Maximal subgroups of finite soluble groups in general position

Eloisa Detomi ${ }^{1}$ • Andrea Lucchini ${ }^{1}$ (D)

Received: 9 March 2015 / Accepted: 27 May 2015 / Published online: 10 June 2015
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract

For a finite group G we investigate the difference between the maximum size $\operatorname{MaxDim}(G)$ of an "independent" family of maximal subgroups of G and maximum size $m(G)$ of an irredundant sequence of generators of G. We prove that $\operatorname{MaxDim}(G)=m(G)$ if the derived subgroup of G is nilpotent. However, $\operatorname{MaxDim}(G)-m(G)$ can be arbitrarily large: for any odd prime p, we construct a finite soluble group with Fitting length two satisfying $m(G)=3$ and $\operatorname{MaxDim}(G)=p$.

Keywords Finite soluble groups • Intersection of maximal subgroups • Group generation
Mathematics Subject Classification 20F16 - 20F05 - 20F30

1 Introduction

Let G be a finite group. A sequence $\left(g_{1}, \ldots, g_{n}\right)$ of elements of G is said to be irredundant if $\left\langle g_{j} \mid j \neq i\right\rangle$ is properly contained in $\left\langle g_{1}, \ldots, g_{n}\right\rangle$ for every $i \in\{1, \ldots, n\}$. Let $i(G)$ be the maximum size of any irredundant sequence in G and let $m(G)$ be the maximum size of any irredundant generating sequence of G [i.e. an irredundant sequence $\left(g_{1}, \ldots, g_{n}\right)$ with the property that $\left.\left\langle g_{1}, \ldots, g_{n}\right\rangle=G\right]$. Clearly $m(G) \leq i(G)=\max \{m(H) \mid H \leq G\}$. The invariant $m(G)$ has received some attention (see, e.g., $[1,2,4,5,7,9]$) also because of its role in the efficiency of the product replacement algorithm [6]. In a recent paper, Fernando [3] investigates a natural connection between irredundant generating sequences of G and certain configurations of maximal subgroups of G. A family of subgroups $H_{i} \leq G$, indexed by a set I, is said to be in general position if for every $i \in I$, the intersection $\cap_{j \neq i} H_{j}$ properly contains $\cap_{j \in I} H_{j}$. Define $\operatorname{MaxDim}(G)$ as the size of the largest family of maximal subgroups of G in general position. It can be easily seen that $m(G) \leq \operatorname{MaxDim}(G) \leq i(G)$ (see, e.g.,

[^0][3, Propositions 2 and 3]). However, the difference $\operatorname{MaxDim}(G)-m(G)$ can be arbitrarily large: for example if $G=\operatorname{Alt}(5)$ 乙 C_{p} is the wreath product of the alternating group of degree 5 with a cyclic group of prime order p, then $\operatorname{MaxDim}(G) \geq 2 p$ but $m(G) \leq 5[3$, Proposition 12]. On the other hand, Fernando proves that $\operatorname{Max} \operatorname{Dim}(G)=m(G)$ if G is a finite supersoluble group [3, Theorem 25], but gives also an example of a finite soluble group G with $m(G) \neq \operatorname{MaxDim}(G)$ [3, Proposition 16].

In this note we collect more information about the difference $\operatorname{MaxDim}(G)-m(G)$ when G is a finite soluble group. In this case $m(G)$ coincides with the number of complemented factors in a chief series of G (see [4, Theorem 2]). Our first result is that the equality $\operatorname{MaxDim}(G)=m(G)$ holds for a class of finite soluble groups, properly containing the class of finite supersoluble groups (see, e.g., [8, 7.2.13]).

Theorem 1 If G is a finite group and the derived subgroup G^{\prime} of G is nilpotent, then $\operatorname{MaxDim}(G)=m(G)$.

However, already in the class of finite soluble groups with Fitting length equal to two, examples can be exhibited of groups G for which the difference $\operatorname{MaxDim}(G)-m(G)$ is arbitrarily large.

