inequality from 0 to t gives

t ≤ −c2n−1

c2n

∫ t

0
α′(s)e[	−1(α(s))]2

(∫ α(s)

0
f (r) dr

)

ds.

Next make the change of variable z = α(s). Then we have

t ≤ c2n−1

c2n

∫ α(0)

α(t)
e	−1(z)2

(∫ z

0
f (r) dr

)

dz.

The above inequality holds for every t ≥ 0. For u#+(x) > 0, take t = u#+(x) − ε, where u#+
denotes the Gauss symmetrization of the positive part of u. We then obtain

u#+(x) − ε ≤ c2n−1

c2n

∫ α(0)

α(u#+(x)−ε)

e	−1(z)2
(∫ z

0
f (r) dr

)

dz.

Fix a real number a so that

γ ({u > 0}) = γ (Ha).

If x1 > a, then u# is strictly positive, so that

α(u#+(x) − ε) = α(u#(x) − ε)

= α
(
u∗ (	(x1)) − ε

)

≥ 	(x1).

The last inequality follows from the definition of decreasing rearrangement.Now, the function
F(z) = ∫ z

0 f (r) dr is nonnegative on [0, γ (�)], a consequence of F being concave with
F(0) = F(γ (�)) = 0. Thus, letting ε → 0,

u#+(x) ≤ c2n−1

c2n

∫ α(0)

	(x1)
e	−1(z)2

(∫ z

0
f (r) dr

)

dz. (8)
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Define a function v : Ha → R depending only on x1, the first component of x , by

v(x) = c2n−1

c2n

∫ α(0)

	(x1)
e	−1(z)2

(∫ z

0
f (r) dr

)

dz.

Since u# and v are functions that only depend on x1, in what follows we often write u#(x1)
for u#(x) and similarly for v. We also write g(x1) for g(x1, 0, . . . , 0).

Step 5: A comparison result for u#+

By direct computation of the derivatives, we obtain

−L v = − 1

g(x1)

∂

∂x1

(

g(x1)
∂v

∂x1

)

= f (	(x1)) for x1 > a.

Note that since 	(a) = α(0), we have v(a) = 0. Then the work from this step and Eq. (8)
from Step 4 combine to give the comparison result

u#+(x) = u#+(x1) ≤ v(x) = v(x1),

where v depends only on x1 and is the solution to
{

−L v = f (	(x1)) in Ha,

v = 0 on x1 = a.

Note that by construction L v ∈ L2(Ha, γ ).

Step 6: A comparison result for u#−

Write u#− for the Gauss symmetrization of the negative part of u. Let y = −u and note y
is also a principle eigenfunction of the bi-Hermite problem (5). Hence, we may apply the
above symmetrization process to the eigenfunction y. We then define the number b so that
	(b) = γ ({y ≥ 0}) = γ ({u ≤ 0}) and functions h : [0, γ (�)] → R and w : Hb → R as
follows:

h(s) = (L y)∗−(s) − (L y)∗+(γ (�) − s), 0 ≤ s ≤ γ (�),

w(x) = c2n−1

c2n

∫ 	(b)

	(x1)
e	−1(z)2

(∫ z

0
h(r) dr

)

dz.

By construction,

	(a) + 	(b) = γ (�).

Then by our prior work in Steps 4 and 5, we see w solves the boundary value problem
{

−L w = h (	(x1)) in Hb,

w = 0 on x1 = b,

and also

y#+(x) ≤ w(x).

By construction,L w ∈ L2(Hb, γ ). Now consider the fact that y = −u. Then by properties
of positive andnegative parts, y+ = u−, and so theGaussian symmetrizations satisfy y#+(x) =
u#−(x). For 0 ≤ s ≤ γ (�), we also have that

123



The clamped plate in Gauss space 1991

h(s) = (L y)∗−(s) − (L y)∗+(γ (�) − s)

= (−L u)∗−(s) − (−L u)∗+(γ (�) − s)

= (L u)∗+(s) − (L u)∗−(γ (�) − s),

and so h(γ (�) − s) = − f (s).

Step 7: The identity
∫
Ha

−L v dγ = ∫
Hb

−L w dγ

We compute directly
∫

Ha

−L v dγ =
∫

Ha

f (	(x1)) dγ =
∫ 	(a)

0
f (s) ds.

On the other hand,
∫

Hb

−L w dγ =
∫

Hb

h (	(x1)) dγ =
∫ 	(b)

0
h(s) ds.

