On a concave-convex elliptic problem with a nonlinear boundary condition

Humberto Ramos Quoirin ${ }^{1}$ •Kenichiro Umezu ${ }^{2}$

Received: 5 May 2015 / Accepted: 28 August 2015 / Published online: 12 September 2015
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract

We investigate an indefinite superlinear elliptic equation coupled with a sublinear Neumann boundary condition (depending on a positive parameter λ), which provides a concave-convex nature to the problem. We establish a global multiplicity result for positive solutions in the spirit of Ambrosetti-Brezis-Cerami and obtain their asymptotic profiles as $\lambda \rightarrow 0$. Furthermore, we also analyse the case where the nonlinearity is concave. Our arguments are based on a bifurcation analysis, a comparison principle, and variational techniques.

Keywords Semilinear elliptic problem • Concave-convex nonlinearity • Nonlinear boundary condition • Positive solution • Bifurcation • Super and subsolutions • Nehari manifold

Mathematics Subject Classification 35J25 • 35J61•35J20 • 35B09 • 35B32

1 Introduction and statements of main results

Let Ω be a bounded domain of $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega$. We consider in this article the nonlinear elliptic problem

$$
\begin{cases}-\Delta u=a(x)|u|^{p-2} u & \text { in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}=\lambda|u|^{q-2} u & \text { on } \partial \Omega\end{cases}
$$

[^0]where

- $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$ is the usual Laplacian in \mathbb{R}^{N},
- $\lambda>0$,
- $1<q<2<p<\infty$,
- $a \in \mathcal{C}^{\alpha}(\bar{\Omega})$ with $\alpha \in(0,1)$,
- \mathbf{n} is the unit outer normal to the boundary $\partial \Omega$.

A function $u \in X:=H^{1}(\Omega)$ is said to be a weak solution of $\left(P_{\lambda}\right)$ if it satisfies

$$
\int_{\Omega} \nabla u \nabla w-\int_{\Omega} a|u|^{p-2} u w-\lambda \int_{\partial \Omega}|u|^{q-2} u w=0, \quad \forall w \in X .
$$

A weak solution u of $\left(P_{\lambda}\right)$ is said to be nontrivial and non-negative if it satisfies $u \geq 0$ and $u \not \equiv 0$. Under the condition

$$
\begin{equation*}
p \leq 2^{*}=\frac{2 N}{N-2} \quad \text { if } N>2 \tag{1.1}
\end{equation*}
$$

we shall prove that such solutions are strictly positive on $\bar{\Omega}$ (Proposition 2.1) and belong to $\mathcal{C}^{2+\theta}(\bar{\Omega})$ for some $\theta \in(0,1)$ (Remark 2.2). To this end, we use the weak maximum principle [15] to deduce that any nontrivial non-negative weak solution u of $\left(P_{\lambda}\right)$ is strictly positive in Ω. In addition, by making good use of a comparison principle [19, Proposition A.1], we shall prove that u is positive on the whole of $\bar{\Omega}$. Finally, a bootstrap argument will provide $u \in \mathcal{C}^{2+\theta}(\bar{\Omega})$ for some $\theta \in(0,1)$, so that u is a (classical) positive solution. Note that the standard boundary point lemma (as in [17]) cannot be applied directly to nontrivial nonnegative weak solutions of $\left(P_{\lambda}\right)$.

The purpose of this paper is to study existence, non-existence, and multiplicity of positive solutions of $\left(P_{\lambda}\right)$, as well as their asymptotic properties as the parameter λ approaches 0 . It is promptly seen that $\left(P_{\lambda}\right)$ has no positive solution if $a \geq 0$. More precisely, we shall see that (P_{λ}) has a positive solution only if $\int_{\Omega} a<0$ (cf. Proposition 2.3). This condition is known to be necessary for the existence of positive solutions of problems with Neumann boundary conditions at least since the work of Bandle-Pozio-Tesei [4]. Therefore, we shall assume that either a changes sign or $a \leq 0$.

In view of the condition $1<q<2<p$, we note that if a changes sign, then $\left(P_{\lambda}\right)$ belongs to the class of concave-convex type problems with nonlinear boundary conditions. The main reference on concave-convex type problems is the work of Ambrosetti-Brezis-Cerami [3], which deals with

$$
\begin{cases}-\Delta u=\lambda|u|^{q-2} u+|u|^{p-2} u & \text { in } \Omega, \tag{1.2}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $1<q<2<p$. Under the condition (1.1), the authors proved a global multiplicity result, namely the existence of some $\Lambda>0$ such that (1.2) has at least two positive solutions for $\lambda \in(0, \Lambda)$, at least one positive solution for $\lambda=\Lambda$, and no positive solution for $\lambda>\Lambda$. In addition, they analysed the asymptotic behaviour of the solutions as $\lambda \rightarrow 0^{+}$. Tarfulea [22] considered a similar problem with an indefinite weight and a Neumann boundary condition, namely

$$
\begin{cases}-\Delta u=\lambda|u|^{q-2} u+a(x)|u|^{p-2} u & \text { in } \Omega \tag{1.3}\\ \frac{\partial u}{\partial \mathbf{n}}=0 & \text { on } \partial \Omega\end{cases}
$$

where $a \in \mathcal{C}(\bar{\Omega})$. He proved that $\int_{\Omega} a<0$ is a necessary and sufficient condition for the existence of a positive solution of (1.3). Making use of the sub-supersolutions technique, he has also shown the existence of $\Lambda>0$ such that problem (1.3) has at least one positive solution for $\lambda<\Lambda$ which converges to 0 in $L^{\infty}(\Omega)$ as $\lambda \rightarrow 0^{+}$, and no positive solution for $\lambda>\Lambda$. Garcia-Azorero et al. [11] have considered the problem

$$
\begin{cases}-\Delta u+u=|u|^{p-2} u & \text { in } \Omega \tag{1.4}\\ \frac{\partial u}{\partial \mathbf{n}}=\lambda|u|^{q-2} u & \text { on } \partial \Omega\end{cases}
$$

By means of a variational approach, they proved that if $1<q<2<p$ and $p<2^{*}$ when $N>2$, then there exists $\Lambda_{0}>0$ such that (1.4) has infinitely many nontrivial weak solutions for $0<\lambda<\Lambda$. Moreover, they have also proved that if $1<q<2$ and $p=2^{*}$ when $N>2$, then there exists $\Lambda_{1}>0$ such that (1.4) has at least two positive solutions for $\lambda<\Lambda_{1}$, at least one positive solution for $\lambda=\Lambda_{1}$, and no positive solution for $\lambda>\Lambda_{1}$.

When a changes sign, we shall prove a global multiplicity result in the style of Ambrosetti-Brezis-Cerami result. However, in doing so we shall encounter some particular difficulties. First of all, the obtention of a first solution by the sub-supersolution method seems difficult since the existence of a strict supersolution of $\left(P_{\lambda}\right)$ for $\lambda>0$ small is not evident at all. As a matter of fact, in [22] the author shows that this is a rather delicate issue. Another difficulty in this case is related to the variational structure: note that unlike in problems with Dirichlet boundary conditions, the left-hand side of (P_{λ}) lacks coercivity, since the term $\int_{\Omega}|\nabla u|^{2}$ does not correspond to $\|u\|^{2}$ in X. This sort of problems has been considered in $[18,19]$ for other kinds of nonlinearities and we shall use a similar approach here to prove existence results for $\left(P_{\lambda}\right)$. This approach is based on the Nehari manifold method, which is known to be useful when dealing with elliptic problems with powerlike nonlinearities and sign-changing weights. Brown and Wu [6] used this method to deal with the problem

$$
\begin{cases}-\Delta u=\lambda m(x)|u|^{q-2} u+a(x)|u|^{p-2} u & \text { in } \Omega \tag{1.5}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where m, a are smooth functions which are positive somewhere in Ω. We refer also to Brown [5] for a combination of sublinear and linear terms and to Wu [24] for a problem with a nonlinear boundary condition.

On the other hand, if $a \leq 0$ then $a(x)|u|^{p-2} u$ and $\lambda|u|^{q-2} u$ are both concave and $\left(P_{\lambda}\right)$ shares then some features with the logistic equation. The structure of the positive solution set of (P_{λ}) with $a \leq 0$ and $q=2$ has been considered by Garcia-Melián et al. [12]. They proved that there exists $0<\sigma_{1} \leq \infty$ such that $\left(P_{\lambda}\right)$ has a positive solution if and only if $0<\lambda<\sigma_{1}$. Moreover, this positive solution is unique. We shall prove a similar result for $\left(P_{\lambda}\right)$ with $\sigma_{1}=\infty$.

Whenever $\int_{\Omega} a<0$, we set

$$
\begin{equation*}
c^{*}=\left(\frac{|\partial \Omega|}{-\int_{\Omega} a}\right)^{\frac{1}{p-q}} . \tag{1.6}
\end{equation*}
$$

We also set

$$
\bar{\lambda}=\sup \left\{\lambda>0:\left(P_{\lambda}\right) \text { has a positive solution }\right\} .
$$

Let us recall that a positive solution u of $\left(P_{\lambda}\right)$ is said to be asymptotically stable (respect. unstable) if $\gamma_{1}(\lambda, u)>0$ (respect. <0), where $\gamma_{1}(\lambda, u)$ is the smallest eigenvalue of the linearized eigenvalue problem at u, namely

$$
\begin{cases}-\Delta \phi=(p-1) a(x) u^{p-2} \phi+\gamma \phi & \text { in } \Omega \tag{1.7}\\ \frac{\partial \phi}{\partial \mathbf{n}}=\lambda(q-1) u^{q-2} \phi+\gamma \phi & \text { on } \partial \Omega\end{cases}
$$

In addition, u is said weakly stable if $\gamma_{1}(\lambda, u) \geq 0$.
We state now our main result:
Theorem 1.1 (1) $\left(P_{\lambda}\right)$ has a positive solution for $\lambda>0$ sufficiently small if

$$
\begin{equation*}
\int_{\Omega} a<0 \tag{1.8}
\end{equation*}
$$

Conversely, if $\left(P_{\lambda}\right)$ has a positive solution for some $\lambda>0$, then (1.8) is satisfied.
(2) Assume (1.8). Then the following assertions hold:
(a) $0<\bar{\lambda} \leq \infty$ and $\left(P_{\lambda}\right)$ has a minimal positive solution \underline{u}_{λ} for $\lambda \in(0, \bar{\lambda})$, i.e. any positive solution u of $\left(P_{\lambda}\right)$ satisfies $\underline{u}_{\lambda} \leq u$ in $\bar{\Omega}$. Furthermore, \underline{u}_{λ} has the following properties:
(i) $\lambda \mapsto \underline{u}_{\lambda}(x)$ is strictly increasing in $(0, \bar{\lambda})$.
(ii) \underline{u}_{λ} is asymptotically stable for every $\lambda \in(0, \bar{\lambda})$.
(iii) $\bar{\lambda} \mapsto \underline{u}_{\lambda}$ is \mathcal{C}^{∞} from $(0, \bar{\lambda})$ to $\mathcal{C}^{2+\alpha}(\bar{\Omega})$.
(iv) $\underline{u}_{\lambda} \rightarrow 0$ and $\lambda^{-\frac{1}{p-q}} \underline{u}_{\lambda} \rightarrow c^{*}$ in $\mathcal{C}^{2+\alpha}(\bar{\Omega})$ as $\lambda \rightarrow 0^{+}$.
(b) Assume (1.1). If $\bar{\lambda}<\infty$, then $\left(P_{\lambda}\right)$ has a minimal positive solution $\underline{u}_{\bar{\lambda}}$ for $\lambda=\bar{\lambda}$. Moreover, the solution set around $(\bar{\lambda}, \underline{u} \bar{\lambda})$ consists of a \mathcal{C}^{∞}-curve $(\lambda(s), u(s)) \in \mathbb{R} \times$ $\mathcal{C}^{2+\alpha}(\bar{\Omega})$ of positive solutions, which is parametrized by $s \in(-\varepsilon, \varepsilon)$, for some $\varepsilon>0$, and satisfies $(\lambda(0), u(0))=(\bar{\lambda}, \underline{\lambda} \bar{\lambda}), \lambda^{\prime}(0)=0, \lambda^{\prime \prime}(0)<0$, and $u(s)=\underline{u}_{\bar{\lambda}}+s \phi_{1}+$ $z(s)$, where ϕ_{1} is a positive eigenfunction associated with the smallest eigenvalue $\gamma_{1}(\bar{\lambda}, \underline{u} \bar{\lambda})$ of (1.7), and $z(0)=z^{\prime}(0)=0$. Finally, the lower branch $(\lambda(s), u(s)), s \in$ $(-\varepsilon, 0)$, is asymptotically stable, whereas the upper branch $(\lambda(s), u(s)), s \in(0, \varepsilon)$, is unstable.
(c) Assume $p<2^{*}$ if $N>2$. Then the set of positive solutions of $\left(P_{\lambda}\right)$ for $\lambda>0$ around $(\lambda, u)=(0,0)$ in $\mathbb{R} \times X$ consists of $\left\{\left(\lambda, \underline{u}_{\lambda}\right)\right\}$.
(d) Bifurcation from zero of $\left(P_{\lambda}\right)$ never occurs at any $\lambda>0$, i.e. there is no sequence $\left(\lambda_{n}, u_{n}\right)$ of positive solutions of $\left(P_{\lambda}\right)$ such that $u_{n} \rightarrow 0$ in $\mathcal{C}(\bar{\Omega})$ and $\lambda_{n} \rightarrow \lambda^{*}>0$.
(e) $\left(P_{\lambda}\right)$ has at most one weakly stable positive solution.

Remark 1.2 (1) Under conditions (1.8) and (1.1), by the left continuity of $\underline{u}_{\lambda}[1$, Theorem 20.3], we infer that $(\lambda(s), u(s)), s \in(-\varepsilon, 0)$, in Theorem 1.1(2)(b) represents minimal positive solutions. In particular, the mapping $\lambda \mapsto \underline{u}_{\lambda}$ is continuous from $(0, \bar{\lambda}]$ into $\mathcal{C}(\bar{\Omega})$.
(2) Under (1.1), the minimal positive solution $\underline{u} \bar{\lambda}$ obtained for $\lambda=\bar{\lambda}$ satisfies in addition $\gamma_{1}(\bar{\lambda}, \underline{u} \bar{\lambda})=0$.

Theorem 1.3 Assume $a \leq 0, a \not \equiv 0$. Then the following assertions hold:
(1) If $\left(P_{\lambda}\right)$ has a positive solution for some $\lambda>0$, then it is unique and asymptotically stable.
(2) If, in addition, (1.1) is satisfied, then $\bar{\lambda}=\infty$. Moreover, denoting by u_{λ} the unique positive solution of $\left(P_{\lambda}\right)$, the mapping $\lambda \mapsto u_{\lambda}$ is \mathcal{C}^{∞} in $(0, \infty)$.

Theorem 1.4 Assume that a changes sign and (1.8) is satisfied. Then the following assertions hold:
(1) If $a>0$ on $\partial \Omega$, then $\bar{\lambda}<\infty$.
(2) Assume in addition $p<\frac{2 N}{N-2}$ if $N>2$. Then $\left(P_{\lambda}\right)$ has a second positive solution $u_{2, \lambda}$ satisfying $\underline{u}_{\lambda}<u_{2, \lambda}$ in $\bar{\Omega}$ for every $\lambda \in(0, \bar{\lambda})$. Moreover, $u_{2, \lambda}$ is unstable for every $\lambda \in(0, \bar{\lambda})$ and there exists $\lambda_{n} \rightarrow 0^{+}$such that $u_{2, \lambda_{n}} \rightarrow u_{2,0}$ in $\mathcal{C}^{2+\theta}(\bar{\Omega})$ for any $\theta \in(0, \alpha)$ as $n \rightarrow \infty$, where $u_{2,0}$ is a positive solution of

$$
\begin{cases}-\Delta u=a(x) u^{p-1} & \text { in } \Omega, \tag{1.9}\\ \frac{\partial u}{\partial \mathbf{n}}=0 & \text { on } \partial \Omega .\end{cases}
$$

Remark 1.5 (1) In the case $a \leq 0, a \not \equiv 0$, the following remarks are in order:
(a) The condition (1.1) can be removed when dealing with weak solutions. In other words, if $a \leq 0, a \not \equiv 0$ and $p>1$, then $\left(P_{\lambda}\right)$ has a unique nontrivial non-negative weak solution u_{λ} for every $\lambda>0$, see Proposition 4.3. This has been observed in [12, Theorem 2] in the case $q=2$.
(b) In [12], it has been proved that if $q=2$, then $\left(P_{\lambda}\right)$ has a positive solution if and only if $0<\lambda<\sigma_{1}$, where σ_{1} is the first eigenvalue of the problem

$$
\begin{cases}\Delta u=0 & \text { in } \Omega_{0} \tag{1.10}\\ \frac{\partial u}{\partial \mathbf{n}}=\sigma u & \text { on } \Sigma_{1} \\ u=0 & \text { on } \Sigma_{2}\end{cases}
$$

Here Ω_{0} is the interior of $\{a=0\}$ and it is assumed that $\partial \Omega_{0}=\Sigma_{1} \cup \Sigma_{2}$ with $\Sigma_{1}=\partial \Omega \cap \partial \Omega_{0}$ and $\Sigma_{2}=\Omega \cap \partial \Omega_{0}$ such that $\bar{\Sigma}_{2} \subset \Omega$. Moreover, if $\Sigma_{1}=\emptyset$, then $\sigma_{1}=\infty$. According to Theorem 1.3, in the case $1<q<2$ we have $\sigma_{1}=\infty$ regardless of $\{a=0\}$. Biologically, this result would be interpreted in the following way: an incoming flux on $\partial \Omega$ occurs in both cases $q=2$ and $1<q<2$, but a growup phenomenon occurs in the refuge $\{a=0\}$ in the case $q=2$, whereas no such phenomenon occurs in the case $1<q<2$. The difference between them might be caused by the fact that the incoming flux u^{q-1} on $\partial \Omega$ in the case $1<q<2$ is much smaller than in the case $q=2$ when u is large. Here our situation is that the intrinsic growth rate of population with density u is 0 , a reaction on $\partial \Omega$, which is given by λu^{q-1}, is assumed with its amplitude λ, and we consider a decay of the population following self-limitation $a(x) u^{p-1}$ with spatially inhomogeneous rate $a(x)$ inside Ω.
(2) In accordance with Theorems 1.1, 1.3 and 1.4, some possible positive solutions sets of $\left(P_{\lambda}\right)$ are depicted in Fig. 1.

The outline of this article is the following: in Sect. 2, we show that nontrivial non-negative solutions of (P_{λ}) are positive on $\bar{\Omega}$ and that (1.8) is a necessary condition for the existence of positive solutions of $\left(P_{\lambda}\right)$. In Sect. 3, we carry out a bifurcation analysis and consider the existence of a minimal positive solution of (P_{λ}). In Sect. 4, we use variational techniques to prove Theorems 1.3 and 1.4. Finally, in Sect. 5 we establish the existence of a smooth curve of positive solutions.

2 Positivity and a necessary condition

We begin this section showing the positivity on $\partial \Omega$ of nontrivial non-negative weak solutions of $\left(P_{\lambda}\right)$. As mentioned in the Introduction, the boundary point lemma is difficult to apply directly to (P_{λ}) since $0<q-1<1$. However, by making good use of a comparison principle

Fig. 1 Possible bifurcation diagrams for $\left(P_{\lambda}\right)$ when $\int_{\Omega} a<0$. a Bifurcation diagram in the case $a \leq 0$ and $a \not \equiv 0$. \mathbf{b} Bifurcation diagram in the case a changes sign

(a)

$$
\|u\|_{\mathcal{C}^{2+\theta}(\bar{\Omega})}
$$

(b)
for a class of nonlinear boundary value problems of concave type, we are able to show that nontrivial non-negative weak solutions of $\left(P_{\lambda}\right)$ with $\lambda>0$ are positive on the whole of Ω :

Proposition 2.1 Assume (1.1). Then any nontrivial non-negative weak solution of $\left(P_{\lambda}\right)$ is strictly positive on $\bar{\Omega}$.

Proof First of all, we note that under (1.1) any nontrivial non-negative weak solution belongs to $X \cap \mathcal{C}^{\theta}(\bar{\Omega})$ for some $\theta \in(0,1)$, cf. Rossi [21, Theorem 2.2]. We consider the following boundary value problem of concave type

$$
\begin{cases}-\Delta u=-a_{0} u^{p-1} & \text { in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}}=\lambda u^{q-1} & \text { on } \partial \Omega,\end{cases}
$$

where $a^{-}=a^{+}-a$, and $a_{0}=\sup _{\Omega} a^{-}$. A nontrivial non-negative weak solution u_{λ} of $\left(P_{\lambda}\right)$ for $\lambda>0$ satisfies

$$
\int_{\Omega} \nabla u_{\lambda} \nabla w+a_{0} \int_{\Omega} u_{\lambda}^{p-1} w-\lambda \int_{\partial \Omega} u_{\lambda}^{q-1} w \geq 0,
$$

for every $w \in X$ such that $w \geq 0$. On the other hand, we consider the following eigenvalue problem:

$$
\begin{cases}-\Delta \phi=\sigma \phi & \text { in } \Omega \tag{2.1}\\ \frac{\partial \phi}{\partial \mathbf{n}}=\lambda \phi & \text { on } \partial \Omega\end{cases}
$$

It is easy to see that for any $\lambda>0$, this problem has a smallest eigenvalue σ_{1}, which is negative. So, using a positive eigenfunction ϕ_{1} associated with σ_{1}, we deduce that if ε is sufficiently small, then $\varepsilon \phi_{1}$ satisfies

$$
\int_{\Omega} \nabla\left(\varepsilon \phi_{1}\right) \nabla w+a_{0} \int_{\Omega}\left(\varepsilon \phi_{1}\right)^{p-1} w-\lambda \int_{\partial \Omega}\left(\varepsilon \phi_{1}\right)^{q-1} w \leq 0,
$$

for every $w \in X$ such that $w \geq 0$. By the comparison principle [19, Proposition A.1], we infer that $\varepsilon \phi_{1} \leq u_{\lambda}$ on $\bar{\Omega}$. In particular, we have $0<\varepsilon \phi_{1} \leq u_{\lambda}$ on $\partial \Omega$.

Remark 2.2 Thanks to the positivity property, the assumption $a \in \mathcal{C}^{\alpha}(\bar{\Omega}), 0<\alpha<1$, allows us to prove that under (1.1), any nontrivial non-negative weak solution u of $\left(P_{\lambda}\right)$ belongs to $\mathcal{C}^{2+\theta}(\bar{\Omega})$ for some $\theta \in(0,1)$, by elliptic regularity. Proposition 2.1 will be needed in a combination argument of bifurcation and variational techniques, since our purpose in this paper is to discuss the existence of a classical solution of $\left(P_{\lambda}\right)$ which is positive on $\bar{\Omega}$.

We prove now that (1.8) is a necessary condition for $\left(P_{\lambda}\right)$ to have a positive solution for some $\lambda>0$.

Proposition 2.3 If $\left(P_{\lambda}\right)$ has a positive solution for some $\lambda>0$, then (1.8) is satisfied.
Proof Let u be a positive solution of $\left(P_{\lambda}\right)$. Then we have

$$
\int_{\Omega} \nabla u \nabla w-\int_{\Omega} a u^{p-1} w-\lambda \int_{\partial \Omega} u^{q-1} w=0, \quad \forall w \in X .
$$

Since $u^{1-p} \in X$, we deduce that
$\int_{\Omega} a=\int_{\Omega} \nabla u \nabla\left(u^{1-p}\right)-\lambda \int_{\partial \Omega} u^{q-1} \frac{1}{u^{p-1}}=(1-p) \int_{\Omega} u^{-p}|\nabla u|^{2}-\lambda \int_{\partial \Omega} u^{-(p-q)}<0$,
as desired.
Remark 2.4 By virtue of Proposition 2.1, under (1.1) we can prove that Proposition 2.3 holds for nontrivial non-negative weak solutions of $\left(P_{\lambda}\right)$.

3 Bifurcation and minimal positive solutions

Throughout this section, we assume (1.8). As we shall discuss bifurcation from the zero solution, the following result will be useful (see [20] for a similar proof):

Lemma 3.1 Assume (1.1). If $\left(\lambda_{n}, u_{n}\right)$ are weak solutions of $\left(P_{\lambda}\right)$ with $\left(\lambda_{n}\right)$ bounded, then $\left\|u_{n}\right\|_{X} \rightarrow 0$ if and only if $\left\|u_{n}\right\|_{\mathcal{C}(\bar{\Omega})} \rightarrow 0$.

We use now a bifurcation technique to show the existence of at least one positive solution of $\left(P_{\lambda}\right)$ for $\lambda>0$ close to 0 . To this end, we consider positive solutions of the following problem, which corresponds to $\left(P_{\lambda}\right)$ after the change of variable $w=\lambda^{-\frac{1}{p-q}} u$:

$$
\begin{cases}-\Delta w=\lambda^{\frac{p-2}{p-q}} a w^{p-1} & \text { in } \Omega \tag{3.1}\\ \frac{\partial w}{\partial n}=\lambda^{\frac{p-2}{p-q}} w^{q-1} & \text { on } \partial \Omega\end{cases}
$$

Proposition 3.2 (1) If (3.1) has a sequence of positive solutions $\left(\lambda_{n}, w_{n}\right)$ such that $\lambda_{n} \rightarrow$ $0^{+}, w_{n} \rightarrow c$ in $\mathcal{C}(\bar{\Omega})$ and c is a positive constant, then $c=c^{*}$, where c^{*} is given by (1.6).
(2) Conversely, (3.1) has for $|\lambda|$ sufficiently small a secondary bifurcation branch $(\lambda, w(\lambda))$ of positive solutions (parametrized by λ) emanating from the trivial line $\{(0, c)$:c is a positive constant\} at $\left(0, c^{*}\right)$ and such that, for $0<\theta \leq \alpha$, the mapping $\lambda \mapsto w(\lambda) \in$ $\mathcal{C}^{2+\theta}(\bar{\Omega})$ is continuous. Moreover, the set $\{(\lambda, w)\}$ of positive solutions of (3.1) around $(\lambda, w)=\left(0, c^{*}\right)$ consists of the union

$$
\left\{(0, c): c \text { is a positive constant, }\left|c-c^{*}\right| \leq \delta_{1}\right\} \cup\left\{(\lambda, w(\lambda)):|\lambda| \leq \delta_{1}\right\}
$$

for some $\delta_{1}>0$.
Proof The proof is similar to the one of [19, Proposition 5.3]:
(1) Let w_{n} be positive solutions of (3.1) with $\lambda=\lambda_{n}$, where $\lambda_{n} \rightarrow 0^{+}$. By the Green formula, we have

$$
\int_{\Omega} a w_{n}^{p-1}+\int_{\partial \Omega} w_{n}^{q-1}=0 .
$$

Passing to the limit as $n \rightarrow \infty$, we deduce the desired conclusion.
(2) We reduce (3.1) to a bifurcation equation in \mathbb{R}^{2} by the Lyapunov-Schmidt procedure: we use the usual orthogonal decomposition

$$
L^{2}(\Omega)=\mathbb{R} \oplus V
$$

where $V=\left\{v \in L^{2}(\Omega): \int_{\Omega} v=0\right\}$ and the projection $Q: L^{2}(\Omega) \rightarrow V$, given by

$$
v=Q u=u-\frac{1}{|\Omega|} \int_{\Omega} u .
$$

The problem of finding a positive solution of (3.1) reduces then to the following problems:

$$
\begin{align*}
& \begin{cases}-\Delta v+\frac{\mu}{|\Omega|} \int_{\partial \Omega}(t+v)^{q-1}=\mu Q\left[a(t+v)^{p-1}\right] & \text { in } \Omega, \\
\frac{\partial v}{\partial \mathbf{n}}=\mu(t+v)^{q-1} & \text { on } \partial \Omega,\end{cases} \tag{3.2}\\
& \mu\left(\int_{\Omega} a(t+v)^{p-1}+\int_{\partial \Omega}(t+v)^{q-1}\right)=0, \tag{3.3}
\end{align*}
$$

where $\mu=\lambda^{\frac{p-2}{p-q}}, t=\frac{1}{|\Omega|} \int_{\Omega} w$, and $v=w-t$. To solve (3.2) in the framework of Hölder spaces, we set

$$
Y=\left\{v \in \mathcal{C}^{2+\theta}(\bar{\Omega}): \int_{\Omega} v=0\right\}
$$

$$
Z=\left\{(\phi, \psi) \in \mathcal{C}^{\theta}(\bar{\Omega}) \times \mathcal{C}^{1+\theta}(\partial \Omega): \int_{\Omega} \phi+\int_{\partial \Omega} \psi=0\right\}
$$

Let $c>0$ be a constant and $U \subset \mathbb{R} \times \mathbb{R} \times Y$ be a small neighbourhood of $(0, c, 0)$. We consider the nonlinear mapping $F: U \rightarrow Z$ given by

$$
F(\mu, t, v)=\left(-\Delta v-\mu Q\left[a(t+v)^{p-1}\right]+\frac{\mu}{|\Omega|} \int_{\partial \Omega}(t+v)^{q-1}, \frac{\partial v}{\partial \mathbf{n}}-\mu(t+v)^{q-1}\right) .
$$

The Fréchet derivative F_{v} of F with respect to v at $(0, c, 0)$ is given by the formula

$$
F_{v}(0, c, 0) v=\left(-\Delta v, \frac{\partial v}{\partial \mathbf{n}}\right) .
$$

Since $F_{v}(0, c, 0)$ is a homeomorphism, the implicit function theorem implies that the set $F(\mu, t, v)=0$ around $(0, c, 0)$ consists of a unique \mathcal{C}^{∞} function $v=v(\mu, t)$ in a neighbourhood of $(\mu, t)=(0, c)$ and satisfying $v(0, c)=0$. Now, plugging $v(\mu, t)$ in (3.3), we obtain the bifurcation equation

$$
\Phi(\mu, t)=\int_{\Omega} a(t+v(\mu, t))^{p-1}+\int_{\partial \Omega}(t+v(\mu, t))^{q-1}=0, \quad \text { for }(\mu, t) \simeq(0, c) .
$$

It is clear that $\Phi\left(0, c^{*}\right)=0$. Differentiating Φ with respect to t at $\left(0, c^{*}\right)$, we get

$$
\begin{aligned}
\Phi_{t}\left(0, c^{*}\right)= & \int_{\Omega} a(p-1)\left(c^{*}+v\left(0, c^{*}\right)\right)^{p-2}\left(1+v_{t}\left(0, c^{*}\right)\right) \\
& +\int_{\partial \Omega}(q-1)\left(c^{*}+v\left(0, c^{*}\right)\right)^{q-2}\left(1+v_{t}\left(0, c^{*}\right)\right) \\
= & (p-1)\left(c^{*}\right)^{p-2} \int_{\Omega} a\left(1+v_{t}\left(0, c^{*}\right)\right)+(q-1)\left(c^{*}\right)^{q-2} \int_{\partial \Omega}\left(1+v_{t}\left(0, c^{*}\right)\right)
\end{aligned}
$$

Differentiating now (3.2) with respect to t, and plugging $(\mu, t)=\left(0, c^{*}\right)$ therein, we have $v_{t}\left(0, c^{*}\right)=0$. Hence,

$$
\Phi_{t}\left(0, c^{*}\right)=(p-1)\left(c^{*}\right)^{p-2}\left(\int_{\Omega} a\right)+(q-1)\left(c^{*}\right)^{q-2}|\partial \Omega|=\left(c^{*}\right)^{q-2}(q-p)<0
$$

By the implicit function theorem, the function $w(\lambda)=t(\mu)+v(\mu, t(\mu))$ with $\mu=\lambda^{\frac{p-2}{p-q}}$ satisfies the desired assertion.

By considering the transform $u(\lambda)=\lambda^{\frac{1}{p-q}} w(\lambda)$, we get the following result:
Proposition 3.3 Let $0<\theta \leq \alpha$ and $w(\lambda)$ be given by Proposition 3.2. If $\lambda>0$ is sufficiently small, then $u(\lambda)=\lambda^{\frac{1}{p-q}} w(\lambda)$ is a positive solution of $\left(P_{\lambda}\right)$ which satisfies $\lambda^{-\frac{1}{p-q}} u(\lambda) \rightarrow c^{*}$ in $\mathcal{C}^{2+\theta}(\bar{\Omega})$ as $\lambda \rightarrow 0^{+}$. In particular, $u(\lambda) \rightarrow 0$ in $\mathcal{C}^{2+\theta}(\bar{\Omega})$ as $\lambda \rightarrow 0^{+}$.

Now, in association with the first positive solution, we discuss the existence of a minimal positive solution of $\left(P_{\lambda}\right)$. For this purpose, we reduce $\left(P_{\lambda}\right)$ to an operator equation in $\mathcal{C}(\bar{\Omega})$. As in [23], a positive solution u of $\left(P_{\lambda}\right)$ can be characterized as a positive solution of the following operator equation

$$
\begin{equation*}
u=\mathcal{F}_{\lambda}(u):=\mathcal{K}\left(M u+a u^{p-1}\right)+\lambda \mathcal{R}\left(u^{q-1}\right) \text { in } \mathcal{C}(\bar{\Omega}), \tag{3.4}
\end{equation*}
$$

where $M>0$ is a constant and \mathcal{K}, \mathcal{R} are the resolvents of the following linear boundary value problems, respectively.

$$
\begin{aligned}
& \begin{cases}(-\Delta+M) v=f(x) & \text { in } \Omega, \\
\frac{\partial \phi}{\partial \mathbf{n}}=0 & \text { on } \partial \Omega,\end{cases} \\
& \begin{cases}(-\Delta+M) w=0 & \text { in } \Omega, \\
\frac{\partial \phi}{\partial \mathbf{n}}=\left.\xi(x)\right|_{\partial \Omega} & \text { on } \partial \Omega\end{cases}
\end{aligned}
$$

We recall that \mathcal{K}, \mathcal{R} are both compact and positive in $\mathcal{C}(\bar{\Omega})$, see Amann [2]. In particular, \mathcal{K} is strongly positive, in the sense that for any $u \in \mathcal{C}(\bar{\Omega})$ which is nontrivial and non-negative, $\mathcal{K} u$ is strictly positive on $\bar{\Omega}$, i.e. $\mathcal{K} u$ is an interior point of the positive cone $P=\{u \in \mathcal{C}(\bar{\Omega})$: $u \geq 0\}$. We denote this property by $\mathcal{K} u \gg 0$. Functions $v, w \in \mathcal{C}(\bar{\Omega})$ which are positive on $\bar{\Omega}$ are called a supersolution and a subsolution of (3.4) if $v \geq \mathcal{F}_{\lambda}(v)$ and $w \leq \mathcal{F}_{\lambda}(w)$, respectively.

Let us prove now the existence of positive subsolutions of (3.4). We recall that σ_{λ} and ϕ_{λ} are the smallest eigenvalue and the corresponding positive eigenfunction of (2.1) with $\lambda>0$. Note that $\sigma_{\lambda}<0$.

Lemma 3.4 Let $\mu>0$ be fixed. Then there exists $\varepsilon_{\mu}>0$ such that $\varepsilon \phi_{\mu}$ is a subsolution of (3.4) if $0<\varepsilon \leq \varepsilon_{\mu}$ and $\lambda \geq \mu$.

Proof Note that

$$
\varepsilon \phi_{\mu}=\mathcal{K}\left(\varepsilon \phi_{\mu}+\sigma_{\mu} \varepsilon \phi_{\mu}\right)+\mathcal{R}\left(\mu \varepsilon \phi_{\mu}\right) .
$$

By direct computations, there exists $\varepsilon_{\mu}>0$ such that if $\lambda \geq \mu$ and $0<\varepsilon \leq \varepsilon_{\mu}$, then we have

$$
\begin{aligned}
& \sigma_{\mu} \varepsilon \phi_{\mu}-a(x)\left(\varepsilon \phi_{\mu}\right)^{p-1}=\varepsilon \phi_{\mu}\left(\sigma_{\mu}-a(x)\left(\varepsilon \phi_{\mu}\right)^{p-2}\right) \leq 0 \text { in } \Omega, \\
& \mu \varepsilon \phi_{\mu}-\lambda\left(\varepsilon \phi_{\mu}\right)^{q-1} \leq \mu\left(\varepsilon \phi_{\mu}-\left(\varepsilon \phi_{\mu}\right)^{q-1}\right) \leq 0 \text { on } \partial \Omega .
\end{aligned}
$$

Hence, for $\lambda \geq \mu$ and $0<\varepsilon \leq \varepsilon_{\mu}$, we deduce that

$$
\varepsilon \phi_{\mu} \leq \mathcal{K}\left(\varepsilon \phi_{\mu}+a\left(\varepsilon \phi_{\mu}\right)^{p-1}\right)+\mathcal{R}\left(\lambda\left(\varepsilon \phi_{\mu}\right)^{q-1}\right)=\mathcal{F}_{\lambda}\left(\varepsilon \phi_{\mu}\right),
$$

as desired.
From Lemma 3.4, we can deduce the following a priori lower bound for positive solutions of $\left(P_{\lambda}\right)$:

Proposition 3.5 Let $\mu>0$ be fixed. Given any positive solution u of $\left(P_{\lambda}\right)$ with $\lambda \geq \mu$, we have $u \geq \varepsilon_{\mu} \phi_{\mu}$ on $\bar{\Omega}$, where ε_{μ} is given by Lemma 3.4.

Proof Let u be a positive solution of $\left(P_{\lambda}\right)$ for $\lambda \geq \mu$. We pick M such that $M t+a(x) t^{p-1}$ is strictly increasing in $t \in\left[0, \sup _{\Omega} u\right]$ for every $x \in \Omega$. Assume by contradiction that $u \nsupseteq \varepsilon_{\mu} \phi_{\mu}$. Then, since $u>0$ on $\bar{\Omega}$, there exists $s \in(0,1)$ such that $u \geq s \varepsilon_{\mu} \phi_{\mu}$ and $u-s \varepsilon_{\mu} \phi_{\mu}$ is on the boundary of the positive cone P. Lemma 3.4 tells us that $0 \leq \mathcal{F}_{\lambda}\left(s \varepsilon_{\mu} \phi_{\mu}\right)-s \varepsilon_{\mu} \phi_{\mu}$. On the other hand, since \mathcal{K} is strongly positive, we have $0 \ll \mathcal{F}_{\lambda}(u)-\mathcal{F}_{\lambda}\left(s \varepsilon_{\mu} \phi_{\mu}\right)$. Hence, from $u=\mathcal{F}_{\lambda}(u)$, we deduce $0 \ll u-s \varepsilon_{\mu} \phi_{\mu}$, which is a contradiction.

Now, using Proposition 3.5, we establish the existence of a minimal positive solution of $\left(P_{\lambda}\right)$:

Proposition 3.6 Let $\lambda>0$ be such that $\left(P_{\lambda}\right)$ has a positive solution. Then $\left(P_{\lambda}\right)$ has a minimal positive solution \underline{u}_{λ}.

Proof Let u_{λ} be a positive solution of $\left(P_{\lambda}\right)$. Consider the interval in $\mathcal{C}(\bar{\Omega})$

$$
\left[\varepsilon_{\lambda} \phi_{\lambda}, u_{\lambda}\right]:=\left\{u \in \mathcal{C}(\bar{\Omega}): \varepsilon_{\lambda} \phi_{\lambda} \leq u \leq u_{\lambda}\right\},
$$

and recall that $\varepsilon_{\lambda} \phi_{\lambda}$ is a subsolution of (3.4) from Lemma 3.4 with $\mu=\lambda$. Since u_{λ} is a supersolution of (3.4), by the super and subsolution technique of [2], there exist a minimal solution \underline{u}_{λ} and a maximal solution \bar{u}_{λ} of (3.4) which are in $\left[\varepsilon_{\lambda} \phi_{\lambda}, u_{\lambda}\right]$, in the sense that any solution $u \in\left[\varepsilon_{\lambda} \phi_{\lambda}, u_{\lambda}\right]$ of (3.4) satisfies $\underline{u}_{\lambda} \leq u \leq \bar{u}_{\lambda}$.

We show now that \underline{u}_{λ} is minimal among the positive solutions of $\left(P_{\lambda}\right)$. Let u be an arbitrary positive solution of $\left(P_{\lambda}\right)$. We choose $M>0$ such that $M t+a(x) t^{p-1}$ is increasing in $\left[0, \sup _{\Omega} u+\sup _{\Omega} u_{\lambda}\right]$, implying that if $v, w \in\left[0, \sup _{\Omega} u+\sup _{\Omega} u_{\lambda}\right]$ satisfy that $v-w \in P$, then we have $0 \leq \mathcal{F}_{\lambda}(v)-\mathcal{F}_{\lambda}(w)$. Put $u_{\lambda} \wedge u=\min \left(u_{\lambda}, u\right)$. Since $u-\left(u_{\lambda} \wedge u\right) \in P$ and $u_{\lambda}-\left(u_{\lambda} \wedge u\right) \in P$, we see that

$$
0 \leq \mathcal{F}_{\lambda}(u)-\mathcal{F}_{\lambda}\left(u_{\lambda} \wedge u\right) \quad \text { and } \quad 0 \leq \mathcal{F}_{\lambda}\left(u_{\lambda}\right)-\mathcal{F}_{\lambda}\left(u_{\lambda} \wedge u\right) .
$$

It follows that

$$
\mathcal{F}_{\lambda}\left(u_{\lambda} \wedge u\right) \leq \mathcal{F}_{\lambda}\left(u_{\lambda}\right) \wedge \mathcal{F}_{\lambda}(u)=u_{\lambda} \wedge u .
$$

This means that $u_{\lambda} \wedge u$ is a supersolution of (3.4). Now, from Proposition 3.5, we obtain $\varepsilon_{\lambda} \phi_{\lambda} \leq u_{\lambda} \wedge u$. Applying the sub- and supersolution method in the interval $\left[\varepsilon_{\lambda} \phi_{\lambda}, u_{\lambda} \wedge u\right]$, we get a solution u^{\prime} of (3.4) such that $\varepsilon_{\lambda} \phi_{\lambda} \leq u^{\prime} \leq u_{\lambda} \wedge u$. Since u^{\prime} is a solution in $\left[\varepsilon_{\lambda} \phi_{\lambda}, u_{\lambda}\right]$, we get $\underline{u}_{\lambda} \leq u^{\prime}$. However, it is clear that $u^{\prime} \leq u$. Therefore, we have $\underline{u}_{\lambda} \leq u$, as desired.

As a consequence of Proposition 3.5, we also have:
Proposition 3.7 Bifurcation from zero never occurs for $\left(P_{\lambda}\right)$ at any $\lambda>0$. More precisely, it never occurs that there exist $\lambda_{n}, \lambda^{*}>0$, and positive solutions $u_{\lambda_{n}}$ of $\left(P_{\lambda_{n}}\right)$ such that $\lambda_{n} \rightarrow \lambda^{*}$ and $\left\|u_{n}\right\|_{\mathcal{C}(\bar{\Omega})} \rightarrow 0$.

Now, by Proposition 3.3, we deduce that

$$
\bar{\lambda}=\sup \left\{\lambda>0:\left(P_{\lambda}\right) \text { has a positive solution }\right\}>0 .
$$

Proposition 3.8 Assume $a>0$ on $\partial \Omega$. Then $\bar{\lambda}<\infty$.
Proof First of all, since $a>0$ on $\partial \Omega$, we can choose a constant $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left\{x \in \Omega: d(x, \partial \Omega)<\varepsilon_{0}\right\} \subset\{x \in \Omega: a(x)>0\}, \tag{3.5}
\end{equation*}
$$

where $d(x, A)=\inf \{|x-y|: y \in A\}$ for a set $A \subset \mathbb{R}^{N}$. Consider a positive eigenfunction Φ_{1} associated with the positive principal eigenvalue Λ_{1} of the problem

$$
\begin{cases}-\Delta \varphi=\lambda a(x) \varphi & \text { in } D, \\ \frac{\partial \varphi}{\partial \mathbf{n}}=0 & \text { on } \Gamma_{1}, \\ \varphi=0 & \text { on } \Gamma_{0},\end{cases}
$$

where

$$
D=\left\{x \in \Omega: d(x, \partial \Omega)<\varepsilon_{0}\right\}, \quad \Gamma_{1}=\partial \Omega, \quad \text { and } \quad \Gamma_{0}=\left\{x \in \Omega: d(x, \partial \Omega)=\varepsilon_{0}\right\} .
$$

By (3.5), we have $a>0$ in D. Let u be a positive solution of $\left(P_{\lambda}\right)$. It follows that

$$
\int_{\Omega} \nabla u \nabla \Phi_{1}-\int_{\Omega} a u^{p-1} \Phi_{1}-\lambda \int_{\Gamma_{1}} u^{q-1} \Phi_{1}=0
$$

where Φ_{1} is extended by zero in $\Omega \backslash D$. On the other hand, the divergence theorem shows that

$$
\int_{D} \operatorname{div}\left(u \nabla \Phi_{1}\right)=\int_{\Gamma_{0}} u \frac{\partial \Phi_{1}}{\partial v}<0
$$

where v denotes the unit outer normal to Γ_{0}. It follows that

$$
\lambda \int_{\Gamma_{1}} u^{q-1} \Phi_{1}<\int_{D} a \Phi_{1}\left(\Lambda_{1} u-u^{p-1}\right) .
$$

Lemma 3.4 and Proposition 3.5 allow us to deduce that given $\mu>0$ there exists $\varepsilon_{\mu}>0$ such that

$$
\lambda \varepsilon_{\mu}^{q-1} \int_{\Gamma_{1}} \phi_{\mu}^{q-1} \Phi_{1}<\sup _{t \geq 0}\left(\Lambda_{1} t-t^{p-1}\right) \int_{D} a \Phi_{1} \quad \text { if } \lambda \geq \mu .
$$

Therefore, we must have $\bar{\lambda}<\infty$.

4 Variational approach

We associate to $\left(P_{\lambda}\right)$ the \mathcal{C}^{1} functional

$$
I_{\lambda}(u):=\frac{1}{2} E(u)-\frac{1}{p} A(u)-\frac{\lambda}{q} B(u), \quad u \in X,
$$

where

$$
E(u)=\int_{\Omega}|\nabla u|^{2}, \quad A(u)=\int_{\Omega} a(x)|u|^{p}, \quad \text { and } \quad B(u)=\int_{\partial \Omega}|u|^{q} .
$$

Let us recall that $X=H^{1}(\Omega)$ is equipped with the usual norm $\|u\|=\left[\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)\right]^{\frac{1}{2}}$. We denote by \rightarrow the weak convergence in X.

The following result will be used repeatedly in this section.
Lemma 4.1 (1) If $\left(u_{n}\right)$ is a sequence such that $u_{n} \rightharpoonup u_{0}$ in X and $\lim \inf E\left(u_{n}\right) \leq 0$, then u_{0} is a constant and $u_{n} \longrightarrow u_{0}$ in X.
(2) Assume (1.8). If $v \neq 0$ and $A(v) \geq 0$, then v is not a constant.

Proof (1) Since $u_{n} \rightharpoonup u_{0}$ in X and E is weakly lower semicontinuous, we have $E\left(u_{0}\right) \leq$ $\lim \inf E\left(u_{n}\right)$, so that

$$
0 \leq E\left(u_{0}\right) \leq \lim \inf E\left(u_{n}\right) \leq 0
$$

Hence, $E\left(u_{0}\right)=0$, which implies that u_{0} is a constant. Assume $u_{n} \nrightarrow u_{0}$ in X. Then $E\left(u_{0}\right)<\lim \inf E\left(u_{n}\right) \leq 0$, which is a contradiction. Therefore, $u_{n} \rightarrow u_{0}$ in X.
(2) If $v_{0} \neq 0$ is a constant, then $0 \leq A\left(v_{0}\right)=\left|v_{0}\right|^{p} \int_{\Omega} a<0$, a contradiction.

4.1 The case $a \leq 0$

In this subsection, we assume $a \leq 0, a \not \equiv 0$, and (1.1) is satisfied.
Proposition 4.2 I_{λ} is coercive for any $\lambda>0$.
Proof Let $\left(u_{n}\right) \subset X$ be such that $\left\|u_{n}\right\| \rightarrow \infty$ and assume by contradiction that $I_{\lambda}\left(u_{n}\right)$ is bounded from above. Then

$$
C \geq I_{\lambda}\left(u_{n}\right)=\frac{1}{2} E\left(u_{n}\right)-\frac{1}{p} A\left(u_{n}\right)-\frac{\lambda}{q} B\left(u_{n}\right) \geq \frac{1}{2} E\left(u_{n}\right)-\frac{\lambda}{q} B\left(u_{n}\right) .
$$

Let $v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|}$. We may assume that $v_{n} \rightharpoonup v_{0}$ in X and $v_{n} \rightarrow v_{0}$ in $L^{q}(\partial \Omega)$. Hence, since $q<2<p$, from the above inequalities we have $\lim \sup E\left(v_{n}\right) \leq 0$. By Lemma 4.1 (1), we infer that $v_{n} \rightarrow v_{0}$ in X and v_{0} is a constant. On the other hand, from

$$
C \geq I_{\lambda}\left(u_{n}\right)=\left\|u_{n}\right\|^{p}\left(-\frac{1}{p} A\left(v_{n}\right)+o(1)\right),
$$

we get $A\left(v_{0}\right) \geq 0$, so that $A\left(v_{0}\right)=0$. By Lemma 4.1 (2), we must have $v_{0} \equiv 0$, which contradicts $\left\|v_{n}\right\|=1$. Therefore, we reach a contradiction, which shows that I_{λ} is coercive for any $\lambda>0$.

Proposition $4.3\left(P_{\lambda}\right)$ has a unique positive solution u_{λ} for any $\lambda>0$.
Proof Let $\lambda>0$. From Proposition 4.2, we know that I_{λ} is coercive. Thus, it achieves a global minimum at some $u_{\lambda} \in X$, which can be taken non-negative since I_{λ} is even. Moreover, it is clear that this global minimum is negative, and consequently $u_{\lambda} \neq 0$. Finally, let $f(x, s)=a(x) s^{p-1}$ and $h(s)=\lambda s^{q-1}$. Since $\frac{f(x, s)}{s}$ and $\frac{h(s)}{s}$ are non-increasing in $(0, \infty)$ and $\frac{h(s)}{s}$ is decreasing, by [16, Theorem 1.2], $\left(P_{\lambda}\right)$ has at most one positive solution. Therefore, u_{λ} is the unique positive solution of $\left(P_{\lambda}\right)$.

Remark 4.4 Proposition 4.2 holds for any $p>1$ if we allow I_{λ} to take infinite values. In this case, it can be shown that the global minimum of I_{λ} is achieved at some u_{λ} such that $A\left(u_{\lambda}\right)>-\infty$. It follows that $\left(P_{\lambda}\right)$ has a weak solution for any $\lambda>0$ and $p>1$. We refer to the proof of [12, Theorem 2] for similar arguments.

Proposition 4.5 For any $\mu>0$, there exists a constant $K_{\mu}>0$ such that $\|u\|_{\infty} \leq K_{\mu}$ for any positive solution of $\left(P_{\lambda}\right)$ with $\lambda \in(0, \mu)$. In particular, bifurcation from infinity cannot occur for $\left(P_{\lambda}\right)$ at any $\lambda \geq 0$.

Proof Fix $\mu>0$ and assume by contradiction that $\left(\lambda_{n}\right) \subset(0, \mu)$, and $\left\|u_{n}\right\| \rightarrow \infty$ for some positive solutions u_{n} of $\left(P_{\lambda_{n}}\right)$. Set $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. We can assume that $v_{n} \rightharpoonup v_{0}$ in X. From

$$
E\left(u_{n}\right)=A\left(u_{n}\right)+\lambda_{n} B\left(u_{n}\right) \leq \mu B\left(u_{n}\right)
$$

we get $E\left(v_{n}\right) \rightarrow 0$, so $v_{n} \rightarrow v_{0}$ in X and v_{0} is a constant. Moreover, we have $A\left(v_{n}\right) \rightarrow 0$, so $A\left(v_{0}\right)=0$, which is impossible since $\int_{\Omega} a<0$. Therefore, there exists $K_{\mu}>0$ such that $\|u\| \leq K_{\mu}$ for any positive solution u of $\left(P_{\lambda}\right)$ with $\lambda \in(0, \mu)$. By elliptic regularity, we get the conclusion.

Proposition 4.6 Let $_{\lambda}$ be the unique positive solution of $\left(P_{\lambda}\right)$ for $\lambda>0$, given by Proposition 4.3. Then u_{λ} satisfies the following two assertions:
(1) $\lambda^{-\frac{1}{p-q}} u_{\lambda} \rightarrow c^{*}$ in $\mathcal{C}^{2+\alpha}(\bar{\Omega})$ as $\lambda \rightarrow 0^{+}$.
(2) The mapping $\lambda \mapsto u_{\lambda}$, from $(0, \infty)$ to $\mathcal{C}^{2+\alpha}(\bar{\Omega})$, is \mathcal{C}^{∞}.

Proof (1) Since u_{λ} is the unique positive solution of $\left(P_{\lambda}\right)$, the assertion is a direct consequence of Proposition 3.3.
(2) In view of the uniqueness of u_{λ} and the concavity of $u \mapsto a u^{p-1}$ and $u \mapsto \lambda u^{q-1}$ for $u>0$, by the implicit function theorem we deduce that $\lambda \mapsto u_{\lambda}$ is a smooth curve. Moreover, as $u_{\lambda}>0$ in $\bar{\Omega}$, this mapping is \mathcal{C}^{∞}.

4.2 The indefinite case

Throughout this subsection, in addition to (1.1) and (1.8), we assume that a changes sign. Moreover, we assume $p<\frac{2 N}{N-2}$ if $N>2$ (except in Proposition 4.22). We shall prove the existence of two positive solutions of $\left(P_{\lambda}\right)$ for $0<\lambda<\bar{\lambda}$ and characterize their asymptotic profiles as $\lambda \rightarrow 0^{+}$. To this end, we use the Nehari manifold and the fibering maps associated with I_{λ}. Let us introduce some useful subsets of X :

$$
\begin{aligned}
& E^{+}=\{u \in X: E(u)>0\}, \\
& A^{ \pm}=\{u \in X: A(u) \gtrless 0\}, \quad A_{0}=\{u \in X: A(u)=0\}, \quad A_{0}^{ \pm}=A^{ \pm} \cup A_{0}, \\
& B^{+}=\{u \in X: B(u)>0\} .
\end{aligned}
$$

The Nehari manifold associated with I_{λ} is given by

$$
N_{\lambda}:=\left\{u \in X \backslash\{0\}:\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=0\right\}=\{u \in X \backslash\{0\}: E(u)=A(u)+\lambda B(u)\} .
$$

We shall use the splitting

$$
N_{\lambda}=N_{\lambda}^{+} \cup N_{\lambda}^{-} \cup N_{\lambda}^{0}
$$

where

$$
\begin{aligned}
N_{\lambda}^{ \pm}:=\left\{u \in N_{\lambda}:\left\langle J_{\lambda}^{\prime}(u), u\right\rangle \gtrless 0\right\} & =\left\{u \in N_{\lambda}: E(u) \lessgtr \lambda \frac{p-q}{p-2} B(u)\right\} \\
& =\left\{u \in N_{\lambda}: E(u) \gtrless \frac{p-q}{2-q} A(u)\right\},
\end{aligned}
$$

and

$$
N_{\lambda}^{0}=\left\{u \in N_{\lambda}:\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0\right\} .
$$

Note that any nontrivial weak solution of $\left(P_{\lambda}\right)$ belongs to N_{λ}. Furthermore, it follows from the implicit function theorem that $N_{\lambda} \backslash N_{\lambda}^{0}$ is a \mathcal{C}^{1} manifold and every critical point of the restriction of I_{λ} to this manifold is a critical point of I_{λ} (see for instance [7, Theorem 2.3]).

To analyse the structure of $N_{\lambda}^{ \pm}$, we consider the fibering maps corresponding to I_{λ} for $u \neq 0$ in the following way:

$$
j_{u}(t):=I_{\lambda}(t u)=\frac{t^{2}}{2} E(u)-\frac{t^{p}}{p} A(u)-\lambda \frac{t^{q}}{q} B(u), \quad t>0 .
$$

It is easy to see that

$$
j_{u}^{\prime}(1)=0 \lessgtr j_{u}^{\prime \prime}(1) \Longleftrightarrow u \in N_{\lambda}^{ \pm}
$$

and more generally,

$$
j_{u}^{\prime}(t)=0 \lessgtr j_{u}^{\prime \prime}(t) \Longleftrightarrow t u \in N_{\lambda}^{ \pm} .
$$

Having this characterization in mind, we look for conditions under which j_{u} has a critical point. Set

$$
i_{u}(t):=t^{-q} j_{u}(t)=\frac{t^{2-q}}{2} E(u)-\frac{t^{p-q}}{p} A(u)-\lambda B(u), \quad t>0 .
$$

Let $u \in E^{+} \cap A^{+} \cap B^{+}$. Then i_{u} has a global maximum $i_{u}\left(t^{*}\right)$ at some $t^{*}>0$, and moreover, t^{*} is unique. If $i_{u}\left(t^{*}\right)>0$, then j_{u} has a global maximum which is positive and a local minimum which is negative. Moreover, these are the only critical points of j_{u}. We shall require a condition on λ that provides $i_{u}\left(t^{*}\right)>0$. Note that

$$
i_{u}^{\prime}(t)=\frac{2-q}{2} t^{1-q} E(u)-\frac{p-q}{p} t^{p-q-1} A(u)=0
$$

if and only if

$$
t=t^{*}:=\left(\frac{p(2-q) E(u)}{2(p-q) A(u)}\right)^{\frac{1}{p-2}} .
$$

Moreover,

$$
i_{u}\left(t^{*}\right)=\frac{p-2}{2(p-q)}\left(\frac{p(2-q)}{2(p-q)}\right)^{\frac{2-q}{p-2}} \frac{E(u)^{\frac{p-q}{p-2}}}{A(u)^{\frac{2-q}{p-2}}}-\frac{\lambda}{q} B(u)>0
$$

if and only if

$$
\begin{equation*}
0<\lambda^{\frac{p-2}{p-q}}<C_{p q} \frac{E(u)}{B(u)^{\frac{p-2}{p-q}} A(u)^{\frac{2-q}{p-q}}}, \tag{4.1}
\end{equation*}
$$

where $C_{p q}=\left(\frac{q(p-2)}{2(p-q)}\right)^{\frac{p-2}{p-q}}\left(\frac{p(2-q)}{2(p-q)}\right)^{\frac{2-q}{p-q}}$. Note that $F(u)=\frac{E(u)}{B(u)^{\frac{p-2}{p-q} A(u)^{\frac{2-q}{p-q}}} \text { satisfies } \text { siun }}$. $F(t u)=F(u)$ for $t>0$, i.e. F is homogeneous of order 0 (Fig. 2).

We deduce then the following result, which provides sufficient conditions for the existence of critical points of j_{u} :

Proposition 4.7 The following assertions hold:

Fig. 2 The case $i_{u}\left(t^{*}\right)>0$

Fig. 3 A case of j_{u} having a global maximum and a local minimum

(1) If either $u \in E^{+} \cap A_{0}^{-} \cap B^{+}$or $u \in A^{-} \cap B^{+}$, then $j_{u}(t)$ has a negative global minimum at some $t_{1}>0$, i.e. $j_{u}^{\prime}\left(t_{1}\right)=0<j_{u}^{\prime \prime}\left(t_{1}\right)$, and $j_{u}(t)>j_{u}\left(t_{1}\right)$ for $t \neq t_{1}$. Moreover, t_{1} is the unique critical point of j_{u} and $j_{u}(t) \rightarrow \infty$ as $t \rightarrow \infty$.
(2) If $u \in E^{+} \cap A^{+} \cap B_{0}$, then $j_{u}(t)$ has a positive global maximum at some $t_{2}>0$, i.e. $j_{u}^{\prime}\left(t_{2}\right)=0>j_{u}^{\prime \prime}\left(t_{2}\right)$ and $j_{u}(t)<j_{u}\left(t_{2}\right)$ for $t \neq t_{1}$. Moreover, t_{2} is the unique critical point of j_{u} and $j_{u}(t) \rightarrow-\infty$ as $t \rightarrow \infty$.
(3) Assume (1.8). If we set

$$
\begin{equation*}
\lambda_{0}^{\frac{p-2}{p-q}}=\inf \left\{E(u): u \in E^{+} \cap A^{+} \cap B^{+}, C_{p q}^{-1} B(u)^{\frac{p-2}{p-q}} A(u)^{\frac{2-q}{p-q}}=1\right\} \tag{4.2}
\end{equation*}
$$

then $\lambda_{0}>0$. Moreover, for any $0<\lambda<\lambda_{0}$ and $u \in E^{+} \cap A^{+} \cap B^{+}$, the map j_{u} has a negative local minimum at $t_{1}>0$ and a positive global maximum at $t_{2}>t_{1}$. Furthermore, t_{1}, t_{2} are the only critical points of j_{u} and $j_{u}(t) \rightarrow-\infty$ as $t \rightarrow \infty$ (see Fig. 3).

Proof Assertions (1) and (2) are straightforward from the definition of j_{u}. We prove now assertion (3). First, we show that $\lambda_{0}>0$. Assume $\lambda_{0}=0$, so that we can choose $u_{n} \in$ $E^{+} \cap A^{+} \cap B^{+}$satisfying

$$
E\left(u_{n}\right) \longrightarrow 0, \quad \text { and } \quad C_{p q}^{-1} B\left(u_{n}\right)^{\frac{p-2}{p-q}} A\left(u_{n}\right)^{\frac{2-q}{p-q}}=1
$$

If $\left(u_{n}\right)$ is bounded in X, then we may assume that $u_{n} \rightharpoonup u_{0}$ for some $u_{0} \in X$ and $u_{n} \rightarrow u_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. It follows from Lemma 4.1(1) that u_{0} is a constant and $u_{n} \rightarrow u_{0}$ in X. From $u_{n} \in A^{+}$, we deduce that $u_{0} \in A_{0}^{+}$. In addition, we have

$$
C_{p q}^{-1} B\left(u_{0}\right)^{\frac{p-2}{p-q}} A\left(u_{0}\right)^{\frac{2-q}{p-q}}=1,
$$

so that $u_{0} \not \equiv 0$. From Lemma 4.1(2), we get a contradiction.
Let us assume now that $\left\|u_{n}\right\| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, so that $\left\|v_{n}\right\|=1$. We may assume that $v_{n} \rightharpoonup v_{0}$ and $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$. Since $E\left(v_{n}\right) \rightarrow 0$ and $v_{n} \in A^{+}$, we have $v_{n} \rightarrow v_{0}$ in X, v_{0} is a constant, and $v_{0} \in A_{0}^{+}$. In particular, $\left\|v_{0}\right\|=1$, i.e. $v_{0} \not \equiv 0$. Lemma 4.1 provides again a contradiction.

Finally, for any $u \in E^{+} \cap A^{+} \cap B^{+}$, we have

$$
\lambda_{0}^{\frac{p-2}{p-q}} \leq C_{p q} \frac{E(u)}{B(u)^{\frac{p-2}{p-q}} A(u)^{\frac{2-q}{p-q}}} .
$$

Thus, if $0<\lambda<\lambda_{0}$ then $i_{u}\left(t^{*}\right)>0$ from (4.1). This completes the proof of assertion (3).

Proposition 4.8 We have, for $0<\lambda<\lambda_{0}$:
(1) N_{λ}^{0} is empty.
(2) $N_{\lambda}^{ \pm}$are non-empty.

Proof (1) From Proposition 4.7, it follows that there is no $t>0$ such that $j_{u}^{\prime}(t)=j_{u}^{\prime \prime}(t)=0$, i.e. N_{λ}^{0} is empty.
(2) Consider the following eigenvalue problem

$$
\begin{cases}-\Delta \varphi=\lambda a(x) \varphi & \text { in } \Omega, \\ \frac{\partial \varphi}{\partial \mathbf{n}}=0 & \text { on } \partial \Omega .\end{cases}
$$

Under (1.8), it is known that this problem has a unique positive principal eigenvalue λ_{N} with a positive principal eigenfunction φ_{N}. From $\varphi_{N}>0$ on $\partial \Omega$ and the fact that φ_{N} is not a constant, we deduce that $\varphi_{N} \in E^{+} \cap A^{+} \cap B^{+}$. Since $0<\lambda<\lambda_{0}$, Proposition 4.7(3) provides the desired conclusion.

The following result provides some properties of N_{λ}^{+}:
Lemma 4.9 Let $0<\lambda<\lambda_{0}$. Then, we have the following two assertions:
(1) N_{λ}^{+}is bounded in X.
(2) $I_{\lambda}(u)<0$ for any $u \in N_{\lambda}^{+}$and moreover $t>1$ if $j_{u}^{\prime}(t)>0$.

Proof (1) Assume (u_{n}) $\subset N_{\lambda}^{+}$and $\left\|u_{n}\right\| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. It follows that $\left\|v_{n}\right\|=1$, so we may assume that $v_{n} \rightharpoonup v_{0}, B\left(v_{n}\right)$ is bounded, and $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$ (implying $\left.A(v) \rightarrow A\left(v_{0}\right)\right)$. Since $u_{n} \in N_{\lambda}^{+}$, we see that

$$
E\left(v_{n}\right)<\lambda \frac{p-q}{p-2} B\left(v_{n}\right)\left\|u_{n}\right\|^{q-2},
$$

and thus $\lim \sup _{n} E\left(v_{n}\right) \leq 0$. Lemma 4.1(1) yields that v_{0} is a constant and $v_{n} \rightarrow v_{0}$ in X. Consequently, $\left\|v_{0}\right\|=1$, and v_{0} is a nonzero constant. However, since $u_{n} \in N_{\lambda}$, we see that

$$
0 \leq E\left(u_{n}\right)=A\left(u_{n}\right)+\lambda B\left(u_{n}\right),
$$

and it follows that

$$
0 \leq A\left(v_{n}\right)+\lambda B\left(v_{n}\right)\left\|u_{n}\right\|^{q-p} .
$$

Passing to the limit as $n \rightarrow \infty$, we deduce $0 \leq A\left(v_{0}\right)$. Lemma 4.1(2) leads us to a contradiction. Therefore, N_{λ}^{+}is bounded in X.
(2) Let $u \in N_{\lambda}^{+}$. Then

$$
0 \leq E(u)<\lambda \frac{p-q}{p-2} B(u),
$$

so that $B(u)>0$. First we assume that u is not a constant. In this case, $E(u)>0$. If $A(u)>0$, then Proposition 4.7(3) tells us that $I_{\lambda}(u)<0$ and $t>1$ if $j_{u}^{\prime}(t)>0$. On the other hand, if $A(u) \leq 0$, then $u \in E^{+} \cap A_{0}^{-} \cap B^{+}$. So Proposition 4.7(1) gives the same conclusion. Assume now that u is a constant. In this case, $A(u)=|u|^{p} \int_{\Omega} a<0$, so that $u \in A^{-} \cap B^{+}$. Proposition 4.7(1) again yields the desired conclusion.

Next we prove that $\inf _{N_{\lambda}^{+}} I_{\lambda}$ is achieved by some $u_{1, \lambda}>0$ for $\lambda \in\left(0, \lambda_{0}\right)$, which implies the estimate $\bar{\lambda} \geq \lambda_{0}$. Furthermore, we will show that $u_{1, \lambda}$ is in fact the minimal positive solution of $\left(P_{\lambda}\right)$ for $\lambda>0$ sufficiently small (see Corollary 4.21).

Proposition 4.10 For any $0<\lambda<\lambda_{0}$, there exists $u_{1, \lambda}$ such that $I_{\lambda}\left(u_{1, \lambda}\right)=\min _{N_{\lambda}^{+}} I_{\lambda}$. In particular, $u_{1, \lambda}$ is a positive solution of $\left(P_{\lambda}\right)$.
Proof Let $0<\lambda<\lambda_{0}$. We consider a minimizing sequence $\left(u_{n}\right) \subset N_{\lambda}^{+}$, i.e.

$$
I_{\lambda}\left(u_{n}\right) \longrightarrow \inf _{N_{\lambda}^{+}} I_{\lambda}<0
$$

Since $\left(u_{n}\right)$ is bounded in X, we may assume that $u_{n} \rightharpoonup u_{0}, u_{n} \rightarrow u_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. It follows that

$$
I_{\lambda}\left(u_{0}\right) \leq \liminf _{n} \inf _{\lambda}\left(u_{n}\right)=\inf _{N_{\lambda}^{+}} I_{\lambda}(u)<0,
$$

so that $u_{0} \not \equiv 0$. We claim that $u_{n} \rightarrow u_{0}$ in X. We have two possibilities:

- If u_{0} is a constant, then $0=E\left(u_{0}\right) \leq \lambda \frac{p-q}{p-2} B\left(u_{0}\right)$. If $B\left(u_{0}\right)=0$, then $u_{0}=0$ on $\partial \Omega$, so that $u_{0}=0$ in Ω, which yields a contradiction. Hence, $B\left(u_{0}\right)>0$. In this case, we have $A\left(u_{0}\right)=\left|u_{0}\right|^{p} \int_{\Omega} a<0$, so that $u_{0} \in A^{-} \cap B^{+}$. Proposition 4.7(1) implies that $t_{1} u_{0} \in N_{\lambda}^{+}$and $j_{u_{0}}$ has a global minimum at t_{1}. If $u_{n} \nrightarrow u_{0}$, then

$$
\begin{equation*}
I_{\lambda}\left(t_{1} u_{0}\right)=j_{u_{0}}\left(t_{1}\right) \leq j_{u_{0}}(1)<\liminf _{n} j_{u_{n}}(1)=\liminf _{n} I_{\lambda}\left(u_{n}\right)=\inf _{N_{\lambda}^{+}} I_{\lambda} \tag{4.3}
\end{equation*}
$$

which is a contradiction since $t_{1} u_{0} \in N_{\lambda}^{+}$. Therefore, $u_{n} \rightarrow u_{0}$.

- If u_{0} is not a constant, then $E\left(u_{0}\right)>0$ and $B\left(u_{0}\right)>0$. So either $u_{0} \in E^{+} \cap A_{0}^{-} \cap B^{+}$ or $u_{0} \in E^{+} \cap A^{+} \cap B^{+}$. In the first case, $j_{u_{0}}$ has a global minimum point t_{1} and we can argue as in the previous case. In the second case, since $0<\lambda<\lambda_{0}$, Proposition 4.7 yields that $t_{1} u_{0} \in N_{\lambda}^{+}$for some $t_{1}>0$. Assume $u_{n} \nrightarrow u_{0}$. If $1<t_{1}$, then we have again

$$
\begin{equation*}
I_{\lambda}\left(t_{1} u_{0}\right)=j_{u_{0}}\left(t_{1}\right) \leq j_{u_{0}}(1)<\liminf _{n} j_{u_{n}}(1)=\liminf _{n} I_{\lambda}\left(u_{n}\right)=\inf _{N_{\lambda}^{+}} I_{\lambda}, \tag{4.4}
\end{equation*}
$$

If $t_{1}<1$, then $j_{u_{n}}^{\prime}\left(t_{1}\right)<0$ for every n, so that $j_{u_{0}}^{\prime}\left(t_{1}\right)<\lim \inf j_{u_{n}}^{\prime}\left(t_{1}\right) \leq 0$, which is a contradiction. Therefore, $u_{n} \rightarrow u_{0}$.
Now, since $u_{n} \rightarrow u_{0}$ we have $j_{u_{0}}^{\prime}(1)=0 \leq j_{u_{0}}^{\prime \prime}(1)$. But $j_{u_{0}}^{\prime \prime}(1)=0$ is impossible by Proposition 4.8(1). Thus, $u_{0} \in N_{\lambda}^{+}$and $I_{\lambda}\left(u_{0}\right)=\inf _{N_{\lambda}^{+}} I_{\lambda}$.

Remark 4.11 From Proposition 4.10, we derive $\bar{\lambda} \geq \lambda_{0}$.
Next we obtain a second nontrivial non-negative weak solution of $\left(P_{\lambda}\right)$, which achieves $\inf _{N_{\lambda}^{-}} I_{\lambda}$ for $\lambda \in\left(0, \lambda_{0}\right)$. The following result provides some properties of N_{λ}^{-}:

Lemma 4.12 Let $0<\lambda<\lambda_{0}$. Then we have $I_{\lambda}(u)>0$ for any $u \in N_{\lambda}^{-}$. Moreover, $t<1$ if $j_{u}^{\prime}(t)>0$.

Proof If $u \in N_{\lambda}^{-}$, then $A(u)>0$ and u is not a constant from Lemma 4.1(2). It follows immediately that $E(u)>0$. If $B(u)>0$, then, by Proposition 4.7(3), we have that $I_{\lambda}(u)>0$ and $t<1$ if $j_{u}^{\prime}(t)>0$. If $B(u)=0$, then Proposition 4.7(2) provides the same conclusion.

Proposition 4.13 For any $\lambda \in\left(0, \lambda_{0}\right)$, there exists $u_{2, \lambda}$ such that $I_{\lambda}\left(u_{2, \lambda}\right)=\min _{N_{\lambda}^{-}} I_{\lambda}$. In particular, $u_{2, \lambda}$ is a positive solution of $\left(P_{\lambda}\right)$.

Proof Since $I_{\lambda}(u)>0$ for $u \in N_{\lambda}^{-}$, we can choose $u_{n} \in N_{\lambda}^{-}$such that

$$
I_{\lambda}\left(u_{n}\right) \longrightarrow \inf _{N_{\lambda}^{-}} I_{\lambda}(u) \geq 0
$$

We claim that $\left(u_{n}\right)$ is bounded in X. Indeed, there exists $C>0$ such that $I_{\lambda}\left(u_{n}\right) \leq C$. Since $u_{n} \in N_{\lambda}$, we deduce

$$
\left(\frac{1}{2}-\frac{1}{p}\right) E\left(u_{n}\right)-\lambda\left(\frac{1}{q}-\frac{1}{p}\right) B\left(u_{n}\right)=I_{\lambda}\left(u_{n}\right) \leq C .
$$

Assume $\left\|u_{n}\right\| \rightarrow \infty$ and set $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, so that $\left\|v_{n}\right\|=1$. We may assume that $v_{n} \rightharpoonup v_{0}$, and $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. Then, from

$$
\left(\frac{1}{2}-\frac{1}{p}\right) E\left(v_{n}\right) \leq \lambda\left(\frac{1}{q}-\frac{1}{p}\right) B\left(v_{n}\right)\left\|u_{n}\right\|^{q-2}+\frac{C}{\left\|u_{n}\right\|^{2}},
$$

we infer that $\lim _{\sup _{n}} E\left(v_{n}\right) \leq 0$. Lemma 4.1(1) yields that v_{0} is a constant, and $v_{n} \rightarrow v_{0}$ in X, which implies $\left\|v_{0}\right\|=1$. However, since $u_{n} \in N_{\lambda}^{-}$, we observe that

$$
E\left(v_{n}\right)\left\|u_{n}\right\|^{2-p}<\frac{p-q}{2-q} A\left(v_{n}\right) .
$$

Passing to the limit $n \rightarrow \infty$, we get $0 \leq A\left(v_{0}\right)$, which is contradictory by Lemma 4.1(2). Hence, $\left(u_{n}\right)$ is bounded. We may then assume that $u_{n} \rightharpoonup u_{0}$, and $u_{n} \rightarrow u_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. We claim that $u_{n} \rightarrow u_{0}$ in X. Assume $u_{n} \nrightarrow u_{0}$. Then, since $u_{n} \in N_{\lambda}^{-}$, we deduce

$$
0 \leq E\left(u_{0}\right)<\liminf _{n} E\left(u_{n}\right) \leq \liminf _{n} \frac{p-q}{2-q} A\left(u_{n}\right)=\frac{p-q}{2-q} A\left(u_{0}\right) .
$$

This implies that u_{0} is not a constant by Lemma 4.1(2), so that $E\left(u_{0}\right)>0$. Since $u_{0} \in$ $E^{+} \cap A^{+}$, Proposition 4.7 tells us that there exists $t_{2}>0$ such that $t_{2} u_{0} \in N_{\lambda}^{-}$. Moreover, $0=j_{u_{0}}^{\prime}\left(t_{2}\right)<\liminf _{n} j_{u_{n}}^{\prime}\left(t_{2}\right)$, since $u_{n} \nrightarrow u_{0}$. We deduce that $j_{u_{n}}^{\prime}\left(t_{2}\right)>0$ for n large enough. Since $u_{n} \in N_{\lambda}^{-}$, we have $t_{2}<1$ from Lemma 4.12. Then, we observe that

$$
I_{\lambda}\left(t_{2} u_{0}\right)=j_{u_{0}}\left(t_{2}\right)<\liminf _{n} j_{u_{n}}\left(t_{2}\right) \leq \liminf _{n} j_{u_{n}}(1)=\liminf _{n} I_{\lambda}\left(u_{n}\right)=\inf _{N_{\lambda}^{-}} I_{\lambda} .
$$

This is a contradiction, which implies that $u_{n} \rightarrow u_{0}$ and $I_{\lambda}\left(u_{n}\right) \rightarrow I_{\lambda}\left(u_{0}\right)=\gamma$.
Now we verify that $u_{0} \neq 0$. Assume $u_{0}=0$. Then, since $u_{n} \in N_{\lambda}$, we have

$$
E\left(v_{n}\right)\left\|u_{n}\right\|^{2-q}=A\left(v_{n}\right)\left\|u_{n}\right\|^{p-q}+\lambda B\left(v_{n}\right),
$$

where $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. We may assume again that $v_{n} \rightharpoonup v_{0}$ and $v_{n} \rightarrow v_{0}$ in $L^{q}(\partial \Omega)$ and $L^{p}(\Omega)$. Passing to the limit as $n \rightarrow \infty$, we obtain $0=\lambda B\left(v_{0}\right)$, so that $v_{0}=0$ on $\partial \Omega$. On the other hand, we observe that

$$
0<I_{\lambda}\left(u_{n}\right)=\frac{1}{2} E\left(u_{n}\right)-\frac{1}{p} A\left(u_{n}\right)-\frac{\lambda}{q} B\left(u_{n}\right) .
$$

Since $u_{n} \in N_{\lambda}$, we deduce

$$
\left(\frac{1}{q}-\frac{1}{2}\right) E\left(v_{n}\right) \leq\left(\frac{1}{q}-\frac{1}{p}\right) A\left(v_{n}\right)\left\|u_{n}\right\|^{p-2} .
$$

From the assumption $u_{n} \rightarrow 0$ in X, it follows that $\lim \sup E\left(v_{n}\right) \leq 0$. By Lemma 4.1(1), we get that v_{0} is a constant, and $v_{n} \rightarrow v_{0}$ in X, so that $\left\|v_{0}\right\|=1$. Since v_{0} is a constant and $v_{0}=0$ on $\partial \Omega$, we have $v_{0}=0$ in Ω. This is a contradiction, as desired.

Finally, since $u_{n} \rightarrow u_{0}$ in X, we have $j_{u_{0}}^{\prime}(1)=0 \geq j_{u_{0}}^{\prime \prime}(1)$. But $j_{u_{0}}^{\prime \prime}(1)=0$ is impossible by Proposition 4.8(1). Thus, $u_{0} \in N_{\lambda}^{-}$and $I_{\lambda}\left(u_{0}\right)=\inf _{N_{\lambda}^{-}} I_{\lambda}$.

We discuss now the asymptotic profiles of $u_{1, \lambda}, u_{2, \lambda}$ as $\lambda \rightarrow 0^{+}$. The following lemma is concerned with the behaviour of positive solutions in N_{λ}^{+}as $\lambda \rightarrow 0^{+}$:

Proposition 4.14 If u_{λ} is a positive solution of $\left(P_{\lambda}\right)$ such that $u_{\lambda} \in N_{\lambda}^{+}$for $\lambda>0$ sufficiently small, then $u_{\lambda} \rightarrow 0$ in X as $\lambda \rightarrow 0^{+}$. Moreover, there holds $\lambda^{-\frac{1}{p-q}} u_{\lambda} \rightarrow c^{*}$ in $\mathcal{C}^{2+\theta}(\bar{\Omega})$ for any $\theta \in(0, \alpha)$ as $\lambda \rightarrow 0^{+}$.

Proof First we show that u_{λ} remains bounded in X as $\lambda \rightarrow 0^{+}$. Indeed, assume that $\left\|u_{\lambda}\right\| \rightarrow$ ∞ and set $v_{\lambda}=\frac{u_{\lambda}}{\left\|u_{\lambda}\right\|^{\prime}}$. We may then assume that for some $v_{0} \in X$, we have $v_{\lambda} \rightharpoonup v_{0}$ in X, and $v_{\lambda} \rightarrow v_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. Since $u_{\lambda} \in N_{\lambda}$, we have

$$
E\left(v_{\lambda}\right)\left\|u_{\lambda}\right\|^{2-p}=A\left(v_{\lambda}\right)+\lambda B\left(v_{\lambda}\right)\left\|u_{\lambda}\right\|^{q-p} .
$$

Passing to the limit as $\lambda \rightarrow 0^{+}$, we obtain $A\left(v_{0}\right)=0$. From $u_{\lambda} \in N_{\lambda}^{+}$, we have

$$
E\left(v_{\lambda}\right)<\lambda \frac{p-q}{p-2} B\left(v_{\lambda}\right)\left\|u_{\lambda}\right\|^{q-2},
$$

so that $\lim \sup _{\lambda} E\left(v_{\lambda}\right) \leq 0$. By Lemma 4.1(1), we infer that v_{0} is a constant and $v_{\lambda} \rightarrow v_{0}$ in X, so that $\left\|v_{0}\right\|=1$, i.e. $v_{0} \neq 0$. This is contradictory with Lemma 4.1(2), and therefore, u_{λ} stays bounded in X as $\lambda \rightarrow 0^{+}$.

Hence, we may assume that $u_{\lambda} \rightarrow u_{0}$ in X and $u_{\lambda} \rightarrow u_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$ as $\lambda \rightarrow 0^{+}$. Since $u_{\lambda} \in N_{\lambda}^{+}$, we observe that

$$
E\left(u_{\lambda}\right)<\lambda \frac{p-q}{p-2} B\left(u_{\lambda}\right) .
$$

Passing to the limit as $\lambda \rightarrow 0^{+}$, we get $\lim \sup _{\lambda} E\left(u_{\lambda}\right) \leq 0$. Lemma 4.1(2) provides that u_{0} is a constant and $u_{\lambda} \rightarrow u_{0}$ in X. Since $u_{\lambda} \in N_{\lambda}$, we have

$$
E\left(u_{\lambda}\right)=A\left(u_{\lambda}\right)+\lambda B\left(u_{\lambda}\right) .
$$

which implies $A\left(u_{0}\right)=0$, so that $u_{0}=0$ from Lemma 4.1(2). Therefore, $u_{\lambda} \rightarrow 0$ in X as $\lambda \rightarrow 0^{+}$.

Now we obtain the asymptotic profile of u_{λ} as $\lambda \rightarrow 0^{+}$. Let $w_{\lambda}=\lambda^{-\frac{1}{p-q}} u_{\lambda}$. We claim that w_{λ} remains bounded in X as $\lambda \rightarrow 0^{+}$. Indeed, since $u_{\lambda} \in N_{\lambda}^{+}$, we have

$$
E\left(w_{\lambda}\right)<\frac{p-q}{p-2} \lambda^{\frac{p-2}{p-q}} B\left(w_{\lambda}\right) .
$$

Let us assume that $\left\|w_{\lambda}\right\| \rightarrow \infty$ and set $\psi_{\lambda}=\frac{w_{\lambda}}{\left\|w_{\lambda}\right\|}$. We may assume that $\psi_{\lambda} \rightharpoonup \psi_{0}$ and $\psi_{\lambda} \rightarrow \psi_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. It follows that

$$
E\left(\psi_{\lambda}\right)<\frac{p-q}{p-2} \lambda^{\frac{p-2}{p-q}} B\left(\psi_{\lambda}\right)\left\|w_{\lambda}\right\|^{q-2},
$$

so that $\lim \sup _{\lambda} E\left(\psi_{\lambda}\right) \leq 0$. By Lemma 4.1(1), we infer that ψ_{0} is a constant and $\psi_{\lambda} \rightarrow \psi_{0}$ in X. On the other hand, from $u_{\lambda} \in N_{\lambda}$ it follows that

$$
0 \leq A\left(u_{\lambda}\right)+\lambda B\left(u_{\lambda}\right),
$$

so that

$$
-B\left(\psi_{\lambda}\right)\left\|w_{\lambda}\right\|^{q-p} \leq A\left(\psi_{\lambda}\right) .
$$

Taking the limit as $\lambda \rightarrow 0^{+}$, we get $0 \leq A\left(\psi_{0}\right)$, which contradicts Lemma 4.1(2). Hence, w_{λ} stays bounded in X as $\lambda \rightarrow 0^{+}$and we may assume that $w_{\lambda} \rightharpoonup w_{0}$ in X and $w_{\lambda} \rightarrow w_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. It follows that $\lim \sup _{\lambda} E\left(w_{\lambda}\right) \leq 0$, and by Lemma 4.1(1), we get that w_{0} is a constant and $w_{\lambda} \rightarrow w_{0}$ in X.

It remains to show that $w_{0}=c^{*}$. We note that w_{λ} satisfies

$$
\begin{equation*}
\int_{\Omega} \nabla w_{\lambda} \nabla w-\lambda^{\frac{p-2}{p-q}} \int_{\Omega} a w_{\lambda}^{p-1} w-\lambda^{\frac{p-2}{p-q}} \int_{\partial \Omega} w_{\lambda}^{q-1} w=0, \quad \forall w \in X, \tag{4.5}
\end{equation*}
$$

since u_{λ} is a weak solution of $\left(P_{\lambda}\right)$. Taking $w=1$, we see that

$$
\int_{\Omega} a w_{\lambda}^{p-1}+\int_{\partial \Omega} w_{\lambda}^{q-1}=0 .
$$

Passing to the limit as $\lambda \rightarrow 0^{+}$, we see that either $w_{0}=0$ or $w_{0}=c^{*}$. However, taking $w=\frac{1}{w_{\lambda}^{q-1}}$ in (4.5), we obtain

$$
0>-(q-1) \int_{\Omega} w_{\lambda}^{-q}\left|\nabla w_{\lambda}\right|^{2}=\lambda^{\frac{p-2}{p-q}}\left(\int_{\Omega} a w_{\lambda}^{p-q}+|\partial \Omega|\right),
$$

so that

$$
|\partial \Omega|<-\int_{\Omega} a w_{\lambda}^{p-q}
$$

It is clear then that $w_{0} \neq 0$, i.e. $w_{0}=c^{*}$, and consequently we obtain $\lambda^{-\frac{1}{p-q}} u_{\lambda} \rightarrow c^{*}$ in X. By a standard bootstrap argument, we get the desired conclusion.

We turn now to the asymptotic behaviour of $u_{2, \lambda}$ as $\lambda \rightarrow 0^{+}$. We shall prove initially that solutions in N_{λ}^{-}are bounded away from zero as $\lambda \rightarrow 0^{+}$:

Lemma 4.15 If u_{λ} is a positive solution of $\left(P_{\lambda}\right)$ such that $u_{\lambda} \in N_{\lambda}^{-}$for $\lambda>0$ sufficiently small, then $\left\|u_{\lambda}\right\| \geq C$ for some constant $C>0$ as $\lambda \rightarrow 0^{+}$.

Proof Assume by contradiction that $\left(u_{n}\right)$ is a sequence of positive solutions of $\left(P_{\lambda_{n}}\right)$ with $\lambda_{n} \rightarrow 0^{+}, u_{n} \in N_{\lambda_{n}}^{-}$and $\left\|u_{n}\right\| \rightarrow 0$. Then, since $u_{n} \in N_{\lambda_{n}}^{-}$, we deduce

$$
E\left(v_{n}\right)<\frac{p-q}{2-q} A\left(v_{n}\right)\left\|u_{n}\right\|^{p-2}
$$

where $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. We may assume that $v_{n} \rightharpoonup v_{0}$ in X and $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$. It follows that $\lim \sup E\left(v_{n}\right) \leq 0$. By Lemma 4.1(1), we get that v_{0} is a constant and $v_{n} \rightarrow v_{0}$ in X, so that $\left\|v_{0}\right\|=1$. On the other hand, we see that $A\left(v_{n}\right)>0$, since $u_{n} \in N_{\lambda_{n}}^{-}$. We obtain then $0 \leq A\left(v_{0}\right)$, which is a contradiction with Lemma 4.1(2).

We prove now that $u_{2, \lambda}$ is bounded in X as $\lambda \rightarrow 0^{+}$:
Lemma 4.16 There exists a constant $C>0$ such that $C^{-1} \leq\left\|u_{2, \lambda}\right\| \leq C$ as $\lambda \rightarrow 0^{+}$.

Proof By Lemma 4.15, we know that $\left\|u_{2, \lambda}\right\| \geq C^{-1}$ for some $C>0$ as $\lambda \rightarrow 0^{+}$. We show now that $u_{2, \lambda}$ is bounded in X as $\lambda \rightarrow 0^{+}$. First, we show that there exists a constant $C_{1}>0$ such that $I_{\lambda}\left(u_{2, \lambda}\right) \leq C_{1}$ for every $\lambda \in\left(0, \lambda_{0}\right)$. To this end, we consider the following eigenvalue problem with the Dirichlet boundary condition.

$$
\begin{cases}-\Delta \varphi=\lambda a(x) \varphi & \text { in } \Omega, \tag{4.6}\\ \varphi=0 & \text { on } \partial \Omega .\end{cases}
$$

We denote by φ_{D} a positive eigenfunction associated with the positive principal eigenvalue λ_{D}. Multiplying (4.6) by φ_{D}^{p-1}, we see that $\varphi_{D} \in A^{+}$. Thus, $\varphi_{D} \in E^{+} \cap A^{+} \cap B_{0}$ and

$$
j_{\varphi_{D}}(t)=\frac{t^{2}}{2} E\left(\varphi_{D}\right)-\frac{t^{p}}{p} A\left(\varphi_{D}\right),
$$

so that $j_{\varphi_{D}}$ has a global maximum at some $t_{2}>0$, which implies $t_{2} \varphi_{D} \in N_{\lambda}^{-}$. Moreover, neither $j_{\varphi_{D}}$ nor $t_{2} \varphi_{D}$ depend on $\lambda \in\left(0, \lambda_{0}\right)$. Let $C_{1}=j_{\varphi_{D}}\left(t_{2}\right)=I_{\lambda}\left(t_{2} \varphi_{D}\right)>0$. Since $t_{2} \varphi_{D} \in N_{\lambda}^{-}$, we deduce that $I_{\lambda}\left(u_{2, \lambda}\right) \leq C_{1}$.

Assume now that $\left\|u_{2, \lambda}\right\| \rightarrow \infty$ as $\lambda \rightarrow 0^{+}$and set $v_{\lambda}=\frac{u_{2, \lambda}}{\left\|u_{2, \lambda}\right\|}$. We may assume that $v_{\lambda} \rightharpoonup v_{0}$ and $v_{\lambda} \rightarrow v_{0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. Since

$$
0 \leq E\left(u_{2, \lambda}\right)<\frac{p-q}{2-q} A\left(u_{2, \lambda}\right),
$$

it follows that $A\left(v_{\lambda}\right)>0$. Passing to the limit as $\lambda \rightarrow 0^{+}$, we get $A\left(v_{0}\right) \geq 0$. However, we will see that the condition $I_{\lambda}\left(u_{2, \lambda}\right) \leq C_{1}$ leads us to a contradiction. Indeed, since $u_{2, \lambda} \in N_{\lambda}$, we deduce

$$
\left(\frac{1}{2}-\frac{1}{p}\right) E\left(u_{2, \lambda}\right)-\left(\frac{1}{q}-\frac{1}{p}\right) \lambda B\left(u_{2, \lambda}\right)=I_{\lambda}\left(u_{2, \lambda}\right) \leq C_{1} .
$$

Hence,

$$
\left(\frac{1}{2}-\frac{1}{p}\right) E\left(v_{\lambda}\right) \leq\left(\frac{1}{q}-\frac{1}{p}\right) \lambda B\left(v_{\lambda}\right)\left\|u_{2, \lambda}\right\|^{q-2}+C_{1}\left\|u_{2, \lambda}\right\|^{-2} .
$$

Letting $\lambda \rightarrow 0^{+}$, we obtain $\lim \sup _{\lambda} E\left(v_{\lambda}\right) \leq 0$, and by Lemma 4.1, we infer that v_{0} is a constant and $v_{\lambda} \rightarrow v_{0}$ in X. In particular, $\left\|v_{0}\right\|=1$, which contradicts Lemma 4.1(2). The proof is now complete.

We establish now (up to a subsequence) the precise limiting behaviour of $u_{2, \lambda}$:
Proposition 4.17 There exists a sequence $\lambda_{n} \rightarrow 0^{+}$such that $u_{2, \lambda_{n}} \rightarrow u_{2,0}$ in $\mathcal{C}^{2+\theta}(\bar{\Omega})$ for any $\theta \in(0, \alpha)$, where $u_{2,0}$ is a positive solution of (1.9).

Proof Since $u_{2, \lambda}$ stays bounded in X as $\lambda \rightarrow 0^{+}$, up to a subsequence, we have $u_{2, \lambda} \rightharpoonup u_{2,0}$, and $u_{2, \lambda} \rightarrow u_{2,0}$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$ as $\lambda \rightarrow 0^{+}$. Since $u_{2, \lambda}$ is a weak solution of $\left(P_{\lambda}\right)$, we have

$$
\int_{\Omega} \nabla u_{2, \lambda} \nabla w-\int_{\Omega} a u_{2, \lambda}^{p-1} w-\lambda \int_{\partial \Omega} u_{2, \lambda}^{q-1} w=0, \quad \forall w \in X .
$$

Letting $\lambda \rightarrow 0^{+}$, we get

$$
\int_{\Omega} \nabla u_{2,0} \nabla w-\int_{\Omega} a u_{2,0}^{p-1} w=0, \quad \forall w \in X,
$$

i.e. $u_{2,0}$ is a non-negative weak solution of (1.9). If $u_{2,0} \equiv 0$, then from

$$
E\left(u_{2, \lambda}\right)<\frac{p-q}{2-q} A\left(u_{2, \lambda}\right) \quad \text { and } \quad A\left(u_{2,0}\right)=0
$$

we deduce that $\lim \sup _{\lambda} E\left(u_{2, \lambda}\right) \leq 0$. By Lemma 4.1(1), we infer that u_{0} is a constant and $u_{2, \lambda} \rightarrow u_{2,0}=0$ in X, which contradicts Lemma 4.16.

Finally, since $u_{2,0} \in \mathcal{C}^{2+\alpha}(\bar{\Omega})$, and $u_{2,0}>0$ in $\bar{\Omega}$ by the weak maximum principle and the boundary point lemma, we infer that $u_{2,0}$ is a positive solution of (1.9). By a standard bootstrap argument, we obtain the desired conclusion.

We show now the uniqueness of positive solutions of $\left(P_{\lambda}\right)$ converging to 0 as $\lambda \rightarrow 0^{+}$. This will be done combining Proposition 3.2, Proposition 4.14, and Lemma 4.15.

Lemma 4.18 Any positive solution of $\left(P_{\lambda}\right)$ converging to 0 in X as $\lambda \rightarrow 0^{+}$belongs to N_{λ}^{+}.
Proof By Proposition 4.8(1), we know that N_{λ}^{0} is empty for $0<\lambda<\lambda_{0}$. Furthermore, by Lemma 4.15, if $u_{\lambda} \in N_{\lambda}^{-}$is a solution of $\left(P_{\lambda}\right)$ with $\lambda \rightarrow 0^{+}$, then $\left\|u_{\lambda}\right\| \geq C$, for some constant $C>0$. Therefore, $u_{\lambda} \in N_{\lambda}^{+}$.

Proposition $4.19\left(P_{\lambda}\right)$ has a unique positive solution converging to 0 in X as $\lambda \rightarrow 0^{+}$. More precisely, there exists an open neighbourhood U of $(\lambda, u)=(0,0)$ in X such that if u is a positive solution of $\left(P_{\lambda}\right)$ with $\lambda>0$ and $(\lambda, u) \in U$, then $u=u(\lambda)$, where $u(\lambda)$ is given by Proposition 3.3.

Proof First of all, from Proposition 3.2 with $\theta=\theta_{0}<\alpha$, we know that the set of solutions of (3.1) for $\lambda>0$ around $(\lambda, w)=\left(0, c^{*}\right)$ in $\mathbb{R} \times C^{2+\theta_{0}}(\bar{\Omega})$ consists of $\left\{\left(\lambda, \lambda^{-\frac{1}{p-q}} u(\lambda)\right)\right\}$. We assume by contradiction that for a open ball $B_{\rho_{n}}(0,0)$ in X with $\rho_{n} \rightarrow 0^{+}$, we can choose $\lambda_{n}>0$ and a positive solution $u_{\lambda_{n}}$ of $\left(P_{\lambda_{n}}\right)$ such that $\left(\lambda_{n}, u_{\lambda_{n}}\right) \in B_{\rho_{n}}(0,0)$ but $u_{\lambda_{n}} \neq u\left(\lambda_{n}\right)$. Since $\lambda_{n} \rightarrow 0^{+}$and $u_{\lambda_{n}} \rightarrow 0$ in X, Lemma 4.18 provides that $u_{\lambda_{n}} \in N_{\lambda_{n}}^{+}$for any n large enough. So Proposition 4.14 yields $\lambda_{n}^{-\frac{1}{p-q}} u_{\lambda_{n}} \rightarrow c^{*}$ in $\mathcal{C}^{2+\theta_{1}}(\bar{\Omega})$ for $\theta_{1} \in\left(\theta_{0}, \alpha\right)$. In particular, we have $\lambda_{n}^{-\frac{1}{p-q}} u_{\lambda_{n}} \rightarrow c^{*}$ in $\mathcal{C}^{2+\theta_{0}}(\bar{\Omega})$. It follows that $u_{\lambda_{n}}=u\left(\lambda_{n}\right)$ for n sufficiently large, which is a contradiction.

Remark 4.20 From Lemma 4.15 and Proposition 4.19, it follows that if $\left(u_{n}\right)$ is a sequence of positive solutions of ($P_{\lambda_{n}}$) which are not minimal and $\lambda_{n} \rightarrow 0^{+}$, then $\left(u_{n}\right)$ is bounded from below by a positive constant.

Corollary 4.21 Let $u(\lambda)$ be the positive solution given by Proposition 3.3, and let $u_{1, \lambda}$ be the positive solution given by Proposition 4.10. Then $u(\lambda)$ and $u_{1, \lambda}$ are both equal to the minimal positive solution of $\left(P_{\lambda}\right)$ for $\lambda>0$ sufficiently small.

Let us prove now that if $\bar{\lambda}<\infty$, then $\left(P_{\bar{\lambda}}\right)$ has a positive solution:
Proposition 4.22 Assume (1.8) and $0<\bar{\lambda}<\infty$. Then (P_{λ}) has a positive solution for $\lambda=\bar{\lambda}$.

Proof By Proposition 3.6, we know that $\left(P_{\lambda}\right)$ has a minimal positive solution \underline{u}_{λ} for $0<\lambda<$ $\bar{\lambda}$. We claim that $\underline{u}_{\lambda} \in N_{\lambda}^{+} \cup N_{\lambda}^{0}$. Indeed, we know that \underline{u}_{λ} is weakly stable, i.e. if $\gamma_{1}(\lambda, u)$ is
the smallest eigenvalue of the linearized eigenvalue problem at a positive solution u of $\left(P_{\lambda}\right)$, namely

$$
\begin{cases}-\Delta \phi=(p-1) a(x) u^{p-2} \phi+\gamma \phi & \text { in } \Omega, \\ \frac{\partial \phi}{\partial \mathbf{n}}=\lambda(q-1) u^{q-2} \phi+\gamma \phi & \text { on } \partial \Omega\end{cases}
$$

then we have $\gamma_{1}(\lambda):=\gamma_{1}\left(\lambda, \underline{u}_{\lambda}\right) \geq 0$, see [1, Theorem 20.4]. On the other hand, if $\underline{u}_{\lambda} \in N_{\lambda}^{-}$ then

$$
E\left(\underline{u}_{\lambda}\right)-(p-1) A\left(\underline{u}_{\lambda}\right)-\lambda(q-1) B\left(\underline{u}_{\lambda}\right)<0,
$$

which provides $\gamma_{1}(\lambda)<0$. Therefore, $\underline{u}_{\lambda} \in N_{\lambda}^{+} \cup N_{\lambda}^{0}$. We claim now that \underline{u}_{λ} is bounded in X for $0<\lambda<\bar{\lambda}$. Assume by contradiction that $\left\|\underline{u}_{\lambda_{n}}\right\| \rightarrow \infty$ with $\lambda_{n} \nearrow \bar{\lambda}$. Set $v_{n}=\frac{\underline{u}_{\lambda_{n}}}{\left\|\underline{u}_{\lambda_{n}}\right\|}$. We may assume that $v_{n} \rightharpoonup v_{0}$ in X and $v_{n} \rightarrow v_{0}$ in $L^{q}(\partial \Omega)$. Since $\underline{u}_{\lambda_{n}} \in N_{\lambda_{n}}^{+} \cup N_{\lambda_{n}}^{0}$, we have

$$
0 \leq E\left(v_{n}\right) \leq \lambda_{n} C B\left(v_{n}\right)\left\|\underline{u}_{\lambda_{n}}\right\|^{q-2} \rightarrow 0, \quad n \rightarrow \infty .
$$

It follows that $v_{n} \rightarrow v_{0}$ in X, v_{0} is a constant, and $\left\|v_{0}\right\|=1$. Since $p \leq 2^{*}$, the Sobolev imbedding theorem ensures that $v_{n} \rightarrow v_{0}$ in $L^{p}(\Omega)$. Moreover, from

$$
E\left(v_{n}\right)\left\|\underline{u}_{\lambda_{n}}\right\|^{2-p}=A\left(v_{n}\right)+\lambda_{n} B\left(v_{n}\right)\left\|\underline{u}_{\lambda_{n}}\right\|^{q-p}
$$

we deduce that $0=A\left(v_{0}\right)=\left|v_{0}\right|^{p} \int_{\Omega} a<0$, a contradiction. Thus, \underline{u}_{λ} is bounded in X for $0<\lambda<\bar{\lambda}$. By a bootstrap argument, we may assume that $\underline{u}_{\lambda} \rightarrow u_{1}$ in $\mathcal{C}^{2}(\bar{\Omega})$ as $\lambda \nearrow \bar{\lambda}$. As a consequence, we infer that u_{1} is a positive solution for $\lambda=\bar{\lambda}$.

We shall consider now the Palais-Smale condition for I_{λ}. Let us recall that I_{λ} satisfies the Palais-Smale condition if any sequence such that $\left(I_{\lambda}\left(u_{n}\right)\right)$ is bounded and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{\prime} has a convergent subsequence.

Proposition 4.23 I_{λ} satisfies the Palais-Smale condition for any $\lambda>0$.
Proof Let $\left(u_{n}\right)$ be a Palais-Smale sequence for I_{λ}. Then

$$
\left(I_{\lambda}\left(u_{n}\right)\right) \text { is bounded and } I_{\lambda}^{\prime}\left(u_{n}\right) \phi=o(1)\|\phi\| \quad \forall \phi \in X .
$$

In particular, we have

$$
\begin{equation*}
\left(\frac{1}{2}-\frac{1}{p}\right) E\left(u_{n}\right)-\lambda\left(\frac{1}{q}-\frac{1}{p}\right) B\left(u_{n}\right)=I_{\lambda}\left(u_{n}\right)-\frac{1}{p} I_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \leq c+o(1)\left\|u_{n}\right\| \tag{4.7}
\end{equation*}
$$

for some constant c. Assume that $\left\|u_{n}\right\| \rightarrow \infty$ and set $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then we may assume that $v_{n} \rightharpoonup v$ in X and $v_{n} \rightarrow v$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. From

$$
\begin{equation*}
\int_{\Omega} \nabla u_{n} \nabla \phi-a(x)\left|u_{n}\right|^{p-2} u_{n} \phi-\lambda \int_{\partial \Omega}\left|u_{n}\right|^{q-2} u_{n} \phi=o(1)\|\phi\|, \quad \forall \phi \in X \tag{4.8}
\end{equation*}
$$

we get, dividing it by $\left\|u_{n}\right\|^{p-1}$,

$$
\int_{\Omega} a(x)\left|v_{n}\right|^{p-2} v_{n} \phi \rightarrow 0 \quad \forall \phi \in X
$$

so that

$$
\int_{\Omega} a(x)|v|^{p-2} v \phi=0 \quad \forall \phi \in X
$$

This equality implies that $a|v|^{p-2} v=0$ a.e. in Ω. Hence, $a v \equiv 0$. Taking now $\phi=v$ in (4.8), we obtain

$$
\int_{\Omega} \nabla v_{n} \nabla v-\lambda\left\|u_{n}\right\|^{q-2} \int_{\partial \Omega}\left|v_{n}\right|^{q-2} v_{n} v \rightarrow 0
$$

Thus,

$$
\int_{\Omega} \nabla v_{n} \nabla v \rightarrow 0
$$

and since $v_{n} \rightharpoonup v$ in X, we get $\int_{\Omega}|\nabla v|^{2}=0$. So v must be a constant. From $a v \equiv 0$, we deduce that $v \equiv 0$. Finally, from (4.7), dividing it by $\left\|u_{n}\right\|^{2}$ we obtain $E\left(v_{n}\right) \rightarrow 0$. Therefore, by Lemma 4.1, we have $v_{n} \rightarrow 0$ in X, which contradicts $\left\|v_{n}\right\|=1$.

So (u_{n}) must be bounded, and up to a subsequence, $u_{n} \rightharpoonup u$ in X and $u_{n} \rightarrow u$ in $L^{p}(\Omega)$ and $L^{q}(\partial \Omega)$. Taking $\phi=u_{n}-u$ in (4.8), we get

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} \rightarrow \int_{\Omega}|\nabla u|^{2}
$$

and consequently $\left\|u_{n}\right\|^{2} \rightarrow\|u\|^{2}$. By the uniform convexity of X, we infer that $u_{n} \rightarrow u$ in X.

We prove now a multiplicity result for positive solutions of $\left(P_{\lambda}\right)$ for $\lambda \in(0, \bar{\lambda})$. First of all, by Proposition 4.10 or Proposition 4.13, we know that $\bar{\lambda} \geq \lambda_{0}>0$. We proceed now as in [10] to obtain a solution by the variational form of the sub-supersolution method. A version of this method for a problem with Neumann boundary conditions has been proved in [14, Theorem 3]. We shall use a slightly different version of this result, namely:

Theorem 4.24 Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be Carathéodory functions such that for every $R>0$, there exists $M=M(R)>0$ satisfying $|f(x, s)| \leq M$ if $(x, s) \in \Omega \times$ $[-R, R]$ and $|g(x, s)| \leq M$ if $(x, s) \in \partial \Omega \times[-R, R]$. If $\underline{u}, \bar{u} \in H^{1}(\Omega) \cap L^{\infty}(\Omega) \cap L^{\infty}(\partial \Omega)$ are a weak subsolution and supersolution of $\left(P_{\lambda}\right)$, respectively, and $\underline{u} \leq \bar{u}$ a.e. in Ω, then $\left(P_{\lambda}\right)$ has a solution u satisfying

$$
I_{\lambda}(u)=\min \left\{I_{\lambda}(v): v \in H^{1}(\Omega), \underline{u} \leq v \leq \bar{u} \text { a.e. in } \Omega\right\} .
$$

The proof of this result can be carried out following the proof of [14, Theorem 3]. As a matter of fact, the functional I_{λ} is not coercive but still bounded from below on the set

$$
M:=\left\{u \in H^{1}(\Omega): \underline{u} \leq u \leq \bar{u} \text { a.e. in } \Omega\right\} .
$$

Let us pick $0<\mu<\bar{\lambda}$ and prove that $\left(P_{\mu}\right)$ has two positive solutions. From the definition of $\bar{\lambda}$, we can take $\mu^{\prime} \in(\mu, \bar{\lambda}]$ such that $\left(P_{\mu^{\prime}}\right)$ has a positive solution $u_{\mu^{\prime}}$. Now, we make good use of the positive eigenfunction ϕ_{1} associated with the smallest eigenvalue σ_{1} of (2.1) to build up a suitable positive weak subsolution. We consider the smallest eigenvalue $\hat{\sigma}_{1}:=\sigma_{1}(\mu)<0$ of (2.1) and the corresponding positive eigenfunction $\hat{\phi}_{1}=\phi_{1}(\mu)$. Then $\varepsilon \hat{\phi}_{1}$ is a strict weak subsolution of $\left(P_{\mu}\right)$ if $\varepsilon>0$ is sufficiently small. Moreover, we can choose $\varepsilon>0$ such that $\varepsilon \hat{\phi}_{1} \leq u_{\mu^{\prime}}$. By Theorem 4.24 with $\underline{u}=\varepsilon \hat{\phi}_{1}$ and $\bar{u}=u_{\mu^{\prime}}$, we obtain a solution u_{0} of $\left(P_{\mu}\right)$ such that

$$
I_{\mu}\left(u_{0}\right)=\min \left\{I_{\mu}(v): v \in H^{1}(\Omega), \varepsilon \hat{\phi}_{1} \leq v \leq u_{\mu^{\prime}} \text { a.e. in } \Omega\right\} .
$$

In particular, $u_{0}>0$ in $\bar{\Omega}$. Moreover, by the strong maximum principle and the boundary point lemma, we have $\varepsilon \hat{\phi}_{1}<u_{0}<u_{\mu^{\prime}}$ on $\bar{\Omega}$. It follows that u_{0} is a local minimizer of I_{μ}
with respect to the $\mathcal{C}^{1}(\bar{\Omega})$ topology. We may then argue as in [11, Lemma 6.4] to deduce that u_{0} is a local minimizer of I_{μ} with respect to the $H^{1}(\Omega)$ topology. Now we use an argument from [10]: let $\delta>0$ such that u_{0} minimizes I_{μ} in $B\left(u_{0}, \delta\right)$ and $0 \notin B\left(u_{0}, \delta\right)$. If u_{0} is not a strict minimizer, then there exists $v_{0} \in B\left(u_{0}, \delta\right), v_{0} \not \equiv 0$ such that $I_{\mu}\left(v_{0}\right)=I_{\mu}\left(u_{0}\right)$, in which case v_{0} is also a local minimizer of I_{μ}, and consequently a solution of $\left(P_{\mu}\right)$. Now, if u_{0} is a strict minimizer, then by [9, Theorem 5.10], we infer that for $r>0$ sufficiently small we have

$$
I_{\mu}\left(u_{0}\right)<\inf \left\{I_{\mu}(u): u \in H^{1}(\Omega),\left\|u-u_{0}\right\|=r\right\}
$$

so that I_{μ} has the mountain-pass geometry (note that if $w \in A^{+}$, then $I_{\mu}(t w) \rightarrow-\infty$ as $t \rightarrow \infty)$. Finally, by Proposition 4.23, I_{μ} satisfies the Palais-Smale condition, and since I_{μ} is even, the mountain-pass theorem provides a second positive solution of $\left(P_{\mu}\right)$.

5 Existence of a smooth positive solution curve

In this section, we discuss the existence of a smooth curve of positive solutions of $\left(P_{\lambda}\right)$ containing the minimal positive solution \underline{u}_{λ} for $\lambda \in(0, \bar{\lambda})$. To this end, we consider $\left(P_{\lambda}\right)$ in the framework of Hölder spaces in the following way: let $U \subset \mathcal{C}^{2+\alpha}(\bar{\Omega})$ be an open neighbourhood of a function positive on $\bar{\Omega}$ such that any $v \in U$ is positive on $\bar{\Omega}$. We set

$$
\begin{aligned}
\mathcal{G}:(0, \infty) \times U & \longrightarrow \mathcal{C}^{\alpha}(\bar{\Omega}) \times \mathcal{C}^{1+\alpha}(\partial \Omega), \\
(\lambda, u) & \longmapsto\left(-\Delta u-a u^{p-1}, \frac{\partial u}{\partial \mathbf{n}}-\lambda u^{q-1}\right),
\end{aligned}
$$

so that u is a positive solution of $\left(P_{\lambda}\right)$ if and only if $\mathcal{G}(\lambda, u)=0$. We recall that the minimal positive solution \underline{u}_{λ} is weakly stable, i.e. $\gamma_{1}\left(\lambda, \underline{u}_{\lambda}\right) \geq 0$. Moreover, we know that \underline{u}_{λ} is increasing and left-continuous in $(0, \bar{\lambda}]$, i.e. $\underline{u}_{\mu}<\underline{u}_{\lambda}$ on $\bar{\Omega}$ if $\mu<\lambda$, and $\lim _{\mu \nearrow \lambda} \underline{u}_{\mu}=\underline{u}_{\lambda}$, see [1, Theorem 20.3].

For our procedure, we prove the following lemma.

Lemma 5.1 Let u_{λ} be a positive solution of $\left(P_{\lambda}\right)$ such that $\gamma_{1}\left(\lambda, u_{\lambda}\right)=0$. Then the solution set around $\left(\lambda, u_{\lambda}\right)$ is exactly given by a \mathcal{C}^{∞}-curve $(\lambda(s), u(s)) \in \mathbb{R} \times \mathcal{C}^{2+\alpha}(\bar{\Omega})$ of positive solutions, parametrized by $s \in(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$ and such that $(\lambda(0), u(0))=$ $\left(\lambda, u_{\lambda}\right), \lambda^{\prime}(0)=0, \lambda^{\prime \prime}(0)<0$, and $u(s)=u_{\lambda}+s \phi_{1}+z(s)$, where ϕ_{1} is a positive eigenfunction associated with $\gamma_{1}\left(\lambda, u_{\lambda}\right)$, and $z(0)=z^{\prime}(0)=0$. Moreover, the lower branch $(\lambda(s), u(s)), s \in(-\varepsilon, 0)$, is asymptotically stable, i.e. $\gamma_{1}(\lambda(s), u(s))>0$, whereas the upper branch $(\lambda(s), u(s)), s \in(0, \varepsilon)$, is unstable, i.e. $\gamma_{1}(\lambda(s), u(s))<0$.

Proof Since $\gamma_{1}\left(\lambda, u_{\lambda}\right)=0$, it follows from [8, Theorem 3.2] that we have a \mathcal{C}^{∞}-curve $(\lambda(s), u(s))$ of positive solutions which satisfies the assertions of this lemma except $\lambda^{\prime \prime}(0)<$ 0 . Let us prove that $\lambda^{\prime \prime}(0)<0$. We take $(\lambda, u)=(\lambda(s), u(s))$ and differentiate $\left(P_{\lambda}\right)$ with respect to s to obtain

$$
\begin{cases}-\Delta u^{\prime}=(p-1) a u^{p-2} u^{\prime} & \text { in } \Omega \tag{5.1}\\ \frac{\partial u^{\prime}}{\partial \mathbf{n}}=\lambda^{\prime} u^{q-1}+\lambda(q-1) u^{q-2} u^{\prime} & \text { on } \partial \Omega\end{cases}
$$

Differentiating (5.1) with respect to s once more, we have

$$
\begin{cases}-\Delta u^{\prime \prime}=(p-1)(p-2) a u^{p-3}\left(u^{\prime}\right)^{2}+(p-1) a u^{p-2} u^{\prime \prime} & \text { in } \Omega, \tag{5.2}\\ \frac{u^{\prime \prime}}{\partial \mathbf{n}}=\lambda^{\prime \prime} u^{q-1}+2 \lambda^{\prime}(q-1) u^{q-2} u^{\prime}+\lambda(q-1)(q-2) u^{q-3}\left(u^{\prime}\right)^{2}+\lambda(q-1) u^{q-2} u^{\prime \prime} & \text { on } \partial \Omega .\end{cases}
$$

Putting $s=0$ in (5.1) and (5.2), we have respectively

$$
\begin{cases}-\Delta \phi_{1}=(p-1) a u_{\lambda}^{p-2} \phi_{1} & \text { in } \Omega, \\ \frac{\partial \phi_{1}}{\partial \mathbf{n}}=\lambda(q-1) u_{\lambda}^{q-2} \phi_{1} & \text { on } \partial \Omega,\end{cases}
$$

and

$$
\begin{cases}-\Delta \psi=(p-1)(p-2) a u_{\lambda}^{p-3} \phi_{1}^{2}+(p-1) a u_{\lambda}^{p-2} \psi & \text { in } \Omega \\ \frac{\partial \psi}{\partial \mathbf{n}}=\lambda^{\prime \prime}(0) u_{\lambda}^{q-1}+\lambda(q-1)(q-2) u_{\lambda}^{q-3} \phi_{1}^{2}+\lambda(q-1) u_{\lambda}^{q-2} \psi & \text { on } \partial \Omega\end{cases}
$$

where $u^{\prime \prime}(0)=\psi$. Let

$$
\mathcal{L}_{\lambda}=-\Delta-(p-1) a u_{\lambda}^{p-2}, \quad \mathcal{B}_{\lambda}=\frac{\partial}{\partial \mathbf{n}}-\lambda(q-1) u_{\lambda}^{q-2} .
$$

Then we note that

$$
\left\{\begin{array}{l}
\mathcal{L}_{\lambda} \phi_{1}=0 \quad \text { in } \Omega \\
\mathcal{B}_{\lambda} \phi_{1}=0
\end{array} \text { on } \partial \Omega,\right.
$$

and

$$
\begin{cases}\mathcal{L}_{\lambda} \psi=(p-1)(p-2) a u_{\lambda}^{p-3} \phi_{1}^{2} & \text { in } \Omega \\ \mathcal{B}_{\lambda} \psi=\lambda^{\prime \prime}(0) u_{\lambda}^{q-1}+\lambda(q-1)(q-2) u_{\lambda}^{q-3} \phi_{1}^{2} & \text { on } \partial \Omega\end{cases}
$$

It follows that

$$
\int_{\Omega}\left\{(p-1)(p-2) a u_{\lambda}^{p-3} \phi_{1}^{2}\right\} \phi_{1}+\int_{\partial \Omega}\left\{\lambda^{\prime \prime}(0) u_{\lambda}^{q-1}+\lambda(q-1)(q-2) u_{\lambda}^{q-3} \phi_{1}^{2}\right\} \phi_{1}=0,
$$

and thus that

$$
\begin{equation*}
\lambda^{\prime \prime}(0) \int_{\partial \Omega} u_{\lambda}^{q-1} \phi_{1}=-(p-1)(p-2) \int_{\Omega} a u_{\lambda}^{p-3} \phi_{1}^{3}-\lambda(q-1)(q-2) \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3} . \tag{5.3}
\end{equation*}
$$

On the other hand, we have by a direct computation

$$
\begin{equation*}
\sum_{j} \frac{\partial}{\partial x_{j}} u_{\lambda}^{2} \frac{\partial}{\partial x_{j}}\left(\frac{\phi_{1}}{u_{\lambda}}\right)=\Delta \phi_{1} u_{\lambda}-\phi_{1} \Delta u_{\lambda}=(2-p) a u_{\lambda}^{p-1} \phi_{1} . \tag{5.4}
\end{equation*}
$$

In addition, the divergence theorem yields

$$
\begin{align*}
\int_{\Omega}\left(\frac{\phi_{1}}{u_{\lambda}}\right)^{2} \sum_{j} \frac{\partial}{\partial x_{j}} u_{\lambda}^{2} \frac{\partial}{\partial x_{j}}\left(\frac{\phi_{1}}{u_{\lambda}}\right) & =-\int_{\Omega} u_{\lambda}^{2} 2\left(\frac{\phi_{1}}{u_{\lambda}}\right)\left|\nabla \frac{\phi_{1}}{u_{\lambda}}\right|^{2}+\int_{\partial \Omega} \phi_{1}^{2} \frac{\partial}{\partial \mathbf{n}}\left(\frac{\phi_{1}}{u_{\lambda}}\right) \\
& =-C+\lambda(q-2) \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3}, \tag{5.5}
\end{align*}
$$

where C is a positive constant. Combining (5.4) and (5.5), we deduce that

$$
\begin{equation*}
(2-p) \int_{\Omega} a u_{\lambda}^{p-3} \phi_{1}^{3}=-C+\lambda(q-2) \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3} . \tag{5.6}
\end{equation*}
$$

We combine (5.3) and (5.6) to get rid of $\int_{\Omega} a u_{\lambda}^{p-3} \phi_{1}^{3}$, so that

$$
\begin{aligned}
\lambda^{\prime \prime}(0) \int_{\partial \Omega} u_{\lambda}^{q-1} \phi_{1}= & -(p-1)(p-2)\left\{\frac{C}{p-2}+\lambda \frac{2-q}{p-2} \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3}\right\} \\
& -\lambda(q-1)(q-2) \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3} \\
= & -C(p-1)-\lambda(2-q)(p-q) \int_{\partial \Omega} u_{\lambda}^{q-3} \phi_{1}^{3}<0,
\end{aligned}
$$

as desired.
Based on Lemma 5.1, we can prove the following result:
Proposition 5.2 Assume (1.8). Then the following assertions hold:
(1) \underline{u}_{λ} is asymptotically stable for each $\lambda \in(0, \bar{\lambda})$, that is, $\gamma_{1}\left(\lambda, \underline{u}_{\lambda}\right)>0$.
(2) $\lambda \mapsto \underline{u}_{\lambda}$ is \mathcal{C}^{∞} in $(0, \bar{\lambda})$.
(3) $\underline{u}_{\lambda} \rightarrow 0$ in $\mathcal{C}^{2+\alpha}(\bar{\Omega})$ as $\lambda \rightarrow 0^{+}$.
(4) If $\left(P_{\lambda}\right)$ has a positive solution, then it has at most one weakly stable positive solution.

Proof The argument is similar as in [13]. First we prove assertion (1). If we assume $\gamma_{1}\left(\lambda, \underline{u}_{\lambda}\right)=0$ for some $\lambda \in(0, \bar{\lambda})$, then by the left continuity, Lemma 5.1 provides that for some $\varepsilon>0$ there holds $\gamma_{1}\left(\mu, \underline{u}_{\mu}\right)>0$ for $\mu \in(\lambda-\varepsilon, \lambda)$, and $\mu \mapsto \underline{u}_{\mu}$ is continuous in $(\lambda-\varepsilon, \lambda]$ and \mathcal{C}^{∞} in $(\lambda-\varepsilon, \lambda)$. Since \underline{u}_{μ} is increasing, we deduce that $\mu \mapsto \underline{u}_{\mu}$ is continuous in $(0, \lambda], \mathcal{C}^{\infty}$ in $(0, \lambda)$, and $\left\|\underline{u}_{\mu}\right\|_{\mathcal{C}(\bar{\Omega})}$ is bounded for $\mu \in(0, \lambda)$ using the implicit function theorem and Lemma 5.1 repeatedly. By elliptic regularity, we deduce that for $r>N,\left\|\underline{u}_{\mu}\right\|_{W^{1, r}(\Omega)}$ is bounded in $(0, \lambda)$. By the Sobolev imbedding and a compactness argument, $\underline{u}_{\mu} \rightarrow u_{0}$ in $\mathcal{C}^{\theta}(\bar{\Omega})$ for some $\theta \in(0,1)$ as $\mu \searrow 0$. Note that $u_{0} \geq 0$, and u_{0} satisfies (3.4) with $\lambda=0$. Hence, if $u_{0} \not \equiv 0$, then u_{0} is a positive solution of $\left(P_{\lambda}\right)$ with $\lambda=0$ by a bootstrap argument. Moreover, by continuity, $\gamma_{1}\left(0, u_{0}\right) \geq 0$. However, it is easy to verify that any positive solution of $\left(P_{\lambda}\right)$ with $\lambda=0$ is unstable, which provides a contradiction. Hence, $u_{0} \equiv 0$.

Now, from the above argument we can pick a minimal positive solution \underline{u}_{σ} of $\left(P_{\sigma}\right)$ for some $\sigma \in(\lambda, \bar{\lambda})$ such that $\gamma_{1}\left(\sigma, \underline{u}_{\sigma}\right)>0$. Using the implicit function theorem and Lemma 5.1 again, we can extend a \mathcal{C}^{∞}-positive solution curve $\left\{\left(\mu, v_{\mu}\right)\right\}$ of $\left(P_{\mu}\right)$ to the left step by step such that $\gamma_{1}\left(\mu, v_{\mu}\right)>0$. In addition, we see that

$$
\begin{cases}\underline{\mathcal{L}}_{\mu} \frac{d \underline{u}_{\mu}}{d \mu}=0 & \text { in } \Omega, \\ \underline{\mathcal{B}}_{\mu} \frac{d \underline{u}_{\mu}}{d \mu}=\underline{u}_{\mu}^{q-1} & \text { on } \partial \Omega .\end{cases}
$$

Here

$$
\underline{\mathcal{L}}_{\mu}=-\Delta-(p-1) a \underline{u}_{\mu}^{p-2}, \quad \underline{\mathcal{B}}_{\mu}=\frac{\partial}{\partial \mathbf{n}}-\mu(q-1) \underline{u}_{\mu}^{q-2} .
$$

Since $\gamma_{1}\left(\mu, \underline{u}_{\mu}\right)>0$ we deduce that

$$
\left\{\begin{array}{l}
\underline{\mathcal{L}}_{\mu} \phi_{1}=\gamma_{1}\left(\mu, \underline{u}_{\mu}\right) \phi_{1}>0 \quad \text { in } \Omega, \\
\underline{\mathcal{B}}_{\mu} \phi_{1}=\gamma_{1}\left(\mu, \underline{u}_{\mu}\right) \phi_{1}>0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where ϕ_{1} is a positive eigenfunction associated with $\gamma_{1}\left(\mu, \underline{u}_{\mu}\right)$. It follows from [17, Theorem 13, Chapter 2] that $\frac{d \underline{\underline{u}_{\mu}}}{d \mu} \geq 0$. Hence, we can deduce that $v_{\mu} \rightarrow 0$ in $\mathcal{C}^{\theta}(\bar{\Omega})$ as $\mu \rightarrow 0^{+}$

Fig. 4 A smooth positive solution curve in the case (1.1), (1.8), and the condition $\bar{\lambda}<\infty$ are satisfied
in the same way. Here we note that this curve never meets $\left\{\left(\mu, \underline{u}_{\mu}\right): \mu \in(0, \lambda]\right\}$. To sum up, we infer that $\underline{u}_{\mu}, v_{\mu}$ both converge to 0 in X as $\mu \rightarrow 0^{+}$by elliptic regularity. However, this is contradictory with Proposition 4.19. Assertion (1) has been verified.

Assertion (2) is a direct consequence of Assertion (1) and an application of the implicit function theorem.

Assertion (3) is a consequence of Proposition 4.19 and Proposition 3.3. Finally, Assertion (4) can be verified in the same way as Assertion (1).

The following result is derived from Assertion (4) in Proposition 5.2.
Corollary 5.3 The second positive solution of $\left(P_{\lambda}\right)$ for $\lambda \in(0, \bar{\lambda})$ provided by Theorem 4.24 is unstable.

Lastly, using Lemma 5.1 we provide some features of the positive solution set around $\left(\bar{\lambda}, \underline{u}_{\lambda}\right)$:

Proposition 5.4 Assume (1.1) and (1.8). If $\bar{\lambda}<\infty$, then the solution set around $(\bar{\lambda}, \underline{u} \bar{\lambda})$ consists of a \mathcal{C}^{∞}-curve $(\lambda(s), u(s)) \in \mathbb{R} \times \mathcal{C}^{2+\alpha}(\bar{\Omega})$ of positive solutions, which is parametrized by $s \in(-\varepsilon, \varepsilon)$, for some $\varepsilon>0$, and such that $(\lambda(0), u(0))=\left(\bar{\lambda}, \underline{u}_{\bar{\lambda}}\right), \lambda^{\prime}(0)=0, \lambda^{\prime \prime}(0)<0$, and $u(s)=\underline{u}_{\bar{\lambda}}+s \phi_{1}+z(s)$, where ϕ_{1} is a positive eigenfunction associated with $\gamma_{1}\left(\bar{\lambda}, \underline{u_{\bar{\lambda}}}\right)$, and $z(0)=z^{\prime}(0)=0$. Moreover, the lower branch $(\lambda(s), u(s)), s \in(-\varepsilon, 0)$, is asymptotically stable, whereas the upper branch $(\lambda(s), u(s)), s \in(0, \varepsilon)$, is unstable.

Remark 5.5 Propositions 5.2 and 5.4 suggest a bifurcation diagram of positive solutions as in Fig. 4.

We conclude now the proof of our main results.
Proof of Theorem 1.1 Assertion (1) is derived from Propositions 3.3 and 2.3.
Assertion (i) in (2)(a) is a direct consequence of the general theory for minimal positive solutions, see [1, Theorem 20.3], whereas assertion (iv) in (2)(a) is derived from Proposition 5.2(3) and a combined argument of Proposition 3.3 and Corollary 4.21. The remaining assertions in (2)(a) follow from Propositions 3.6 and 5.2.

Assertion (2)(b) is a consequence Proposition 5.4; Assertion (2)(c) follows from Propositions 4.19 and Corollary 4.21; Assertion (2)(d) follows from Proposition 3.7.

Proof of Theorem 1.3 In (1), the uniqueness result follows from Proposition 4.3, whereas the asymptotical stability of the unique positive solution is verified by Theorem 1.1(2)(a)(ii). Assertion (2) is derived from Propositions 4.3 and 4.6.

Proof of Theorem 1.4 Assertion (1) is derived from Proposition 3.8. In (2), the existence of a second positive solution is provided by the argument in Sect. 4.2 based on Theorem 4.24; the ordering property of the second positive solution is derived from a combined argument of Theorem 1.1(2)(a) and an application of the strong maximum principle and the boundary point lemma; the instability result follows from Corollary 5.3; lastly, the asymptotic behaviour is provided by Proposition 4.17.

References

1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620-709 (1976)
2. Amann, H.: Nonlinear elliptic equations with nonlinear boundary conditions, New developments in differential equations. In: Proceedings of 2nd Scheveningen Conference on Scheveningen, 1975. North-Holland Math. Studies, vol. 21, pp. 43-63. North-Holland, Amsterdam (1976)
3. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519-543 (1994)
4. Bandle, C., Pozio, A.M., Tesei, A.: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z. 199(2), 257-278 (1988)
5. Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial Differ. Equ. 22, 483-494 (2005)
6. Brown, K.J., Wu, T.-F.: A fibering map approach to a semilinear elliptic boundary value problem. Electron. J. Differ. Equ. 2007(69), 9 (2007)
7. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193(2), 481-499 (2003)
8. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161-180 (1973)
9. de Figueiredo, D.G.: Lectures on the Ekeland variational principle with applications and detours. Lectures Mathematical Physics, vol. 81. Tata Institute of Fundamental Research. Springer (1989)
10. de Figueiredo, D.G., Gossez, J.-P., Ubilla, P.: Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity. J. Eur. Math. Soc. 8(2), 269-286 (2006)
11. Garcia-Azorero, J., Peral, I., Rossi, J.D.: A convex-concave problem with a nonlinear boundary condition. J. Differ. Equ. 198, 91-128 (2004)
12. García-Melián, J., Rossi, J.D., Sabina de Lis, J.C.: A bifurcation problem governed by the boundary condition. I. NoDEA Nonlinear Differ. Equ. Appl. 14(5-6), 499-525 (2007)
13. García-Melián, J., Morales-Rodrigo, C., Rossi, J.D., Suárez, A.: Nonnegative solutions to an elliptic problem with nonlinear absorption and a nonlinear incoming flux on the boundary. Ann. Mat. Pura Appl. 187(4), 459-486 (2008)
14. García-Melián, J., Rossi, J.D., Sabina de Lis, J.C.: Limit cases in an elliptic problem with a parameterdependent boundary condition. Asymptot. Anal. 73, 147-168 (2011)
15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
16. Morales-Rodrigo, C., Suárez, A.: Uniqueness of solution for elliptic problems with non-linear boundary conditions. Comm. Appl. Nonlinear Anal. 13, 69-78 (2006)
17. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)
18. Ramos Quoirin, H., Umezu, K.: The effects of indefinite nonlinear boundary conditions on the structure of the positive solutions set of a logistic equation. J. Differ. Equ. 257, 3935-3977 (2014)
19. Ramos Quoirin, H., Umezu, K.: Positive steady states of an indefinite equation with a nonlinear boundary condition: existence, multiplicity and asymptotic profiles. arXiv:1509.01753
20. Ramos Quoirin, H., Umezu, K.: Bifurcation for a logistic elliptic equation with nonlinear boundary conditions: a limiting case. J. Math. Anal. Appl. 428(2), 1265-1285 (2015)
21. Rossi, J.D.: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem. Stationary Partial Differential Equations. Handbook of Differential Equations, vol. II, pp. 311-406. Elsevier/North-Holland, Amsterdam (2005)
22. Tarfulea, N.: Existence of positive solutions of some nonlinear Neumann problems. An. Univ. Craiova Ser. Mat. Inform. 23, 9-18 (1998)
23. Umezu, K.: Global bifurcation results for semilinear elliptic boundary value problems with indefinite weights and nonlinear boundary conditions. NoDEA Nonlinear Differ. Equ. Appl. 17, 323-336 (2010)
24. Wu, T.-F.: A semilinear elliptic problem involving nonlinear boundary condition and sign-changing potential. Electron. J. Differ. Equ. 2006(131), 15 (2006)

[^0]: The first author was supported by the FONDECYT Grant 11121567.
 Kenichiro Umezu
 kenichiro.umezu.math@vc.ibaraki.ac.jp
 Humberto Ramos Quoirin
 humberto.ramos@usach.cl
 1 Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile
 2 Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan

