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Abstract We prove in this paper that, given a countable and dense set of directionsU ⊂ R
N ,

it can be ordered in such a way that if we iterate the Steiner symmetrization of any compact
set K in that order, the sequence of Steiner symmetrizations of K converges in the Hausdorff
distance to the ball K ∗ centered at the origin and having the same volume as K . This result
provides a generalization of a theorem from Bianchi et al. (Adv Appl Math 47:869–873,
2011) in two directions. On the one hand, the seed of the iteration is allowed to be compact
rather than just convex, and on the other hand, the ordering of U is universal and does not
depend on the seed.
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1 Introduction

Recently, several papers appeared concerning convergence of iterations of Steiner sym-
metrizations stressing the geometric point of view, like [2,4,5,7,11,16]. Other papers
appeared in the same period more oriented to applications in calculus of variations and
partial differential equations, like [1,3,6,8,15]. This paper can be placed in the first stream.

The initial geometric motivation wasMani’s problem [12] concerning almost sure conver-
gence of iterations of randomSteiner symmetrizations of compact sets. The problem has been
solved byVanSchaftingen in [15] in 2006, and an independent proof has been obtained in [16].

Two of these papers, [4] and [16], investigate the relations between convergence of Steiner
symmetrizations of measurable sets with respect to L1 distance and convergence of Steiner
symmetrizations of compact sets with respect to Hausdorff distance. Convex bodies, while
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present in Mani’s paper, as well as in [2] and in [11], turn out to be the natural background
where to pose problems, but themost general and interesting setting is represented by compact
sets. One of the aims of this paper is to support the validity of this claim.

The main result of this paper is the following result. It will be proved in Sect. 3.

Theorem 1.1 If U is countable and dense in the unit N-dimensional sphere SN−1, then
there exists an appropriate ordering {un} of U such that the Steiner symmetrizations of any
compact set in K ⊂ R

N , taken successively in the directions un, n ∈ N, converge in the
Hausdorff distance to the ball K ∗ centered at the origin having the same volume as K .

Theorem 1.1 extends the analogous result proved in [2] for convex bodies. The other
interesting improvement is that the ordering of U is universal and that it does not depend on
the seed K .

It is interesting to note that there exist dense sequences of directions {un} and convex
bodies K such that the Steiner symmetrizations of K , taken successively in the directions
un , do not converge in the Hausdorff distance (see [4] and [2]).

In Sect. 4, we will prove for measurable sets a proposition which parallels the main result
from [11], proved there for convex sets. In [4], Klain’s result has been extended to the case
of compact sets. Here, we show how from the latter result the measurable case follows easily
by inner approximation with compact sets.

2 Preliminaries

Wewill be using two distances. In the class of all compact sets (or convex bodies), it is natural
to use the Hausdorff distance dH (see, for instance, [13]). On the other hand, in the class of
measurable sets having finite measure, the natural distance is the L1 distance, denoted by d1.

We will denote by λN the N -dimensional Lebesgue outer measure in R
N .

Let us now define the Steiner symmetrization. While for convex bodies and compact sets
all authors adopt the same definition, there are some variants in the literature when it comes
to measurable sets. We shall follow [6].

Definition 2.1 Let E be a measurable set inRN , u a unit vector identifying a direction and lu
the line through the origin parallel to u. We denote by u⊥ the (N − 1)-dimensional subspace
orthogonal to u. For each x ∈ u⊥, let c(x) be defined as follows. If E ∩ (lu + x) is empty,
let c(x) = ∅. Otherwise, let c(x) be the possibly degenerate (and possibly infinite) closed
segment on lu + x centered at x ∈ u⊥ whose length is equal to λ1(E ∩ (lu + x)) (outer
measure).

The union of all the line segments c(x), for x ∈ u⊥, is called the Steiner symmetral of E
and will be denoted by Su E . The mapping Su from the family of measurable sets into itself
is called Steiner symmetrization.

Definition 2.2 A measurable subset C of RN is called a Caccioppoli set if

λN ((C + x) � C) ≤ p · ‖x‖
for some constant p and for every x ∈ R

N .

This concept is due to Caccioppoli [C] and has been extensively studied and used by
De Giorgi (in [9] and subsequent papers, and in [10], which is devoted to the isoperimetric
problem).
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For a Caccioppoli set C let us denote by p(C) the De Giorgi–Caccioppoli perimeter of C
(see [14]) which can be defined for instance by

p(C) = inf
{
lim inf
n→∞ p(En)

}
,

where {En} is a sequence of smooth subsets of RN such that d1(C, En) → 0, the infimum is
taken over all such sequences, and the perimeter for smooth sets is understood in the ordinary
sense.