Making a change of variable and using the identity 	(a) + 	(b) = γ (�), the previous line
becomes

∫ 	(b)

0
h(s) ds = −

∫ 	(a)

γ (�)

h (γ (�) − s) ds = −
∫ γ (�)

	(a)

f (s) ds =
∫ 	(a)

0
f (s) ds,

where the last equality follows since
∫ γ (�)

0 f (s) ds = 0, a consequence of
∫

�
L u dγ = 0.

We now make the following two computations by integrating first in the x1-variable:
∫

Ha

−L v dγ = − cn
cn−1

e−a2/2 ∂v

∂x1
(a),

∫

Hb

−L w dγ = − cn
cn−1

e−b2/2 ∂w

∂x1
(b).

By the work in this step, the two expressions above are equal, so

e−a2/2 ∂v

∂x1
(a) = e−b2/2 ∂w

∂x1
(b).

Step 8: The identity
∫
Ha

(L v)2 dγ + ∫
Hb

(L w)2 dγ = ∫
�(L u)2 dγ

We compute directly
∫

Ha

(L v)2 dγ +
∫

Hb

(L w)2 dγ =
∫

Ha

[
(L u)∗− (	(x1)) − (L u)∗+ (γ (�) − 	(x1))

]2 dγ

+
∫

Hb

[
(L u)∗− (γ (�)−	(x1))−(L u)∗+ (	(x1))

]2 dγ

=
∫ 	(a)

0

[
(L u)∗− (s) − (L u)∗+ (γ (�) − s)

]2 ds

+
∫ 	(b)

0

[
(L u)∗− (γ (�) − s) − (L u)∗+ (s)

]2 ds

=
∫ γ (�)

0

[
(L u)∗− (s) − (L u)∗+ (γ (�) − s)

]2 ds.
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Since the functions (L u)∗−(s) and (L u)∗+ (γ (�) − s) are never simultaneously nonzero,
we conclude the above equals

∫ γ (�)

0

[
(L u)∗− (s)

]2 + [
(L u)∗+ (s)

]2 ds =
∫

�

(L u)2 dγ.

Step 9: The identity L v(a) + L w(b) = 0

We see

L v(a) + L w(b) = f (	(a)) + h(	(b))

= f (	(a)) − f (γ (�) − 	(b))

= 0.

Step 10: A bound for �1 and the minimization problem

SinceL u ∈ L∞(�), easy estimates show that v andw belong to H2(Ha, γ ) and H2(Hb, γ ),
respectively. The comparison results from Steps 5 and 6 above give

∫

�

u2 dγ ≤
∫

Ha

v2 dγ +
∫

Hb

w2 dγ.

Now from the Rayleigh quotient for �1, Step 8, and the inequality immediately above,

�1 =
∫

�
(L u)2 dγ
∫

�
u2 dγ

≥
∫

Ha
(L v)2 dγ + ∫

Hb
(L w)2 dγ

∫

Ha
v2 dγ + ∫

Hb
w2 dγ

.

We are thus led to define

Ja,b = inf
(v,w)

∫

Ha
(L v)2 dγ + ∫

Hb
(L w)2 dγ

∫

Ha
v2 dγ + ∫

Hb
w2 dγ

,

where the infimum is taken over all pairs of functions (v,w) that only depend on x1 such
that

v ∈ H2(Ha, γ ) ∩ H1
0 (Ha, γ ) and w ∈ H2(Hb, γ ) ∩ H1

0 (Hb, γ ),

and where

e−a2/2 ∂v

∂x1
(a) = e−b2/2 ∂w

∂x1
(b),

L u ∈ L2(Ha, γ ),

L w ∈ L2(Hb, γ ).

The solutions to the Ja,b minimization problem can be expressed in terms of parabolic
cylinder functions.

6 Parabolic cylinder functions

In this section, we gather a collection of useful properties of parabolic cylinder functions,
which are used in the solution of the Ja,b minimization problem arising from our symmetriza-
tion argument. All properties of these functions in this section stated without proof may be
found in [1,12].
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6.1 Definitions and notation

Given a parameter a, theWeber functionsU (a, z) and V (a, z) are a particular pair of linearly
independent solutions to the ODE

d2w

dz2
−

(
1

4
z2 + a

)

w = 0.

The Weber functions can be written in terms of power series or confluent hypergeometric
functions, although neither representation is needed in our application. In special cases of
the parameter a, the Weber functions can be expressed in terms of the physicists’ Hermite
polynomials as follows:

U (−n − 1/2, z) = 2−n/2e−z2/4Hn(z/
√
2) for n ∈ N∪{0}.

