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1 Introduction

The theory of linear systems is a classical object of study which is related to secant varieties,
polynomial interpolation and to several interesting recently discovered applications. Even
if linear systems have been studied for more than a century, basic questions, such as the
dimensionality problem, are still open in general.

We denote byL = Ln,d(m1, . . . ,ms) the linear system of hypersurfaces of degree d in Pn

interpolating s points in general positionwithmultiplicities at least, respectively,m1, . . . ,ms .
A linear system is said to be non-special if it has the (affine) expected dimension, which is
edim(L) = max(vdim(L), 0), where the (affine) virtual dimension vdim(L) is defined as

vdim(L) =
(
n + d

n

)
−

s∑
i=1

(
n + mi − 1

n

)
.

Special linear systems are those that have dimension strictly higher than the expected one
and the speciality of the system is the difference

dim(L) − edim(L) = h1(L) ≥ 0.

In general, computing the dimension of the linear systems is a challenging task. In order
to classify the special linear systems, one has to understand first what are the obstruc-
tions, namely what are the varieties that, whenever contained with multiplicity in the base
locus of L, generate speciality. In [3,4], these obstructions are named special effect vari-
eties.

The well-known Alexander–Hirschowitz theorem ([1], see also [7,30]), which concerns
the case of linear systems with double points in P

n , provides a list of special systems where
the special effect varieties are linear cycles (when d = 2), a rational normal curve (when
d = 3) or a quadric hypersurface (when d = 4).

For higher multiplicities, the planar case has been deeply investigated by many authors.
For n = 2, the famous Segre–Harbourne–Gimigliano–Hirschowitz Conjecture states that the
obstructions are given by (−1)-curves [19,23,24,32] (see also [11,12,14]).

For the higher-dimensional case, in [5,18] the authors extensively studied the linear special
effect varieties in P

n . In particular, knowing the exact contribution to the speciality of any
multiple linear cycle contained in the base locus allows to introduce the notion of linear
expected dimension (see [5, Definition3.2]). We say that a system is linearly non-special
whenever its dimension is equal to the linear expected dimension. This happens exactly
when the only special effect varieties are linear cycles.

The authors devote the paper [6] to the investigation of linear systems in P
n with n + 3

base points having nonlinear obstructions. More precisely, the rational normal curve through
the points is a special effect curve.

It is a well-known fact that Cremona reduced linear systems of P3 do not contain rational
normal curves in their base locus. Laface and Ugaglia conjectured [27] that for a Cremona
reduced linear system, the only special effect varieties are lines and quadric surfaces deter-
mined by nine points. The Conjecture of Laface–Ugaglia is known to be true if the number
of points is less or equal than eight [15], and when the maximal multiplicity of the points is
five [2].

In this paper, we study linear systems in P3 with at least nine fat points in general position
for which the quadric hypersurface through nine of the base points, namely the fixed surface
Q := L3,2(19), is a special effect variety.

123



On linear systems of P3 with nine base points 1553

The first step is to prove a base locus lemma for quadric surfaces. Even obtaining a weak
base locus lemma is not obvious. In fact, such results can be obtained as a consequence of
Nagata type results, i.e. theorems which prove emptiness, for linear systems in P

2 with ten
points. In Sect. 4, we establish a base locus lemma for the quadric surface through nine points
(see Theorem 4.1) for a particular class of linear systems in P

3. In order to prove this result,
we study the emptiness of linear systems with ten points in P

2, via a suitable degeneration
technique inspired by [10,13].

The next step is to classify the special linear systems whose special effect varieties are
quadrics. In particular, we focus on the case of (Cremona reduced) linear systems with nine
points in P3, which is the first case where the speciality is not due only to linear obstructions.

Our goal is to understand precisely how much the quadric surface in the base locus
contributes to the speciality of the system. Unlike the linear case, to give a formula which
computes exactly the contribution to the speciality seems difficult in general (see Remark
5.5 for more details).

Hence,we focus first on someparticular classes of linear systems that are the homogeneous
and the quasi-homogeneous ones.

The first case we study is given by the quasi-homogeneous linear systems L3,2m(m8, a),
for 1 ≤ a ≤ m. This class of systems behaves surprisingly well; indeed, we are able to find
an easy formula which relates the speciality with the multiplicity of the quadric in the base
locus, see Theorem 3.1. The proof of this result is based on a degeneration argument, which
allows to reduce the “mysterious” contribution of the quadric to the sum of two contributions
given by linear special effect varieties in the degenerated systems.

We recall that in the literature various degeneration arguments have been used to prove
non-speciality results of linear systems in the plane [11,12,17] and in higher dimension
[26,30].

In the case of degree 2m + 1, the relation between the speciality and the quadric becomes
less clear even in the homogeneous case. However in Theorem 4.12, we classify all the
special homogeneous linear systems with nine points of multiplicity m and degree 2m + 1.
In order to prove this result, we apply the emptiness results mentioned above and proved in
Sect. 4.1.

In the last section, as an application of Theorems 3.1 and 4.12, we show that the Laface–
Ugaglia Conjecture holds for linear systems of any degree and nine points of multiplicity
at most 8. In order to complete this proof as well as the proof of Theorem 4.12, some
of the computations are made by means of the computer algebra system Macaulay2
[22].

We want to point out finally that the quadric hypersurfaces are sporadic special effect
varieties. Indeed, it is expected (see e.g. the Fröberg–Iarrobino Conjecture for homogeneous
linear systems, [9, Conjecture4.8]) that they give contribution to the speciality of a linear
system only in P3 and P4. We think that the understanding of the case of linear systems in P3

with nine points is the initial step in order to investigate the special systems obstructed by a
quadric.

This article is organized as follows. In Sect. 2, we give a brief description of the tools that
we will use to prove our results.

In Sect. 3, we classify the case L3,2m(m8, a) and we give a geometric interpretation, via
degenerations, of the quadric as special effect surface.

In Sect. 4, we completely classify the caseL3,2m+1(m9); the main results are Theorem 4.1
and Theorem 4.2.

In Sect. 5, we prove that Laface–Ugaglia Conjecture holds for linear systems with nine
base points of multiplicities mi ≤ 8.
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1554 M. C. Brambilla et al.

2 Preliminaries

In this preliminary section,we collect general results and techniques thatwill be used through-
out the paper. We point out that by dimension of a linear system L, we mean the affine
dimension dim(L) = h0(L), and not the projective dimension.

2.1 Degenerations

A natural approach to the dimensionality problem of linear systems is via degenerations.
Degenerations allow to move the multiple base points of a linear system in special position
and compute the dimension via a semi-continuity argument.

In [11,12], Ciliberto and Miranda exploited a degeneration of the plane, originally pro-
posed by Ran [31] to study higher multiplicity interpolation problems for planar linear
systems with general multiple base points. This approach consists in degenerating the plane
to a reducible surface, with two components intersecting along a line, and simultaneously
degenerating the linear system to a limit linear system which is somewhat easier than the
original one. In particular, this degeneration argument allows to use induction either on the
degree or on the number of imposed multiple points. This method was generalized by the
third author to the higher-dimensional cases of Pn [30] and of (P1)n with Laface [26].

Let X ⊆ P
N be a variety, let � be a complex disc with centre at the origin and letX → �

be a one-dimensional embedded degeneration of X to the union of two varieties X1, X2, i.e.
a one-parameter family {Xt }t∈� such that Xt ∼= X, t �= 0 and X0 = X1 ∪ X2. Let Lt := L
be a line bundle on the general fibre.

A limit L0 of Lt is a line bundle on X0 obtained as fibred product of a line bundle L1 on
X1 and a line bundle L2 on X2 over the intersection of the restricted line bundles L1|Y and
L2|Y . This provides a recursive formula for the dimension of L0 in terms of the dimensions
of the involved linear systems on the two components:

dim(L0) = dim(L̂2) + dim(L̂1) + dim
(L1|Y ∩ L2|Y

)
,

where L̂i is the kernel of the restriction map Li → Li |Y , i = 1, 2. Upper semi-continuity
implies the inequality dim(Lt ) ≤ dim(L0).

2.2 Linear systems on Q ∼= P
1 × P

1

In order to study the base locus of linear systems on P
3 through nine general points, we

want to understand their restrictions to the quadric surface Q = L3,2(19) ∼= P
1 × P

1. The
restriction of L = L3,d(m1, . . . ,m9) will be the linear series of curves of bidegree (d, d) on
Q with nine multiple points in general position that we will denote as

LP1×P1,(d,d)(m1, . . . ,m9).

Not very much is known about such linear systems: Giuffrida, Maggioni and Ragusa were
among the first to study linear systems on a quadric surface in [20], see e.g. [21]. As far as we
know, the only cases completely classified are those of double points [33] and triple points
[25].

The following result allows to transform linear systems of given bidegree on the quadric
P
1 ×P

1 with multiple base points to linear systems on P2 with multiple base points, and vice
versa, by means of cut-and-sew of polygons.

The image of P2 blown-up at two points via the embedding given by the linear system
L2,d1+d2−m(d1 −m, d2 −m) based at two torus-invariant points (e.g. two coordinate points)
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d1

d2

d1 −m

d2 −m

m

m

d1

d2

Fig. 1 Two equivalent polytopes

is a toric projective surface whose defining polytope is combinatorially equivalent to the
pentagon obtained by the triangle (d1 + d2 − m)� by cutting two triangles (d1 − m)� and
(d2−m)� from two corners,where� is the two simplex ofR2, see Fig. 1 on the left-hand side.

Notice that the same polytope can be obtained from the rectangle [0, d1] × [0, d2] ⊂ R
2

by cutting off the triangle m� from a corner. This interprets the above toric surface as the
embedding of P1 × P

1 via the linear system of curves of bidegree (d1, d2) with a point of
multiplicity m, that is LP1×P1,(d1,d2)(m), see Fig. 1 on the right-hand side.

In other terms, this is the birational map that factors in the blow-up of P2 at two points
and the blow-down of the (−1)-line joining them.

This proves the following result.

Lemma 2.1 If m ≤ d1, d2, then the following equality holds

dim(LP1×P1,(d1,d2)(m,m1, . . . ,ms)) = dim(L2,d1+d2−m(d1 − m, d2 − m,m1, . . . ,ms)).

Remark 2.2 In [8, Theorem1.1], the authors show how to convert linear systems on products
of projective spaces P

ni interpolating multiple points into linear systems in the projective
space P

∑
ni interpolating multiple points and multiple linear subspaces, and back. We point

out that the case m = 0 in Lemma 2.1 falls into those equivalences, in the particular case of
P
1 × P

1 and P
2.

2.3 Cremona transformations

We recall that the standard Cremona transformation of Pn is the birational transformation
defined by the following rational map:

Cr : (x0 : · · · : xn) →
(
x−1
0 : · · · : x−1

n

)
.

This map induces an action on the Picard group of the n-dimensional space blown-up at s
points. Let L = Ln,d(m1, . . . ,ms) be a linear system based on s points in general position;
we can assume, without loss of generality, that the first n+1 points are the coordinate points.
The Cremona action on L is described by the following rule (see, for example, [16,27]). Set

c := m1 + · · · + mn+1 − (n − 1)d,

then

Cr(L) = Ln,d−c(m1 − c, . . . ,mn+1 − c,mn+2, . . . ,ms)
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and

dim(L) = dim(Cr(L)).

We will use this transformations in the cases n = 2, 3 to reduce the computation of the
dimension of a linear systemL to the computation of the dimension of its Cremona transform
Cr(L) that has lower degree and multiplicities whenever c > 0.

If c ≤ 0, we will say that the linear system L is Cremona reduced.

2.4 Computing with Macaulay2

In this paper, we will need to perform some explicit computations in order to complete our
classifications. In particular, the proofs of Proposition 4.9, Lemma 4.10, Lemma 5.7 and
Theorem 5.8 are computer aided. We perform these computations by means of the computer
algebra system Macaulay2. The procedure we use consists essentially in checking that
several square matrices, randomly chosen, have maximal rank. We work over a field of
characteristic 31991 and the proofs hold also in characteristic zero.

We use two scripts (one for linear systems in P
2 and one in P

3) available at this url http://
dipmat.univpm.it/~brambilla/NinePointsP3.html, which allow to compute the dimension and
the speciality of a linear system with given degree and multiplicities.

3 Quasi-homogeneous linear systems L3,2m(m8, a)

In this section, we describe a class of special linear systems in P
3 with nine base points

for which the quadric surface Q is the only special effect variety. We employ a double
degeneration argument, similar to the one employed in [30] for linear systems with arbitrary
general double points, that is based on the degeneration of the space described in Sect. 2.1.
The linear system will degenerate into one that has only linear special effect varieties and
that is therefore understood by the results in [5,18].

Fix non-negative integers a,m. Consider the quasi-homogeneous linear system in P
3

L(m, a) := L3,2m(m8, a). (3.1)

The main result of this section is the following.

Theorem 3.1 If 1 ≤ a ≤ m, the linear system (3.1) satisfies

dim(L(m, a)) = m − a + 1,

h1(L(m, a)) =
(
a + 1

3

)
+

(
a

2

)
;

hence, it is special if and only if 2 ≤ a ≤ m. Moreover, the only special effect variety for
L(m, a) is the quadric through nine points which is contained in the base locus with exact
multiplicity a.

It was proved already in [28, Section5] that for a = m, the linear system (3.1) has one
element, that is the m-multiple of the quadric through the nine points. This also implies that
if a > m, the linear system (3.1) is empty. The case a = 0 was proved to be non-special in
[15]. So the remaining cases to explore are 1 ≤ a ≤ m − 1; for the sake of completeness, we
include here the proof of the case a = m as well.
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On linear systems of P3 with nine base points 1557

Theorem 3.1 shows that the linear system (3.1) is special with dimension being a linear
function of m and a. The only special effect variety is the quadric through the nine points
which is contained with multiplicity a in the base locus, and moreover, quite surprisingly,
its contribution to the speciality, namely h1(L(m, a)), only depends on the multiplicity of
containment of the quadric.

Remark 3.2 If we define q(L(m, a)) := χ(L(m, a)|Q) to be the Euler characteristic of the
restriction of L(m, a) to the quadric, (see (5.1) in Sect. 5), then one can easily check the
following:

q(L(m, a)) = 1 −
(
a + 1

2

)
< 0 iff a ≥ 2, and q(L) = 0 if a = 1.

This in particular shows that Theorem 3.1 has the following immediate consequence:

Corollary 3.3 Laface–Ugaglia Conjecture (see Conjecture 5.1 in Sect. 5) is true for any
quasi-homogeneous linear system of the form (3.1).

3.1 Degeneration of the blown-up P
3 at 9 points

In this section, we give a detailed description of the degeneration techniques that we will
employ to prove Theorem 3.1.

3.1.1 First degeneration

Consider the trivial family V = P
3 × � → � with fibres Vt ∼= P

3, t ∈ �. The blow-up of a
point p0 ∈ V0 produces a flat morphismX ′ → �with general fibre X ′

t
∼= P

3 and central fibre
X ′
0 = F∪P, where F ∼= Blp0P

3 is the pullback of V0 and P ∼= P
3 is the exceptional divisor in

the total space X ′. The two components F and P meet transversally along a surface Y ∼= P
2

that, as a divisor, belongs to the exceptional class of F and to the hyperplane class of P. More
precisely, if E0 := P|F denotes the exceptional divisor of p0 ∈ V0, HF the hyperplane class
of F and HP that of P, with HP ∼ E0, we have Pic(F) = 〈HF, E0〉 and Pic(P) = 〈HP〉.

We choose seven general points on F and two points on P, and we consider them as limits
of nine general points in the general fibre X ′

t . More precisely, for t ∈ � let {p1(t) . . . , p9(t)}
be a general collection of points and assume that p1(0), . . . , p7(0) ∈ F while p8(0) and
p9(0) ∈ P. Consider X̃ ′ the blow-up of X ′ along the horizontal curves {pi (t)}t∈�, with
exceptional divisors Ei , i = 1, . . . , 9. Denote by X̃ ′

t , t ∈ � the fibres of the new family.
Write also Ei := Ei |X̃ ′

t
, for t ∈ �, i = 1, . . . , 9. The general fibre is X̃ ′

t
∼= Blp1,...,p9(P

3),

the blow-up of P3 at nine general points, so that Pic(X̃t ) = 〈H, E1, . . . , E9〉. The central
fibre is described by Pic(F) = 〈HF, E0, E1, . . . , E7〉 and Pic(P) = 〈HP, E8, E9〉, where by
abuse of notation, F and P are also the pullbacks in X̃ ′ of the components of X ′

0.

3.1.2 Second degeneration

We further specialize the points by sending a point from each component of X ′
0 to the

intersection.More precisely, consider the trivial familyX ′′ := X ′
0×�′ and, on each fibre over

s ∈ �′, take a collection of general points {p1(s), . . . , p7(s)} ⊂ F and {p8(s), p9(s)} ⊂ P

such that, on the central fibre, p1(0) and p9(0) ∈ F ∩ P.
Consider X̃ ′′ the blow-up of X ′′ along the horizontal curves {pi (s)}s∈�′ , with Ei excep-

tional divisors, i = 1, . . . , 9. The components of the fibres are described by the same Picard
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1558 M. C. Brambilla et al.

groups as the components of X̃ ′
0 (see Sect. 3.1.1). We use the symbols F0 and P0 to denote

the pullbacks of the components of the central fibre over �′, X ′′
0 , and the symbol Y0 for their

intersection. Notice that Y0 ∼= Blp1,p9(P
2) is a plane blown-up at two points.

The combination of the two above subsequent degenerations produces a degeneration of
Blp1,...,p9(P

3) to the union of blown-up spaces X̃ ′′
0 = F0 ∪ P0 intersecting along a blown-up

plane Y0.

3.1.3 Intersection table on the central fibre

Notice that, as a divisor on F0 (or on P0), the surface Y0 is represented by the class E0 − E9

(resp. HP − E1).
One can compute the restrictions of any divisor on F0 or on P0 to Y0, by means of the

following intersection table for the generators of the Picard groups:

• HP|Y0 =: h,
• E1|Y0 =: e1,
• E2|Y0 = 0,

and

• HF|Y0 = 0,
• E0|Y0 = −h,
• Ei |Y0 = 0, i = 3, . . . , 8,
• E9|Y0 =: e9.

In this notation, we have Pic(Y0) = 〈h, e1, e9〉.
3.2 The limit linear system

Let L ⊂ |OP3(d)| be a linear system of degree-d surfaces in P
3 with nine assigned mul-

tiple points in general position. Let D be the corresponding divisor in the blown-up space
Blp1,...,p9(P

3).
In the notation of Sect. 3.1.1, consider onX ′ the twisted line bundleOX ′(d)⊗OX ′(−δP).

It restricts to OP3(d) on X ′
t and, for t = 0, to OF(dHF − δE0) on F and to OP(δHP) on P.

By following the first degeneration, we can consider the linear system Lt = L ⊂ |OP3(d)|
on X ′

t
∼= P

3 and its limit L′
0 on X ′

0. We denote by D′
0 the corresponding divisor class in the

blown-up central fibre X̃ ′
0.

By following the second degeneration and blowing-up the nine points on each fibre (see
Sect. 3.1.2), we obtain the limit divisor D′′

0 in the blown-up central fibre X̃ ′′
0 that is given by

divisors DF0 and DP0 on the two components.We consider the restrictionmaps to Y0, DF0 →
RF0 := DF0 |Y0 and DP0 → RP0 := DP0 |Y0 and denote by D̂F0 and D̂P0 the kernels,
respectively. Let R0 := RF0 ∩ RP0 denote the intersection of the restricted divisors.

Lemma 3.4 In the notation of above, for i ≥ 0, we have

hi
(
X̃ ′′
0 , D

′′
0

) = hi
(
P0, D̂

P0
)

+ hi
(
F0, D̂

F0
)

+ hi (Y0, R0).

Proof Notice first of all that the assertion holds if we replace hi byχ , the Euler characteristic.
The equality holds for i = 0 by construction. Indeed, the divisor D′′

0 on X̃ ′′
0 , or its associated

line bundle, is obtained as fibred product of DF0 and DP0 over R0, see Sect. 2.1. Finally,
since all cohomology groups with i ≥ 2 vanish, the assertion holds for i = 1. ��
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On linear systems of P3 with nine base points 1559

Lemma 3.5 In the notation of above, we have

hi (Blp1,...,ps (P
n), D) ≤ hi

(
X̃ ′
0, D

′
0

) ≤ hi
(
X̃ ′′
0 , D

′′
0

)
, i = 0, 1.

Proof The inequalities hold for i = 0 by the property of upper semi-continuity of the
two degenerations. As χ(Blp1,...,p9(P

3), D) = χ(X̃ ′
0, D

′
0) = χ(X̃ ′′

0 , D
′′
0 ) and all higher

cohomology groups vanish, the inequalities hold for i = 1 as well. ��
Remark 3.6 The above construction as well as Lemma 3.4 and Lemma 3.5 is potentially
applicable in a more general context for linear systems in any P

n and with arbitrary number
of points and multiplicities by choosing different specializations and twists, as it was done,
for instance, by the last author in [30]. Nevertheless, it is not easy to find a good degeneration
in general.

3.3 Proof of Theorem 3.1

In order to prove the theorem, we need the following result.

Proposition 3.7 The following linear systems are non-special with dimension equal to the
virtual dimension: L3,2m(m + 1,m6,m − 1),L3,2m−1(m4, (m − 1)4).

This can be easily deduced from [15] where the authors deal with Cremona reduced linear
systems with eight base multiple points. However, we include the proof here for the sake of
completeness.

Proof One can easily check that vdim(L3,2m(m + 1,m6,m − 1)) = 0. The statement is
obviously true for m = 1. By performing two subsequent Cremona transformations of P3

(see Sect. 2.3), we reduce from m to m − 1. Hence, we conclude by induction on m.
Similarly, one proves that dim(L3,2m−1(m4, (m − 1)4)) = vdim(L3,2m−1(m4, (m −

1)4)) = 0 by induction on m. ��
Proof of Theorem 3.1 Let Q = L3,2(19) be the quadric surface through the nine base points.
The obvious inclusion of linear systems L−aQ ⊆ L implies the inequality dim(L−aQ) ≤
dim(L). But L − aQ = L3,2(m−a)((m − a)8) and, by Proposition 3.7, dim(L3,2(m−a)((m −
a)8)) = vdim(L3,2(m−a)((m − a)8)) = m − a + 1 ≥ 1. Hence, m − a + 1 ≤ dim(L(m, a)).

We prove the inverse inequality by degeneration. Let D denote the divisor in Blp1,...,p9(P
3)

corresponding to L(m, a):

D = 2mH − m
8∑

i=1

Ei − aE9.

In the notation of Sect. 3.2, now with d = 2m, choose δ = m. In the space X̃ ′′ of the second
degeneration, we have the following divisors on the components of the central fibre X̃ ′′

0 :

DF0 = 2mHF − mE0 − m
7∑

i=1

Ei ,

DP0 = mHP − mE8 − aE9.

We consider the restriction maps to Y0, and we obtain the following kernel divisors

D̂F0 = 2mHF − (m + 1)E0 − (m − 1)E1 − m
7∑

i=2

Ei ,
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1560 M. C. Brambilla et al.

D̂P0 = (m − 1)HP − mE8 − (a − 1)E9.

Firstly, on the component F0 of the central fibre, we have the following. By Proposition
3.7, we obtain that both DF0 and D̂F0 are non-special, so that the first cohomology groups
vanish; moreover, the second is non-effective, namely h0 = 0.

Secondly, on the exceptional component of X̃ ′′
0 , we have the following. The divisor D

P0

is (only) linearly obstructed and has h1(DP0) = (a+1
3

)
caused by a line of multiplicity a, see

[5]. Moreover, the kernel D̂P0 is non-effective and has h1(D̂P0) = (a+1
3

)
, see [18].

The above implies that both DF0 and DP0 cut the complete linear series on the intersection
Y0 of the components. Using Sects. 3.1.3 and 3.2 and the notation there introduced, we have

RP0 = mh − ae9, RF0 = mh − me1.

Since RF0 and RP0 meet transversally on Y0, their intersection is given by

R0 = mh − me1 − ae9.

One computes h0(R0) = m − a + 1 and h1(R0) = (a
2

)
, the speciality being given by a

line of multiplicity a, see [5]. Finally, by Lemma 3.4, we obtain h0(D′′
0 ) = m − a + 1 and

h0(D′′
0 ) = (a+1

3

) + (a
2

)
. Now we conclude the proof of the first part of the theorem by upper

semi-continuity, see Lemma 3.5.
To prove the last sentence of the theorem, we simply notice that the linear system L(m, a)

splits as follows:

L(m, a) = aQ + L3,2(m−a)((m − a)8).

The second addend in the right-hand side is the moving part of L and is non-special by
Proposition 3.7. This concludes the proof. ��
Remark 3.8 In the proof of Theorem 3.1, we argued that the speciality of L(m, a) is given
by aQ and equals the speciality of the limit D′′

0 that, using Lemma 3.4, is given by a line of
multiplicity a in the base locus of D̂P0 and a line of multiplicity a in the base locus of R0.

A geometric interpretation is the following. Let us denote by LP0,m the matching linear
system defined by the matching conditions imposed by RF0 to RP0 , so that we have the
following exact sequence of sheaves

0 → |D̂P0 | → LP0,m → |R0| → 0.

The emptiness of |D̂P0 | implies that the limit linear system |D′′
0 | is the matching linear

system; it is of the formL3,m(m,m, a)where the second and third points, p8, p9, are general
in P0, while the first point, p1, is on the intersection and is the one giving the matching.

In particular, if we follow the quadric Q = L(1, 1) in the degeneration process, by simply
setting m = a = 1 in the above, we see that its limit is given by a matching linear system on
P0 of the form L3,1(1, 1, 1), based at the points p8, p9 and p1 of the central fibre as above.
This linear system has only one element that is the plane spanned by the three points. This
plane is the special effect variety for the limit of L(m, a); it is contained with multiplicity a
in the base locus and it contributes by

(a+1
3

) + (a
2

)
to the speciality.

A weak base locus lemma for the quadric Q in the case of L(m, a) is just an easy appli-
cation of Lemma 2.1. Indeed to prove that Q is contained in the base locus of L(m, a) with
multiplicity at least a, it is enough to show that for every m and a, the restriction L(m, a)|Q
is empty and this is equivalent to prove that L2,3m(m9, a) is empty, which is a well-known
fact.
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In the next section, we will see that in general to obtain such a result is extremely difficult,
mostly because of the very little knowledge of linear systems on P

1 × P
1.

4 Homogeneous linear systems L3,2m+1(m9)

In this section, we consider linear systems with nine points of multiplicity m and degree
2m + 1. For this class of linear system, it is more difficult to understand the relation between
the speciality and the presence of the quadric as special effect variety. Even to compute the
multiplicity of containment of the quadric in the base locus is not an obvious task. The main
result of this section is in fact a vanishing result for linear systems in P

2 which allows to
deduce a base locus lemma for the quadric.

Given a linear system L = L3,d(m1, . . . ,ms) with s ≥ 9, let Q be the unique quadric
surface through the first nine points. Consider the restriction exact sequence

0 → L − Q → L → L|Q → 0. (4.1)

The linear system L|Q is contained in the linear system of the curves of bidegree (d, d)

in Q ∼= P
1 × P

1 ⊂ P
3 with nine multiple points and denoted by LP1×P1,(d,d)(m1, . . . ,m9)

as in Sect. 2.2.
ByLemma2.1,we know that the systemLP1×P1(d,d)(m1, . . . ,m9) has the same dimension

as the systemL2,2d−m1(d−m1, d−m1,m2, . . . ,ms) in P2, and in particular, the first system
is empty if and only if the second one is.

The main part of this chapter is devoted to prove, via degeneration techniques, emptiness
results for linear systems in P

2 with ten multiple points. As a straightforward consequence
of Theorem 4.2 below, we obtain the following (weak) base locus lemma for the quadric. Let
α be any positive integer.

Theorem 4.1 (Quadric base locus lemma) Let L = L3,2m+α(m9,m10 . . . ,ms) be a non-
empty linear system. If m > 9α, then the quadric Q through the first nine points is contained
in the base locus of L.

We remark that a major difference between the quadric through nine points in P
3 and the

linear cycles in P
n is in the geometry of their normal bundles. For the last ones, the normal

bundles are toric bundles so we understand their cohomology groups [5,18], while for the
first one, the cohomological information is highly non-trivial.

4.1 Emptiness of linear systems with ten points in P
2

The goal of this section is to find a good bound for m to have emptiness of certain linear
systems in P

2. More precisely, we will prove the following result, which implies Theorem
4.1.

Theorem 4.2 The linear system L = L2,3m+2α((m + α)2,m8) is empty for any m > 9α.

We will prove this result via degeneration techniques similar to the ones introduced in
Sect. 3.1.More precisely, wewill simultaneously degenerate the blown-up projective plane at
ten points in general position and the line bundle L. Even though this technique was applied
before in [10,13] for homogeneous linear systems with ten points, we will present here in
detail our approach.
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4.1.1 The first degeneration

By blowing-up a point in the central fibre of a trivial family of projective planes over a disc,
�, one obtains a new family, call it X → �. The fibre over zero, X0, decomposes as the
union of two surfaces, a projective plane denoted by P and the Hirzebruch surface F1, call it
F. In this notation, P represents the exceptional divisor of the blown-up point, while F is the
proper transform of the central fibre of the original family. We will denote by E the curve of
intersection between P and F.

Consider now ten points on the general fibre of the trivial family of planes, such that four
of them collide in the zero fibre. Correspondingly, on the central fibre of X , we place six
points on F and four points on P and we consider them as ten limit points of general points on
Xt . Blowing-up these ten sections of X creates a new family X ′ → �. The fibre over zero
consists of two surfaces, P0 and F0, that intersect along a double curve, E . The component P0
represents a blown-up plane at four general points, F0 represents the blown-up ruled surface
F1, at six general points, while the double curve E is the negative section on the component
F0 and also represents the class of a line onP0. The general fibre X ′

t is the blown-up projective
plane at ten general points.

Remark 4.3 We point out that colliding four points in the zero fibre works well for the
analysis of linear systems with ten points. In general, by colliding s′ points from a collection
of s general points, one produces a degeneration of the blown-up projective plane at s general
points, i.e. the general fibre X ′

t , to the union of two surfaces (for any choice of s′ and s).
The components of the central fibre are as follows: P0 that is a blown-up plane at s′ general
points and F0 that is the blown-up ruled surface F1 at s − s′ general points, the two surfaces
meeting along a double curve.

4.1.2 The second degeneration

This degenerationwas first introduced in [13], andwe provide the construction of the degener-
ation together with the limit bundles computation for the sake of completeness. The interested
reader should also consult [10]. We denote byC the unique (−1)-curve on F passing through
six points that meet the double curve E in two points p1 and p2, at the form L3(2, 16). We
consider the family obtained in Sect. 4.1.1,X ′ → �, and we blow-up twice the cubicC on F
and then contract the first exceptional divisor created. In this way, wewill obtain a new family
X ′′ → � whose general fibre is still a plane blown-up at ten points and whose special fibre
over the origin becomes the union of four surfaces. We abuse notations and denote by F and
P the surfaces of the central fibre in the second degeneration and by S and T the exceptional
divisors created by the double blow-up of C.

The first blow-up of C in the threefold X ′ creates as exceptional divisor a Hirzebruch
surface F1 that we will denote by T. The rational curveC represents the intersection between
T and F. In particular, C represents the (−1)-curve of T, while Gi represent the fibre class
on T, see Fig. 2.

The second blow-up of C in X , creates the exceptional divisor S that is isomorphic to
P
1 × P

1 and blows-up the surface P twice. Denote by F1 and F2, the exceptional divisors
introduced on P. Notice that the proper transforms of G1 and G2 become (−2)-curves. We
abuse the notation and denote byGi to be these proper transformswith self-intersection (−2).

Since the normal bundle of S has bidegree (−1,−1), one can contract the ruling direction
of S. Blowing-down Swill affect the surfaces of the central fibre as follows. On the surface F,
the cubicC will get contracted,Twill become a projective plane, while on P the (−1)-curves,
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Fig. 2 The 2-throw operation of the double curve C

F1 and F2, will get identified. In [10,13], this operation is called a 2-throw of C on P, see
again Fig. 2.

4.1.3 Degenerating the line bundles

We will now describe limits of line bundles on P
2 via the double degeneration. The limit

bundles are bundles in the central fibre, X ′′
0 , of the family X ′′ → � that agree on the

intersection of the double curves.

Remark 4.4 The double blow-up of C in X affected the surface P by creating two pairs of
points that are infinitely near. We will use the notation of [13] [m1,m2], to indicate a fat point
with multiplicity m1 and an infinitely near fat point with multiplicity m2. More precisely, we
adopt the notation [m1,m2] to denote m2F1 + m1(F1 + G1).

Remark 4.5 In this section, as in Sect. 3.2, we will describe limits of divisors, and not limits
of linear systems. This difference is emphasized in Remark 4.4. In particular, Proposition 4.6
should be understood as describing all possible limit divisors D in the linear systemL2,d((m+
α)2,m8) on the central fibre X ′′

0 . However, in order to simplify the language and also to be
consistent with notation previously used in [10,13], in this section we abuse notations and
we use the linear system terminology. We must also emphasize now that this degeneration is
different than the one we exploited in Sect. 3.2. More precisely, only the first degeneration
of the blown-up projective space P3 described in Sects. 3.2 and 4.1.1 coincide. In Sect. 3.2,
this degeneration was denoted by X̃ ′, while in Sect. 4.1.1, it was denoted by X ′. However, in
Sect. 3.2 the second degeneration was obtained by specializing points on the intersection of
the two components, while in Sect. 4.1.2, the second degeneration is obtained from flopping
a negative curve. In order to highlight this major difference, we choose different notations.
More precisely, even if both represent degenerations of blown-up projective projective spaces
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(P3 in Sect. 3.2 and P
2 here), we will denote them by X̃ ′′ and X ′′ in Sects. 3.2 and 4.1.2,

respectively.

We will now determine all possible limit bundles of the linear system

L2,d
(
(m + α)2,m8)

on the general fibre.

• The line bundle onPmust be of the formLδ(m4, [a, b], [a, b]), where δ, a, b represent the
twisting parameters. This line bundlemeets the four times blown-up line δ−2a−2b times,
see Remark 4.7 below. The system onF is of the formLF = L2,t (δ−2a−2b, y4, y′2), for
some t, y, y′. The assumption that LF does not meet the cubic C implies that the degree
of LF has to be even, write t = 2e. Indeed 0 = LF ·C = 3t − 2δ + 4a + 4b− 4y − 2y′.
Moreover, because y = m − a − b and y′ = m − a − b + α, then one can check that

δ = 3e − 3m + 5a + 5b − α.

• Consider the intersection of S and F that is a fibre on S and the cubic on F. Note that LS

is a horizontal bundle so it must have bidegree (b, 0). Moreover, LT meets a fibre a − b
times and does not meet the negative section B. Hence,

LT = L2,a−b.

• The last parameter to be determined is e. We compute it by observing that the limit
bundle should have degree d , that is the degree on the bundle on the general fibre. By
pulling-back a line in the plane, we get a line on P, a fibre on F, a fibre on T and a fibre
on S. Therefore, the intersection number with all the bundles from above will have to add
up to d . We obtain

e = d − 3(a + b)

2
.

Solving this system of linear equations, we obtain

LF = L2,d−3a−3b

(
3d

2
− 3m − 3(a + b)

2
− α, (m − a − b)4, (m − a − b + α)2

)
.

The surface S will be contracted in the ruling direction. This last blow-down will affect
the surface F by contracting the cubic C to a point by performing a series of Cremona
transformations toLF, see Sect. 2.3. After contracting the surface S, the bundle on F becomes

LF = L2,3m− d
2 − 3(a+b)

2 +α

(
0,

(
2m − d

2
− a + b

2
+ α

)4

,

(
2m − d

2
− a + b

2

)2
)

.

The zero multiplicity of LF represents the image of the cubic after the Cremona transfor-
mations. Since we are contracting the surface S, we will simply ignore this multiplicity. We
recall that contracting the cubic on F will also affect the surface on P by identifying the two
last (−1)-curves created on P, namely F1 and F2.

For the future analysis, we will work with the normalization of P, so we will consider F1
and F2 disjoint as before. We obtain the following result.

Proposition 4.6 All limits of the bundle Ld((m + α)2,m8) are of the following form, for
some choice of the parameters a and b:
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• LP = L2, 3d2 −3m+ a+b
2 −α

(
m4, [a, b], [a, b]),

• LF = L2,3m− d
2 − 3(a+b)

2 +α

(
(2m − d

2 − a+b
2 + α)4, (2m − d

2 − a+b
2 )2

)
,

• LT = L2,a−b.

Remark 4.7 Wedescribe here howour degenerationmethodworks. The choice of the number
of points that one collides in the central fibre in the first degeneration (in this case is four, see
Sect. 4.1.1) determines at each step of the degeneration the (−1)-curves that one must flop in
order to obtain better ratios for proving emptiness or non-speciality results. In the analysis of
linear systems with ten points, both approaches of proving emptiness or non-speciality lead
to the same degeneration, see [10] and [13].

Namely, in any degeneration one computes a fixed limit ratio d
m such that for any choice

of the twisting parameters, all line bundles on the central fibre are non-empty. But this
ratio satisfies the Nagata bound, so one of the linear systems is special. According to
Segre–Harbourne–Gimigliano–HirschowitzConjecture, this effective linear system is special
because of the existence of a negative curve. In the first degeneration, this curve is precisely the
special cubic passing through sevenpoints, denoted byC , that distinguishes by splitting off the
line bundle on P. To improve the limit ratio, d

m , one needs to flop the curve creating speciality.
In general, if the curve creating speciality of one of the linear systems of the central fibre

intersects the double curve E once, then one performs a one-throw as explained in [13]. In
other words, by blowing-up the curve creating speciality, the exceptional divisor introduced
is a ruled surface isomorphic to P

1 × P
1, so one can contract the other ruling.

However in our case, the special curve is the cubicC intersecting the double curve E twice.
It follows by the general intersection theory that the exceptional divisor created after the first
blow-up, denoted by T, is a Hirzebruch surface F1 that can not be contracted. So a second
blow-up is necessary creating two infinitely near points; the new exceptional divisor, denoted
byS, is the ruled surfaceP1×P

1. This can be seen by intersection theory of surfaces inP3. This
affects the double curve of intersection, transforming E to the strict transform of a line blown-
up four times. Finally, the fibre direction of S can be blown-down. This blow-down simplifies
the geometry of F, but it increases the difficulty of the study of the linear system on P.

We would like to point our that each degeneration is uniquely determined by the number
of points we decide to collide in the first step, the degree and multiplicities of the linear
system. In this case, the same degeneration as in [10] and [13] can be applied, but for the
sake of simplicity, the computations that lead to this degeneration were omitted.

We study now the effectivity of LP and LF for d = 3m + 2α and m ≥ 8α. Notice that by
substituting d = 3m + 2α, we obtain the following bundles on P and F:

LP = L2, 3m2 + a+b
2 +2α

(
m4, [a, b], [a, b]),

LF = L2, 3m2 − 3(a+b)
2

((
m

2
− a + b

2

)4

,

(
m

2
− a + b

2
− α

)2
)

.

Remark 4.8 The following two statements are obvious.

• The linear system on T,LT = L2,a−b, is nonempty if and only if a ≥ b.
• The linear system on F,LF is non-empty if any only if a + b ≤ m.

We will now analyse the linear system on P. We denote by Qi the four quartics
L4(23, 1, [1, 1]2) on P and we see that these (−1)-curves split off the system if m ≥ 8α.
Indeed,
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LPQi = L2, 3m2 + a+b
2 +2α

(
m4, [a, b], [a, b]) L2,4

(
23, 1, [1, 1]2)

= 4

(
3m

2
+ a + b

2
+ 2α

)
− 3 · 2 · m − m − 2a − 2b = 8α − m.

We further apply a series of fourCremona transformations to the linear systemLP (which con-
tains eight base points p1, . . . , p8) based, respectively, at the points {p1, p2, p3}, {p4, p5, p8},
{p4, p6, p7} and {p1, p2, p3}. Note that this series of Cremona transformations contracts the
four quartics to a point at the same time.

Cr(LP) = L2, a+b
2 − 5m

2 +18α((8α − m)4,

[a − m + 4α, b − m + 4α], [a − m + 4α, b − m + 4α]).
For m ≥ 8α, the exceptional divisors corresponding to the first four points are (−1)-curves
that split off the system. These exceptional divisors represent the four quadrics; we will
remove them and forget the zero multiplicities created. The residual system is

L′
P = L2, a+b

2 − 5m
2 +18α ([a − m + 4α, b − m + 4α], [a − m + 4α, b − m + 4α])

It is obvious that LP is empty if and only if L′
P is empty.

We are now ready to prove the main result of this section.

Proof of Theorem 4.2 We want to prove that L = L2,3m+2α((m + α)2,m8) is empty for
m > 9α.

We assume by contradiction that there are some values of the parameters a and b for which
both linear systems LP and LF are non-empty in the central fibre of the degeneration. If LP

is non-empty, then the degree of L′
P is positive. In particular

a + b ≥ 5m − 36α.

On the other hand, since LF is non-empty, by Remark 4.8, we must have

a + b ≤ m.

These two inequalities lead to a contradiction, and hence, the linear systemL2,3m+2α((m+
α)2,m8) is empty. ��

In particular, Theorem 4.2 gives the following consequence.

Proposition 4.9 If m ≥ 8, then the linear system L2,3m+2((m + 1)2,m8) is empty.

Proof First, we check casesm = 8, 9 by computer. Form ≥ 10, we apply Theorem 4.2 with
α = 1. ��
4.2 Classification of homogeneous linear systems L3,2m+1(m9)

In this section, we completely classify homogeneous linear systems in P
3 of degree 2m + 1

with nine points. We start with the following lemma, which is an easy consequence of
Proposition 4.9.

Lemma 4.10 The linear system L2,3m+2((m + 1)2,m8) satisfies:

dim
(L2,3m+2

(
(m + 1)2,m8)) = χ

(LP1×P1,(2m+1,2m+1)
(
m9))

for m ≤ 8 and it is empty for m ≥ 8.
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Proof We check by computer the statement for m ≤ 7. For m ≥ 8, we use Proposition 4.9.
��

By Lemma 2.1, the previous lemma has the following straightforward consequence.

Corollary 4.11 The linear system LP1×P1,(2m+1,2m+1)(m
9) is non-special for every m ≥ 1,

and it is empty for m ≥ 8.

We are ready now to prove the following classification result:

Theorem 4.12 A linear system L = L3,2m+1(m9) is special if and only if m ≥ 9. In partic-
ular, we have:

• dim(L3,2m+1(m9)) = vdim(L3,2m+1(m9)) for m ≤ 8;
• dim(L3,2m+1(m9)) = 60 for m ≥ 7;
• the quadric Q through the nine base points is in the base locus of L with multiplicity

m − 7, for any m ≥ 8.

Proof The restriction exact sequence (4.1) gives in this case:

0 → L3,2(m−1)+1
(
(m − 1)9

) → L3,2m+1(m
9) → LP1×P1,(2m+1,2m+1)(m

9) → 0.

We use induction on m ≥ 1. The case m = 1 is obvious. By Corollary 4.11, we deduce
that the linear system is non-special if and only if m ≤ 8 (notice that if m = 8, we
have χ(LP1×P1,(17,17)(8

9)) = 0). Moreover, again from Corollary 4.11, it follows that
dim(L3,2m+1(m9)) = dim(L3,15(79) = 60 for all m ≥ 7.

In order to prove that, for m ≥ 8, the quadric is contained in the base locus of L with
multiplicity m − 7, it is enough to use Corollary 4.11 and to notice that dim(L3,15(79)) �=
dim(L3,13(69)). ��

A straightforward consequence of Theorem 4.12 is the following:

Corollary 4.13 Conjecture 5.1 holds for any homogeneous linear system with nine points
of multiplicity m and degree d ≤ 2m + 1.

5 Proof of Laface–Ugaglia Conjecture for linear systems with 9 points
and multiplicities bounded by 8

Let L = L3,d(m1, . . . ,m9) be the linear system of degree d hypersurfaces of P3 with nine
general multiple points of multiplicities m1, . . . ,m9. In this section, we will assume that
d ≥ m1 ≥ m2 ≥ · · · ≥ m9. Let Q = L3,2(19) be the unique quadric surface through the
nine base points. We adopt the following notation

q(L) = χ(L|Q) = (d + 1)2 −
9∑

i=1

(
mi + 1

2

)
. (5.1)

Laface and Ugaglia formulated their Conjecture in [27, Conjecture4.1] and [29, Conjec-
ture6.3]. Following the definition of linear speciality introduced in [5], we can reformulate
this Conjecture in the following way.

Conjecture 5.1 (Laface–Ugaglia Conjecture) Given a Cremona reduced linear system L in
P
3, we have
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(1) if q(L) ≤ 0, then dim(L) = dim(L − Q);
(2) if q(L) > 0, then L is linearly non-special.

Remark 5.2 Since L is Cremona reduced, i.e. m1 +m2 +m3 +m4 ≤ 2d , it does not contain
any plane in the base locus. Hence, Conjecture 5.1 says that if q(L) > 0, then L is special if
and only if m1 + m2 − d ≥ 2 and in this case:

dim(L) = ldim(L) = χ(L) +
∑
i, j

(
mi + m j − d + 1

3

)
,

where ldim denotes the affine linear dimension, see [18, Definition1.2].

Remark 5.3 If q(L) ≤ 0 and dim(L) = dim(L − Q), from the exact sequence (4.1), we
obtain that

h1(L) = h1(L − Q) − q(L).

This means that the quadric Q is a special effect surface for the linear system L.

Remark 5.4 We point out that a quadric surface in the base locus can give speciality even if it
is contained with multiplicity one. Consider, for instance, the linear systemL = L3,8(47, 32)
for which dim(L) = 6, h1 = −q(L) = 1. This system contains in its base locus the quadric
Q through the nine points, but does not contain 2Q.

This behaviour is different from the case of linear special effect varieties, for which any
linear cycle of dimension l contributes to the speciality only if its multiplicity in the base
locus is at least l + 1.

Remark 5.5 Notice that when a linear systemL has a quadric surface as special effect variety,
computingh1(L) is quite difficult in general. In fact the quasi-homogeneous systemsclassified
in Sect. 3 form a very special family for which we understand completely the situation, but
this is not the case in general.

Let L be a linear system with q(L) ≤ 0. Assume there exists k such that

• q(L − kQ) ≤ 0 for any 0 ≤ k ≤ k and q(L − (k + 1)Q) > 0,
• L − kQ restricts to non-special linear systems on the quadric Q, for any 0 ≤ k ≤ k.

Then, by using Remark 5.3, we get the following formula:

h1(L) = −
k∑

k=0

q(L − kQ). (5.2)

By using (5.2) in the case of quasi-homogeneous systems L3,2m(m8, a) and using Remark
3.2, we recover exactly the formula h1(L) = (a+1

3

)+ (a
2

)
of Theorem 3.1. In this case, k = a.

The problem in general is to determine the value of k. Let us see an example: if L =
L3,13(8, 68), then q(L) = −8, q(L−q) = −4, q(L−2Q) = −1, while q(L−3Q) = 1 > 0,
and hence, we have h1(L) = 8 + 4 + 1 = 13, and in this case, k = 2.

Remark 5.6 Given two vectors v = (m1, . . . ,ms) and v′ = (m′
1, . . . ,m

′
s) in N

s , we write
v′ ≤ v if and only if m′

i ≤ mi for any 1 ≤ i ≤ s.
It is easy to see that if a linear system Ln,d(v) is non-special and non-empty, then also

any linear system Ln,d(v
′) is non-special and non-empty for any vector v′ ≤ v.
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Now we establish Laface–Ugaglia Conjecture for any linear system with nine points of
multiplicities bounded by 8.We start with a lemma whose proof is essentially computational.

Lemma 5.7 If a linear system L = L3,d(m1, . . . ,m9) is such that m = max(mi ) ≤ 8 and
d < 2m, then it satisfies Conjecture 5.1.

Proof First of all it is clear that if d < m, the system is empty, so we assume d ≥ m. Assume
that L is Cremona reduced, that is

m1 + m2 + m3 + m4 ≤ 2d. (5.3)

Now if d = m, then by (5.3), we have that m1 = m and m2 < m. Therefore by applying [5,
Theorem5.3], we have that if

∑9
i=1 mi ≤ 3d + 2, then L is linearly non-special. Hence, we

can also assume
9∑

i=1

mi > 3d + 2. (5.4)

For anym ≤ 8, only the following systems satisfy conditions (5.3) and (5.4): L3,6(6, 28) and
L3,7(7, 3, 27). It is easy to check that these two systems are linearly non-special.

Assume now that d ≥ m + 1. We know, by [2], that Laface–Ugaglia Conjecture is true
for any linear system with multiplicities bounded by 5. So we can assume 6 ≤ m ≤ 8.

Moreover, by applying again [5, Theorem5.3], we have that if
∑9

i=1 mi ≤ 3d + 3, then
L is linearly non-special. Hence, we can also assume

9∑
i=1

mi > 3d + 3. (5.5)

Now we list all the possible linear systems which satisfy conditions (5.3) and (5.5), for any
5 ≤ m ≤ 8 and any m + 1 ≤ d ≤ 2m − 1. Then we prove that all the cases in the list satisfy
the Conjecture using the following procedure. For any degree, we start to check the cases
L = L3,d(m1, . . . ,m8) = L3,d(v) for the largest vectors v. We compute dim(L) by means
of the computer system Macaulay2 as explained in Sect. 2.4.

If L is non-special and non-empty, then by Remark 5.6, also the linear system L3,d(v
′) is

non-special and non-empty, for any vector v′ ≤ v ∈ Z
9, and hence, we greatly reduce the

number of cases to be checked.
If L is linearly non-special, then we apply [5, Lemma5.5andRemark5.6] and [9, Theo-

rem1.2] andweobtain again that any systemL3,d(v
′), forv′ ≤ v ∈ Z

9, is linearly non-special.
Hence, we further reduce the number of cases to be checked and we obtain at the end the
lists contained in Tables 1, 2 and 3. Notice that in the tables, the special and linearly non-
special systems are marked with ∗. By applying this procedure, we complete the proof of the
lemma. ��

We give now the main result of this section:

Theorem 5.8 Conjecture 5.1 is true for any linear system L3,d(m1, . . . ,m9) such that m =
max(mi ) ≤ 8.

Proof If the degree d ≤ 2m − 1, the result follows from Lemma 5.7.
If d = 2m, by Theorem 3.1, we know that the quasi-homogeneous linear systems

L3,2m(m8, a) are special if and only if 2 ≤ a ≤ m and they satisfy Conjecture 5.1. Arguing
as in Lemma 5.7, in order to complete the proof we need to check all linear systems satisfying
(5.3) and (5.5) for any 6 ≤ m ≤ 8.
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The list of these cases (reduced by Remark 5.6) is contained in Table 4, and we checked
all of them by computer.

Now if d ≥ 2m + 1, by Theorem 4.12 the linear system L3,2m+1(m9) is non-special
and non-empty. Hence, any homogeneous linear system L3,d(m9) for d ≥ 2m + 1 is also
non-special and non-empty.

Finally, we deduce that any (non-homogeneous) linear system L3,d(m1, . . . ,m9) with
mi ≤ m is non-special and non-empty, by Remark 5.6. This completes the proof. ��
5.1 Future directions

We conclude this paper by pointing out possible future directions (both theoretical and com-
putational) in establishing Laface–Ugaglia Conjecture for nine points. On the one hand, one
can introduce further degenerations of P2 in order to obtain a better bound in the base locus
lemma, Theorem 4.1. On the other hand, the combination of the results of Sect. 4 and of
similar computer-based computations as the one performed in this section could improve the
bound on the multiplicities of Theorem 5.8.

5.2 Tables

The linear systems marked with ∗ in Tables 1, 2 and 3 are linearly non-special, namely their
dimension equals the linear expected dimension. All other linear systems have the quadric
surface through nine points as special effect component, namely it splits off the system and
gives speciality.

Table 1 The case m = 6

Degree (m1,m2,m3,m4,m5,m6,m7,m8,m9) q h0 h1

11 (6, 5, 5, 5, 5, 5, 5, 5, 5) 3 28 0

11 (6, 6, 5, 5, 5, 5, 5, 5, 4) 2 22 0

11 (6, 6, 5, 5, 5, 5, 5, 5, 5) −3 10 3

11 (6, 6, 6, 4, 4, 4, 4, 4, 4) 21 76 0

10 (6, 5, 5, 4, 4, 4, 4, 4, 4) 10 40 0

10 *(6, 6, 4, 4, 4, 4, 4, 4, 4) 9 35 1

10 *(6, 6, 5, 3, 3, 3, 3, 3, 3) 28 80 1

9 (6, 4, 4, 4, 4, 4, 4, 4, 3) 3 14 0

9 (6, 4, 4, 4, 4, 4, 4, 4, 4) −1 5 1

9 *(6, 5, 4, 3, 3, 3, 3, 3, 3) 18 50 1

9 *(6, 6, 3, 3, 3, 3, 3, 3, 3) 16 42 4

8 *(6, 4, 3, 3, 3, 3, 3, 3, 3) 8 20 1
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Table 2 The case m = 7

Degree (m1,m2,m3,m4,m5,m6,m7,m8,m9) q h0 h1

13 (7, 6, 6, 6, 6, 6, 6, 6, 6) 0 28 0

13 (7, 7, 6, 6, 6, 6, 6, 5, 5) 5 42 0

13 (7, 7, 6, 6, 6, 6, 6, 6, 4) 4 36 0

13 (7, 7, 6, 6, 6, 6, 6, 6, 5) −1 22 1

13 (7, 7, 6, 6, 6, 6, 6, 6, 6) −7 10 10

13 (7, 7, 7, 5, 5, 5, 5, 5, 5) 22 98 0

12 (7, 6, 6, 5, 5, 5, 5, 5, 5) 9 49 0

12 *(7, 7, 5, 5, 5, 5, 5, 5, 5) 8 43 1

12 *(7, 7, 6, 4, 4, 4, 4, 4, 4) 32 112 1

11 (7, 5, 5, 5, 5, 5, 5, 5, 4) 1 15 0

11 (7, 5, 5, 5, 5, 5, 5, 5, 5) −4 5 5

11 *(7, 6, 5, 4, 4, 4, 4, 4, 4) 20 70 1

11 *(7, 6, 6, 3, 3, 3, 3, 3, 3) 38 110 2

11 *(7, 7, 4, 4, 4, 4, 4, 4, 4) 18 60 4

11 *(7, 7, 5, 3, 3, 3, 3, 3, 3) 37 105 4

10 *(7, 5, 4, 4, 4, 4, 4, 4, 4) 8 28 1

10 *(7, 5, 5, 3, 3, 3, 3, 3, 3) 27 74 2

10 * (7, 6, 4, 3, 3, 3, 3, 3, 3) 26 70 4

10 *(7, 7, 3, 3, 3, 3, 3, 3, 3) 23 58 10

9 *(7, 4, 4, 3, 3, 3, 3, 3, 3) 16 38 2

9 *(7, 5, 3, 3, 3, 3, 3, 3, 3) 15 35 4

8 *(7, 3, 3, 3, 3, 3, 3, 3, 3) 5 9 8
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Table 3 The case m = 8

Degree (m1,m2,m3,m4,m5,m6,m7,m8,m9) q h0 h1

15 (8, 7, 7, 7, 7, 7, 7, 7, 6) 3 52 0

15 (8, 7, 7, 7, 7, 7, 7, 7, 7) −4 28 4

15 (8, 8, 7, 7, 7, 7, 7, 6, 6) 2 44 0

15 (8, 8, 7, 7, 7, 7, 7, 7, 5) 1 37 0

15 (8, 8, 7, 7, 7, 7, 7, 7, 6) −5 22 6

15 (8, 8, 7, 7, 7, 7, 7, 7, 7) −12 10 22

15 (8, 8, 8, 6, 6, 6, 6, 6, 6) 22 120 0

14 (8, 7, 7, 6, 6, 6, 6, 6, 6) 7 56 0

14 *(8, 8, 6, 6, 6, 6, 6, 6, 6) 6 49 1

14 *(8, 8, 7, 5, 5, 5, 5, 5, 5) 35 147 1

14 *(8, 8, 8, 4, 4, 4, 4, 4, 4) 57 203 3

13 (8, 6, 6, 6, 6, 6, 6, 5, 5) 4 34 0

13 (8, 6, 6, 6, 6, 6, 6, 6, 4) 3 28 0

13 (8, 6, 6, 6, 6, 6, 6, 6, 5) −2 15 2

13 (8, 6, 6, 6, 6, 6, 6, 6, 6) −8 5 13

13 *(8, 7, 6, 5, 5, 5, 5, 5, 5) 21 91 1

13 *(8, 7, 7, 4, 4, 4, 4, 4, 4) 44 154 2

13 *(8, 8, 5, 5, 5, 5, 5, 5, 5) 19 79 4

13 *(8, 8, 6, 4, 4, 4, 4, 4, 4) 43 148 4

12 *(8, 6, 5, 5, 5, 5, 5, 5, 5) 7 35 1

12 *(8, 6, 6, 4, 4, 4, 4, 4, 4) 31 105 2

12 *(8, 7, 5, 4, 4, 4, 4, 4, 4) 30 100 4

12 *(8, 8, 4, 4, 4, 4, 4, 4, 4) 27 85 10

11 *(8, 5, 5, 4, 4, 4, 4, 4, 4) 18 56 2

11 *(8, 6, 4, 4, 4, 4, 4, 4, 4) 17 52 4

11 *(8, 6, 5, 3, 3, 3, 3, 3, 3) 36 98 5

11 *(8, 7, 4, 3, 3, 3, 3, 3, 3) 34 90 10

11 *(8, 8, 3, 3, 3, 3, 3, 3, 3) 30 74 20

10 *(8, 4, 4, 4, 4, 4, 4, 4, 4) 5 14 8

10 *(8, 5, 4, 3, 3, 3, 3, 3, 3) 24 56 5

10 *(8, 6, 3, 3, 3, 3, 3, 3, 3) 22 50 10

9 *(8, 4, 3, 3, 3, 3, 3, 3, 3) 12 21 11
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Table 4 The case d = 2m
(m1,m2,m3,m4,m5,m6,m7,m8,m9) q h0 h1

(6, 6, 6, 6, 6, 5, 5, 5, 5) 4 35 0

(6, 6, 6, 6, 6, 6, 5, 5, 4) 3 29 0

(6, 6, 6, 6, 6, 6, 5, 5, 5) −2 16 2

(6, 6, 6, 6, 6, 6, 6, 4, 4) 2 23 0

(6, 6, 6, 6, 6, 6, 6, 5, 3) 1 18 0

(6, 6, 6, 6, 6, 6, 6, 5, 4) −3 11 3

(6, 6, 6, 6, 6, 6, 6, 5, 5) −8 6 13

(7, 7, 7, 7, 7, 6, 6, 6, 6) 1 36 0

(7, 7, 7, 7, 7, 7, 6, 6, 5) 0 29 0

(7, 7, 7, 7, 7, 7, 6, 6, 6) −6 16 8

(7, 7, 7, 7, 7, 7, 7, 5, 4) 4 37 0

(7, 7, 7, 7, 7, 7, 7, 5, 5) −1 23 1

(7, 7, 7, 7, 7, 7, 7, 6, 3) 2 26 0

(7, 7, 7, 7, 7, 7, 7, 6, 4) −2 18 2

(7, 7, 7, 7, 7, 7, 7, 6, 5) −7 1 10

(7, 7, 7, 7, 7, 7, 7, 6, 6) −13 6 26

(8, 8, 8, 8, 7, 7, 7, 7, 7) 5 69 0

(8, 8, 8, 8, 8, 7, 7, 7, 6) 4 61 0

(8, 8, 8, 8, 8, 7, 7, 7, 7) −3 36 3

(8, 8, 8, 8, 8, 8, 7, 6, 6) 3 53 0

(8, 8, 8, 8, 8, 8, 7, 7, 5) 2 46 0

(8, 8, 8, 8, 8, 8, 7, 7, 6) −4 29 4

(8, 8, 8, 8, 8, 8, 7, 7, 7) −11 16 19

(8, 8, 8, 8, 8, 8, 8, 6, 5) 1 38 0

(8, 8, 8, 8, 8, 8, 8, 6, 6) −5 23 6

(8, 8, 8, 8, 8, 8, 8, 7, 3) 3 35 0

(8, 8, 8, 8, 8, 8, 8, 7, 4) −1 26 1

(8, 8, 8, 8, 8, 8, 8, 7, 5) −6 18 8

(8, 8, 8, 8, 8, 8, 8, 7, 6) −12 11 22

(8, 8, 8, 8, 8, 8, 8, 7, 7) −19 6 45
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