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Abstract We investigate an indefinite superlinear elliptic equation coupled with a sublin-
ear Neumann boundary condition (depending on a positive parameter λ), which provides a
concave–convex nature to the problem. We establish a global multiplicity result for positive
solutions in the spirit of Ambrosetti–Brezis–Cerami and obtain their asymptotic profiles as
λ → 0. Furthermore, we also analyse the case where the nonlinearity is concave. Our argu-
ments are based on a bifurcation analysis, a comparison principle, and variational techniques.
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1 Introduction and statements of main results

Let � be a bounded domain ofRN (N ≥ 2) with smooth boundary ∂�. We consider in this
article the nonlinear elliptic problem{

−�u = a(x)|u|p−2u in �,
∂u
∂n = λ|u|q−2u on ∂�,

(Pλ)
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where

• Δ = ∑N
j=1

∂2

∂x2j
is the usual Laplacian inRN ,

• λ > 0,
• 1 < q < 2 < p < ∞,
• a ∈ Cα(�) with α ∈ (0, 1),
• n is the unit outer normal to the boundary ∂�.

A function u ∈ X := H1(�) is said to be a weak solution of (Pλ) if it satisfies∫
�

∇u∇w −
∫

�

a|u|p−2uw − λ

∫
∂�

|u|q−2uw = 0, ∀w ∈ X.

A weak solution u of (Pλ) is said to be nontrivial and non-negative if it satisfies u ≥ 0 and
u �≡ 0. Under the condition

p ≤ 2∗ = 2N

N − 2
if N > 2, (1.1)

we shall prove that such solutions are strictly positive on � (Proposition 2.1) and belong to
C2+θ (�) for some θ ∈ (0, 1) (Remark 2.2). To this end, we use the weak maximum principle
[15] to deduce that any nontrivial non-negative weak solution u of (Pλ) is strictly positive
in �. In addition, by making good use of a comparison principle [19, Proposition A.1], we
shall prove that u is positive on the whole of �. Finally, a bootstrap argument will provide
u ∈ C2+θ (�) for some θ ∈ (0, 1), so that u is a (classical) positive solution. Note that the
standard boundary point lemma (as in [17]) cannot be applied directly to nontrivial non-
negative weak solutions of (Pλ).

The purpose of this paper is to study existence, non-existence, and multiplicity of positive
solutions of (Pλ), as well as their asymptotic properties as the parameter λ approaches 0. It
is promptly seen that (Pλ) has no positive solution if a ≥ 0. More precisely, we shall see that
(Pλ) has a positive solution only if

∫
�
a < 0 (cf. Proposition 2.3). This condition is known

to be necessary for the existence of positive solutions of problems with Neumann boundary
conditions at least since the work of Bandle–Pozio–Tesei [4]. Therefore, we shall assume
that either a changes sign or a ≤ 0.

In view of the condition 1 < q < 2 < p, we note that if a changes sign, then (Pλ) belongs
to the class of concave–convex type problems with nonlinear boundary conditions. The main
reference on concave–convex type problems is the work of Ambrosetti–Brezis–Cerami [3],
which deals with {

−�u = λ|u|q−2u + |u|p−2u in �,

u = 0 on ∂�,
(1.2)

where 1 < q < 2 < p. Under the condition (1.1), the authors proved a global multiplicity
result, namely the existence of some 	 > 0 such that (1.2) has at least two positive solutions
for λ ∈ (0,	), at least one positive solution for λ = 	, and no positive solution for λ > 	. In
addition, they analysed the asymptotic behaviour of the solutions as λ → 0+. Tarfulea [22]
considered a similar problem with an indefinite weight and a Neumann boundary condition,
namely {

−�u = λ|u|q−2u + a(x)|u|p−2u in �,
∂u
∂n = 0 on ∂�,

(1.3)
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where a ∈ C(�). He proved that
∫
�
a < 0 is a necessary and sufficient condition for the

existence of a positive solution of (1.3). Making use of the sub-supersolutions technique,
he has also shown the existence of 	 > 0 such that problem (1.3) has at least one positive
solution for λ < 	 which converges to 0 in L∞(�) as λ → 0+, and no positive solution for
λ > 	. Garcia-Azorero et al. [11] have considered the problem{

−�u + u = |u|p−2u in �,
∂u
∂n = λ|u|q−2u on ∂�.

(1.4)

By means of a variational approach, they proved that if 1 < q < 2 < p and p < 2∗ when
N > 2, then there exists	0 > 0 such that (1.4) has infinitely many nontrivial weak solutions
for 0 < λ < 	. Moreover, they have also proved that if 1 < q < 2 and p = 2∗ when N > 2,
then there exists 	1 > 0 such that (1.4) has at least two positive solutions for λ < 	1, at
least one positive solution for λ = 	1, and no positive solution for λ > 	1.

When a changes sign,we shall prove a globalmultiplicity result in the style ofAmbrosetti–
Brezis–Cerami result. However, in doing so we shall encounter some particular difficulties.
First of all, the obtention of a first solution by the sub-supersolution method seems difficult
since the existence of a strict supersolution of (Pλ) for λ > 0 small is not evident at all. As a
matter of fact, in [22] the author shows that this is a rather delicate issue. Another difficulty
in this case is related to the variational structure: note that unlike in problems with Dirichlet
boundary conditions, the left-hand side of (Pλ) lacks coercivity, since the term

∫
�

|∇u|2 does
not correspond to ‖u‖2 in X . This sort of problems has been considered in [18,19] for other
kinds of nonlinearities and we shall use a similar approach here to prove existence results
for (Pλ). This approach is based on the Nehari manifold method, which is known to be
useful when dealing with elliptic problems with powerlike nonlinearities and sign-changing
weights. Brown and Wu [6] used this method to deal with the problem{

−�u = λm(x)|u|q−2u + a(x)|u|p−2u in �,

u = 0 on ∂�,
(1.5)

wherem, a are smooth functions which are positive somewhere in�. We refer also to Brown
[5] for a combination of sublinear and linear terms and to Wu [24] for a problem with a
nonlinear boundary condition.

On the other hand, if a ≤ 0 then a(x)|u|p−2u and λ|u|q−2u are both concave and (Pλ)

shares then some features with the logistic equation. The structure of the positive solution
set of (Pλ) with a ≤ 0 and q = 2 has been considered by Garcia-Melián et al. [12]. They
proved that there exists 0 < σ1 ≤ ∞ such that (Pλ) has a positive solution if and only if
0 < λ < σ1. Moreover, this positive solution is unique. We shall prove a similar result for
(Pλ) with σ1 = ∞.

Whenever
∫
�
a < 0, we set

c∗ =
( |∂�|

− ∫
�
a

) 1
p−q

. (1.6)

We also set

λ = sup{λ > 0 : (Pλ)has a positive solution}.
Let us recall that a positive solution u of (Pλ) is said to be asymptotically stable (respect.

unstable) if γ1(λ, u) > 0 (respect. < 0), where γ1(λ, u) is the smallest eigenvalue of the
linearized eigenvalue problem at u, namely
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{
−�φ = (p − 1)a(x)u p−2φ + γφ in �,
∂φ
∂n = λ(q − 1)uq−2φ + γφ on ∂�.

(1.7)

In addition, u is said weakly stable if γ1(λ, u) ≥ 0.
We state now our main result:

Theorem 1.1 (1) (Pλ) has a positive solution for λ > 0 sufficiently small if∫
�

a < 0. (1.8)

Conversely, if (Pλ) has a positive solution for some λ > 0, then (1.8) is satisfied.
(2) Assume (1.8). Then the following assertions hold:

(a) 0 < λ ≤ ∞ and (Pλ) has a minimal positive solution uλ for λ ∈ (0, λ), i.e. any
positive solution u of (Pλ) satisfies uλ ≤ u in �. Furthermore, uλ has the following
properties:
(i) λ → uλ(x) is strictly increasing in (0, λ).
(ii) uλ is asymptotically stable for every λ ∈ (0, λ).
(iii) λ → uλ is C∞ from (0, λ) to C2+α(�).

(iv) uλ → 0 and λ
− 1

p−q uλ → c∗ in C2+α(�) as λ → 0+.
(b) Assume (1.1). If λ < ∞, then (Pλ) has a minimal positive solution uλ for λ = λ.

Moreover, the solution set around (λ, uλ) consists of a C∞-curve (λ(s), u(s)) ∈ R×
C2+α(�) of positive solutions, which is parametrized by s ∈ (−ε, ε), for some ε > 0,
and satisfies (λ(0), u(0)) = (λ, uλ), λ′(0) = 0, λ′′(0) < 0, and u(s) = uλ + sφ1 +
z(s), where φ1 is a positive eigenfunction associated with the smallest eigenvalue
γ1(λ, uλ) of (1.7), and z(0) = z′(0) = 0. Finally, the lower branch (λ(s), u(s)), s ∈
(−ε, 0), is asymptotically stable, whereas the upper branch (λ(s), u(s)), s ∈ (0, ε),
is unstable.

(c) Assume p < 2∗ if N > 2. Then the set of positive solutions of (Pλ) for λ > 0 around
(λ, u) = (0, 0) in R × X consists of {(λ, uλ)}.

(d) Bifurcation from zero of (Pλ) never occurs at any λ > 0, i.e. there is no sequence
(λn, un) of positive solutions of (Pλ) such that un → 0 in C(�) and λn → λ∗ > 0.

(e) (Pλ) has at most one weakly stable positive solution.

Remark 1.2 (1) Under conditions (1.8) and (1.1), by the left continuity of uλ [1, Theo-
rem 20.3], we infer that (λ(s), u(s)), s ∈ (−ε, 0), in Theorem 1.1(2)(b) represents
minimal positive solutions. In particular, the mapping λ → uλ is continuous from (0, λ]
into C(�).

(2) Under (1.1), the minimal positive solution uλ obtained for λ = λ satisfies in addition
γ1(λ, uλ) = 0.

Theorem 1.3 Assume a ≤ 0, a �≡ 0. Then the following assertions hold:

(1) If (Pλ) has a positive solution for some λ > 0, then it is unique and asymptotically stable.
(2) If, in addition, (1.1) is satisfied, then λ = ∞. Moreover, denoting by uλ the unique

positive solution of (Pλ), the mapping λ → uλ is C∞ in (0,∞).

Theorem 1.4 Assume that a changes sign and (1.8) is satisfied. Then the following assertions
hold:

(1) If a > 0 on ∂�, then λ < ∞.
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(2) Assume in addition p < 2N
N−2 if N > 2. Then (Pλ) has a second positive solution u2,λ

satisfying uλ < u2,λ in � for every λ ∈ (0, λ). Moreover, u2,λ is unstable for every
λ ∈ (0, λ) and there exists λn → 0+ such that u2,λn → u2,0 in C2+θ (�) for any
θ ∈ (0, α) as n → ∞, where u2,0 is a positive solution of{

−�u = a(x)u p−1 in �,
∂u
∂n = 0 on ∂�.

(1.9)

Remark 1.5 (1) In the case a ≤ 0, a �≡ 0, the following remarks are in order:

(a) The condition (1.1) can be removed when dealing with weak solutions. In other
words, if a ≤ 0, a �≡ 0 and p > 1, then (Pλ) has a unique nontrivial non-negative
weak solution uλ for every λ > 0, see Proposition 4.3. This has been observed in
[12, Theorem 2] in the case q = 2.

(b) In [12], it has been proved that if q = 2, then (Pλ) has a positive solution if and only
if 0 < λ < σ1, where σ1 is the first eigenvalue of the problem⎧⎪⎨

⎪⎩
�u = 0 in �0,
∂u
∂n = σu on �1,

u = 0 on �2.

(1.10)

Here �0 is the interior of {a = 0} and it is assumed that ∂�0 = �1 ∪ �2 with
�1 = ∂� ∩ ∂�0 and �2 = � ∩ ∂�0 such that �2 ⊂ �. Moreover, if �1 = ∅,
then σ1 = ∞. According to Theorem 1.3, in the case 1 < q < 2 we have σ1 = ∞
regardless of {a = 0}. Biologically, this result would be interpreted in the following
way: an incoming flux on ∂� occurs in both cases q = 2 and 1 < q < 2, but a grow-
up phenomenon occurs in the refuge {a = 0} in the case q = 2, whereas no such
phenomenon occurs in the case 1 < q < 2. The difference between them might be
caused by the fact that the incoming flux uq−1 on ∂� in the case 1 < q < 2 is much
smaller than in the case q = 2 when u is large. Here our situation is that the intrinsic
growth rate of population with density u is 0, a reaction on ∂�, which is given by
λuq−1, is assumed with its amplitude λ, and we consider a decay of the population
following self-limitation a(x)u p−1 with spatially inhomogeneous rate a(x) inside
�.

(2) In accordance with Theorems 1.1, 1.3 and 1.4, some possible positive solutions sets of
(Pλ) are depicted in Fig. 1.

The outline of this article is the following: in Sect. 2, we show that nontrivial non-negative
solutions of (Pλ) are positive on � and that (1.8) is a necessary condition for the existence
of positive solutions of (Pλ). In Sect. 3, we carry out a bifurcation analysis and consider the
existence of a minimal positive solution of (Pλ). In Sect. 4, we use variational techniques to
prove Theorems 1.3 and 1.4. Finally, in Sect. 5 we establish the existence of a smooth curve
of positive solutions.

2 Positivity and a necessary condition

We begin this section showing the positivity on ∂� of nontrivial non-negative weak solutions
of (Pλ). As mentioned in the Introduction, the boundary point lemma is difficult to apply
directly to (Pλ) since 0 < q−1 < 1. However, bymaking good use of a comparison principle
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Fig. 1 Possible bifurcation
diagrams for (Pλ) when∫
� a < 0. a Bifurcation diagram
in the case a ≤ 0 and a �≡ 0. b
Bifurcation diagram in the case a
changes sign

u C2+α(Ω)

λ

O

u2,0

u C2+θ(Ω)

λ

O λ

(a)

(b)

for a class of nonlinear boundary value problems of concave type, we are able to show that
nontrivial non-negative weak solutions of (Pλ) with λ > 0 are positive on the whole of �:

Proposition 2.1 Assume (1.1). Then any nontrivial non-negative weak solution of (Pλ) is
strictly positive on �.

Proof First of all, we note that under (1.1) any nontrivial non-negative weak solution belongs
to X ∩ Cθ (�) for some θ ∈ (0, 1), cf. Rossi [21, Theorem 2.2]. We consider the following
boundary value problem of concave type{

−�u = −a0u p−1 in �,
∂u
∂n = λuq−1 on ∂�,

123



On a concave–convex elliptic problem with a nonlinear. . . 1839

where a− = a+ −a, and a0 = sup� a−. A nontrivial non-negative weak solution uλ of (Pλ)

for λ > 0 satisfies ∫
�

∇uλ∇w + a0

∫
�

u p−1
λ w − λ

∫
∂�

uq−1
λ w ≥ 0,

for every w ∈ X such that w ≥ 0. On the other hand, we consider the following eigenvalue
problem: {

−�φ = σφ in �,
∂φ
∂n = λφ on ∂�.

(2.1)

It is easy to see that for any λ > 0, this problem has a smallest eigenvalue σ1, which is
negative. So, using a positive eigenfunction φ1 associated with σ1, we deduce that if ε is
sufficiently small, then εφ1 satisfies∫

�

∇(εφ1)∇w + a0

∫
�

(εφ1)
p−1w − λ

∫
∂�

(εφ1)
q−1w ≤ 0,

for every w ∈ X such that w ≥ 0. By the comparison principle [19, Proposition A.1], we
infer that εφ1 ≤ uλ on �. In particular, we have 0 < εφ1 ≤ uλ on ∂�. ��
Remark 2.2 Thanks to the positivity property, the assumption a ∈ Cα(�), 0 < α < 1,
allows us to prove that under (1.1), any nontrivial non-negative weak solution u of (Pλ)

belongs to C2+θ (�) for some θ ∈ (0, 1), by elliptic regularity. Proposition 2.1 will be needed
in a combination argument of bifurcation and variational techniques, since our purpose in
this paper is to discuss the existence of a classical solution of (Pλ) which is positive on �.

We prove now that (1.8) is a necessary condition for (Pλ) to have a positive solution for
some λ > 0.

Proposition 2.3 If (Pλ) has a positive solution for some λ > 0, then (1.8) is satisfied.

Proof Let u be a positive solution of (Pλ). Then we have∫
�

∇u∇w −
∫

�

au p−1w − λ

∫
∂�

uq−1w = 0, ∀w ∈ X.

Since u1−p ∈ X , we deduce that∫
�

a =
∫

�

∇u∇ (
u1−p) − λ

∫
∂�

uq−1 1

u p−1 = (1 − p)
∫

�

u−p|∇u|2 − λ

∫
∂�

u−(p−q) < 0,

as desired. ��
Remark 2.4 By virtue of Proposition 2.1, under (1.1) we can prove that Proposition 2.3 holds
for nontrivial non-negative weak solutions of (Pλ).

3 Bifurcation and minimal positive solutions

Throughout this section, we assume (1.8). As we shall discuss bifurcation from the zero
solution, the following result will be useful (see [20] for a similar proof):
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Lemma 3.1 Assume (1.1). If (λn, un) are weak solutions of (Pλ) with (λn) bounded, then
‖un‖X → 0 if and only if ‖un‖C(�) → 0.

We use now a bifurcation technique to show the existence of at least one positive solution
of (Pλ) for λ > 0 close to 0. To this end, we consider positive solutions of the following

problem, which corresponds to (Pλ) after the change of variable w = λ
− 1

p−q u:⎧⎨
⎩−�w = λ

p−2
p−q aw p−1 in �,

∂w
∂n = λ

p−2
p−q wq−1 on ∂�.

(3.1)

Proposition 3.2 (1) If (3.1) has a sequence of positive solutions (λn, wn) such that λn →
0+, wn → c in C(�) and c is a positive constant, then c = c∗, where c∗ is given by
(1.6).

(2) Conversely, (3.1) has for |λ| sufficiently small a secondary bifurcation branch (λ,w(λ))

of positive solutions (parametrized by λ) emanating from the trivial line {(0, c) : c is a
positive constant} at (0, c∗) and such that, for 0 < θ ≤ α, the mapping λ → w(λ) ∈
C2+θ (�) is continuous. Moreover, the set {(λ,w)} of positive solutions of (3.1) around
(λ,w) = (0, c∗) consists of the union{

(0, c) : c is a positive constant, |c − c∗| ≤ δ1
} ∪ {(λ,w(λ)) : |λ| ≤ δ1}

for some δ1 > 0.

Proof The proof is similar to the one of [19, Proposition 5.3]:

(1) Let wn be positive solutions of (3.1) with λ = λn , where λn → 0+. By the Green
formula, we have ∫

�

aw
p−1
n +

∫
∂�

w
q−1
n = 0.

Passing to the limit as n → ∞, we deduce the desired conclusion.
(2) We reduce (3.1) to a bifurcation equation in R2 by the Lyapunov–Schmidt procedure:

we use the usual orthogonal decomposition

L2(�) = R ⊕ V,

where V = {v ∈ L2(�) : ∫
�

v = 0} and the projection Q : L2(�) → V , given by

v = Qu = u − 1

|�|
∫

�

u.

The problemof finding a positive solution of (3.1) reduces then to the following problems:{
−�v + μ

|�|
∫
∂�

(t + v)q−1 = μQ
[
a(t + v)p−1

]
in �,

∂v
∂n = μ(t + v)q−1 on ∂�,

(3.2)

μ

(∫
�

a(t + v)p−1 +
∫

∂�

(t + v)q−1
)

= 0, (3.3)

where μ = λ
p−2
p−q , t = 1

|�|
∫
�

w, and v = w − t . To solve (3.2) in the framework of
Hölder spaces, we set

Y =
{
v ∈ C2+θ (�) :

∫
�

v = 0

}
,
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Z =
{
(φ, ψ) ∈ Cθ (�) × C1+θ (∂�) :

∫
�

φ +
∫

∂�

ψ = 0

}
.

Let c > 0 be a constant and U ⊂ R×R× Y be a small neighbourhood of (0, c, 0). We
consider the nonlinear mapping F : U → Z given by

F(μ, t, v) =
(

−�v − μQ
[
a(t + v)p−1] + μ

|�|
∫

∂�

(t + v)q−1,
∂v

∂n
− μ(t + v)q−1

)
.

The Fréchet derivative Fv of F with respect to v at (0, c, 0) is given by the formula

Fv(0, c, 0)v =
(

−�v,
∂v

∂n

)
.

Since Fv(0, c, 0) is a homeomorphism, the implicit function theorem implies that the
set F(μ, t, v) = 0 around (0, c, 0) consists of a unique C∞ function v = v(μ, t) in a
neighbourhood of (μ, t) = (0, c) and satisfying v(0, c) = 0. Now, plugging v(μ, t) in
(3.3), we obtain the bifurcation equation

�(μ, t) =
∫

�

a(t + v(μ, t))p−1 +
∫

∂�

(t + v(μ, t))q−1 = 0, for (μ, t) � (0, c).

It is clear that �(0, c∗) = 0. Differentiating � with respect to t at (0, c∗), we get

�t
(
0, c∗) =

∫
�

a(p − 1)
(
c∗ + v(0, c∗)

)p−2 (
1 + vt (0, c

∗)
)

+
∫

∂�

(q − 1)
(
c∗ + v(0, c∗)

)q−2 (
1 + vt (0, c

∗)
)

= (p − 1)(c∗)p−2
∫

�

a
(
1+vt (0, c

∗)
)+(q − 1)(c∗)q−2

∫
∂�

(
1 + vt (0, c

∗)
)
.

Differentiating now (3.2) with respect to t , and plugging (μ, t) = (0, c∗) therein, we
have vt (0, c∗) = 0. Hence,

�t
(
0, c∗) = (p − 1)(c∗)p−2

(∫
�

a

)
+ (q − 1)(c∗)q−2|∂�| = (c∗)q−2(q − p) < 0

By the implicit function theorem, the functionw(λ) = t (μ)+v(μ, t (μ))withμ = λ
p−2
p−q

satisfies the desired assertion.

��
By considering the transform u(λ) = λ

1
p−q w(λ), we get the following result:

Proposition 3.3 Let 0 < θ ≤ α andw(λ) be given by Proposition 3.2. If λ > 0 is sufficiently

small, then u(λ) = λ
1

p−q w(λ) is a positive solution of (Pλ) which satisfies λ
− 1

p−q u(λ) → c∗
in C2+θ (�) as λ → 0+. In particular, u(λ) → 0 in C2+θ (�) as λ → 0+.

Now, in association with the first positive solution, we discuss the existence of a minimal
positive solution of (Pλ). For this purpose, we reduce (Pλ) to an operator equation in C(�).
As in [23], a positive solution u of (Pλ) can be characterized as a positive solution of the
following operator equation

u = Fλ(u) := K (
Mu + au p−1) + λR(uq−1) in C(�), (3.4)
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1842 H. Ramos Quoirin, K. Umezu

where M > 0 is a constant and K,R are the resolvents of the following linear boundary
value problems, respectively. {

(−� + M)v = f (x) in �,
∂φ
∂n = 0 on ∂�,{
(−� + M)w = 0 in �,
∂φ
∂n = ξ(x)|∂� on ∂�.

We recall that K,R are both compact and positive in C(�), see Amann [2]. In particular, K
is strongly positive, in the sense that for any u ∈ C(�) which is nontrivial and non-negative,
Ku is strictly positive on �, i.e. Ku is an interior point of the positive cone P = {u ∈ C(�) :
u ≥ 0}. We denote this property by Ku � 0. Functions v,w ∈ C(�) which are positive
on � are called a supersolution and a subsolution of (3.4) if v ≥ Fλ(v) and w ≤ Fλ(w),
respectively.

Let us prove now the existence of positive subsolutions of (3.4). We recall that σλ and
φλ are the smallest eigenvalue and the corresponding positive eigenfunction of (2.1) with
λ > 0. Note that σλ < 0.

Lemma 3.4 Let μ > 0 be fixed. Then there exists εμ > 0 such that εφμ is a subsolution of
(3.4) if 0 < ε ≤ εμ and λ ≥ μ.

Proof Note that

εφμ = K(εφμ + σμεφμ) + R(μεφμ).

By direct computations, there exists εμ > 0 such that if λ ≥ μ and 0 < ε ≤ εμ, then we
have

σμεφμ − a(x)(εφμ)p−1 = εφμ

(
σμ − a(x)(εφμ)p−2) ≤ 0 in �,

μεφμ − λ(εφμ)q−1 ≤ μ
(
εφμ − (εφμ)q−1) ≤ 0 on ∂�.

Hence, for λ ≥ μ and 0 < ε ≤ εμ, we deduce that

εφμ ≤ K (
εφμ + a(εφμ)p−1) + R (

λ(εφμ)q−1) = Fλ(εφμ),

as desired. ��
From Lemma 3.4, we can deduce the following a priori lower bound for positive solutions

of (Pλ):

Proposition 3.5 Let μ > 0 be fixed. Given any positive solution u of (Pλ) with λ ≥ μ, we
have u ≥ εμφμ on �, where εμ is given by Lemma 3.4.

Proof Let u be a positive solution of (Pλ) for λ ≥ μ. We pick M such that Mt + a(x)t p−1

is strictly increasing in t ∈ [0, sup� u] for every x ∈ �. Assume by contradiction that
u � εμφμ. Then, since u > 0 on�, there exists s ∈ (0, 1) such that u ≥ sεμφμ and u−sεμφμ

is on the boundary of the positive cone P . Lemma 3.4 tells us that 0 ≤ Fλ(sεμφμ)− sεμφμ.
On the other hand, since K is strongly positive, we have 0 � Fλ(u) − Fλ(sεμφμ). Hence,
from u = Fλ(u), we deduce 0 � u − sεμφμ, which is a contradiction. ��

Now, using Proposition 3.5, we establish the existence of a minimal positive solution of
(Pλ):
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Proposition 3.6 Letλ > 0 be such that (Pλ) has a positive solution. Then (Pλ) has aminimal
positive solution uλ.

Proof Let uλ be a positive solution of (Pλ). Consider the interval in C(�)

[ελφλ, uλ] := {
u ∈ C(�) : ελφλ ≤ u ≤ uλ

}
,

and recall that ελφλ is a subsolution of (3.4) from Lemma 3.4 with μ = λ. Since uλ is a
supersolution of (3.4), by the super and subsolution technique of [2], there exist a minimal
solution uλ and a maximal solution uλ of (3.4) which are in [ελφλ, uλ], in the sense that any
solution u ∈ [ελφλ, uλ] of (3.4) satisfies uλ ≤ u ≤ uλ.

We show now that uλ is minimal among the positive solutions of (Pλ). Let u be an
arbitrary positive solution of (Pλ). We choose M > 0 such that Mt + a(x)t p−1 is increasing
in [0, sup� u+sup� uλ], implying that if v,w ∈ [0, sup� u+sup� uλ] satisfy that v−w ∈ P ,
then we have 0 ≤ Fλ(v) − Fλ(w). Put uλ ∧ u = min(uλ, u). Since u − (uλ ∧ u) ∈ P and
uλ − (uλ ∧ u) ∈ P , we see that

0 ≤ Fλ(u) − Fλ(uλ ∧ u) and 0 ≤ Fλ(uλ) − Fλ(uλ ∧ u).

It follows that

Fλ(uλ ∧ u) ≤ Fλ(uλ) ∧ Fλ(u) = uλ ∧ u.

This means that uλ ∧ u is a supersolution of (3.4). Now, from Proposition 3.5, we obtain
ελφλ ≤ uλ∧u. Applying the sub- and supersolutionmethod in the interval [ελφλ, uλ∧u], we
get a solution u′ of (3.4) such that ελφλ ≤ u′ ≤ uλ ∧ u. Since u′ is a solution in [ελφλ, uλ],
we get uλ ≤ u′. However, it is clear that u′ ≤ u. Therefore, we have uλ ≤ u, as desired. ��

As a consequence of Proposition 3.5, we also have:

Proposition 3.7 Bifurcation from zero never occurs for (Pλ) at any λ > 0. More precisely,
it never occurs that there exist λn, λ

∗ > 0, and positive solutions uλn of (Pλn ) such that
λn → λ∗ and ‖un‖C(�) → 0.

Now, by Proposition 3.3, we deduce that

λ = sup{λ > 0 : (Pλ) has a positive solution} > 0.

Proposition 3.8 Assume a > 0 on ∂�. Then λ < ∞.

Proof First of all, since a > 0 on ∂�, we can choose a constant ε0 > 0 such that

{x ∈ � : d(x, ∂�) < ε0} ⊂ {x ∈ � : a(x) > 0}, (3.5)

where d(x, A) = inf{|x − y| : y ∈ A} for a set A ⊂ RN . Consider a positive eigenfunction
�1 associated with the positive principal eigenvalue 	1 of the problem⎧⎪⎨

⎪⎩
−�ϕ = λa(x)ϕ in D,
∂ϕ
∂n = 0 on �1,

ϕ = 0 on �0,

where

D = {x ∈ � : d(x, ∂�) < ε0}, �1 = ∂�, and �0 = {x ∈ � : d(x, ∂�) = ε0}.
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By (3.5), we have a > 0 in D. Let u be a positive solution of (Pλ). It follows that∫
�

∇u∇�1 −
∫

�

au p−1�1 − λ

∫
�1

uq−1�1 = 0,

where �1 is extended by zero in � \ D. On the other hand, the divergence theorem shows
that ∫

D
div(u∇�1) =

∫
�0

u
∂�1

∂ν
< 0,

where ν denotes the unit outer normal to �0. It follows that

λ

∫
�1

uq−1�1 <

∫
D
a�1(	1u − u p−1).

Lemma 3.4 and Proposition 3.5 allow us to deduce that givenμ > 0 there exists εμ > 0 such
that

λεq−1
μ

∫
�1

φq−1
μ �1 < sup

t≥0
(	1t − t p−1)

∫
D
a�1 if λ ≥ μ.

Therefore, we must have λ < ∞. ��

4 Variational approach

We associate to (Pλ) the C1 functional

Iλ(u) := 1

2
E(u) − 1

p
A(u) − λ

q
B(u), u ∈ X,

where

E(u) =
∫

�

|∇u|2, A(u) =
∫

�

a(x)|u|p, and B(u) =
∫

∂�

|u|q .

Let us recall that X = H1(�) is equipped with the usual norm ‖u‖ = [∫
�

(|∇u|2 + u2
)] 1

2 .
We denote by ⇀ the weak convergence in X .

The following result will be used repeatedly in this section.

Lemma 4.1 (1) If (un) is a sequence such that un ⇀ u0 in X and lim inf E(un) ≤ 0, then
u0 is a constant and un −→ u0 in X.

(2) Assume (1.8). If v �= 0 and A(v) ≥ 0, then v is not a constant.

Proof (1) Since un ⇀ u0 in X and E is weakly lower semicontinuous, we have E(u0) ≤
lim inf E(un), so that

0 ≤ E(u0) ≤ lim inf E(un) ≤ 0.

Hence, E(u0) = 0, which implies that u0 is a constant. Assume un �→ u0 in X . Then
E(u0) < lim inf E(un) ≤ 0, which is a contradiction. Therefore, un → u0 in X .

(2) If v0 �= 0 is a constant, then 0 ≤ A(v0) = |v0|p
∫
�
a < 0, a contradiction.

��
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4.1 The case a ≤ 0

In this subsection, we assume a ≤ 0, a �≡ 0, and (1.1) is satisfied.

Proposition 4.2 Iλ is coercive for any λ > 0.

Proof Let (un) ⊂ X be such that ‖un‖ → ∞ and assume by contradiction that Iλ(un) is
bounded from above. Then

C ≥ Iλ(un) = 1

2
E(un) − 1

p
A(un) − λ

q
B(un) ≥ 1

2
E(un) − λ

q
B(un).

Let vn := un‖un‖ . We may assume that vn ⇀ v0 in X and vn → v0 in Lq(∂�). Hence, since
q < 2 < p, from the above inequalities we have lim sup E(vn) ≤ 0. By Lemma 4.1 (1), we
infer that vn → v0 in X and v0 is a constant. On the other hand, from

C ≥ Iλ(un) = ‖un‖p
(

− 1

p
A(vn) + o(1)

)
,

we get A(v0) ≥ 0, so that A(v0) = 0. By Lemma 4.1 (2), we must have v0 ≡ 0, which
contradicts ‖vn‖ = 1. Therefore, we reach a contradiction, which shows that Iλ is coercive
for any λ > 0. ��
Proposition 4.3 (Pλ) has a unique positive solution uλ for any λ > 0.

Proof Let λ > 0. From Proposition 4.2, we know that Iλ is coercive. Thus, it achieves
a global minimum at some uλ ∈ X , which can be taken non-negative since Iλ is even.
Moreover, it is clear that this global minimum is negative, and consequently uλ �≡ 0. Finally,
let f (x, s) = a(x)s p−1 and h(s) = λsq−1. Since f (x,s)

s and h(s)
s are non-increasing in

(0,∞) and h(s)
s is decreasing, by [16, Theorem 1.2], (Pλ) has at most one positive solution.

Therefore, uλ is the unique positive solution of (Pλ). ��
Remark 4.4 Proposition 4.2 holds for any p > 1 if we allow Iλ to take infinite values. In
this case, it can be shown that the global minimum of Iλ is achieved at some uλ such that
A(uλ) > −∞. It follows that (Pλ) has a weak solution for any λ > 0 and p > 1. We refer
to the proof of [12, Theorem 2] for similar arguments.

Proposition 4.5 For any μ > 0, there exists a constant Kμ > 0 such that ‖u‖∞ ≤ Kμ for
any positive solution of (Pλ) with λ ∈ (0, μ). In particular, bifurcation from infinity cannot
occur for (Pλ) at any λ ≥ 0.

Proof Fix μ > 0 and assume by contradiction that (λn) ⊂ (0, μ), and ‖un‖ → ∞ for some
positive solutions un of (Pλn ). Set vn = un‖un‖ . We can assume that vn ⇀ v0 in X . From

E(un) = A(un) + λn B(un) ≤ μB(un)

we get E(vn) → 0, so vn → v0 in X and v0 is a constant. Moreover, we have A(vn) → 0,
so A(v0) = 0, which is impossible since

∫
�
a < 0. Therefore, there exists Kμ > 0 such that

‖u‖ ≤ Kμ for any positive solution u of (Pλ) with λ ∈ (0, μ). By elliptic regularity, we get
the conclusion. ��
Proposition 4.6 Let uλ be the uniquepositive solutionof (Pλ) forλ > 0, givenbyProposition
4.3. Then uλ satisfies the following two assertions:
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(1) λ
− 1

p−q uλ → c∗ in C2+α(�) as λ → 0+.
(2) The mapping λ → uλ, from (0,∞) to C2+α(�), is C∞.

Proof (1) Since uλ is the unique positive solution of (Pλ), the assertion is a direct conse-
quence of Proposition 3.3.

(2) In view of the uniqueness of uλ and the concavity of u → au p−1 and u → λuq−1 for
u > 0, by the implicit function theorem we deduce that λ → uλ is a smooth curve.
Moreover, as uλ > 0 in �, this mapping is C∞.

��
4.2 The indefinite case

Throughout this subsection, in addition to (1.1) and (1.8), we assume that a changes sign.
Moreover, we assume p < 2N

N−2 if N > 2 (except in Proposition 4.22). We shall prove the

existence of two positive solutions of (Pλ) for 0 < λ < λ and characterize their asymptotic
profiles as λ → 0+. To this end, we use the Nehari manifold and the fibering maps associated
with Iλ. Let us introduce some useful subsets of X :

E+ = {u ∈ X : E(u) > 0},
A± = {u ∈ X : A(u) ≷ 0}, A0 = {u ∈ X : A(u) = 0}, A±

0 = A± ∪ A0,

B+ = {u ∈ X : B(u) > 0}.
The Nehari manifold associated with Iλ is given by

Nλ := {u ∈ X \ {0} : 〈
I ′
λ(u), u

〉 = 0} = {u ∈ X \ {0} : E(u) = A(u) + λB(u)}.
We shall use the splitting

Nλ = N+
λ ∪ N−

λ ∪ N 0
λ ,

where

N±
λ := {

u ∈ Nλ : 〈
J ′
λ(u), u

〉
≷ 0

} =
{
u ∈ Nλ : E(u) ≶ λ

p − q

p − 2
B(u)

}

=
{
u ∈ Nλ : E(u) ≷

p − q

2 − q
A(u)

}
,

and

N 0
λ = {

u ∈ Nλ : 〈
J ′
λ(u), u

〉 = 0
}
.

Note that any nontrivial weak solution of (Pλ) belongs to Nλ. Furthermore, it follows from
the implicit function theorem that Nλ \ N 0

λ is a C1 manifold and every critical point of the
restriction of Iλ to this manifold is a critical point of Iλ (see for instance [7, Theorem 2.3]).

To analyse the structure of N±
λ , we consider the fibering maps corresponding to Iλ for

u �= 0 in the following way:

ju(t) := Iλ(tu) = t2

2
E(u) − t p

p
A(u) − λ

tq

q
B(u), t > 0.

It is easy to see that

j ′u(1) = 0 ≶ j ′′u (1) ⇐⇒ u ∈ N±
λ ,
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and more generally,

j ′u(t) = 0 ≶ j ′′u (t) ⇐⇒ tu ∈ N±
λ .

Having this characterization in mind, we look for conditions under which ju has a critical
point. Set

iu(t) := t−q ju(t) = t2−q

2
E(u) − t p−q

p
A(u) − λB(u), t > 0.

Let u ∈ E+ ∩ A+ ∩ B+. Then iu has a global maximum iu(t∗) at some t∗ > 0, and moreover,
t∗ is unique. If iu(t∗) > 0, then ju has a global maximum which is positive and a local
minimum which is negative. Moreover, these are the only critical points of ju . We shall
require a condition on λ that provides iu(t∗) > 0. Note that

i ′u(t) = 2 − q

2
t1−q E(u) − p − q

p
t p−q−1A(u) = 0

if and only if

t = t∗ :=
(
p(2 − q)E(u)

2(p − q)A(u)

) 1
p−2

.

Moreover,

iu(t
∗) = p − 2

2(p − q)

(
p(2 − q)

2(p − q)

) 2−q
p−2 E(u)

p−q
p−2

A(u)
2−q
p−2

− λ

q
B(u) > 0

if and only if

0 < λ
p−2
p−q < Cpq

E(u)

B(u)
p−2
p−q A(u)

2−q
p−q

, (4.1)

where Cpq =
(
q(p−2)
2(p−q)

) p−2
p−q

(
p(2−q)
2(p−q)

) 2−q
p−q

. Note that F(u) = E(u)

B(u)
p−2
p−q A(u)

2−q
p−q

satisfies

F(tu) = F(u) for t > 0, i.e. F is homogeneous of order 0 (Fig. 2).
We deduce then the following result, which provides sufficient conditions for the existence

of critical points of ju :

Proposition 4.7 The following assertions hold:

Fig. 2 The case iu(t∗) > 0 iu(t)

t

−λB(u)

O
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Fig. 3 A case of ju having a
global maximum and a local
minimum

ju(t)

t

O

(1) If either u ∈ E+ ∩ A−
0 ∩ B+ or u ∈ A− ∩ B+, then ju(t) has a negative global minimum

at some t1 > 0, i.e. j ′u(t1) = 0 < j ′′u (t1), and ju(t) > ju(t1) for t �= t1. Moreover, t1 is
the unique critical point of ju and ju(t) → ∞ as t → ∞.

(2) If u ∈ E+ ∩ A+ ∩ B0, then ju(t) has a positive global maximum at some t2 > 0, i.e.
j ′u(t2) = 0 > j ′′u (t2) and ju(t) < ju(t2) for t �= t1. Moreover, t2 is the unique critical
point of ju and ju(t) → −∞ as t → ∞.

(3) Assume (1.8). If we set

λ

p−2
p−q
0 = inf

{
E(u) : u ∈ E+ ∩ A+ ∩ B+, C−1

pq B(u)
p−2
p−q A(u)

2−q
p−q = 1

}
, (4.2)

then λ0 > 0. Moreover, for any 0 < λ < λ0 and u ∈ E+ ∩ A+ ∩ B+, the map ju
has a negative local minimum at t1 > 0 and a positive global maximum at t2 > t1.
Furthermore, t1, t2 are the only critical points of ju and ju(t) → −∞ as t → ∞ (see
Fig. 3).

Proof Assertions (1) and (2) are straightforward from the definition of ju . We prove now
assertion (3). First, we show that λ0 > 0. Assume λ0 = 0, so that we can choose un ∈
E+ ∩ A+ ∩ B+ satisfying

E(un) −→ 0, and C−1
pq B(un)

p−2
p−q A(un)

2−q
p−q = 1.

If (un) is bounded in X , then we may assume that un ⇀ u0 for some u0 ∈ X and un → u0
in L p(�) and Lq(∂�). It follows from Lemma 4.1(1) that u0 is a constant and un → u0 in
X . From un ∈ A+, we deduce that u0 ∈ A+

0 . In addition, we have

C−1
pq B(u0)

p−2
p−q A(u0)

2−q
p−q = 1,

so that u0 �≡ 0. From Lemma 4.1(2), we get a contradiction.
Let us assume now that ‖un‖ → ∞. Set vn = un‖un‖ , so that ‖vn‖ = 1. We may assume

that vn ⇀ v0 and vn → v0 in L p(�). Since E(vn) → 0 and vn ∈ A+, we have vn → v0 in
X, v0 is a constant, and v0 ∈ A+

0 . In particular, ‖v0‖ = 1, i.e. v0 �≡ 0. Lemma 4.1 provides
again a contradiction.

Finally, for any u ∈ E+ ∩ A+ ∩ B+, we have

λ

p−2
p−q
0 ≤ Cpq

E(u)

B(u)
p−2
p−q A(u)

2−q
p−q

.
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Thus, if 0 < λ < λ0 then iu(t∗) > 0 from (4.1). This completes the proof of assertion (3).
��

Proposition 4.8 We have, for 0 < λ < λ0:

(1) N 0
λ is empty.

(2) N±
λ are non-empty.

Proof (1) From Proposition 4.7, it follows that there is no t > 0 such that j ′u(t) = j ′′u (t) = 0,
i.e. N 0

λ is empty.
(2) Consider the following eigenvalue problem{

−�ϕ = λa(x)ϕ in �,
∂ϕ
∂n = 0 on ∂�.

Under (1.8), it is known that this problem has a unique positive principal eigenvalue λN

with a positive principal eigenfunction ϕN . From ϕN > 0 on ∂� and the fact that ϕN is
not a constant, we deduce that ϕN ∈ E+ ∩ A+ ∩ B+. Since 0 < λ < λ0, Proposition
4.7(3) provides the desired conclusion.

��
The following result provides some properties of N+

λ :

Lemma 4.9 Let 0 < λ < λ0. Then, we have the following two assertions:

(1) N+
λ is bounded in X.

(2) Iλ(u) < 0 for any u ∈ N+
λ and moreover t > 1 if j ′u(t) > 0.

Proof (1) Assume (un) ⊂ N+
λ and ‖un‖ → ∞. Set vn = un‖un‖ . It follows that ‖vn‖ = 1,

so we may assume that vn ⇀ v0 , B(vn) is bounded, and vn → v0 in L p(�) (implying
A(v) → A(v0)). Since un ∈ N+

λ , we see that

E(vn) < λ
p − q

p − 2
B(vn)‖un‖q−2,

and thus lim supn E(vn) ≤ 0. Lemma 4.1(1) yields that v0 is a constant and vn → v0 in
X . Consequently, ‖v0‖ = 1, and v0 is a nonzero constant. However, since un ∈ Nλ, we
see that

0 ≤ E(un) = A(un) + λB(un),

and it follows that

0 ≤ A(vn) + λB(vn)‖un‖q−p.

Passing to the limit as n → ∞, we deduce 0 ≤ A(v0). Lemma 4.1(2) leads us to a
contradiction. Therefore, N+

λ is bounded in X .
(2) Let u ∈ N+

λ . Then

0 ≤ E(u) < λ
p − q

p − 2
B(u),

so that B(u) > 0. First we assume that u is not a constant. In this case, E(u) > 0. If
A(u) > 0, then Proposition 4.7(3) tells us that Iλ(u) < 0 and t > 1 if j ′u(t) > 0. On the
other hand, if A(u) ≤ 0, then u ∈ E+ ∩ A−

0 ∩ B+. So Proposition 4.7(1) gives the same
conclusion. Assume now that u is a constant. In this case, A(u) = |u|p ∫

�
a < 0, so that

u ∈ A− ∩ B+. Proposition 4.7(1) again yields the desired conclusion.
��
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Next we prove that infN+
λ
Iλ is achieved by some u1,λ > 0 for λ ∈ (0, λ0), which implies

the estimate λ ≥ λ0. Furthermore, we will show that u1,λ is in fact the minimal positive
solution of (Pλ) for λ > 0 sufficiently small (see Corollary 4.21).

Proposition 4.10 For any 0 < λ < λ0, there exists u1,λ such that Iλ(u1,λ) = min
N+

λ

Iλ. In

particular, u1,λ is a positive solution of (Pλ).

Proof Let 0 < λ < λ0. We consider a minimizing sequence (un) ⊂ N+
λ , i.e.

Iλ(un) −→ inf
N+

λ

Iλ < 0.

Since (un) is bounded in X , we may assume that un ⇀ u0, un → u0 in L p(�) and Lq(∂�).
It follows that

Iλ(u0) ≤ lim inf
n

Iλ(un) = inf
N+

λ

Iλ(u) < 0,

so that u0 �≡ 0. We claim that un → u0 in X . We have two possibilities:

• If u0 is a constant, then 0 = E(u0) ≤ λ
p−q
p−2 B(u0). If B(u0) = 0, then u0 = 0 on ∂�,

so that u0 = 0 in �, which yields a contradiction. Hence, B(u0) > 0. In this case, we
have A(u0) = |u0|p

∫
�
a < 0, so that u0 ∈ A− ∩ B+. Proposition 4.7(1) implies that

t1u0 ∈ N+
λ and ju0 has a global minimum at t1. If un �→ u0, then

Iλ(t1u0) = ju0(t1) ≤ ju0(1) < lim inf
n

jun (1) = lim inf
n

Iλ(un) = inf
N+

λ

Iλ, (4.3)

which is a contradiction since t1u0 ∈ N+
λ . Therefore, un → u0.

• If u0 is not a constant, then E(u0) > 0 and B(u0) > 0. So either u0 ∈ E+ ∩ A−
0 ∩ B+

or u0 ∈ E+ ∩ A+ ∩ B+. In the first case, ju0 has a global minimum point t1 and we
can argue as in the previous case. In the second case, since 0 < λ < λ0, Proposition 4.7
yields that t1u0 ∈ N+

λ for some t1 > 0. Assume un �→ u0. If 1 < t1, then we have again

Iλ(t1u0) = ju0(t1) ≤ ju0(1) < lim inf
n

jun (1) = lim inf
n

Iλ(un) = inf
N+

λ

Iλ, (4.4)

If t1 < 1, then j ′un (t1) < 0 for every n, so that j ′u0(t1) < lim inf j ′un (t1) ≤ 0, which is a
contradiction. Therefore, un → u0.

Now, since un → u0 we have j ′u0(1) = 0 ≤ j ′′u0(1). But j ′′u0(1) = 0 is impossible by
Proposition 4.8(1). Thus, u0 ∈ N+

λ and Iλ(u0) = inf
N+

λ

Iλ. ��

Remark 4.11 From Proposition 4.10, we derive λ ≥ λ0.

Next we obtain a second nontrivial non-negative weak solution of (Pλ), which achieves
infN−

λ
Iλ for λ ∈ (0, λ0). The following result provides some properties of N−

λ :

Lemma 4.12 Let 0 < λ < λ0. Then we have Iλ(u) > 0 for any u ∈ N−
λ . Moreover, t < 1 if

j ′u(t) > 0.

Proof If u ∈ N−
λ , then A(u) > 0 and u is not a constant from Lemma 4.1(2). It follows

immediately that E(u) > 0. If B(u) > 0, then, by Proposition 4.7(3), we have that Iλ(u) > 0
and t < 1 if j ′u(t) > 0. If B(u) = 0, then Proposition 4.7(2) provides the same conclusion.

��
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Proposition 4.13 For any λ ∈ (0, λ0), there exists u2,λ such that Iλ(u2,λ) = min
N−

λ

Iλ. In

particular, u2,λ is a positive solution of (Pλ).

Proof Since Iλ(u) > 0 for u ∈ N−
λ , we can choose un ∈ N−

λ such that

Iλ(un) −→ inf
N−

λ

Iλ(u) ≥ 0.

We claim that (un) is bounded in X . Indeed, there exists C > 0 such that Iλ(un) ≤ C . Since
un ∈ Nλ, we deduce(

1

2
− 1

p

)
E(un) − λ

(
1

q
− 1

p

)
B(un) = Iλ(un) ≤ C.

Assume ‖un‖ → ∞ and set vn = un‖un‖ , so that ‖vn‖ = 1. We may assume that vn ⇀ v0,
and vn → v0 in L p(�) and Lq(∂�). Then, from(

1

2
− 1

p

)
E(vn) ≤ λ

(
1

q
− 1

p

)
B(vn)‖un‖q−2 + C

‖un‖2 ,

we infer that lim supn E(vn) ≤ 0. Lemma 4.1(1) yields that v0 is a constant, and vn → v0 in
X , which implies ‖v0‖ = 1. However, since un ∈ N−

λ , we observe that

E(vn)‖un‖2−p <
p − q

2 − q
A(vn).

Passing to the limit n → ∞, we get 0 ≤ A(v0), which is contradictory by Lemma 4.1(2).
Hence, (un) is bounded. We may then assume that un ⇀ u0, and un → u0 in L p(�) and
Lq(∂�). We claim that un → u0 in X . Assume un �→ u0. Then, since un ∈ N−

λ , we deduce

0 ≤ E(u0) < lim inf
n

E(un) ≤ lim inf
n

p − q

2 − q
A(un) = p − q

2 − q
A(u0).

This implies that u0 is not a constant by Lemma 4.1(2), so that E(u0) > 0. Since u0 ∈
E+ ∩ A+, Proposition 4.7 tells us that there exists t2 > 0 such that t2u0 ∈ N−

λ . Moreover,
0 = j ′u0(t2) < lim infn j ′un (t2), since un �→ u0. We deduce that j ′un (t2) > 0 for n large
enough. Since un ∈ N−

λ , we have t2 < 1 from Lemma 4.12. Then, we observe that

Iλ(t2u0) = ju0(t2) < lim inf
n

jun (t2) ≤ lim inf
n

jun (1) = lim inf
n

Iλ(un) = inf
N−

λ

Iλ.

This is a contradiction, which implies that un → u0 and Iλ(un) → Iλ(u0) = γ .
Now we verify that u0 �= 0. Assume u0 = 0. Then, since un ∈ Nλ, we have

E(vn)‖un‖2−q = A(vn)‖un‖p−q + λB(vn),

where vn = un‖un‖ . We may assume again that vn ⇀ v0 and vn → v0 in Lq(∂�) and L p(�).
Passing to the limit as n → ∞, we obtain 0 = λB(v0), so that v0 = 0 on ∂�. On the other
hand, we observe that

0 < Iλ(un) = 1

2
E(un) − 1

p
A(un) − λ

q
B(un).

Since un ∈ Nλ, we deduce(
1

q
− 1

2

)
E(vn) ≤

(
1

q
− 1

p

)
A(vn)‖un‖p−2.
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From the assumption un → 0 in X , it follows that lim sup E(vn) ≤ 0. By Lemma 4.1(1),
we get that v0 is a constant, and vn → v0 in X , so that ‖v0‖ = 1. Since v0 is a constant and
v0 = 0 on ∂�, we have v0 = 0 in �. This is a contradiction, as desired.

Finally, since un → u0 in X , we have j ′u0(1) = 0 ≥ j ′′u0(1). But j
′′
u0(1) = 0 is impossible

by Proposition 4.8(1). Thus, u0 ∈ N−
λ and Iλ(u0) = inf

N−
λ

Iλ. ��

We discuss now the asymptotic profiles of u1,λ, u2,λ as λ → 0+. The following lemma is
concerned with the behaviour of positive solutions in N+

λ as λ → 0+:

Proposition 4.14 If uλ is a positive solution of (Pλ) such that uλ ∈ N+
λ for λ > 0 sufficiently

small, then uλ → 0 in X as λ → 0+. Moreover, there holds λ
− 1

p−q uλ → c∗ in C2+θ (�) for
any θ ∈ (0, α) as λ → 0+.

Proof First we show that uλ remains bounded in X as λ → 0+. Indeed, assume that ‖uλ‖ →
∞ and set vλ = uλ‖uλ‖ . We may then assume that for some v0 ∈ X , we have vλ ⇀ v0 in X ,
and vλ → v0 in L p(�) and Lq(∂�). Since uλ ∈ Nλ, we have

E(vλ)‖uλ‖2−p = A(vλ) + λB(vλ)‖uλ‖q−p.

Passing to the limit as λ → 0+, we obtain A(v0) = 0. From uλ ∈ N+
λ , we have

E(vλ) < λ
p − q

p − 2
B(vλ)‖uλ‖q−2,

so that lim supλ E(vλ) ≤ 0. By Lemma 4.1(1), we infer that v0 is a constant and vλ → v0 in
X , so that ‖v0‖ = 1, i.e. v0 �= 0. This is contradictory with Lemma 4.1(2), and therefore, uλ

stays bounded in X as λ → 0+.
Hence, we may assume that uλ ⇀ u0 in X and uλ → u0 in L p(�) and Lq(∂�) as

λ → 0+. Since uλ ∈ N+
λ , we observe that

E(uλ) < λ
p − q

p − 2
B(uλ).

Passing to the limit as λ → 0+, we get lim supλ E(uλ) ≤ 0. Lemma 4.1(2) provides that u0
is a constant and uλ → u0 in X . Since uλ ∈ Nλ, we have

E(uλ) = A(uλ) + λB(uλ).

which implies A(u0) = 0, so that u0 = 0 from Lemma 4.1(2). Therefore, uλ → 0 in X as
λ → 0+.

Now we obtain the asymptotic profile of uλ as λ → 0+. Let wλ = λ
− 1

p−q uλ. We claim
that wλ remains bounded in X as λ → 0+. Indeed, since uλ ∈ N+

λ , we have

E(wλ) <
p − q

p − 2
λ

p−2
p−q B(wλ).

Let us assume that ‖wλ‖ → ∞ and set ψλ = wλ‖wλ‖ . We may assume that ψλ ⇀ ψ0 and
ψλ → ψ0 in L p(�) and Lq(∂�). It follows that

E(ψλ) <
p − q

p − 2
λ

p−2
p−q B(ψλ)‖wλ‖q−2,

so that lim supλ E(ψλ) ≤ 0. By Lemma 4.1(1), we infer that ψ0 is a constant and ψλ → ψ0

in X . On the other hand, from uλ ∈ Nλ it follows that

0 ≤ A(uλ) + λB(uλ),
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so that

−B(ψλ)‖wλ‖q−p ≤ A(ψλ).

Taking the limit as λ → 0+, we get 0 ≤ A(ψ0), which contradicts Lemma 4.1(2). Hence,
wλ stays bounded in X as λ → 0+ and we may assume that wλ ⇀ w0 in X and wλ → w0

in L p(�) and Lq(∂�). It follows that lim supλ E(wλ) ≤ 0, and by Lemma 4.1(1), we get
that w0 is a constant and wλ → w0 in X .

It remains to show that w0 = c∗. We note that wλ satisfies∫
�

∇wλ∇w − λ
p−2
p−q

∫
�

aw
p−1
λ w − λ

p−2
p−q

∫
∂�

w
q−1
λ w = 0, ∀w ∈ X, (4.5)

since uλ is a weak solution of (Pλ). Taking w = 1, we see that∫
�

aw
p−1
λ +

∫
∂�

w
q−1
λ = 0.

Passing to the limit as λ → 0+, we see that either w0 = 0 or w0 = c∗. However, taking
w = 1

w
q−1
λ

in (4.5), we obtain

0 > −(q − 1)
∫

�

w
−q
λ |∇wλ|2 = λ

p−2
p−q

(∫
�

aw
p−q
λ + |∂�|

)
,

so that

|∂�| < −
∫

�

aw
p−q
λ .

It is clear then that w0 �= 0, i.e. w0 = c∗, and consequently we obtain λ
− 1

p−q uλ → c∗ in X .
By a standard bootstrap argument, we get the desired conclusion. ��

We turn now to the asymptotic behaviour of u2,λ as λ → 0+. We shall prove initially that
solutions in N−

λ are bounded away from zero as λ → 0+:

Lemma 4.15 If uλ is a positive solution of (Pλ) such that uλ ∈ N−
λ for λ > 0 sufficiently

small, then ‖uλ‖ ≥ C for some constant C > 0 as λ → 0+.

Proof Assume by contradiction that (un) is a sequence of positive solutions of (Pλn ) with
λn → 0+, un ∈ N−

λn
and ‖un‖ → 0. Then, since un ∈ N−

λn
, we deduce

E(vn) <
p − q

2 − q
A(vn)‖un‖p−2,

where vn = un‖un‖ . We may assume that vn ⇀ v0 in X and vn → v0 in L p(�). It follows
that lim sup E(vn) ≤ 0. By Lemma 4.1(1), we get that v0 is a constant and vn → v0 in X , so
that ‖v0‖ = 1. On the other hand, we see that A(vn) > 0, since un ∈ N−

λn
. We obtain then

0 ≤ A(v0), which is a contradiction with Lemma 4.1(2). ��

We prove now that u2,λ is bounded in X as λ → 0+:

Lemma 4.16 There exists a constant C > 0 such that C−1 ≤ ‖u2,λ‖ ≤ C as λ → 0+.
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Proof By Lemma 4.15, we know that ‖u2,λ‖ ≥ C−1 for some C > 0 as λ → 0+. We
show now that u2,λ is bounded in X as λ → 0+. First, we show that there exists a constant
C1 > 0 such that Iλ(u2,λ) ≤ C1 for every λ ∈ (0, λ0). To this end, we consider the following
eigenvalue problem with the Dirichlet boundary condition.{

−�ϕ = λa(x)ϕ in �,

ϕ = 0 on ∂�.
(4.6)

We denote by ϕD a positive eigenfunction associated with the positive principal eigenvalue
λD . Multiplying (4.6) by ϕ

p−1
D , we see that ϕD ∈ A+. Thus, ϕD ∈ E+ ∩ A+ ∩ B0 and

jϕD (t) = t2

2
E(ϕD) − t p

p
A(ϕD),

so that jϕD has a global maximum at some t2 > 0, which implies t2ϕD ∈ N−
λ . Moreover,

neither jϕD nor t2ϕD depend on λ ∈ (0, λ0). Let C1 = jϕD (t2) = Iλ(t2ϕD) > 0. Since
t2ϕD ∈ N−

λ , we deduce that Iλ(u2,λ) ≤ C1.
Assume now that ‖u2,λ‖ → ∞ as λ → 0+ and set vλ = u2,λ

‖u2,λ‖ . We may assume that
vλ ⇀ v0 and vλ → v0 in L p(�) and Lq(∂�). Since

0 ≤ E(u2,λ) <
p − q

2 − q
A(u2,λ),

it follows that A(vλ) > 0. Passing to the limit as λ → 0+, we get A(v0) ≥ 0. However, we
will see that the condition Iλ(u2,λ) ≤ C1 leads us to a contradiction. Indeed, since u2,λ ∈ Nλ,
we deduce (

1

2
− 1

p

)
E(u2,λ) −

(
1

q
− 1

p

)
λB(u2,λ) = Iλ(u2,λ) ≤ C1.

Hence, (
1

2
− 1

p

)
E(vλ) ≤

(
1

q
− 1

p

)
λB(vλ)‖u2,λ‖q−2 + C1‖u2,λ‖−2.

Letting λ → 0+, we obtain lim supλ E(vλ) ≤ 0, and by Lemma 4.1, we infer that v0 is a
constant and vλ → v0 in X . In particular, ‖v0‖ = 1, which contradicts Lemma 4.1(2). The
proof is now complete. ��

We establish now (up to a subsequence) the precise limiting behaviour of u2,λ:

Proposition 4.17 There exists a sequence λn → 0+ such that u2,λn → u2,0 in C2+θ (�) for
any θ ∈ (0, α), where u2,0 is a positive solution of (1.9).

Proof Since u2,λ stays bounded in X as λ → 0+, up to a subsequence, we have u2,λ ⇀ u2,0,
and u2,λ → u2,0 in L p(�) and Lq(∂�) as λ → 0+. Since u2,λ is a weak solution of (Pλ),
we have ∫

�

∇u2,λ∇w −
∫

�

au p−1
2,λ w − λ

∫
∂�

uq−1
2,λ w = 0, ∀w ∈ X.

Letting λ → 0+, we get∫
�

∇u2,0∇w −
∫

�

au p−1
2,0 w = 0, ∀w ∈ X,
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i.e. u2,0 is a non-negative weak solution of (1.9). If u2,0 ≡ 0, then from

E(u2,λ) <
p − q

2 − q
A(u2,λ) and A(u2,0) = 0,

we deduce that lim supλ E(u2,λ) ≤ 0. By Lemma 4.1(1), we infer that u0 is a constant and
u2,λ → u2,0 = 0 in X , which contradicts Lemma 4.16.

Finally, since u2,0 ∈ C2+α(�), and u2,0 > 0 in � by the weak maximum principle and
the boundary point lemma, we infer that u2,0 is a positive solution of (1.9). By a standard
bootstrap argument, we obtain the desired conclusion. ��

We show now the uniqueness of positive solutions of (Pλ) converging to 0 as λ → 0+.
This will be done combining Proposition 3.2, Proposition 4.14, and Lemma 4.15.

Lemma 4.18 Any positive solution of (Pλ) converging to 0 in X as λ → 0+ belongs to N+
λ .

Proof By Proposition 4.8(1), we know that N 0
λ is empty for 0 < λ < λ0. Furthermore, by

Lemma 4.15, if uλ ∈ N−
λ is a solution of (Pλ) with λ → 0+, then ‖uλ‖ ≥ C , for some

constant C > 0. Therefore, uλ ∈ N+
λ . ��

Proposition 4.19 (Pλ) has a unique positive solution converging to 0 in X as λ → 0+. More
precisely, there exists an open neighbourhood U of (λ, u) = (0, 0) in X such that if u is a
positive solution of (Pλ) with λ > 0 and (λ, u) ∈ U, then u = u(λ), where u(λ) is given by
Proposition 3.3.

Proof First of all, from Proposition 3.2 with θ = θ0 < α, we know that the set of solutions of

(3.1) for λ > 0 around (λ,w) = (0, c∗) in R × C2+θ0(�) consists of {(λ, λ
− 1

p−q u(λ))}. We
assume by contradiction that for a open ball Bρn (0, 0) in X with ρn → 0+, we can choose
λn > 0 and a positive solution uλn of (Pλn ) such that (λn, uλn ) ∈ Bρn (0, 0) but uλn �= u(λn).
Since λn → 0+ and uλn → 0 in X , Lemma 4.18 provides that uλn ∈ N+

λn
for any n

large enough. So Proposition 4.14 yields λ
− 1

p−q
n uλn → c∗ in C2+θ1(�) for θ1 ∈ (θ0, α).

In particular, we have λ
− 1

p−q
n uλn → c∗ in C2+θ0(�). It follows that uλn = u(λn) for n

sufficiently large, which is a contradiction. ��

Remark 4.20 From Lemma 4.15 and Proposition 4.19, it follows that if (un) is a sequence
of positive solutions of (Pλn ) which are not minimal and λn → 0+, then (un) is bounded
from below by a positive constant.

Corollary 4.21 Let u(λ) be the positive solution given by Proposition 3.3, and let u1,λ be
the positive solution given by Proposition 4.10. Then u(λ) and u1,λ are both equal to the
minimal positive solution of (Pλ) for λ > 0 sufficiently small.

Let us prove now that if λ < ∞, then (Pλ) has a positive solution:

Proposition 4.22 Assume (1.8) and 0 < λ < ∞. Then (Pλ) has a positive solution for
λ = λ.

Proof By Proposition 3.6, we know that (Pλ) has a minimal positive solution uλ for 0 < λ <

λ. We claim that uλ ∈ N+
λ ∪ N 0

λ . Indeed, we know that uλ is weakly stable, i.e. if γ1(λ, u) is
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the smallest eigenvalue of the linearized eigenvalue problem at a positive solution u of (Pλ),
namely {

−�φ = (p − 1)a(x)u p−2φ + γφ in �,
∂φ
∂n = λ(q − 1)uq−2φ + γφ on ∂�,

then we have γ1(λ) := γ1(λ, uλ) ≥ 0, see [1, Theorem 20.4]. On the other hand, if uλ ∈ N−
λ

then

E(uλ) − (p − 1)A(uλ) − λ(q − 1)B(uλ) < 0,

which provides γ1(λ) < 0. Therefore, uλ ∈ N+
λ ∪ N 0

λ . We claim now that uλ is bounded in

X for 0 < λ < λ. Assume by contradiction that ‖uλn
‖ → ∞ with λn ↗ λ. Set vn = uλn‖uλn ‖ .

We may assume that vn ⇀ v0 in X and vn → v0 in Lq(∂�). Since uλn
∈ N+

λn
∪ N 0

λn
, we

have

0 ≤ E(vn) ≤ λnCB(vn)‖uλn
‖q−2 → 0, n → ∞.

It follows that vn → v0 in X, v0 is a constant, and ‖v0‖ = 1. Since p ≤ 2∗, the Sobolev
imbedding theorem ensures that vn → v0 in L p(�). Moreover, from

E(vn)‖uλn
‖2−p = A(vn) + λn B(vn)‖uλn

‖q−p

we deduce that 0 = A(v0) = |v0|p
∫
�
a < 0, a contradiction. Thus, uλ is bounded in X for

0 < λ < λ. By a bootstrap argument, we may assume that uλ → u1 in C2(�) as λ ↗ λ. As
a consequence, we infer that u1 is a positive solution for λ = λ. ��

We shall consider now the Palais–Smale condition for Iλ. Let us recall that Iλ satisfies
the Palais–Smale condition if any sequence such that (Iλ(un)) is bounded and I ′

λ(un) → 0
in X ′ has a convergent subsequence.

Proposition 4.23 Iλ satisfies the Palais–Smale condition for any λ > 0.

Proof Let (un) be a Palais–Smale sequence for Iλ. Then

(Iλ(un)) is bounded and I ′
λ(un)φ = o(1)‖φ‖ ∀φ ∈ X.

In particular, we have(
1

2
− 1

p

)
E(un) − λ

(
1

q
− 1

p

)
B(un) = Iλ(un) − 1

p
I ′
λ(un)un ≤ c + o(1)‖un‖ (4.7)

for some constant c. Assume that ‖un‖ → ∞ and set vn = un‖un‖ . Then we may assume that
vn ⇀ v in X and vn → v in L p(�) and Lq(∂�). From∫

�

∇un∇φ − a(x)|un |p−2unφ − λ

∫
∂�

|un |q−2unφ = o(1)‖φ‖, ∀φ ∈ X (4.8)

we get, dividing it by ‖un‖p−1,∫
�

a(x)|vn |p−2vnφ → 0 ∀φ ∈ X

so that ∫
�

a(x)|v|p−2vφ = 0 ∀φ ∈ X.
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This equality implies that a|v|p−2v = 0 a.e. in �. Hence, av ≡ 0. Taking now φ = v in
(4.8), we obtain ∫

�

∇vn∇v − λ‖un‖q−2
∫

∂�

|vn |q−2vnv → 0.

Thus, ∫
�

∇vn∇v → 0

and since vn ⇀ v in X , we get
∫
�

|∇v|2 = 0. So v must be a constant. From av ≡ 0, we
deduce that v ≡ 0. Finally, from (4.7), dividing it by ‖un‖2 we obtain E(vn) → 0. Therefore,
by Lemma 4.1, we have vn → 0 in X , which contradicts ‖vn‖ = 1.

So (un) must be bounded, and up to a subsequence, un ⇀ u in X and un → u in L p(�)

and Lq(∂�). Taking φ = un − u in (4.8), we get∫
�

|∇un |2 →
∫

�

|∇u|2

and consequently ‖un‖2 → ‖u‖2. By the uniform convexity of X , we infer that un → u in
X . ��

We prove now a multiplicity result for positive solutions of (Pλ) for λ ∈ (0, λ). First of
all, by Proposition 4.10 or Proposition 4.13, we know that λ ≥ λ0 > 0. We proceed now
as in [10] to obtain a solution by the variational form of the sub-supersolution method. A
version of this method for a problem with Neumann boundary conditions has been proved
in [14, Theorem 3]. We shall use a slightly different version of this result, namely:

Theorem 4.24 Let f : �×R → R and g : ∂�×R → R be Carathéodory functions such
that for every R > 0, there exists M = M(R) > 0 satisfying | f (x, s)| ≤ M if (x, s) ∈ � ×
[−R, R] and |g(x, s)| ≤ M if (x, s) ∈ ∂�×[−R, R]. If u, u ∈ H1(�)∩ L∞(�)∩ L∞(∂�)

are a weak subsolution and supersolution of (Pλ), respectively, and u ≤ u a.e. in �, then
(Pλ) has a solution u satisfying

Iλ(u) = min
{
Iλ(v) : v ∈ H1(�), u ≤ v ≤ u a.e. in �

}
.

The proof of this result can be carried out following the proof of [14, Theorem 3]. As a
matter of fact, the functional Iλ is not coercive but still bounded from below on the set

M := {u ∈ H1(�) : u ≤ u ≤ u a.e. in �}.
Let us pick 0 < μ < λ and prove that (Pμ) has two positive solutions. From the definition

of λ, we can take μ′ ∈ (μ, λ] such that (Pμ′) has a positive solution uμ′ . Now, we make
good use of the positive eigenfunction φ1 associated with the smallest eigenvalue σ1 of
(2.1) to build up a suitable positive weak subsolution. We consider the smallest eigenvalue
σ̂1 := σ1(μ) < 0 of (2.1) and the corresponding positive eigenfunction φ̂1 = φ1(μ). Then
εφ̂1 is a strict weak subsolution of (Pμ) if ε > 0 is sufficiently small. Moreover, we can
choose ε > 0 such that εφ̂1 ≤ uμ′ . By Theorem 4.24 with u = εφ̂1 and u = uμ′ , we obtain
a solution u0 of (Pμ) such that

Iμ(u0) = min
{
Iμ(v) : v ∈ H1(�), εφ̂1 ≤ v ≤ uμ′ a.e. in �

}
.

In particular, u0 > 0 in �. Moreover, by the strong maximum principle and the boundary
point lemma, we have εφ̂1 < u0 < uμ′ on �. It follows that u0 is a local minimizer of Iμ

123



1858 H. Ramos Quoirin, K. Umezu

with respect to the C1(�) topology. We may then argue as in [11, Lemma 6.4] to deduce that
u0 is a local minimizer of Iμ with respect to the H1(�) topology. Now we use an argument
from [10]: let δ > 0 such that u0 minimizes Iμ in B(u0, δ) and 0 /∈ B(u0, δ). If u0 is not
a strict minimizer, then there exists v0 ∈ B(u0, δ), v0 �≡ 0 such that Iμ(v0) = Iμ(u0), in
which case v0 is also a local minimizer of Iμ, and consequently a solution of (Pμ). Now, if
u0 is a strict minimizer, then by [9, Theorem 5.10], we infer that for r > 0 sufficiently small
we have

Iμ(u0) < inf
{
Iμ(u) : u ∈ H1(�), ‖u − u0‖ = r

}
,

so that Iμ has the mountain-pass geometry (note that if w ∈ A+, then Iμ(tw) → −∞ as
t → ∞). Finally, by Proposition 4.23, Iμ satisfies the Palais–Smale condition, and since Iμ
is even, the mountain-pass theorem provides a second positive solution of (Pμ).

5 Existence of a smooth positive solution curve

In this section, we discuss the existence of a smooth curve of positive solutions of (Pλ)

containing the minimal positive solution uλ for λ ∈ (0, λ). To this end, we consider (Pλ)

in the framework of Hölder spaces in the following way: let U ⊂ C2+α(�) be an open
neighbourhood of a function positive on � such that any v ∈ U is positive on �. We set

G : (0,∞) ×U −→ Cα(�) × C1+α(∂�),

(λ, u) −→
(

−�u − au p−1,
∂u

∂n
− λuq−1

)
,

so that u is a positive solution of (Pλ) if and only if G(λ, u) = 0. We recall that the minimal
positive solution uλ is weakly stable, i.e. γ1(λ, uλ) ≥ 0. Moreover, we know that uλ is
increasing and left-continuous in (0, λ], i.e. uμ < uλ on � if μ < λ, and lim

μ↗λ
uμ = uλ, see

[1, Theorem 20.3].
For our procedure, we prove the following lemma.

Lemma 5.1 Let uλ be a positive solution of (Pλ) such that γ1(λ, uλ) = 0. Then the solution
set around (λ, uλ) is exactly given by a C∞-curve (λ(s), u(s)) ∈ R × C2+α(�) of posi-
tive solutions, parametrized by s ∈ (−ε, ε) for some ε > 0 and such that (λ(0), u(0)) =
(λ, uλ), λ′(0) = 0, λ′′(0) < 0, and u(s) = uλ + sφ1 + z(s), where φ1 is a positive eigen-
function associated with γ1(λ, uλ), and z(0) = z′(0) = 0. Moreover, the lower branch
(λ(s), u(s)), s ∈ (−ε, 0), is asymptotically stable, i.e. γ1(λ(s), u(s)) > 0, whereas the
upper branch (λ(s), u(s)), s ∈ (0, ε), is unstable, i.e. γ1(λ(s), u(s)) < 0.

Proof Since γ1(λ, uλ) = 0, it follows from [8, Theorem 3.2] that we have a C∞-curve
(λ(s), u(s)) of positive solutions which satisfies the assertions of this lemma except λ′′(0) <

0. Let us prove that λ′′(0) < 0. We take (λ, u) = (λ(s), u(s)) and differentiate (Pλ) with
respect to s to obtain

{
−�u′ = (p − 1)au p−2u′ in �,
∂u′
∂n = λ′uq−1 + λ(q − 1)uq−2u′ on ∂�.

(5.1)
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Differentiating (5.1) with respect to s once more, we have{
−�u′′ = (p − 1)(p − 2)au p−3(u′)2 + (p − 1)au p−2u′′ in �,
∂u′′
∂n = λ′′uq−1 + 2λ′(q − 1)uq−2u′ + λ(q − 1)(q − 2)uq−3(u′)2 + λ(q − 1)uq−2u′′ on ∂�.

(5.2)

Putting s = 0 in (5.1) and (5.2), we have respectively{
−�φ1 = (p − 1)au p−2

λ φ1 in �,
∂φ1
∂n = λ(q − 1)uq−2

λ φ1 on ∂�,

and {
−�ψ = (p − 1)(p − 2)au p−3

λ φ2
1 + (p − 1)au p−2

λ ψ in �,
∂ψ
∂n = λ′′(0)uq−1

λ + λ(q − 1)(q − 2)uq−3
λ φ2

1 + λ(q − 1)uq−2
λ ψ on ∂�,

where u′′(0) = ψ . Let

Lλ = −� − (p − 1)au p−2
λ , Bλ = ∂

∂n
− λ(q − 1)uq−2

λ .

Then we note that {
Lλφ1 = 0 in �,

Bλφ1 = 0 on ∂�,

and {
Lλψ = (p − 1)(p − 2)au p−3

λ φ2
1 in �,

Bλψ = λ′′(0)uq−1
λ + λ(q − 1)(q − 2)uq−3

λ φ2
1 on ∂�.

It follows that∫
�

{
(p − 1)(p − 2)au p−3

λ φ2
1

}
φ1 +

∫
∂�

{
λ′′(0)uq−1

λ + λ(q − 1)(q − 2)uq−3
λ φ2

1

}
φ1 = 0,

and thus that

λ′′(0)
∫

∂�

uq−1
λ φ1 = −(p − 1)(p − 2)

∫
�

au p−3
λ φ3

1 − λ(q − 1)(q − 2)
∫

∂�

uq−3
λ φ3

1 .

(5.3)

On the other hand, we have by a direct computation∑
j

∂

∂x j
u2λ

∂

∂x j

(
φ1

uλ

)
= �φ1uλ − φ1�uλ = (2 − p)au p−1

λ φ1. (5.4)

In addition, the divergence theorem yields∫
�

(
φ1

uλ

)2 ∑
j

∂

∂x j
u2λ

∂

∂x j

(
φ1

uλ

)
= −

∫
�

u2λ2

(
φ1

uλ

) ∣∣∣∣∇ φ1

uλ

∣∣∣∣
2

+
∫

∂�

φ2
1

∂

∂n

(
φ1

uλ

)

= −C + λ(q − 2)
∫

∂�

uq−3
λ φ3

1 , (5.5)

where C is a positive constant. Combining (5.4) and (5.5), we deduce that

(2 − p)
∫

�

au p−3
λ φ3

1 = −C + λ(q − 2)
∫

∂�

uq−3
λ φ3

1 . (5.6)
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We combine (5.3) and (5.6) to get rid of
∫
�
au p−3

λ φ3
1 , so that

λ′′(0)
∫

∂�

uq−1
λ φ1 = −(p − 1)(p − 2)

{
C

p − 2
+ λ

2 − q

p − 2

∫
∂�

uq−3
λ φ3

1

}

− λ(q − 1)(q − 2)
∫

∂�

uq−3
λ φ3

1

= −C(p − 1) − λ(2 − q)(p − q)

∫
∂�

uq−3
λ φ3

1 < 0,

as desired. ��
Based on Lemma 5.1, we can prove the following result:

Proposition 5.2 Assume (1.8). Then the following assertions hold:

(1) uλ is asymptotically stable for each λ ∈ (0, λ), that is, γ1(λ, uλ) > 0.
(2) λ → uλ is C∞ in (0, λ).
(3) uλ → 0 in C2+α(�) as λ → 0+.
(4) If (Pλ) has a positive solution, then it has at most one weakly stable positive solution.

Proof The argument is similar as in [13]. First we prove assertion (1). If we assume
γ1(λ, uλ) = 0 for some λ ∈ (0, λ), then by the left continuity, Lemma 5.1 provides that
for some ε > 0 there holds γ1(μ, uμ) > 0 for μ ∈ (λ − ε, λ), and μ → uμ is continu-
ous in (λ − ε, λ] and C∞ in (λ − ε, λ). Since uμ is increasing, we deduce that μ → uμ

is continuous in (0, λ], C∞ in (0, λ), and ‖uμ‖C(�) is bounded for μ ∈ (0, λ) using the
implicit function theorem and Lemma 5.1 repeatedly. By elliptic regularity, we deduce that
for r > N , ‖uμ‖W 1,r (�) is bounded in (0, λ). By the Sobolev imbedding and a compactness

argument, uμ → u0 in Cθ (�) for some θ ∈ (0, 1) as μ ↘ 0. Note that u0 ≥ 0, and u0
satisfies (3.4) with λ = 0. Hence, if u0 �≡ 0, then u0 is a positive solution of (Pλ) with λ = 0
by a bootstrap argument.Moreover, by continuity, γ1(0, u0) ≥ 0. However, it is easy to verify
that any positive solution of (Pλ) with λ = 0 is unstable, which provides a contradiction.
Hence, u0 ≡ 0.

Now, from the above argument we can pick a minimal positive solution uσ of (Pσ ) for
some σ ∈ (λ, λ) such that γ1(σ, uσ ) > 0. Using the implicit function theorem and Lemma
5.1 again, we can extend a C∞-positive solution curve {(μ, vμ)} of (Pμ) to the left step by
step such that γ1(μ, vμ) > 0. In addition, we see that⎧⎨

⎩
Lμ

duμ

dμ
= 0 in �,

Bμ

duμ

dμ
= uq−1

μ on ∂�.

Here

Lμ = −� − (p − 1)au p−2
μ , Bμ = ∂

∂n
− μ(q − 1)uq−2

μ .

Since γ1(μ, uμ) > 0 we deduce that{
Lμφ1 = γ1(μ, uμ)φ1 > 0 in �,

Bμφ1 = γ1(μ, uμ)φ1 > 0 on ∂�,

where φ1 is a positive eigenfunction associated with γ1(μ, uμ). It follows from [17, Theo-

rem 13, Chapter 2] that
duμ

dμ
≥ 0. Hence, we can deduce that vμ → 0 in Cθ (�) as μ → 0+

123



On a concave–convex elliptic problem with a nonlinear. . . 1861

u C2+α(Ω)

O

λ

λ

(λ, uλ)

(λ, uλ)

Fig. 4 A smooth positive solution curve in the case (1.1), (1.8), and the condition λ < ∞ are satisfied

in the same way. Here we note that this curve never meets {(μ, uμ) : μ ∈ (0, λ]}. To sum
up, we infer that uμ, vμ both converge to 0 in X as μ → 0+ by elliptic regularity. However,
this is contradictory with Proposition 4.19. Assertion (1) has been verified.

Assertion (2) is a direct consequence of Assertion (1) and an application of the implicit
function theorem.

Assertion (3) is a consequence of Proposition 4.19 and Proposition 3.3. Finally, Assertion
(4) can be verified in the same way as Assertion (1). ��

The following result is derived from Assertion (4) in Proposition 5.2.

Corollary 5.3 The second positive solution of (Pλ) for λ ∈ (0, λ) provided by Theorem 4.24
is unstable.

Lastly, using Lemma 5.1 we provide some features of the positive solution set around
(λ, uλ):

Proposition 5.4 Assume (1.1) and (1.8). If λ < ∞, then the solution set around (λ, uλ) con-
sists of a C∞-curve (λ(s), u(s)) ∈ R×C2+α(�) of positive solutions, which is parametrized
by s ∈ (−ε, ε), for some ε > 0, and such that (λ(0), u(0)) = (λ, uλ), λ′(0) = 0, λ′′(0) < 0,
and u(s) = uλ + sφ1 + z(s), where φ1 is a positive eigenfunction associated with γ1(λ, uλ),
and z(0) = z′(0) = 0. Moreover, the lower branch (λ(s), u(s)), s ∈ (−ε, 0), is asymptoti-
cally stable, whereas the upper branch (λ(s), u(s)), s ∈ (0, ε), is unstable.

Remark 5.5 Propositions 5.2 and 5.4 suggest a bifurcation diagram of positive solutions as
in Fig. 4.

We conclude now the proof of our main results.

Proof of Theorem 1.1 Assertion (1) is derived from Propositions 3.3 and 2.3.
Assertion (i) in (2)(a) is a direct consequence of the general theory for minimal positive

solutions, see [1, Theorem 20.3], whereas assertion (iv) in (2)(a) is derived from Proposi-
tion 5.2(3) and a combined argument of Proposition 3.3 and Corollary 4.21. The remaining
assertions in (2)(a) follow from Propositions 3.6 and 5.2.

Assertion (2)(b) is a consequence Proposition 5.4; Assertion (2)(c) follows from Propo-
sitions 4.19 and Corollary 4.21; Assertion (2)(d) follows from Proposition 3.7. ��
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Proof of Theorem 1.3 In (1), the uniqueness result follows from Proposition 4.3, whereas
the asymptotical stability of the unique positive solution is verified by Theorem 1.1(2)(a)(ii).
Assertion (2) is derived from Propositions 4.3 and 4.6. ��

Proof of Theorem 1.4 Assertion (1) is derived from Proposition 3.8. In (2), the existence of
a second positive solution is provided by the argument in Sect. 4.2 based on Theorem 4.24;
the ordering property of the second positive solution is derived from a combined argument
of Theorem 1.1(2)(a) and an application of the strong maximum principle and the boundary
point lemma; the instability result follows fromCorollary 5.3; lastly, the asymptotic behaviour
is provided by Proposition 4.17. ��
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