

Maximal subgroups of finite soluble groups in general position

Eloisa Detomi¹ · Andrea Lucchini¹

Received: 9 March 2015 / Accepted: 27 May 2015 / Published online: 10 June 2015 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract For a finite group *G* we investigate the difference between the maximum size MaxDim(G) of an "independent" family of maximal subgroups of *G* and maximum size m(G) of an irredundant sequence of generators of *G*. We prove that MaxDim(G) = m(G) if the derived subgroup of *G* is nilpotent. However, MaxDim(G) - m(G) can be arbitrarily large: for any odd prime *p*, we construct a finite soluble group with Fitting length two satisfying m(G) = 3 and MaxDim(G) = p.

Keywords Finite soluble groups · Intersection of maximal subgroups · Group generation

Mathematics Subject Classification 20F16 · 20F05 · 20F30

1 Introduction

Let *G* be a finite group. A sequence (g_1, \ldots, g_n) of elements of *G* is said to be *irredundant* if $\langle g_j | j \neq i \rangle$ is properly contained in $\langle g_1, \ldots, g_n \rangle$ for every $i \in \{1, \ldots, n\}$. Let i(G) be the maximum size of any irredundant sequence in *G* and let m(G) be the maximum size of any irredundant generating sequence of *G* [i.e. an irredundant sequence (g_1, \ldots, g_n) with the property that $\langle g_1, \ldots, g_n \rangle = G$]. Clearly $m(G) \leq i(G) = \max\{m(H) | H \leq G\}$. The invariant m(G) has received some attention (see, e.g., [1,2,4,5,7,9]) also because of its role in the efficiency of the product replacement algorithm [6]. In a recent paper, Fernando [3] investigates a natural connection between irredundant generating sequences of *G* and certain configurations of maximal subgroups of *G*. A family of subgroups $H_i \leq G$, indexed by a set *I*, is said to be in general position if for every $i \in I$, the intersection $\bigcap_{j\neq i} H_j$ properly contains $\bigcap_{j\in I} H_j$. Define MaxDim(*G*) as the size of the largest family of maximal subgroups of *G* in general position. It can be easily seen that $m(G) \leq \operatorname{MaxDim}(G) \leq i(G)$ (see, e.g.,

Andrea Lucchini lucchini@math.unipd.it

¹ Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy

[3, Propositions 2 and 3]). However, the difference MaxDim(G) - m(G) can be arbitrarily large: for example if $G = Alt(5) \wr C_p$ is the wreath product of the alternating group of degree 5 with a cyclic group of prime order p, then $MaxDim(G) \ge 2p$ but $m(G) \le 5$ [3, Proposition 12]. On the other hand, Fernando proves that MaxDim(G) = m(G) if G is a finite supersoluble group [3, Theorem 25], but gives also an example of a finite soluble group G with $m(G) \ne MaxDim(G)$ [3, Proposition 16].

In this note we collect more information about the difference MaxDim(G) - m(G) when G is a finite soluble group. In this case m(G) coincides with the number of complemented factors in a chief series of G (see [4, Theorem 2]). Our first result is that the equality MaxDim(G) = m(G) holds for a class of finite soluble groups, properly containing the class of finite supersoluble groups (see, e.g., [8, 7.2.13]).

Theorem 1 If G is a finite group and the derived subgroup G' of G is nilpotent, then MaxDim(G) = m(G).

However, already in the class of finite soluble groups with Fitting length equal to two, examples can be exhibited of groups G for which the difference MaxDim(G) - m(G) is arbitrarily large.

Theorem 2 For any odd prime p, there exists a finite group G with Fitting length two such that m(G) = 3, MaxDim(G) = p and i(G) = 2p.

Notice that if G is a soluble group with $m(G) \neq \text{MaxDim}(G)$, then $m(G) \geq 3$. Indeed, if $m(G) \leq 2$, then a chief series of G contains at most two complemented factors and it can be easily seen that this implies that G' is nilpotent.

2 Groups whose derived subgroup is nilpotent

Definition 3 A family of subgroups $H_i \leq G$, indexed by a set *I*, is said to be in general position if for every $i \in I$, the intersection $\bigcap_{j \neq i} H_j$ properly contains $\bigcap_{j \in I} H_j$ (equivalently, H_i does not contain $\bigcap_{j \neq i} H_j$).

Note that the subgroups $\{H_i \mid i \in I\}$ are in general position if and only, whenever $I_1 \neq I_2$ are subsets of *S*, then $\bigcap_{i \in I_1} H_i \neq \bigcap_{i \in I_2} H_i$ (see, e.g., Definition 1 in [3]).

Lemma 4 Let \mathbb{F} be a field of characteristic p. Let V a finite dimension \mathbb{F} -vector space, let $H = \langle h \rangle$ where $h \in \mathbb{F}^*$ such that $\mathbb{F} = \mathbb{F}_p[h]$ and set $G = V \rtimes H$.

If M_1, \ldots, M_r is a set of maximal subgroups of G supplementing V, then

$$M_1 \cap \ldots \cap M_r = W \rtimes K$$

where W is a \mathbb{F} -subspace of V and K is either trivial or a conjugate H^{v} of H, for some $v \in V$.

Proof By induction on r we can assume that $T_1 = M_1 \cap ... \cap M_{r-1} = W_1 \rtimes K_1$, where W_1 is a subspace of V and $K_1 = \{1\}$ or $K_1 = H^v$, $v \in V$. The maximal subgroup M_r is a supplement of V, so we can write $M_r = W_2 \rtimes H^w$, where W_2 is a subspace of V and $w \in V$. For shortness, set $T_2 = M_r$ and $T = T_1 \cap T_2$. Since W_1 and W_2 are normal Sylow p-subgroups of T_1 and T_2 , respectively, their intersection $W = W_1 \cap W_2$ is a normal Sylow p-subgroup of T. In the case where T is not a p-group, then $T = W \rtimes K$ where K is a

non-trivial p'-subgroup of T. Then K is contained in some conjugates H^{v_1} and H^{v_2} of the p'-Hall subgroups of T_1 and T_2 , respectively. In particular, there exists $1 \neq y \in K$ such that $y = h_1^{v_1} = h_2^{v_2}$ for some $h_1, h_2 \in H$. It follows that $1 \neq h_1 = h_2 \in C_H(v_1 - v_2)$. From $C_H(v_1 - v_2) \neq \{1\}$, we deduce that $v_1 = v_2$. Thus we have $T_1 = W_1 \rtimes H^{v_1}, T_2 = W_2 \rtimes H^{v_1}$ and $T = W \rtimes H^{v_1}$.

Corollary 5 In the hypotheses of Lemma 4, if M_1, \ldots, M_r are in general position, then

- (1) $r \le \dim(V) + 1;$
- (2) if $r = \dim(V) + 1$, then, for a suitable permutation of the indices, $\bigcap_{i=1}^{r-1} M_i = H^v$ for some $v \in V$, and $\bigcap_{i=1}^r M_i = \{1\}$.

Proof Let $n = \dim V$. Since the subgroups M_1, \ldots, M_r are in general position, the set of the intersections $T_j = \bigcap_{i=1}^j M_i$, for $j = 1, \ldots, r$, is a strictly decreasing chain of subgroups. By Lemma 4, $T_i = W_i \rtimes K_i$, where W_i is a \mathbb{F} -subspace of W_{i-1} and K_i is either trivial or a conjugate of H. Note that $n - 1 = \dim W_1 \ge \dim W_i \ge \dim W_{i+1}$. Moreover, if dim $W_i = \dim W_{i+1}$ for some index i, then $W_i = W_{i+1}$ and, since $T_i \ne T_{i+1}$, we have that

- K_1, \ldots, K_i are non-trivial;
- $K_{i+1} = \cdots = K_r = \{1\}.$

In particular there exists at most one index *i* such that dim $W_i = \dim W_{i+1}$. As dim $W_1 = n - 1$, it follows that we can have at most n + 1 subgroups T_i , hence $r \le n + 1$.

In the case where r = n+1, we actually have that dim $W_i = \dim W_{i+1}$ for at least one, and precisely one, index *i*. This implies that $W_i = W_{i+1}$ and, setting $J = \{1, ..., n+1\} \setminus \{i+1\}$ and $T = \bigcap_{l \in J} M_l$, we get that W_{n+1} coincides with the Sylow *p*-subgroup of *T*. Since dim $W_{n+1} = 0$ and $T \neq 1$ we deduce that $T = H^v$, for some $v \in V$. Finally, $T \cap M_{i+1} = \{1\}$.

A proof of the following lemma is implicitly contained in Sect. 1 of [3], but, for the sake of completeness, we sketch a direct proof here.

Lemma 6 Let H be an abelian finite group. The size of a set of subgroups in general position is at most m(H).

Proof The proof is by induction on the order of H. Let $\Omega = \{A_1, \ldots, A_r\}$ be a set of subgroups of H in general position. Without loss of generality we can assume that $\bigcap_{i=1}^r A_i = \{1\}$. If m = m(H), then H decomposes as a direct product of m cyclic groups of prime-power order. Let B be one of these factors, and let X be the unique minimal normal subgroup of B. Since $\bigcap_{i=1}^r A_i = \{1\}$, there exists at least an integer i such that X is not contained in A_i . It follows that $A_i \cap B = \{1\}$, hence $A_i \cong A_i B/B \le H/B$ and

$$m(A_i) \le m (H/B) = m - 1.$$

Now, the set of subgroups of A_i

$$\Omega^* = \{A_j \cap A_i \mid j \neq i, \ 1 \le j \le r\}$$

is in general position, hence, by inductive hypothesis, $|\Omega^*| = r - 1 \le m(A_i)$. Therefore, $r \le m$.

Proof of Theorem 1 Since

 $m(G) = m(G/\operatorname{Frat}(G))$ and $\operatorname{MaxDim}(G) = \operatorname{MaxDim}(G/\operatorname{Frat}(G))$,

D Springer

without loss of generality we can assume that Frat(G) = 1. In this case the Fitting subgroup Fit(G) of *G* is a direct product of minimal normal subgroups of *G*, it is abelian and complemented. Let *K* be a complement of Fit(G) in *G*; note that, being *G'* nilpotent by assumption, *K* is abelian. Let *F* be a complement of Z(G) in Fit(G) and let $H = Z(G) \times K$. We have $G = F \times H$ and we can write *F* as a product of nontrivial *H*-irreducible modules

$$F = V_1^{n_1} \times \cdots \times V_r^{n_r}$$

where V_1, \ldots, V_r are irreducible *H*-modules, pairwise not *H*-isomorphic.

By [4, Theorem 2] m(G) coincides with the number of complemented factors in a chief series of G, hence

$$m(G) = \sum_{i=1}^{r} n_i + m(H).$$

Let \mathcal{M} be a family of maximal subgroups of G in general position. Let $M_{0,1}, \ldots, M_{0,\nu_0}$ the elements of \mathcal{M} containing F. We can write

$$M_{0,i} = F \rtimes Y_i$$

where Y_i is a maximal subgroup of H. Note that Y_1, \ldots, Y_{ν_0} are maximal subgroups of H in general position, hence, by Lemma 6, $\nu_0 \leq \text{MaxDim}(H) \leq m(H)$.

If *M* is a maximal subgroup supplementing *F*, then *M* contains the subgroup $U_i = \prod_{j \neq i} V_j^{n_j}$ for some index *i*. In particular $M = (U_i \times W_i) \rtimes H^v$ for some $v \in V_i^{n_i}$ and some maximal *H*-submodule W_i of $V_i^{n_i}$. Set $C_i = C_H(V_i)$ and $H_i = H/C_i$. Then $\mathbb{F}_i = \text{End}_{H_i}(V_i)$ is a field and V_i is an absolutely irreducible $\mathbb{F}_i H_i$ -module. Since H_i is abelian, $\dim_{\mathbb{F}_i} V_i = 1$, that is $V_i \cong \mathbb{F}_i$, and hence H_i is isomorphic to a subgroup of \mathbb{F}_i^* generated by a primitive element. In particular we can apply Corollary 5 to the group $V_i^{n_i} \rtimes H_i$. Let $M_{i,1}, \ldots, M_{i,v_i}$ the maximal subgroups in \mathcal{M} containing U_i ; say

$$M_{i,l} = (U_i \times W_{i,l}) \rtimes H^{v_{i,l}},$$

where $v_{i,l} \in V_i^{n_i}$. Note that the subgroups $\overline{M}_{i,l} = W_{i,l} \rtimes H_i^{v_{i,l}}$, for $l \in \{1, \dots, v_i\}$, are maximal subgroups of $V_i^{n_i} \rtimes H_i$ in general position, hence, by Corollary 5,

$$v_i \leq n_i + 1.$$

If $v_i \leq n_i$ for every $i \neq 0$, then

$$|\mathcal{M}| = \sum_{i=1}^{r} \nu_i + \nu_0 \le \sum_{i=1}^{r} n_i + m(H) = m(G),$$

and the result follows.

Otherwise let *J* be the set of the integers $i \in \{1, ..., r\}$ such that $v_i = n_i + 1$. By Corollary 5, we can assume that, for some $v_i \in V_i^{n_i}$,

$$\bigcap_{l=1}^{n_i} M_{i,l} = U_i \rtimes H^{v_i},$$
$$\bigcap_{l=1}^{n_i+1} M_{i,l} = U_i \rtimes C_i.$$

🖄 Springer

Recall that the $M_{0,j} = F \rtimes Y_j$, for $j = 1, ..., v_0$, are the elements of \mathcal{M} containing F. Our next task is to prove that

$$\Omega = \{C_i \mid i \in J\} \cup \{Y_j \mid j = 1, \dots, \nu_0\}$$

is a set of subgroups of H in general position.

Assume, by contradiction, that for example $C_1 \ge (\bigcap_{i \ne 1} C_i) \cap (\bigcap_{j=1}^{\nu_0} Y_j)$; then

$$M_{1,n_{1}+1} \ge U_{1} \rtimes C_{1} \ge \left(\bigcap_{l=1}^{n_{1}} M_{1,l}\right) \cap \left(\bigcap_{i\neq 1}^{n_{i}+1} M_{i,l}\right) \cap \left(\bigcap_{j=1}^{\nu_{0}} M_{0,j}\right)$$

against the fact that \mathcal{M} is in general position. Similarly, if $Y_1 \ge (\bigcap_{i \in J} C_i) \cap (\bigcap_{j \neq 1} Y_j)$, then

$$M_{0,1} = F \rtimes Y_1 \ge \left(\bigcap_{i \in J} \left(\bigcap_{l=1}^{n_i+1} M_{i,l} \right) \right) \cap \left(\bigcap_{j \neq 1} M_{0,j} \right),$$

a contradiction.

Now we can apply Lemma 6 to get that $|\Omega| \leq m(H)$. Therefore, we conclude that

$$|\mathcal{M}| = \sum_{i=1}^{r} v_i + v_0 \le \sum_{i=1}^{r} n_i + |J| + v_0 = \sum_{i=1}^{r} n_i + |\Omega| \le \sum_{i=1}^{r} n_i + m(H) = m(G),$$

and the proof is complete.

3 Finite soluble groups with m(G) = 3 and $MaxDim(G) \ge p$

In this section we will assume that p and q are two primes and that p divides q - 1. Let \mathbb{F} be the field with q elements and let $C = \langle c \rangle$ be the subgroup of order p of the multiplicative group of \mathbb{F} . Let $V = \mathbb{F}^p$ be a p-dimensional vector space over \mathbb{F} and let $\sigma = (1, 2, ..., p) \in \text{Sym}(p)$. The wreath group $H = C \wr \langle \sigma \rangle$ has an irreducible action on V defined as follows: if $v = (f_1, ..., f_p) \in V$ and $h = (c_1, ..., c_p)\sigma \in H$, then $v^h = (f_{1\sigma^{-1}}c_{1\sigma^{-1}}, ..., f_{p\sigma^{-1}}c_{p\sigma^{-1}})$. We will concentrate our attention on the semidirect product

$$G_{q,p} = V \rtimes H.$$

Proposition 7 $m(G_{q,p}) = 3.$

Proof Since *V* is a complemented chief factor of $G_{q,p}$, by [4, Theorem 2], we have $m(G_{q,p}) = 1 + m(H) = 1 + m(H/\operatorname{Frat}(H)) = 1 + m(C_p \times C_p) = 3.$

Proposition 8
$$i(G_{q,p}) = 2p$$
.

Proof Let $B \cong C^p$ be the base subgroup of H and consider $K = V \rtimes B \cong (\mathbb{F} \rtimes C)^p$. A composition series of K has length 2p, and all its factors are indeed complemented chief factors, so m(K) = 2p. Now by definition $i(G_{q,p}) = \max\{m(X) \mid X \leq G_{q,p}\} \geq m(K) = 2p$. On the other hand, $m(G_{q,p}) = 3$ and, if $X < G_{q,p}$, then |X| is a proper divisor of $|G| = (pq)^p p$ and the composition length of X is at most 2p, so $m(X) \leq 2p$. Therefore, $i(G_{q,p}) \leq 2p$, and consequently $i(G_{q,p}) = m(K) = 2p$.

Lemma 9 MaxDim $(G_{q,p}) \ge p$.

Proof Let $e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0), ..., e_p = (0, 0, ..., 1) \in V$ and let $h_1 = (c, 1, ..., 1), h_2 = (1, c, ..., 1), ..., h_p = (1, 1, ..., c) \in C^p \leq H$. For any $1 \leq i, j \leq p$, we have

$$h_i^{e_j} = h_i$$
 if $i \neq j$, $h_i^{e_i} = ((1/c - 1)e_i)h_i$.

But then, for each $i \in \{1, \ldots, p\}$, we have

$$h_i \in \bigcap_{j \neq i} H^{e_j}, \quad h_i \notin H^{e_i},$$

hence H^{e_1}, \ldots, H^{e_p} is a family of maximal subgroups of $G_{q,p}$ in general position.

In order to compute the precise value of $MaxDim(G_{q,p})$, the following lemma is useful.

Lemma 10 Let $v_1 = (x_1, \ldots, x_p)$ and $v_2 = (y_1, \ldots, y_p)$ be two different elements of $V = \mathbb{F}^p$ and let $\Delta(v_1, v_2) = \{i \in \{1, \ldots, p\} \mid x_i = y_i\}$. Then

- *if* $|\Delta(v_1, v_2)| = 0$, *then* $|H^{v_1} \cap H^{v_2}| \le p$;
- *if* $|\Delta(v_1, v_2)| = u \neq 0$, *then* $|H^{v_1} \cap H^{v_2}| = p^u$.

Proof Clearly $|H^{v_1} \cap H^{v_2}| = |H \cap H^{v_2-v_1}| = |C_H(v_2 - v_1)|$. If $\Delta(v_1, v_2) = \emptyset$, then $C_H(v_2 - v_1) \cap C^p = \{1\}$, hence $|C_H(v_2 - v_1)| \le p$. If $|\Delta(v_1, v_2)| = u \ne 0$, then

$$C_H(v_2 - v_1) = \{ (c_1, \dots, c_p) \in C^p \mid c_i = 1 \text{ if } i \notin \Delta(v_1, v_2) \} \cong C^u$$

has order p^u .

Proposition 11 If $p \neq 2$, then $MaxDim(G_{q,p}) = p$.

Proof By Lemma 9 it suffices to prove that $MaxDim(G_{q,p}) \le p$. Assume that \mathcal{M} is a family of maximal subgroups of $G = G_{q,p}$ in general position and let $t = |\mathcal{M}|$. Let $M \in \mathcal{M}$. One of the following two possibilities occurs:

(1) *M* is a complement of *V* in *G* : hence $M = H^v$ for some $v \in V$.

(2) *M* contains *V* : hence $M = V \rtimes X$ for some maximal subgroup *X* of *H*.

If M_1 and M_2 are two different maximal subgroups of type (2), then $M_1 \cap M_2 = V \rtimes \operatorname{Frat}(X)$ is contained in any other maximal subgroup of type (2). Hence, \mathcal{M} cannot contain more then two maximal subgroups of type (2). Now we prove the following claim: if \mathcal{M} contains at least three different complements of V in G, then $t \leq p$. In order to prove this claim, assume, by contradiction that t > p. This implies in particular that in the intersection X of any two subgroups of \mathcal{M} , the subgroup lattice $\mathcal{L}(X)$ must contain a chain of length at least p - 1.

Assume that H^{v_1} , H^{v_2} , H^{v_3} are different maximal subgroups in \mathcal{M} . It is not restrictive to assume $v_1 = (0, \ldots, 0)$. Let $v_2 = (x_1, \ldots, x_p)$ and $v_3 = (y_1, \ldots, y_p)$. For $i \in \{2, 3\}$, it must $|H \cap H^{v_i}| \ge p^{p-1}$, hence, by Lemma 10, $|\Delta(0, v_2)| = |\Delta(0, v_3)| = p - 1$, i.e. there exists $i_1 \ne i_2$ such that $x_{i_1} \ne 0$, $x_j = 0$ if $j \ne i_1$, $y_{i_2} \ne 0$, $y_j = 0$ if $j \ne i_2$. But then $|\Delta(v_2, v_3)| = p - 2$, hence $|H^{v_2} \cap H^{v_3}| = p^{p-2}$, a contradiction. We have so proved that either $t \le p$ or \mathcal{M} contains at most two maximal subgroups of type (1) and at most two maximal subgroups of type (2), and consequently $t \le 4$. It remains to exclude the possibility that t = 4 and p = 3. By the previous considerations it is not restrictive to assume $\mathcal{M} = \{H, H^v, V \rtimes X_1, V \rtimes X_2\}$ where X_1 and X_2 are maximal subgroups of H and $|\Delta(0, v)| = 2$. In particular we would have $H \cap H^v \le C^3$: this excludes $C^3 \in \{X_1, X_2\}$ but then $X_1 \cap C^3 = X_2 \cap C^3 = \text{Frat } H = \{(c_1, c_2, c_3) \mid c_1c_2c_3 = 1\}$, hence $H \cap H^v \cap X_1 = H \cap H^v \cap X_2$, a contradiction.

Proposition 12 MaxDim $(G_{q,2}) = 3$.

Proof By Lemma 7, MaxDim $(G_{q,2}) \ge m(G_{q,2}) = 3$. Assume now, by contradiction, that M_1, M_2, M_3, M_4 are a family of maximal subgroups of $G_{q,2}$. As in the proof of the previous proposition, at least two of these maximal subgroups, say M_1 and M_2 , are complements of V in $G_{q,2}$. But then, by Lemma 10, $|M_1 \cap M_2| \le 2$, hence $M_1 \cap M_2 \cap M_3 = 1$, a contradiction.

References

- 1. Apisa, P., Klopsch, B.: A generalization of the Burnside basis theorem. J. Algebra 400, 8-16 (2014)
- Cameron, P., Cara, P.: Independent generating sets and geometries for symmetric groups. J. Algebra 258(2), 641–650 (2002)
- 3. Fernando, R.: On an inequality of dimension-like invariants for finite groups (Feb 2015) arXiv:1502.00360
- 4. Lucchini, A.: The largest size of a minimal generating set of a finite group. Arch. Math. **101**(1), 1–8 (2013)
- Lucchini, A.: Minimal generating sets of maximal size in finite monolithic groups. Arch. Math. 101(5), 401–410 (2013)
- 6. Pak, I.: What do we know about the product replacement algorithm? In: Groups and Computation, III, pp. 301–347. de Gruyter, Berlin (2001)
- Saxl, J., Whiston, J.: On the maximal size of independent generating sets of PSL₂(q). J. Algebra 258, 651–657 (2002)
- 8. Scott, W.R.: Group Theory. Prentice-Hall Inc, Englewood Cliffs (1964)
- 9. Whiston, J.: Maximal independent generating sets of the symmetric group. J. Algebra 232, 255–268 (2000)