We will need several properties of Caccioppoli sets and its perimeter. It is well known that
theSteiner symmetral of aCaccioppoli set is aCaccioppoli set and that Steiner symmetrization
does not increase the perimeter of a Caccioppoli set.

We will also need the following compactness criterion for Caccioppoli sets: If F is a
collection of Caccioppoli sets which are contained in a bounded set and have uniformly
bounded perimeters, then F is relatively compact with respect to the L1 distance.

Finally, since finite unions of rectangles are Caccioppoli sets, the latter are dense in the
L1 distance among measurable sets having finite measure.

Since the perimeter is lower semicontinuous, we need a more adequate functional on the
family of all (bounded, say) measurable sets.

Definition 2.3 Given a measurable set E , its (central) moment of inertia is defined by

μ(E) =
∫

E
‖z‖2 dλN (z) .

By Lemma 2.6 of [16], we know that the moment of inertia is uniformly continuous on any
family of measurable sets contained in a bounded set.

The next two results are Lemmas 2.11 and 3.2 of [16] and will be employed in the
sequel. Let us recall that the distance between two directions u and v is defined as d(u, v) =
min{‖u − v‖, ‖u + v‖}, since the unit vectors u and −u define the same direction.

Lemma 2.4 If E has finite moment of inertia and is essentially different from a ball centered
at the origin, then there exist a direction v and a positive δ such that

μ(Su E) < μ(E)

for all u such that d(u, v) < δ.

Let us denote by κN the volume of the N -dimensional unit ball B and put μN = μ(B).
The following lemma is the key to the main result. Its proof depends on the compactness

criterion for Caccioppoli sets.

Lemma 2.5 Fix ρ0 > 1, p0 > 0 and ε0 > 0 and consider the family F = F(ρ0, p0, ε0)
of all Caccioppoli sets contained in the ball B(o, ρ0) centered in 0 and having radius ρ0,
whose perimeters are bounded by p0, such that λN (E) = κN and

μ(E) ≥ μN + ε0 .

Then, there exist a δ0 > 0, and for each E ∈ F a direction vE , such that

μ(SvE) < μ(E) − δ0

for every v such that d(v, vE ) < δ0.
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3 Dense set of directions

Given ameasurable set E having finitemeasure, wewill denote by E∗ the closed ball centered
at the origin having the same measure.

If V = {v1, . . . , vn} is a finite ordered set of directions, we will denote with SV (E),
or also with Sv1,...,vn (E) = Svn (Svn−1 . . . (Sv1(E)) . . .) the set obtained iterating the Steiner
symmetrization with respect to v1 first, then with respect to v2 and so on, to finish with vn .

Lemma 3.1 If U ⊂ SN−1 is countable and dense and if E is a measurable set having finite
measure, then

inf{μ(SV E) : V ⊂ U, with V finite} = μ(E∗) .

We may assume that λ(E) = κN applying, if necessary, a homothety.
Let us first assume that E is a bounded Caccioppoli set. The proof is by contradiction.

Assume the infimum above equals μ0 > μN .
Letρ0 be such that B(0, ρ0) ⊃ E , let p0 be the perimeter of E , let ε0 = μN−μ0 and denote

by F the set F(ρ0, p0, ε0) defined in Lemma 2.5. It contains E and all its symmetrizations
whose moment of inertia is at least μ0. Then, there exist a δ0 > 0, and a direction vE , such
that

μ(SvE) < μ(F) − δ0

for every v such that d(v, vF ) < δ0.
Since U is dense, we may select v = v1 in U .
If μ(Sv1(E)) < μ0 we are done, otherwise we apply the same argument to Sv1E to

conclude that there exists v2 ∈ U , different from v1, such that

μ(Sv1v2(E)) < μ(Sv1(E)) − δ0 < μ(E) − 2δ0.

We can repeat the same construction diminishing the moment of inertia by at least δ0 as
long as the set (symmetrized with respect to distinct and appropriate v3, . . . , vn from U ),
belongs to F .

There exists n such that

μ(E) − (n + 1)δo < μ0 ≤ μ(Sv1,...,vn (E)) ≤ μ(E) − nδ0.

Symmetrizing Sv1,...,vn (E) with respect to vn+1 (selected as before), we contradict the
assumption on μ0.

It is easy now to extend the result to general measurable sets E having finite measure. We
may suppose again λN (E) = κN .

For any ε > 0, there exists a finite union of rectangles G (which is a Caccioppoli set)
having measure κN and such that d1(G, E) < ε. Since Steiner symmetrization is Lipschitz
with constant 1, d1(Sv1,...,vn (G), Sv1,...,vn (E)) ≤ d1(G, E) and since {μ(Sv1,...,vn )(G)} tends
to μN , the conclusion follows.