In particular, we have U (−1/2, z) = e−z2/4. We will use this special case in Sect. 8 to find
the eigenfunctions of L 2 on half-spaces.

For derivatives with respect to the variable z, we will use Newton’s notation:

U ′(a, z) := ∂

∂z
U (a, z).

Derivatives with respect to the parameter a will not appear in this paper.

6.2 Recurrence relations, derivative formulae, and special cases

We have the following recurrence relations:

zU (a, z) −U (a − 1, z) + (a + 1/2)U (a + 1, z) = 0,

U ′(a, z) + 1

2
zU (a, z) + (a + 1/2)U (a + 1, z) = 0.

For m ∈ N, we have

dm

dzm

(
ez

2/4U (a, z)
)

= (−1)m
(
1

2
+ a

)

m
ez

2/4U (a + m, z).

In terms of our one-dimensional Hermite operator L = d2

dz2 − z ddz , we can show directly
that for any λ ∈ R,

L
(
ez

2/4U (λ − 1/2, z)
)

= λez
2/4U (λ − 1/2, z).

6.3 Asymptotics

For all a ∈ R, we have that as z → ∞,

U (a, z) = e−z2/4z−a−1/2 (
1 + O(z−2)

)
,

V (a, z) = ez
2/4za−1/2

(√
2

π
+ O(z−2)

)

,

U ′(a, z) = e−z2/4z−a+1/2
(

−1

2
+ O(z−2)

)

.
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6.4 Zeros

The function U (a, z) has no real zeros when a ≥ −1/2. The number of real zeros increases
as a decreases. When a < −1/2, the number of positive real zeros is n, where −2n− 3/2 <

a < −2n + 1/2. When a = −n − 1/2, U (a, z) is a Hermite polynomial with exactly n real
zeros, all in the interval [−2

√|a|, 2√|a|].
We finally state the following proposition, which will prove useful in Sect. 7.

Proposition 8 For all z ∈ R and parameters a ∈ R, we have:

(1) The functions U (a, z) and U (a − 1, z) cannot be simultaneously zero.
(2) The functions U (a, z) and U ′(a, z) cannot be simultaneously zero.

Part (1) of Proposition 8 follows from the recurrence relations and properties of Hermite
polynomials. Part (2) follows from (1) and the recurrence relations.

7 The Ja,b minimization problem

In this section, we return to the Ja,b minimization problem introduced at the end of Sect. 5.
Using the parabolic cylinder functions introduced in Sect. 6, we construct a function whose
smallest positive root is precisely

√
Ja,b.

7.1 The Euler–Lagrange system

Recall that Ha denotes the half-space Ha = {x ∈ R
n | x1 > a}, and that

Ja,b = inf
(v,w)

∫

Ha
(L v)2 dγ + ∫

Hb
(L w)2 dγ

∫

Ha
v2 dγ + ∫

Hb
w2 dγ

, (9)

where the inf ranges over all pairs of functions (v,w) such that:

v ∈ H2(Ha, γ ) ∩ H1
0 (Ha, γ ), w ∈ H2(Hb, γ ) ∩ H1

0 (Hb, γ ),

v(x) = v(x1), w(x) = w(x1) (v and w depend only on x1),

e−a2/2 ∂v

∂x1
(a) = e−b2/2 ∂w

∂x1
(b),

L v ∈ L2(Ha, γ ), L w ∈ L2(Hb, γ ).

Observe that all of these conditions hold true for the v and w arising in our symmetrization
argument.

A straightforward modification of the argument in Appendix 2 of [4] yields the existence
of a minimizing pair (v,w) in (9); we collect details in the “Appendix” at the end of our
paper.

By the usual calculus of variations argument, theseminimizers satisfy the followingEuler–
Lagrange system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L 2 v = μv on {x1 > a},
L 2 w = μw on {x1 > b},
v(a) = w(b) = 0,

e−a2/2v′(a) = e−b2/2w′(b), (10)

L v(a) + L w(b) = 0, (11)
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where the scalar μ is Ja,b. Although the above system has eigenvalues μ other than Ja,b,
the smallest eigenvalue, by construction, is precisely Ja,b. The solutions to the system can be
written in terms of parabolic cylinder functions; relevant properties of these functions were
collected in Sect. 6.

7.2 The equation L 2 y = μy with solutions in H2(HL, γ ) ∩ H1
0 (HL, γ )

Let us first examine the general ODE problemL 2 y = μy, where y = y(x) is a function of
a single variable. This fourth-order ODE can be factored as

(L −√
μ)(L +√

μ)y = 0.

Solutions will then be linear combinations of solutions to the second-order problemsL y =
±√

μy. Direct computation shows thatL y = y′′ − xy′; our factored equations can then be
written in the form

y′′ − xy′ = λy where λ = ±√
μ.

Bywriting y(x) = ex
2/4u(x), we can transform the second-order ODE above to the parabolic

cylinder differential equation

u′′ − (λ − 1/2 + x2/4)u = 0.

We will take as our pair of linearly independent solutions the Weber parabolic cylinder
functions U (λ − 1/2, x) and V (λ − 1/2, x). Thus, the solutions to our second-order ODE
can be written in the form

y(x) = ex
2/4

(
BU (λ − 1/2, x) + DV (λ − 1/2, x)

)
,

where B and D are real constants.
Fixing λ = +√

μ, we may write the general solution to our fourth-order problem as

y(x)=ex
2/4

(
AU (−λ − 1/2, x)+BU (λ−1/2, x)+CV (−λ − 1/2, x)+DV (λ−1/2, x)

)
,

where A, B, C , and D are real constants. Note that y is continuous on its domain.
We are seeking solutions y in H2(HL , γ ) ∩ H1

0 (HL , γ ), and so we must require y ∈
L2(HL , γ ) and y(L) = 0.

7.2.1 Integrability of y

We now impose the requirement y ∈ L2(HL , γ ). This will allow us to simplify our solutions
significantly. Since our general solution y(x) is continuous on HL , in order that ‖y‖L2(HL ,γ )

be finite, we must have

lim
x→∞

|y(x)|2
ex2/2

�= ∞.

Examining the asymptotics of the U and V functions, we see the terms involving V (±λ −
1/2, x) go to infinity at different orders. Thus for the above to hold, the coefficients C and
D must both vanish. We conclude

y(x) = ex
2/4

(
AU (−λ − 1/2, x) + BU (λ − 1/2, x)

)
.
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Moving forward, it will be convenient to develop some shorthand. For a fixed λ, we will
write

U−(z) := U (−λ − 1/2, z) and U+(z) := U (+λ − 1/2, z).

Our solution y can now be written as

y(x) = ex
2/4

(
AU−(x) + BU+(x)

)
.

7.2.2 The boundary condition y(L) = 0

Our requirement that y ∈ H1
0 (HL , γ ) gives us the boundary condition y(L) = 0. We will

use this to obtain information on the remaining constants A and B.
By our knowledge of zeros of the Weber functionsU , the term U+(x) is never zero since

λ − 1/2 ≥ −1/2; thus, in order that y �= 0, the coefficient A of the other term must be
nonzero.

Solving y(L) = 0 for B/A yields

GL := B

A
= −U−(L)

U+(L)
.

In the general case, our solutions are now of the form

y(x) = Aex
2/4

(
U−(x) + GLU+(x)

)
.

Note that it is possible that GL = 0.
In the case that λ = 0, then U−(x) = U+(x) = e−x2/4, and so y(x) is constant. In order

to satisfy the boundary condition y(L) = 0, we must have the trivial solution y(x) = 0 for
all x ≥ L . Thus, we may assume that λ > 0 in what follows.

7.2.3 Computations with y(x)

We collect here some computations to simplify our future work.
Note that by derivative properties of U and the differential equation used to find y, we

have

L y(L) = AeL
2/4

(
− λU−(L) + λGLU+(L)

)
,

which by our definition of GL simplifies to

L y(L) = −2λAeL
2/4U−(L).

By differentiating y(x) directly, we obtain

y′(x) = x

2
y(x) + Aex

2/4 (
U−′(x) + GLU+′(x)

)
,

and since y(L) = 0, we write:

g(L)y′(L) = cn Ae
−L2/4 (

U−′(L) + GLU+′(L)
)
.
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7.3 The functions v and w

Applying our work in the general case, the solutions v and w of the Euler–Lagrange system
take the form:

v(x) = Ave
x2/4

(
U−(x) + GaU+(x)

)
,

w(x) = Awe
x2/4

(
U−(x) + GbU+(x)

)
,

where Av and Aw are constants. Note that multiplying both v and w by the same nonzero
constant gives a new pair of solutions satisfying the Euler–Lagrange equations but produces
the same value of the quotient

∫

Ha
(L v)2 dγ + ∫

Hb
(L w)2 dγ

∫

Ha
v2 dγ + ∫

Hb
w2 dγ

.

Thus, the two constants Av and Aw together give us only one degree of freedom. The two
additional boundary conditions are therefore enough to determine the ratio Av : Aw and
values of λ.

With u and v as above, nontrivially satisfying our Euler–Lagrange system, we claim that
the constants Av , Aw are both nonzero. Without loss of generality, assume Aw = 0 but
Av �= 0. The other two boundary conditions may then be written as

0 = L v(a) = −2Avλe
a2/4U−(a),

0 = v′(a) = Ave
a2/4(U−′(a) + GaU+′(a)).

Since the quantities Av , λ, and ea
2/4 are nonzero, our first boundary condition implies

U−(a) = 0. But then the constant Ga = 0. The second boundary condition reduces to

0 = v′(a) = Ave
a2/4U−′(a) and so U−′(a) = 0.

However, from Proposition 8 we know U ′(a, z) and U (a, z) cannot simultaneously vanish.
This contradiction implies that Av and Aw must both be nonzero.

7.3.1 Imposing the remaining boundary conditions

Weshall impose the boundary conditionL v(a)+L w(b) = 0 to determine the ratio Av/Aw.
Recall that for the solution y(x) with y(L) = 0, we found

L y(L) = −2λAeL
2/4U−(L).

Thus in order to satisfy the boundary condition (11), we must have

Ave
a2/4U−(a) = −Awe

b2/4U−(b). (12)

Since Av , Aw, ea
2/4, and eb

2/4 are all nonzero, we have two possibilities:

(1) Both U−(a) = 0 and U−(b) = 0.
(2) Neither U−(a) nor U−(b) vanish, and the constants Av and Aw satisfy Eq. (12)

nontrivially.
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7.3.2 Case I: U−(a) = 0 and U−(b) = 0

In this case, we have both Ga = 0 and Gb = 0, so our solutions simplify to

v(x) = Ave
x2/4U−(x) and w(x) = Awe

x2/4U−(x).

The boundary condition g(a)v′(a) = g(b)w′(b) then becomes

e−a2/2
(
Ave

a2/4U−′(a)
)

= e−b2/2
(
Awe

b2/4U−′(b)
)
,

or, more simply,

Ave
−a2/4U−′(a) = Awe

−b2/4U−′(b).

Since U−(a) = U−(b) = 0, by Proposition 8, both U−′(a) and U−′(b) must be nonzero.
None of the above terms can vanish, and we may therefore write the quotient

Av

Aw

= e−b2/4U−′(b)
e−a2/4U−′(a)

.

The eigenvalue λ is then determined by the equations

U−(a) = 0 and U−(b) = 0.

These roots occur at isolated points in the (a, λ) plane, a fact that can easily be verified
numerically for any particular L by plotting the level sets U−(a) = 0 and U−(b) = 0.

7.3.3 Case II: U−(a) �= 0 and U−(b) �= 0

The boundary condition (10) requires investigating the derivatives v′(x) and w′(x). Again,
recall

g(L)y′(L) = cn Ae
−L2/4 (

U−′(L) + GLU+′(L)
)
.

Thus, the boundary condition g(a)v′(a) = g(b)w′(b) can be written

Ave
−a2/4 (

U−′(a) + GaU+′(a)
) = Awe

−b2/4 (
U−′(b) + GbU+′(b)

)
.

The boundary condition v(a) = w(b) = 0 was used to determine the constants Ga , Gb, so
the final boundary condition L v(a) + L w(b) = 0 gives us

−2λAve
a2/4U−(a) − 2λAwe

b2/4U−(b) = 0.

These two conditions are linear equations in Av , Aw. Since Av and Aw are nonzero, the
determinant of the system of equations above must vanish. After some algebra, this condition
can be expressed as

g(a)

(
U−′(a)

U−(a)
− U+′(a)

U+(a)

)

+ g(b)

(
U−′(b)
U−(b)

− U+′(b)
U+(b)

)

= 0,

since we have assumed U−(a),U−(b) are nonzero. Finally, we define

hλ(x) := U−′(x)U+(x) −U+′(x)U−(x)

and

fλ(x) := g(x)hλ(x)

U+(x)U−(x)
= g(x)

(
U−′(x)
U−(x)

− U+′(x)
U+(x)

)

.
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This allows us to write our final condition as fλ(a) + fλ(b) = 0, or equivalently,

g(a)hλ(a)U+(b)U−(b) + g(b)hλ(b)U+(a)U−(a) = 0. (13)

To summarize, if μ = λ2 is an eigenvalue of our Euler–Lagrange system, then λ is
a root in Eq. (13); the smallest positive root is precisely λ = √

Ja,b. The equation above
allows us to numerically determine λ in terms of a and b (or equivalently a and L when
γ (Ha) + γ (Hb) = γ (HL )) and hence compute Ja,b = μ = λ2. Finally note that if
U (λ − 1/2, a) = U (λ − 1/2, b) = 0 (Case I), condition (13) is satisfied, so we have a
method for finding the values of λ that covers both cases.

8 Eigenfunctions of the half-space

In this section, we shall find the eigenfunctions of L 2 on half-spaces using a separation of
variables approach. Our solutions will involve both parabolic cylinder functions and Hermite
polynomials. Form ∈ N∪{0}, we let Hm(x) denote themth physicists’ Hermite polynomial.

Proposition 9 If L ∈ R and HL is the half-space HL = {x ∈ R
n | x1 > L}, then the

solutions to the eigenvalue problem
{
L 2 u = �u in HL ,

u = ∂u
∂x1

= 0 when x1 = L ,

can be written in the form

u(x1, x2, . . . , xn) = AY (x1)Hk2(x2/
√
2)Hk3(x3/

√
2) · · · Hkn (xn/

√
2),

with corresponding eigenvalues

� = μ2 + k22 + · · · + k2n .

Here the k� are nonnegative integers, and Y and μ are given by

Y (x) = ex
2/4 (U (−μ − 1/2, x) + GLU (μ − 1/2, x)) ,

where GL is chosen so that Y (L) = 0 and the constant μ satisfies Y ′(L) = 0.

Proof We first show that eigenfunctions can be written as the product of a function Y (x1) in
x1 and Hermite polynomials in the other variables.

Note that the operatorL can be written as the sum of Hermite operators in each variable:

L u =
(

∂2u

∂x21
− x1

∂u

∂x1

)

+ · · · +
(

∂2u

∂x2n
− xn

∂u

∂xn

)

=: L1u + (L2 + · · · + Ln)u.

By Proposition 5, each eigenvalue � has finite multiplicity and so its corresponding
eigenspace X� ⊆ H2

0 (HL , γ ) is finite-dimensional. The Hermite operators Lk , k = 1, . . . , n
operatewith respect to independent variables and so commutewith each other, and hencewith
L 2. The single-variable Hermite operators Lk are also symmetric on the space L2(R, γ ),
with eigenfunctions Fk(xk). Thus, by the standard argument, the operators L 2 and the Lk ,
k = 2, . . . , n are all simultaneously diagonalizable.

Thus, the eigenfunctions ofL 2 can bewritten in the form u(x) = Y (x1)F2(x2) · · · Fn(xn),
where Y is an eigenfunction of L2

1 on H2
0 (HL , γ ) and Fk is an eigenfunction of the Hermite

operator Lk on H2
0 (R, γ ).
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The Hermite differential equation is well studied; in our case, the eigenfunctions are
the Hermite polynomials Hm(x/

√
2) with corresponding eigenvalues m ∈ N∪{0}. (This is

consistent with our earlier work in Sect. 7, as the Weber function U (−m − 1/2, x) can be
written in terms of Hm .) From here we have the desired form of the Fk’s.

The function Y (x1) must satisfy the ODE problem
{
L2
1Y = μ2Y when x1 > L

Y (L) = Y ′(L) = 0.

That Y has the desired form follows immediately from our work in Sect. 7. ��
Note that H0(x/

√
2) is the constant function 1, so the smallest eigenvalue �1 is obtained

by taking the Hermite orders k2 = · · · = kn = 0 and finding the smallest μ satisfying
y′(L) = 0. We use this observation to numerically compute �1 for half-spaces.

9 Proof of the main theorem

In this section, we prove our main result (Theorem 1) and discuss the numerical support for
our conjecture that inequality (2) holds with CV = 1.

Proof of Theorem 1 We take � to be a C∞ domain with Gaussian measure γ (�) = V such
that 0 < V < 1.

First, suppose� is bounded. By regularity of the eigenfunctions of problem (1) established
in Propositon 5, the principal eigenfunction u is C∞ on the closure �. Since � is bounded,
we have that u and all of its derivatives are bounded on�, and so in particularL u ∈ L∞(�).
Then the symmetrization argument (Theorem 7) in Sect. 5 shows the existence of numbers
a and b satisfying γ (Ha) + γ (Hb) = γ (�) and where �1(�) ≥ Ja,b.

These precise values of a, b are impossible to find for most, if not all, choices of �, so to
find a computable lower bound on �1(�), we must take the infimum of the Ja,b over a set
that contains these particular a, b. We therefore have

�1(�) ≥ inf
{
Ja,b | γ (Ha) + γ (Hb) = γ (�)

} =: J̃ .

Note that J̃ is independent of dimension; it depends only on the measure of �. Likewise,
from Proposition 9, we know the value �1(�

#) depends only on γ (�#) = γ (�). We then
observe that

�1(�) ≥ J̃

�1(�#)
�1(�

#).

Writing CV = J̃/�1(�
#) completes the proof in this case. Note that by positivity of both

Ja,b and the principle half-space eigenvalue �1(�
#), we have 0 < CV ≤ 1 by construction.

Next,we consider the casewhen� is an unboundedC∞ domain.Choose a nested sequence
�k of bounded C∞ domains where

�1 ⊆ �2 ⊆ �3 ⊆ · · · ⊆ � and
∞⋃

k=1

�k = �.

Writing Vk = γ (�k), our work above shows

�1(�k) ≥ CVk�1(�
#
k ).
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Fig. 2 Values of the minimal λ = √
Ja,b as a function of a for L = −1, L = 0, and L = 1

Invoking Proposition 6, we see

�1(�) ≥
(

lim inf
k→∞ CVk

)

�1(�
#).

Since our initial domain �1 may be taken arbitrarily close to � in measure, the result
follows. ��

OurCV values are plotted in Fig. 1. Note thatCV is at least .91 for all Gaussian volumes V .
By the time the Gaussian volume reaches .5, the value CV appears almost indistinguishable
from 1.

We end with a discussion of the constant J̃ , i.e., the minimal Ja,b, defined in the proof
of Theorem 1. For a given domain � with γ (�) = γ (HL), assume a and b are numbers
satisfying γ (Ha) + γ (Hb) = γ (HL ). We define the function Fλ(a) as

Fλ(a) = g(a)hλ(a)U−(b)U+(b) + g(b)hλ(b)U−(a)U+(a).

Our Eq. (13) can be written as Fλ(a) = 0, so for any choice of L and a > L (and hence
b), we may use this function to numerically compute the eigenvalues of the Euler–Lagrange
system studied in Sect. 7. Because of the symmetry of the problem in a and b, we need only
consider the values of a ranging from a = L , b = ∞ (where all of the volume is given to one
half-space) to the symmetric case a = b (where the half-spaces have equal measure). The
contour plots of Fλ(a) = 0 give us the (square roots of) eigenvalues Ja,b = λ2 as functions
of a. Three are shown in Fig. 2. From these we see that the location of the minimum Ja,b

varies with L . We need only consider the values of a satisfying L ≤ a ≤ a∗, where a∗ is the
value at which a = b and our two half-spaces have equal measure.

As L → −∞ (volume V → 1), we see the a minimizing Ja,b tends very quickly to L;
that is, a single half-space is very nearly the minimal case. However, as L → +∞, we see
Ja,b is minimized very close to the symmetric case a = a∗. The transition from one regime
to the other occurs very quickly.

In the corresponding Ja,b minimization problem for the Euclidean clamped plate, which
distributes volume across two balls, the a minimizing Ja,b occurs in the case a = L , b = 0
(all of the volume is given to one ball) in dimensions n = 2, 3, but for n ≥ 4 Ja,b is
minimized in the symmetric case a = b (the two balls have equal volume) [5]. However, our
Ja,b minimization problem in Gauss space is independent of the original dimension, so it is
not so strange to see both types of Euclidean behaviors reflected.
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Appendix: Existence of the minimizer for Ja,b

In this appendix, we establish the existence of a minimizer to the Ja,b minimization problem
of Sect. 7. Following the approach of [4], we consider the equivalent problem

Ja,b = inf
(v,w)

∫

Ha

(L v)2 dγ +
∫

Hb

(L w)2 dγ,

where the inf is taken over all pairs (v,w) satisfying the conditions stated at the beginning
of Sect. 7, together with the normalization requirement

∫

Ha

v2 dγ +
∫

Hb

w2 dγ = 1.

In particular, the functions under consideration depend only on the first coordinate x1, so we
sometimes write v(x1) in place of v(x) and the standard derivative v′ in place of ∂v

∂x1
.

Let (vm, wm) be a minimizing sequence for Ja,b, so
∫

Ha

(L vm)2 dγ +
∫

Hb

(L wm)2 dγ → Ja,b.

We first show that the sequences vm and wm are bounded in H2(Ha, γ ) and H2(Hb, γ ),
respectively. Since we chose minimizing sequences, the real sequences

∫

Ha
(L vm)2 dγ and

∫

Ha
v2m dγ are bounded. Since x1v′

m ∈ L1(Ha, γ ), it must be the case that |x1v′
m(x1)g(x1)|

does not diverge to infinity as x1 → ∞. Thus, there exists a sequence xmk in (a,∞) with
xmk → ∞ as k → ∞ and

lim
k→∞ v′

m(xmk )g(xmk ) = 0. (14)

Since ‖L vm‖L1(Ha ,γ ) is a bounded sequence, we also have

∫

Ha

L vm dγ = lim
b→∞[g(b)v′

m(b) − g(a)v′
m(a)],

so we deduce by (14) that the sequence

v′
m(a) is bounded. (15)

We next set ṽm(x1) := vm(x1) − v′
m(a)(x1 − a) and note that ṽm(a) = ṽ′

m(a) = 0, so
ṽm ∈ H2

0 (Ha, γ ). Our proof of coercivity (Proposition 5) gives

‖L ṽm‖2L2(Ha ,γ )
+ ‖ṽm‖2L2(Ha ,γ )

= ‖ṽm‖2H2(Ha)
. (16)

SinceL ṽm = L vm + x1v′
m(a), the triangle inequality and Eqs. (15) and (16) may be used

to show the sequence ‖vm‖H2(Ha ,γ ) is bounded. An analogous argument yields boundedness
of ‖wm‖H2(Hb,γ ).
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By Banach–Alaoglu, we may pass to a subsequence and assume (vm, wm) converges to a
pair (v,w) weakly in H2. We claim that

lim inf
m→∞

∫

Ha

(L vm)2 dγ ≥
∫

Ha

(L v)2 dγ.

To prove the claim, we first write Ha,K for the truncated half-space (vertical strip) {x ∈ R
n :

a < x1 < a + K }. Note that
∫

Ha

(L vm)2 dγ ≥
∫

Ha,K

(L vm)2 dγ

≥ 2
∫

Ha,K

(L v)(L vm) dγ −
∫

Ha,K

(L v)2 dγ.

Taking the liminf as m → ∞ and noting Ha,K is bounded in the x1 direction, we deduce

lim inf
m→∞

∫

Ha

(L vm)2 dγ ≥
∫

Ha,K

(L v)2 dγ.

Taking K → ∞ gives the claim.
We now have

lim inf
m→∞

∫

Ha

(L vm)2 dγ ≥
∫

Ha

(L v)2 dγ and lim inf
m→∞

∫

Hb

(L wm)2 dγ ≥
∫

Hb

(L w)2 dγ.

We therefore see

Ja,b ≥
∫

Ha

(L v)2 dγ +
∫

Hb

(L w)2 dγ.

By [16, Proposition 2.2], H1
0 (�, γ ) embeds compactly in L2(�, γ ), and hence, we may

assume vm and wm converge to v and w in L2(Ha, γ ) and L2(Hb, γ ), respectively. The
normalization condition

∫

Ha

v2 dγ +
∫

Hb

w2 dγ = 1

is therefore preserved.
The space of functions in H2(Ha, γ ) that depend on a single variable x1 embeds compactly

in C1[a, a + N ] (see, e.g., [3, Theorem 6.3]), from which it follows that v and w satisfy in
the classical sense the condition

e− 1
2 a

2 ∂v

∂x1
(a) = e− 1

2 b
2 ∂w

∂x1
(b).

Writing μ = Ja,b, the minimizer (v,w) also satisfies
∫

Ha

(L 2 v − μv)φ dγ +
∫

Hb

(L 2 w − μw)ψ dγ

+L v(a)g(a)
∂φ

∂x1
(a) + L w(b)g(b)

∂ψ

∂x1
(b) = 0

for all C2 functions φ and ψ that depend on x1, equal zero at x1 = a and x1 = b, vanish for
sufficiently large x1, and satisfy the condition

e− 1
2 a

2 ∂φ

∂x1
(a) = e− 1

2 b
2 ∂ψ

∂x1
(b).
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Choosing ψ = 0 and φ = 0 one at a time, we deduce L 2 v = μv and L 2 w = μw,
respectively, along with the final boundary condition

L v(a) + L w(b) = 0.
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