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Abstract We show that the maximum of the horizontal fluid velocity in a rotational deepwa-
ter plunging or spilling breaker is attained on the surface.Moreover, thementionedmaximum
is, as a function of the time, almost everywhere differentiable, and its derivative is related to
the horizontal component of the pressure gradient.
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1 Introduction

This paper pertains to a very common feature of surfacewaves over deepwater regions, namely
the tendency of these waves to turn over on themselves, situation that is the forerunner of
wave breaking. The process of wave breaking has remained to a great extent theoretically
unexplored in spite of considerable efforts over more than one hundred years of study.

Although very difficult—due to a variety of reasons, ranging from the nonlinearity of
the equations and the boundary conditions to the instability of the measurement instruments
carried away by the large ocean waves—the study of breaking waves is very important, since,
cf. [1], breaking waves transfer horizontal momentum to surface currents, contribute to the
mixing of uppers layers of the ocean, transport sediment in shallowwater and intensify air-sea
exchange of gases.

To cope with the inherent difficulties posed by breaking waves, several simplifying
assumptions about the flow have to be made. They concern the neglect of the fluid viscosity,
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of the surface tension (for fluid surfaces that are not highly curved). One more common sim-
plification is the absence of vorticity in the fluid flow, which is a good approximation, except
for the situation where there is a strong current shear. With respect to the latter assumption,
we will allow for a rotational flowwith constant vorticity. It is worth to point out that constant
nonzero vorticity provides a good description of the regular tidal currents, cf. [4]. Also, for
non-uniform currents the existence of a nonzero mean vorticity is more important than its
specific distribution, cf. [10].

2 Preliminaries

We consider here a two-dimensional water flow, moving under the influence of gravity, such
that the free surface waves propagate in the positive x-direction, while the y axis points
vertically upwards. The origin is assumed to be on the mean surface level. We assume the
motion to be periodic in the x-direction with wavelength L . However, we do not require
periodicity in the time variable t . The water flow occupies the domain �(t) bounded below
by the flat bed

y = −d,

withd > 0, and above by the free surface,which at anyfixed time t is described parametrically
as

x = α(s, t), y = β(s, t),

with α and β smooth function satisfying

α(s + L , t) = α(s, t) + L
β(s + L , t) = β(s, t)

for all s ∈ R, t ≥ 0, (2.1)

and, to cast out the singular points, we ask that

α2
s (s, t) + β2

s (s, t) > 0 for all s ∈ [0, L].
If P denotes the pressure, ρ the (constant) density and g the gravitational constant of acceler-
ation, then the water flow with fluid velocity (u, v) moves according to the Euler’s equations

ut + uux + vuy = − 1
ρ
Px ,

vt + uvx + vvy = − 1
ρ
Py − g,

(2.2a)

the equation of mass conservation
ux + vy = 0 (2.2b)

and is subjected to the constraint of a positive constant vorticity γ > 0; thus, it also fulfills
the equation

uy − vx = γ. (2.2c)

Remark 2.1 There is a significant difference between positive and negative vorticity. For
example, in certain geophysical contexts, the wind-induced current has constant vorticity,
always of one sign (see, e.g., the equatorial undercurrent, cf. [5]). On the other hand, while
the positive vorticity caseγ > 0 is suitable for the ebb current, negative vorticity is appropriate
for the flood current, cf. [4,11].
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From the point of view ofmathematical analysis, in terms of the stream functionψ , defined
up to a constant by ψy = u and ψx = −v, the vorticity is expressed by means of the Poisson
equation �ψ = γ and maximum/minimum principles depend upon the sign of the constant
γ , cf. [8,9].

Note that if the flow possesses the feature of having constant vorticity initially at time
t = 0, then the fact that the vorticity of a particle is preserved as the particle moves in a two-
dimensional flow (see [3]) ensures that this feature will persist at all later times. Equations
of motion (2.2a)–(2.2c) are supplemented, cf. [6], by the dynamic boundary condition on the
free surface

P(α(s, t), β(s, t), t) = Patm, (2.3)

stating that the motion of the water is decoupled from the motion of the air above, and the
kinematic boundary conditions

v = 0 on y = −d,

uβs − vαs + αsβt − βsαt = 0 on the free surface,
(2.4)

stating the impermeability of the bed, in the first of the latter equations, while the second one
indicates that the fluid flow relative to the free boundary is tangential to it. Equivalently, the
conditions in (2.4) state that once a particle is on the bed or on the free surface, it will remain
confined to that location for all times.

To guarantee the well posedness of smooth solutions to the governing equations (2.2a)–
(2.4), we assume that the exterior normal derivative of the pressure ∂P

∂n is negative all along
the free surface, that is, there is a negative constant C < 0 such that

∂P

∂n
≤ C < 0 (2.5)

on the free surface, at initial time t = 0. It was shown, [7], that under condition (2.5), the
governing equations are well posed, and moreover, within the existence time, condition (2.5)
will persist.

3 The time evolution of the maximum of u at the free surface

We are concerned in this section with the time evolution of the maximum of the horizontal
fluid velocity. To begin with, we set for all t ≥ 0

M(t) := max
(x,y)∈�(t)

{u(x, y, t)}.

We claim that at any fixed time t , the maximum M(t) is achieved only along the free surface.
To prove the claim, notice that at a fixed time t , the function (x, y) → u(x, y, t) is harmonic
in �(t), due to (2.2b) and (2.2c). Thus, since u is not constant [u constant would force
v(x, y, t) = −γ x + f (t) for some function f (t), by (2.2b) and (2.2c), which is impossible
by (2.4)], its maximum can only be assumed on the boundary. Admitting for a moment that
the maximum is achieved on the bed at some point (x0,−d) at some time t0, we infer from
Hopf’s maximum principle that

uy(x0,−d, t0) < 0.
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But then, from (2.2c) we see that vx = uy − γ < 0, which is a contradiction with the
kinematic boundary condition on the bed, thus proving the claim. Therefore,

M(t) = sup
(x,y)∈�(t)

{u(x, y, t)} = sup
s∈[0,L]

{u(α(s, t), β(s, t), t)} for all t ∈ [0, T ), (3.1)

where T > 0 is the breaking time.
We will now sketch the proof of the following result, which relates M(t) to the pressure

gradient on the free surface.

Theorem 3.1 The function t → M(t) is absolutely continuous and therefore almost every-
where differentiable, with

M ′(t) = − 1

ρ
Px (X (t), t) for almost all t ∈ (0, T ), (3.2)

where X (t) = (x(t), y(t)) denotes any location where u attains its maximum.

We state first a technical result that will help in the proof of Theorem 3.1. Its proof follows
the line of proof of formula (3.3) in [6] (see also the considerations in [2]) and will therefore
be omitted.

Lemma 3.2 Let ξ(t) be such that X (t) = (α(ξ(t), t), β(ξ(t), t)). Then the function t →
M(t) is absolutely continuous with

M ′(t) = ut (X (t), t) + ux (X (t), t)αt (ξ(t), t) + uy(X (t), t)βt (ξ(t), t) (3.3)

for almost all t ∈ [0, T ).

Proof of Theorem 3.1 Since s = ξ(t) is themaximumof the function s → u(α(s, t), β(s, t),
t), we infer that

ux (X (t), t)αs(ξ(t), t) + uy(X (t), t)βs(ξ(t), t) = 0. (3.4)

Assuming that at the instant t where M is differentiable, we have that αs(ξ(t), t) �= 0, we
divide the latter equality by αs(ξ(t), t) and multiply then the result by αt (ξ(t), t), we obtain,
using also the kinematic boundary condition on the surface, that

ux (X (t), t)αt (ξ(t), t) + uy(X (t), t)βt (ξ(t), t)

= uy(X (t), t)

(
βt (ξ(t), t) − βs(ξ(t), t)

αs(ξ(t), t)
αt (ξ(t), t)

)

= uy(X (t), t)
v(X (t), t)αs(ξ(t), t) − u(X (t), t)βs(ξ(t), t)

αs(ξ(t), t)

= uy(X (t), t)v(X (t), t) + u(X (t), t)ux (X (t), t), (3.5)

where the last equalitywas inferred from (3.4). The assertion in Theorem3.1 becomes evident
if we take into account the latter equality (3.3) and the first equation from (2.2a).

4 The time evolution of the minimum of u in the irrotational case

The setting in this part of the paper is that of an irrotational flow. Therefore, using the equation
of mass conservation (2.2b) and (2.2c) for γ = 0 we see that u is harmonic; thus, at any fixed
time t , the function (x, y) → u(x, y, t) achieves its minimum on the boundary of the fluid
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domain. Arguing as in [6] or as in the beginning of Sect. 3, we infer that the minimum of u
is achieved on the free surface. Thus,

m(t) := min
(x,y)∈�(t)

{u(x, y, t)} = min
s∈[0,L]{u(α(s, t), β(s, t), t)} for all t ∈ [0, T ), (4.1)

where T > 0 is the breaking time. As in the case of the maximum of u, there is a link between
m(t) and the pressure gradient, as follows.

Theorem 4.1 The function t → m(t) is absolutely continuous and therefore almost every-
where differentiable. Moreover, the following holds

m′(t) = − 1

ρ
Px (X̃(t), t) for almost all t ∈ (0, T ), (4.2)

where X̃(t) = (x̃(t), ỹ(t)) is any position where u attains its minimum.

The following result concerning the precise location of theminimumof the horizontal velocity
u is true.

Proposition 4.2 Provided symmetry persists, theminimal horizontal fluid velocity is attained
at the wave trough.

Proof According to the discussion in Section 4 of the paper [6], the minimum of the pressure
P is attained all along the free surface and the derivative of P in any direction that points
outside the fluid, at the free surface, is negative. Since P is atmospheric at the free surface,
we infer from the first assertion that

Px (α(s, t), β(s, t), t)αs(s, t) + Py(α(s, t), β(s, t), t)βs(s, t) = 0, s ∈ R, t ≥ 0, (4.3)

while the second assertion is equivalent to

− Px (α(s, t), β(s, t), t)βs(s, t) + Py(α(s, t), β(s, t), t)αs(s, t) < 0 for s ∈ R, t ≥ 0.
(4.4)

Consequently, from the previous two relations, we have that

− Px (α(s, t), β(s, t), t) · α2
s (s, t) + β2

s (s, t)

βs
< 0, (4.5)

at all points on the free surface, except for the wave crest and the wave trough.
Assuming now that the minimum horizontal fluid velocity is attained at some point X+(t)

on the declining part of the free surface, the samevaluemust be attained at the symmetric point
X−(t) on the ascending part of the wave. But then, it is clear from (4.5) that Px (X−(t), t) > 0
and Px (X+(t), t) < 0, unless the point in question is at the wave crest or at the wave trough.
The latter two inequalities are in contradiction, since, in formula (4.2), we are allowed to
choose any point X̃(t) where the minimum is attained. As a consequence, the minimum
is either at the wave crest or at the wave trough. Since initially we start from a symmetric
traveling wave, in which case the value of u at the wave trough is smaller than the value of
u at the wave crest, we can conclude that the minimum of u is located at the wave trough,
where Px = 0. �	
Acknowledgments The author is grateful to the referee for the comments and suggestions that improved the
paper.
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