Theorem 2 For any odd prime p, there exists a finite group G with Fitting length two such that $m(G)=3, \operatorname{MaxDim}(G)=p$ and $i(G)=2 p$.

Notice that if G is a soluble group with $m(G) \neq \operatorname{MaxDim}(G)$, then $m(G) \geq 3$. Indeed, if $m(G) \leq 2$, then a chief series of G contains at most two complemented factors and it can be easily seen that this implies that G^{\prime} is nilpotent.

2 Groups whose derived subgroup is nilpotent

Definition 3 A family of subgroups $H_{i} \leq G$, indexed by a set I, is said to be in general position if for every $i \in I$, the intersection $\cap_{j \neq i} H_{j}$ properly contains $\cap_{j \in I} H_{j}$ (equivalently, H_{i} does not contain $\cap_{j \neq i} H_{j}$).

Note that the subgroups $\left\{H_{i} \mid i \in I\right\}$ are in general position if and only, whenever $I_{1} \neq I_{2}$ are subsets of S, then $\cap_{i \in I_{1}} H_{i} \neq \cap_{i \in I_{2}} H_{i}$ (see, e.g., Definition 1 in [3]).

Lemma 4 Let \mathbb{F} be a field of characteristic p. Let V a finite dimension \mathbb{F}-vector space, let $H=\langle h\rangle$ where $h \in \mathbb{F}^{*}$ such that $\mathbb{F}=\mathbb{F}_{p}[h]$ and set $G=V \rtimes H$.

If M_{1}, \ldots, M_{r} is a set of maximal subgroups of G supplementing V, then

$$
M_{1} \cap \ldots \cap M_{r}=W \rtimes K
$$

where W is a \mathbb{F}-subspace of V and K is either trivial or a conjugate H^{v} of H, for some $v \in V$.

Proof By induction on r we can assume that $T_{1}=M_{1} \cap \ldots \cap M_{r-1}=W_{1} \rtimes K_{1}$, where W_{1} is a subspace of V and $K_{1}=\{1\}$ or $K_{1}=H^{v}, v \in V$. The maximal subgroup M_{r} is a supplement of V, so we can write $M_{r}=W_{2} \rtimes H^{w}$, where W_{2} is a subspace of V and $w \in V$. For shortness, set $T_{2}=M_{r}$ and $T=T_{1} \cap T_{2}$. Since W_{1} and W_{2} are normal Sylow p-subgroups of T_{1} and T_{2}, respectively, their intersection $W=W_{1} \cap W_{2}$ is a normal Sylow p-subgroup of T. In the case where T is not a p-group, then $T=W \rtimes K$ where K is a
non-trivial p^{\prime}-subgroup of T. Then K is contained in some conjugates $H^{v_{1}}$ and $H^{v_{2}}$ of the p^{\prime}-Hall subgroups of T_{1} and T_{2}, respectively. In particular, there exists $1 \neq y \in K$ such that $y=h_{1}^{v_{1}}=h_{2}^{v_{2}}$ for some $h_{1}, h_{2} \in H$. It follows that $1 \neq h_{1}=h_{2} \in C_{H}\left(v_{1}-v_{2}\right)$. From $C_{H}\left(v_{1}-v_{2}\right) \neq\{1\}$, we deduce that $v_{1}=v_{2}$. Thus we have $T_{1}=W_{1} \rtimes H^{v_{1}}, T_{2}=W_{2} \rtimes H^{v_{1}}$ and $T=W \rtimes H^{v_{1}}$.

Corollary 5 In the hypotheses of Lemma 4 , if M_{1}, \ldots, M_{r} are in general position, then
(1) $r \leq \operatorname{dim}(V)+1$;
(2) if $r=\operatorname{dim}(V)+1$, then, for a suitable permutation of the indices, $\bigcap_{i=1}^{r-1} M_{i}=H^{v}$ for some $v \in V$, and $\bigcap_{i=1}^{r} M_{i}=\{1\}$.

Proof Let $n=\operatorname{dim} V$. Since the subgroups M_{1}, \ldots, M_{r} are in general position, the set of the intersections $T_{j}=\cap_{i=1}^{j} M_{i}$, for $j=1, \ldots, r$, is a strictly decreasing chain of subgroups. By Lemma4, $T_{i}=W_{i} \rtimes K_{i}$, where W_{i} is a \mathbb{F}-subspace of W_{i-1} and K_{i} is either trivial or a conjugate of H. Note that $n-1=\operatorname{dim} W_{1} \geq \operatorname{dim} W_{i} \geq \operatorname{dim} W_{i+1}$. Moreover, if $\operatorname{dim} W_{i}=\operatorname{dim} W_{i+1}$ for some index i, then $W_{i}=W_{i+1}$ and, since $T_{i} \neq T_{i+1}$, we have that

- K_{1}, \ldots, K_{i} are non-trivial;
- $K_{i+1}=\cdots=K_{r}=\{1\}$.

In particular there exists at most one index i such that $\operatorname{dim} W_{i}=\operatorname{dim} W_{i+1}$. As $\operatorname{dim} W_{1}=$ $n-1$, it follows that we can have at most $n+1$ subgroups T_{i}, hence $r \leq n+1$.

In the case where $r=n+1$, we actually have that $\operatorname{dim} W_{i}=\operatorname{dim} W_{i+1}$ for at least one, and precisely one, index i. This implies that $W_{i}=W_{i+1}$ and, setting $J=\{1, \ldots, n+1\} \backslash\{i+1\}$ and $T=\cap_{l \in J} M_{l}$, we get that W_{n+1} coincides with the Sylow p-subgroup of T. Since $\operatorname{dim} W_{n+1}=0$ and $T \neq 1$ we deduce that $T=H^{v}$, for some $v \in V$. Finally, $T \cap M_{i+1}=\{1\}$.

A proof of the following lemma is implicitly contained in Sect. 1 of [3], but, for the sake of completeness, we sketch a direct proof here.

Lemma 6 Let H be an abelian finite group. The size of a set of subgroups in general position is at most $m(H)$.

Proof The proof is by induction on the order of H. Let $\Omega=\left\{A_{1}, \ldots, A_{r}\right\}$ be a set of subgroups of H in general position. Without loss of generality we can assume that $\cap_{i=1}^{r} A_{i}=$ \{1\}. If $m=m(H)$, then H decomposes as a direct product of m cyclic groups of prime-power order. Let B be one of these factors, and let X be the unique minimal normal subgroup of B. Since $\cap_{i=1}^{r} A_{i}=\{1\}$, there exists at least an integer i such that X is not contained in A_{i}. It follows that $A_{i} \cap B=\{1\}$, hence $A_{i} \cong A_{i} B / B \leq H / B$ and

$$
m\left(A_{i}\right) \leq m(H / B)=m-1 .
$$

Now, the set of subgroups of A_{i}

$$
\Omega^{*}=\left\{A_{j} \cap A_{i} \mid j \neq i, 1 \leq j \leq r\right\}
$$

is in general position, hence, by inductive hypothesis, $\left|\Omega^{*}\right|=r-1 \leq m\left(A_{i}\right)$. Therefore, $r \leq m$.

Proof of Theorem 1 Since

$$
m(G)=m(G / \operatorname{Frat}(G)) \text { and } \operatorname{MaxDim}(G)=\operatorname{MaxDim}(G / \operatorname{Frat}(G)),
$$

without loss of generality we can assume that $\operatorname{Frat}(G)=1$. In this case the Fitting subgroup Fit (G) of G is a direct product of minimal normal subgroups of G, it is abelian and complemented. Let K be a complement of $\operatorname{Fit}(G)$ in G; note that, being G^{\prime} nilpotent by assumption, K is abelian. Let F be a complement of $Z(G)$ in $\operatorname{Fit}(G)$ and let $H=Z(G) \times K$. We have $G=F \rtimes H$ and we can write F as a product of nontrivial H-irreducible modules

$$
F=V_{1}^{n_{1}} \times \cdots \times V_{r}^{n_{r}}
$$

where V_{1}, \ldots, V_{r} are irreducible H-modules, pairwise not H-isomorphic.
By [4, Theorem 2] $m(G)$ coincides with the number of complemented factors in a chief series of G, hence

$$
m(G)=\sum_{i=1}^{r} n_{i}+m(H)
$$

Let \mathcal{M} be a family of maximal subgroups of G in general position.
Let $M_{0,1}, \ldots, M_{0, v_{0}}$ the elements of \mathcal{M} containing F. We can write

$$
M_{0, i}=F \rtimes Y_{i}
$$

where Y_{i} is a maximal subgroup of H. Note that $Y_{1}, \ldots, Y_{\nu_{0}}$ are maximal subgroups of H in general position, hence, by Lemma 6, $v_{0} \leq \operatorname{MaxDim}(H) \leq m(H)$.

If M is a maximal subgroup supplementing F, then M contains the subgroup $U_{i}=$ $\prod_{j \neq i} V_{j}^{n_{j}}$ for some index i. In particular $M=\left(U_{i} \times W_{i}\right) \rtimes H^{v}$ for some $v \in V_{i}^{n_{i}}$ and some maximal H-submodule W_{i} of $V_{i}^{n_{i}}$. Set $C_{i}=C_{H}\left(V_{i}\right)$ and $H_{i}=H / C_{i}$. Then $\mathbb{F}_{i}=\operatorname{End}_{H_{i}}\left(V_{i}\right)$ is a field and V_{i} is an absolutely irreducible $\mathbb{F}_{i} H_{i}$-module. Since H_{i} is abelian, $\operatorname{dim}_{\mathbb{F}_{i}} V_{i}=1$, that is $V_{i} \cong \mathbb{F}_{i}$, and hence H_{i} is isomorphic to a subgroup of \mathbb{F}_{i}^{*} generated by a primitive element. In particular we can apply Corollary 5 to the group $V_{i}^{n_{i}} \rtimes H_{i}$. Let $M_{i, 1}, \ldots, M_{i, v_{i}}$ the maximal subgroups in \mathcal{M} containing U_{i}; say

$$
M_{i, l}=\left(U_{i} \times W_{i, l}\right) \rtimes H^{v_{i, l}},
$$

where $v_{i, l} \in V_{i}^{n_{i}}$. Note that the subgroups $\bar{M}_{i, l}=W_{i, l} \rtimes H_{i}^{v_{i, l}}$, for $l \in\left\{1, \ldots, v_{i}\right\}$, are maximal subgroups of $V_{i}^{n_{i}} \rtimes H_{i}$ in general position, hence, by Corollary 5,

$$
v_{i} \leq n_{i}+1
$$

If $\nu_{i} \leq n_{i}$ for every $i \neq 0$, then

$$
|\mathcal{M}|=\sum_{i=1}^{r} v_{i}+v_{0} \leq \sum_{i=1}^{r} n_{i}+m(H)=m(G),
$$

and the result follows.
Otherwise let J be the set of the integers $i \in\{1, \ldots, r\}$ such that $\nu_{i}=n_{i}+1$. By Corollary 5, we can assume that, for some $v_{i} \in V_{i}^{n_{i}}$,

$$
\begin{gathered}
\bigcap_{l=1}^{n_{i}} M_{i, l}=U_{i} \rtimes H^{v_{i}}, \\
\bigcap_{i=1}^{n_{i}+1} M_{i, l}=U_{i} \rtimes C_{i} .
\end{gathered}
$$

Recall that the $M_{0, j}=F \rtimes Y_{j}$, for $j=1, \ldots, \nu_{0}$, are the elements of \mathcal{M} containing F. Our next task is to prove that

$$
\Omega=\left\{C_{i} \mid i \in J\right\} \cup\left\{Y_{j} \mid j=1, \ldots, v_{0}\right\}
$$

is a set of subgroups of H in general position.
Assume, by contradiction, that for example $C_{1} \geq\left(\cap_{i \neq 1} C_{i}\right) \cap\left(\cap_{j=1}^{\nu_{0}} Y_{j}\right)$; then

$$
M_{1, n_{1}+1} \geq U_{1} \rtimes C_{1} \geq\left(\cap_{l=1}^{n_{1}} M_{1, l}\right) \cap\left(\cap_{i \neq 1}\left(\cap_{l=1}^{n_{i}+1} M_{i, l}\right)\right) \cap\left(\cap_{j=1}^{\nu_{0}} M_{0, j}\right)
$$

against the fact that \mathcal{M} is in general position. Similarly, if $Y_{1} \geq\left(\cap_{i \in J} C_{i}\right) \cap\left(\cap_{j \neq 1} Y_{j}\right)$, then

$$
M_{0,1}=F \rtimes Y_{1} \geq\left(\cap_{i \in J}\left(\cap_{l=1}^{n_{i}+1} M_{i, l}\right)\right) \cap\left(\cap_{j \neq 1} M_{0, j}\right),
$$

a contradiction.
Now we can apply Lemma 6 to get that $|\Omega| \leq m(H)$. Therefore, we conclude that

$$
|\mathcal{M}|=\sum_{i=1}^{r} \nu_{i}+\nu_{0} \leq \sum_{i=1}^{r} n_{i}+|J|+\nu_{0}=\sum_{i=1}^{r} n_{i}+|\Omega| \leq \sum_{i=1}^{r} n_{i}+m(H)=m(G),
$$

and the proof is complete.

3 Finite soluble groups with $m(G)=3$ and $\operatorname{MaxDim}(G) \geq p$

In this section we will assume that p and q are two primes and that p divides $q-1$. Let \mathbb{F} be the field with q elements and let $C=\langle c\rangle$ be the subgroup of order p of the multiplicative group of \mathbb{F}. Let $V=\mathbb{F}^{p}$ be a p-dimensional vector space over \mathbb{F} and let $\sigma=(1,2, \ldots, p) \in \operatorname{Sym}(p)$. The wreath group $H=C \imath\langle\sigma\rangle$ has an irreducible action on V defined as follows: if $v=\left(f_{1}, \ldots, f_{p}\right) \in V$ and $h=\left(c_{1}, \ldots, c_{p}\right) \sigma \in H$, then $v^{h}=\left(f_{1 \sigma^{-1}} c_{1 \sigma^{-1}}, \ldots, f_{p \sigma^{-1}} c_{p \sigma^{-1}}\right)$. We will concentrate our attention on the semidirect product

$$
G_{q, p}=V \rtimes H
$$

Proposition $7 m\left(G_{q, p}\right)=3$.
Proof Since V is a complemented chief factor of $G_{q, p}$, by [4, Theorem 2], we have $m\left(G_{q, p}\right)=1+m(H)=1+m(H / \operatorname{Frat}(H))=1+m\left(C_{p} \times C_{p}\right)=3$.

Proposition $8 i\left(G_{q, p}\right)=2 p$.
Proof Let $B \cong C^{p}$ be the base subgroup of H and consider $K=V \rtimes B \cong(\mathbb{F} \rtimes C)^{p}$. A composition series of K has length $2 p$, and all its factors are indeed complemented chief factors, so $m(K)=2 p$. Now by definition $i\left(G_{q, p}\right)=\max \left\{m(X) \mid X \leq G_{q, p}\right\} \geq m(K)=$ $2 p$. On the other hand, $m\left(G_{q, p}\right)=3$ and, if $X<G_{q, p}$, then $|X|$ is a proper divisor of $|G|=(p q)^{p} p$ and the composition length of X is at most $2 p$, so $m(X) \leq 2 p$. Therefore, $i\left(G_{q, p}\right) \leq 2 p$, and consequently $i\left(G_{q, p}\right)=m(K)=2 p$.