Let us now prove preliminarily a theoremwhich parallels the result from [2] in the context
of measurable sets.

Theorem 3.2 If U is countable and dense in the unit N-dimensional sphere SN−1 and if
E ⊂ R

N has finite measure, then there exists an appropriate ordering {un} of U such that
the Steiner symmetrizations of E, taken successively in the directions un, converge in the L1

distance to the ball E∗.
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Let {wn} be an ordering of U . From the previous lemma, we know that we can select
distinct vectors u1, . . . , un1 from U such that μ(Su1,...,un1 (E)) < μ(E∗) + 1. We may
assume that w1 is among the selected vectors because if it were not so, we could add it,
decreasing further the moment of inertia.

Since U\{u1, . . . , un1} is still dense, we can select in the reduced set another group of
vectors {un1+1, . . . , un2} such that w2 is among them and

SV2(E) < μ(E∗) + 1

2
,

where V2 denotes the ordered set of directions v1, . . . , vn1 , vn1+1, . . . , vn2 and the sym-
metrizations are taken in the natural order.

We iterate this construction and obtain an increasing family of ordered sets Vn (with the
order on Vi+1 extending the order on Vi ), such that wn ∈ Vn (implying that sooner or later
we symmetrize with respect to each wn ∈ U ) and

SVn (E) < μ(E∗) + 1

2n−1 .

Therefore μ(SVn (E)) converges, when n tends to infinity, to μ(E∗) and since Steiner
symmetrization is continuous with respect to the L1 distance, by Lemma 2.4 the sequence
{SVn (E)} tends to E∗ in the L1 distance.

We will now extend the previous result, showing that there exist universal rearrangements
of U which make the successive Steiner symmetrizations converge for every seed E which
is measurable and has finite measure. The result is of independent interest, but it is also a
tool for proving our main result.

Theorem 3.3 If U is countable and dense in the unit N-dimensional sphere SN−1, then
there exists an appropriate ordering {un} of U such that the Steiner symmetrizations of
any measurable set having finite measure E ⊂ R

N taken successively in the directions un,
converge in the L1 distance to the ball E∗.

Let, as in the previous theorem, {wn} be an ordering of U . Let {Em}, for m ∈ N, be a
countable dense family of measurable sets having finite measure.

Choose V1 = (v1, . . . , vn1) such that w1 is among the selected vectors and

μ(SV1E1) < μ(E∗
1 ) + 1 .

We can now choose as before (vn1+1, . . . , vn2) in U \ {v1, v2, . . . , vn1} such that w2 is
among the selected vectors and letting V2 = (v1, . . . , vn1 , vn1+1, . . . , vn2),

μ(SV2Em) < μ(E∗
m) + 1

2
,

for m = 1, 2.
Iterating this construction, we get at the i th step a finite set of directions Vi =

(v1, . . . , vn1 , vn1+1, . . . , vni ) such that all the w j ’s, for 1 ≤ j ≤ i , belong to Vi and

μ(SVi Em) < μ(E∗
m) + 1

2i−1 ,

for m ≤ i .
It follows that for any m ∈ N

lim
n→∞ μ(SVn (Em)) = μ(E∗

m) .
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Let now E be any measurable set having finite measure. There exists a sequence {Em j }
such that lim j→∞ d1(Em j , E) = 0. Then, we have that

d1(SVn (E), E∗) ≤ d1(SVn (E), SVn (Em j )) + d1(SVn (Em j ), E
∗
m j

) + d1(E
∗
m j

, E∗) ≤
d1(E, Em j ) + d1(SVn (Em j ), E

∗
m j

) + d1(E
∗
m j

, E∗) .

Given ε > 0, we may fix a j such that the first and the last terms are both smaller than
that ε

3 . Given j , the intermediate term tends to zero because of the previous theorem, and the
proof is complete.

To prove Theorem 1.1, we will use the previous results and follow the route we took in
Section 4 of [16].

Given a nonnegative integrable function f on R
N , its superlevel set, for y > 0, is

defined as

E f (y) = {x : x ∈ R
N , f (x) ≥ y} .

The Steiner symmetrization in direction u of f ∈ L+
1 is the function Su( f (x)) = sup{y :

x ∈ Su(E f (y))}.
The function f ∗ = sup{y : x ∈ E f (y)∗} is called the spherical symmetrization of f .
Following nowverbatim the proofs of Theorem4.3 and 4.4 of [16], we obtain the following

results.

Proposition 3.4 If f ∈ L+
1 and {un} is the sequence of directions constructed in Theorem

3.3, then the sequence {Su1,...,un ( f )} converges in L1 to f ∗.

Proposition 3.5 If f is continuous with compact support and {un} is the sequence of direc-
tions constructed in Theorem 3.3, the sequence {Su1,...,un ( f )} converges uniformly to f ∗.

We can now prove our main result.

Proof of Theorem 1.1 If U is countable and dense in the unit N -dimensional sphere SN−1,
let us order it as in Theorem 3.3.

If K is a compact set in R
N , consider the continuous function with compact support

f (x) = max{0, 1 − d(x, K )} .

Observe (see Theorem 5.1 of [16]) that uniform convergence of the sequence {Su1,...,un ( f )} to
f ∗ implies convergence in the Hausdorff distance of the superlevel sets to the superlevel sets
of f ∗, which are appropriate balls. In particular, this holds for the superlevel set corresponding
to y = 1, and the conclusion follows.

Remark 3.6 From Theorem 5.1 of [16] or also from Corollary 1 of [5], we deduce the
following result.

Suppose P is any probability on U such that P({u}) > 0 for each u ∈ U . Then with
probability one for a random and independently selected sequence {un}, given any compact
set K , {Su1,...,un (K )} converges in the Hausforff distance to K ∗.

By the Borel–Cantelli lemma, a random and independently selected sequence contains
with probability one every u ∈ U , but repetitions are inevitable.

This statement is powerful since it shows the myriad of sequences which make the iterated
Steiner symmetrals converge, but it is not an alternativeway for provingTheorem1.1, because
with probability one each u ∈ U is selected infinitely often.
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4 Klain’s theorem for measurable sets

Our last result concerns iterations of Steiner symmetrization with respect to directions taken
from a finite set F . Klain proved that when the seed is a convex body then such sequences
always converge in the Hausdorff distance to a convex body which is symmetric under
reflection in each of the directions in F which are taken infinitely often.

This result has been extended in [4] to the case of a compact seed.
Wewill showhere that an analogous result holds if the seed inmeasurable and convergence

is taken with respect to d1.

Theorem 4.1 Let {un} be a sequence of vectors chosen froma finite set F = {v1, v2, . . . , vk}.
Then, for every measurable set E ⊂ R

N , the symmetrals

Su1,...,un E

converge in L1 distance to a measurable set G. Furthermore, G is symmetric under reflection
in each of the directions v ∈ F that appear in the sequence infinitely often.

For anym ∈ N, let Km be a compact set contained in E such that λN (Km) > λN (E)− 1
m .

From the analogous theorem for compact sets proved in [4], we have that for any m ∈ N,
the sequence {Su1,...,un (Km)} tends, in the Hausdorff distance, to a compact set Lm . Put
L = ∪∞

m=1L
m . Each Lm is symmetric under reflection in each of the directions v ∈ F that

appear in the sequence infinitely often. Therefore, L has the same property.
We shall show that {Su1,...,un (E)} converges to L with respect to the d1 distance.

d1(Su1,...,un (E), L)

≤ d1(Su1,...,un (E), Sui ,...,un (K
m)) + d1(Su1,...,un (K

m), Lm) + d1(L
m, L) .

Fix ε > 0. The first term in the last line is bounded by ε
3 for m large enough. So is the third.

Now, for a fixed m large enough, the second term tends to zero by (ii) of Theorem 3.1 of [4],
and therefore, for n large enough, it is smaller than ε

3 and the conclusion follows.
The previous theorem shows how simple is to prove a result concerning Steiner sym-

metrizations of measurable sets when an analogous result for compact sets is available. On
the other hand, compact sets include convex bodies; therefore, it is clear that results for
compact sets play a central role and that Mani, with his question, drew the attention to an
important issue.

Example 4.2 Let K be the triangle with vertices in (−1, 0), (0, 1) and (1,−1) and let u =
(1, 0) and v = (0, 1). It is easy to check that L = Su,v(K ) �= Sv,u(K ) = H . The limit
depends on the order in which the vectors from F = {u, v} are taken. In fact, it depends on
the first choice.

Open problems 4.3 1) Under which conditions the limit does not depend on the order in
which the directions of F = {v1, v2, . . . , vk} are taken (if we assume that each direction
from F is taken infinitely many often)?

2) Given F with at least three elements, there are continuously many different sequences
using infinitely many times each v ∈ F . How many different limits may exist?

3) If we take in Example 4.2 the directions in F randomly, then L and H have the same
probability to be the limits of {Su1,...,vn (E)}. Can we say something similar in the general
case?
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