Lemma $9 \operatorname{MaxDim}\left(G_{q, p}\right) \geq p$.
Proof Let $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{p}=(0,0, \ldots, 1) \in V$ and let $h_{1}=$ $(c, 1, \ldots, 1), h_{2}=(1, c, \ldots, 1), \ldots, h_{p}=(1,1, \ldots, c) \in C^{p} \leq H$. For any $1 \leq i, j \leq p$, we have

$$
h_{i}^{e_{j}}=h_{i} \text { if } \quad i \neq j, \quad h_{i}^{e_{i}}=\left((1 / c-1) e_{i}\right) h_{i} .
$$

But then, for each $i \in\{1, \ldots, p\}$, we have

$$
h_{i} \in \cap_{j \neq i} H^{e_{j}}, \quad h_{i} \notin H^{e_{i}},
$$

hence $H^{e_{1}}, \ldots, H^{e_{p}}$ is a family of maximal subgroups of $G_{q, p}$ in general position.
In order to compute the precise value of $\operatorname{MaxDim}\left(G_{q, p}\right)$, the following lemma is useful.
Lemma 10 Let $v_{1}=\left(x_{1}, \ldots, x_{p}\right)$ and $v_{2}=\left(y_{1}, \ldots, y_{p}\right)$ be two different elements of $V=\mathbb{F}^{p}$ and let $\Delta\left(v_{1}, v_{2}\right)=\left\{i \in\{1, \ldots, p\} \mid x_{i}=y_{i}\right\}$. Then

- if $\left|\Delta\left(v_{1}, v_{2}\right)\right|=0$, then $\left|H^{v_{1}} \cap H^{v_{2}}\right| \leq p$;
- if $\left|\Delta\left(v_{1}, v_{2}\right)\right|=u \neq 0$, then $\left|H^{v_{1}} \cap H^{v_{2}}\right|=p^{u}$.

Proof Clearly $\left|H^{v_{1}} \cap H^{v_{2}}\right|=\left|H \cap H^{v_{2}-v_{1}}\right|=\left|C_{H}\left(v_{2}-v_{1}\right)\right|$. If $\Delta\left(v_{1}, v_{2}\right)=\varnothing$, then $C_{H}\left(v_{2}-v_{1}\right) \cap C^{p}=\{1\}$, hence $\left|C_{H}\left(v_{2}-v_{1}\right)\right| \leq p$. If $\left|\Delta\left(v_{1}, v_{2}\right)\right|=u \neq 0$, then

$$
C_{H}\left(v_{2}-v_{1}\right)=\left\{\left(c_{1}, \ldots, c_{p}\right) \in C^{p} \mid c_{i}=1 \text { if } \quad i \notin \Delta\left(v_{1}, v_{2}\right)\right\} \cong C^{u}
$$

has order p^{u}.
Proposition 11 If $p \neq 2$, then $\operatorname{MaxDim}\left(G_{q, p}\right)=p$.
Proof By Lemma 9 it suffices to prove that $\operatorname{MaxDim}\left(G_{q, p}\right) \leq p$. Assume that \mathcal{M} is a family of maximal subgroups of $G=G_{q, p}$ in general position and let $t=|\mathcal{M}|$. Let $M \in \mathcal{M}$. One of the following two possibilities occurs:
(1) M is a complement of V in G : hence $M=H^{v}$ for some $v \in V$.
(2) M contains V : hence $M=V \rtimes X$ for some maximal subgroup X of H.

If M_{1} and M_{2} are two different maximal subgroups of type (2), then $M_{1} \cap M_{2}=V \rtimes \operatorname{Frat}(X)$ is contained in any other maximal subgroup of type (2). Hence, \mathcal{M} cannot contain more then two maximal subgroups of type (2). Now we prove the following claim: if \mathcal{M} contains at least three different complements of V in G, then $t \leq p$. In order to prove this claim, assume, by contradiction that $t>p$. This implies in particular that in the intersection X of any two subgroups of \mathcal{M}, the subgroup lattice $\mathcal{L}(X)$ must contain a chain of length at least $p-1$.

Assume that $H^{v_{1}}, H^{v_{2}}, H^{v_{3}}$ are different maximal subgroups in \mathcal{M}. It is not restrictive to assume $v_{1}=(0, \ldots, 0)$. Let $v_{2}=\left(x_{1}, \ldots, x_{p}\right)$ and $v_{3}=\left(y_{1}, \ldots, y_{p}\right)$. For $i \in\{2,3\}$, it must $\left|H \cap H^{v_{i}}\right| \geq p^{p-1}$, hence, by Lemma $10,\left|\Delta\left(0, v_{2}\right)\right|=\left|\Delta\left(0, v_{3}\right)\right|=p-1$, i.e. there exists $i_{1} \neq i_{2}$ such that $x_{i_{1}} \neq 0, x_{j}=0$ if $j \neq i_{1}, y_{i_{2}} \neq 0, y_{j}=0$ if $j \neq i_{2}$. But then $\left|\Delta\left(v_{2}, v_{3}\right)\right|=p-2$, hence $\left|H^{v_{2}} \cap H^{v_{3}}\right|=p^{p-2}$, a contradiction. We have so proved that either $t \leq p$ or \mathcal{M} contains at most two maximal subgroups of type (1) and at most two maximal subgroups of type (2), and consequently $t \leq 4$. It remains to exclude the possibility that $t=4$ and $p=3$. By the previous considerations it is not restrictive to assume $\mathcal{M}=\left\{H, H^{v}, V \rtimes X_{1}, V \rtimes X_{2}\right\}$ where X_{1} and X_{2} are maximal subgroups of H and $|\Delta(0, v)|=2$. In particular we would have $H \cap H^{v} \leq C^{3}$: this excludes $C^{3} \in\left\{X_{1}, X_{2}\right\}$ but then $X_{1} \cap C^{3}=X_{2} \cap C^{3}=$ Frat $H=\left\{\left(c_{1}, c_{2}, c_{3}\right) \mid c_{1} c_{2} c_{3}=1\right\}$, hence $H \cap H^{v} \cap X_{1}=H \cap H^{v} \cap X_{2}$, a contradiction.

Proposition $12 \operatorname{MaxDim}\left(G_{q, 2}\right)=3$.
Proof By Lemma 7, $\operatorname{MaxDim}\left(G_{q, 2}\right) \geq m\left(G_{q, 2}\right)=3$. Assume now, by contradiction, that $M_{1}, M_{2}, M_{3}, M_{4}$ are a family of maximal subgroups of $G_{q, 2}$. As in the proof of the previous proposition, at least two of these maximal subgroups, say M_{1} and M_{2}, are complements of V in $G_{q, 2}$. But then, by Lemma 10, $\left|M_{1} \cap M_{2}\right| \leq 2$, hence $M_{1} \cap M_{2} \cap M_{3}=1$, a contradiction.

References

1. Apisa, P., Klopsch, B.: A generalization of the Burnside basis theorem. J. Algebra 400, 8-16 (2014)
2. Cameron, P., Cara, P.: Independent generating sets and geometries for symmetric groups. J. Algebra 258(2), 641-650 (2002)
3. Fernando, R.: On an inequality of dimension-like invariants for finite groups (Feb 2015) arXiv:1502.00360
4. Lucchini, A.: The largest size of a minimal generating set of a finite group. Arch. Math. 101(1), 1-8 (2013)
5. Lucchini, A.: Minimal generating sets of maximal size in finite monolithic groups. Arch. Math. 101(5), 401-410 (2013)
6. Pak, I.: What do we know about the product replacement algorithm? In: Groups and Computation, III, pp. 301-347. de Gruyter, Berlin (2001)
7. Saxl, J., Whiston, J.: On the maximal size of independent generating sets of $P S L_{2}(q)$. J. Algebra 258, 651-657 (2002)
8. Scott, W.R.: Group Theory. Prentice-Hall Inc, Englewood Cliffs (1964)
9. Whiston, J.: Maximal independent generating sets of the symmetric group. J. Algebra 232, 255-268 (2000)

[^0]: Andrea Lucchini
 lucchini@math.unipd.it
 1 Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy

