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Abstract For a finite group G we investigate the difference between the maximum size
MaxDim(G) of an “independent” family of maximal subgroups of G and maximum size
m(G) of an irredundant sequence of generators of G. We prove that MaxDim(G) = m(G)
if the derived subgroup of G is nilpotent. However, MaxDim(G) — m(G) can be arbitrarily
large: for any odd prime p, we construct a finite soluble group with Fitting length two
satisfying m(G) = 3 and MaxDim(G) = p.
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1 Introduction

Let G be a finite group. A sequence (gi, ..., &) of elements of G is said to be irredundant
if (gj | j # i) is properly contained in (g1, ..., g) forevery i € {1,...,n}. Leti(G) be
the maximum size of any irredundant sequence in G and let m(G) be the maximum size of
any irredundant generating sequence of G [i.e. an irredundant sequence (gi, ..., g,) with
the property that (gy, ..., g») = GJ]. Clearly m(G) < i(G) = max{m(H) | H < G}. The
invariant m(G) has received some attention (see, e.g., [1,2,4,5,7,9]) also because of its role
in the efficiency of the product replacement algorithm [6]. In a recent paper, Fernando [3]
investigates a natural connection between irredundant generating sequences of G and certain
configurations of maximal subgroups of G. A family of subgroups H; < G, indexed by a
set I, is said to be in general position if for every i € I, the intersection N;.; H; properly
contains Nje; H;. Define MaxDim(G) as the size of the largest family of maximal subgroups
of G in general position. It can be easily seen that m(G) < MaxDim(G) < i(G) (see, e.g.,
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[3, Propositions 2 and 3]). However, the difference MaxDim(G) — m(G) can be arbitrarily
large: for example if G = Alt(5) 2 C), is the wreath product of the alternating group of
degree 5 with a cyclic group of prime order p, then MaxDim(G) > 2p but m(G) < 5 [3,
Proposition 12]. On the other hand, Fernando proves that MaxDim(G) = m(G) if G is a
finite supersoluble group [3, Theorem 25], but gives also an example of a finite soluble group
G with m(G) # MaxDim(G) [3, Proposition 16].

In this note we collect more information about the difference MaxDim(G) — m(G) when
G is a finite soluble group. In this case m(G) coincides with the number of complemented
factors in a chief series of G (see [4, Theorem 2]). Our first result is that the equality
MaxDim(G) = m(G) holds for a class of finite soluble groups, properly containing the
class of finite supersoluble groups (see, e.g., [8, 7.2.13]).

Theorem 1 If G is a finite group and the derived subgroup G' of G is nilpotent, then
MaxDim(G) = m(G).

However, already in the class of finite soluble groups with Fitting length equal to two,
examples can be exhibited of groups G for which the difference MaxDim(G) — m(G) is
arbitrarily large.

Theorem 2 For any odd prime p, there exists a finite group G with Fitting length two such
that m(G) = 3, MaxDim(G) = p and i (G) = 2p.

Notice that if G is a soluble group with m(G) # MaxDim(G), then m(G) > 3. Indeed,
if m(G) < 2, then a chief series of G contains at most two complemented factors and it can
be easily seen that this implies that G’ is nilpotent.

2 Groups whose derived subgroup is nilpotent

Definition 3 A family of subgroups H; < G, indexed by a set I, is said to be in general
position if for every i € I, the intersection N ; H; properly contains N ;<7 H; (equivalently,
H; does not contain N;; H;).

Note that the subgroups {H; | i € I} are in general position if and only, whenever 11 # I,
are subsets of S, then N;¢;, H; # Nicr, H; (see, e.g., Definition 1 in [3]).

Lemmad Let F be a field of characteristic p. Let V a finite dimension F-vector space, let
H = (h) where h € F* such thatF =T ,[h] and set G =V x H.
If My, ..., M, is a set of maximal subgroups of G supplementing V, then

MiNn...NM,=WxK

where W is a F-subspace of V and K is either trivial or a conjugate H' of H, for some
velV.

Proof By induction on r we can assume that 71 = M1 N...N M,_; = W; x K|, where
Wi is a subspace of V and K; = {1} or K; = H", v € V. The maximal subgroup M, is
a supplement of V, so we can write M, = W, x HY, where W, is a subspace of V and
w € V. For shortness, set 7o = M, and T = T N T». Since W and W, are normal Sylow
p-subgroups of 77 and T3, respectively, their intersection W = W; N W5 is a normal Sylow
p-subgroup of 7. In the case where T is not a p-group, then T = W x K where K is a
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non-trivial p’-subgroup of T. Then K is contained in some conjugates H'! and H'? of the
p’-Hall subgroups of T} and T, respectively. In particular, there exists 1 # y € K such that
y = hﬁ” = h;z for some hi, hp € H. It follows that 1 # hy = hy € Cy(v; — v2). From
Cpg(v; —v2) # {1}, we deduce that vy = vy. Thus we have T = Wy x H"', Tp = W x H"
and T =W x H"L. O

Corollary 5 In the hypotheses of Lemma 4, if My, . .., M, are in general position, then

(1) r <dim(V) + 1;
(2) ifr = dim(V) + 1, then, for a suitable permutation of the indices, ﬂlr;ll M; = H" for
somev €V, and (i_; M; = {1}.

Proof Let n = dim V. Since the subgroups M1, ..., M, are in general position, the set of
the intersections T = ﬂi]: (M, for j =1,...,r,isastrictly decreasing chain of subgroups.
By Lemma4, T; = W; x K;, where W; is a F-subspace of W;_1 and K; is either trivial
or a conjugate of H. Note that n — 1 = dim W; > dim W; > dim W;;;. Moreover, if
dim W; = dim W, for some index i, then W; = W, and, since T; # T+, we have that

e Ki,..., K; are non-trivial;
e Kiyi1=---=K,={l}.

In particular there exists at most one index i such that dim W; = dim W;;. As dim W =
n — 1, it follows that we can have at most n + 1 subgroups 7;, hence r < n + 1.

In the case where r = n+ 1, we actually have that dim W; = dim W, for atleast one, and
precisely one, index i. This implies that W; = W; and, setting J = {1, ..., n+ 1}\{i + 1}
and T = NjegM;, we get that W, 4 coincides with the Sylow p-subgroup of 7. Since
dim W,y =0and T # 1 wededucethatT = H",forsomev € V.Finally, TNM; | = {1}.

O

A proof of the following lemma is implicitly contained in Sect. 1 of [3], but, for the sake
of completeness, we sketch a direct proof here.

Lemma 6 Let H be an abelian finite group. The size of a set of subgroups in general position
is at most m(H).

Proof The proof is by induction on the order of H. Let 2 = {Ay,..., A;} be a set of
subgroups of H in general position. Without loss of generality we can assume that N;_; A; =
{1}.If m = m(H), then H decomposes as a direct product of m cyclic groups of prime-power
order. Let B be one of these factors, and let X be the unique minimal normal subgroup of B.
Since N;_;A; = {1}, there exists at least an integer i such that X is not contained in A;. It
follows that A; N B = {1}, hence A; = A;B/B < H/B and

m(A;)) <m(H/B)=m — 1.
Now, the set of subgroups of A;
Q' ={A;NA; | j#i, 1=j=r}

is in general position, hence, by inductive hypothesis, |Q2*| = r — 1 < m(A;). Therefore,
r<m. O

Proof of Theorem 1 Since
m (G) = m (G/Frat (G)) and MaxDim (G) = MaxDim (G/ Frat (G)),
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without loss of generality we can assume that Frat(G) = 1. In this case the Fitting subgroup
Fit(G) of G is a direct product of minimal normal subgroups of G, it is abelian and comple-
mented. Let K be a complement of Fit(G) in G; note that, being G’ nilpotent by assumption,
K is abelian. Let F be a complement of Z(G) in Fit(G) and let H = Z(G) x K. We have
G = F x H and we can write F as a product of nontrivial H -irreducible modules

F=V" % xvm

where Vi, ..., V, are irreducible H-modules, pairwise not H-isomorphic.
By [4, Theorem 2] m(G) coincides with the number of complemented factors in a chief
series of G, hence

m(G) = Zn,» +m(H).

i=1

Let M be a family of maximal subgroups of G in general position.

Let My 1, ..., Mo, the elements of M containing F'. We can write
M()’,' =Fx Yi
where Y; is a maximal subgroup of H. Note that Y1, ..., Y,, are maximal subgroups of H

in general position, hence, by Lemma6, vg < MaxDim(H) < m(H).

If M is a maximal subgroup supplementing F, then M contains the subgroup U; =
Hj#i anj for some index i. In particular M = (U; x W;) x H" for some v € Vl."i and some
maximal H-submodule W; of \/l.”’. SetC; = Cy(Vi)and H; = H/C;. ThenF; = Endy, (V;)
is a field and V; is an absolutely irreducible FF; H;-module. Since H; is abelian, dimg, V; = 1,
that is V; = F;, and hence H; is isomorphic to a subgroup of F; generated by a primitive
element. In particular we can apply Corollary 5 to the group Vi"" x H;i. Let My, ..., M;,,
the maximal subgroups in M containing U;; say

M, = (U,' X Wi,l) x HVil,

where v;; € V;”. Note that the subgroups MI-J = Wi~ Hl.vi", forl € {1,...,v;}, are
maximal subgroups of Vl."i x H; in general position, hence, by Corollary 5,

vi <n;+ 1.
If v; < n; forevery i # 0, then
r r
M =" vi+v <D ni +m(H) =m(G),
i=1 i=1

and the result follows.
Otherwise let J be the set of the integers i € {l,...,r} such that v; = n; + 1. By
Corollary 5, we can assume that, for some v; € Vi"" s

n;

(M= Ui x H".,
=1
ni+1

ﬂ Ml',[ = U,' Pl C,‘.

=1
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Recall that the Mo ; = F x Y;,for j =1, ..., vp, are the elements of M containing F. Our
next task is to prove that

Q={(CilieJUY;|j=1,..., v}

is a set of subgroups of H in general position.
Assume, by contradiction, that for example C; > (N;£1C;) N (m;ﬂ Yj); then

i+1
M1 = Ul x Cp = (ML, M) N (ﬂi;ﬂ (NLT Mi,l)) N (ﬂj(L]Mo,j)
against the fact that M is in general position. Similarly, if Y1 > (N;jc;Ci) N (mj#l Yj), then

i+1
My =F =Y > (ﬂieJ (ﬂ;:lr Mi,l)) N (Nj£1Mo,;),

a contradiction.
Now we can apply Lemma6 to get that |2| < m(H). Therefore, we conclude that

r r r r
M= vi4v < D ni+l+vo=D ni+IQ < > ni+m(H) =mG),
i=1 i=1

i=1 i=1

and the proof is complete. O

3 Finite soluble groups with m(G) = 3 and MaxDim(G) > p

In this section we will assume that p and ¢ are two primes and that p divides ¢ — 1.
Let F be the field with ¢ elements and let C = (c) be the subgroup of order p of the
multiplicative group of F. Let V = FF” be a p-dimensional vector space over F and let
o =(1,2,...,p) € Sym(p). The wreath group H = C : (o) has an irreducible action
on V defined as follows: if v = (fi,..., fp) € Vand h = (cy,...,cp)o € H, then
V" = (fly-1€1p-1s-- - fpo-1¢ps-1). We will concentrate our attention on the semidirect
product

Gyp=VxH.
Proposition 7 m(G,, ;) = 3.

Proof Since V is a complemented chief factor of G, ,, by [4, Theorem 2], we have
m(Gy,p) =1+m(H) =1+ m(H/Frat(H)) =14+ m(Cp, x Cp) = 3. O

Proposition 8 (G, ,) =2p.

Proof Let B = C? be the base subgroup of H and consider K =V x B = (F x C)”. A
composition series of K has length 2p, and all its factors are indeed complemented chief
factors, so m(K) = 2p. Now by definition i (G4, ;) = max{m(X) | X < G4 p} > m(K) =
2p. On the other hand, m(G, ,) = 3 and, if X < G,,,, then |X| is a proper divisor of
|G| = (pq)? p and the composition length of X is at most 2p, so m(X) < 2p. Therefore,
i(Gg,p) < 2p, and consequently i (G4, ,) = m(K) = 2p. O
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Lemma 9 MaxDim(Gy,,) > p.

Proof Lete; = (1,0,...,0),e0=(0,1,...,0),...,e, =(0,0,...,1) € Vandleth| =
(c,1,....),ho=,c,....,1),....,h, =(,1,...,c) e CP < H.Forany 1 <i, j < p,
we have

h =hiif i #j, k= ((1/c—1)e) hy.
But then, for each i € {1, ..., p}, we have
hi € NjiH®, hij ¢ HY,
hence H°!, ..., H° is a family of maximal subgroups of G, in general position. O
In order to compute the precise value of MaxDim(Gy, ), the following lemma is useful.

Lemma 10 Let vi = (x1,...,xp) and va = (y1,...,yp) be two different elements of
V =FP and let A(vy,v2) ={i € {l,..., p} | xi = yi}. Then

o if |[A(vi,v2)| =0, then |[H" N H| < p;
o if |[A(v1, v2)| = u #O0, then |H"' N H?| = p“.

Proof Clearly |H"' N H™2| = |H N H™27"| = |Cy(va — v1)|. If A(v1, v2) = @, then
Cr(v2 —v1) NCP = {1}, hence |Cy (v2 — v1)| < p. If [A(vy, v2)| = u # 0, then

Cr(wa—v)={(c1,....cp) €CP i =1if i¢ A(v,v)}=C"
has order p“. O
Proposition 11 If p # 2, then MaxDim(G, ) = p.

Proof By Lemma9 it suffices to prove that MaxDim(G, ,) < p. Assume that M is a family
of maximal subgroups of G = G, in general position and let t = |M|. Let M € M. One
of the following two possibilities occurs:

(1) M is a complement of V in G : hence M = H" for some v € V.
(2) M contains V : hence M = V x X for some maximal subgroup X of H.

If M| and M, are two different maximal subgroups of type (2), then M| N M, = V x Frat(X)
is contained in any other maximal subgroup of type (2). Hence, M cannot contain more then
two maximal subgroups of type (2). Now we prove the following claim: if M contains at
least three different complements of V in G, then ¢t < p. In order to prove this claim, assume,
by contradiction that t > p. This implies in particular that in the intersection X of any two
subgroups of M, the subgroup lattice £(X) must contain a chain of length at least p — 1.
Assume that H"', H"2, H"3 are different maximal subgroups in M. It is not restrictive
to assume vy = (0,...,0). Let vo = (x1,...,xp) and v3 = (¥1,...,yp). Fori € {2,3},
it must |[H N HY%| > pP~! hence, by Lemma 10, [A(0, v2)| = |[A(0,v3)] = p — 1, ie.
there exists iy # iz such that x;; # 0,x; = 0if j # iy, y, # 0,y; = 0if j # is.
But then |A(v2, v3)] = p — 2, hence |HY2 N H*| = pP~2, a contradiction. We have
so proved that either t+ < p or M contains at most two maximal subgroups of type (1)
and at most two maximal subgroups of type (2), and consequently ¢t < 4. It remains to
exclude the possibility that t = 4 and p = 3. By the previous considerations it is not
restrictive to assume M = {H, H",V x X,V x X,} where X and X, are maximal
subgroups of H and |A(0, v)| = 2. In particular we would have H N H < C3: this excludes
C3 € {X1, X») butthen X1NC3 = X, NC? = Frat H = {(c1, ¢2, ¢3) | cicac3 = 1}, hence
HNH'NX|, = HNHN X,, acontradiction. O
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Proposition 12 MaxDim(G,2) = 3.

Proof By Lemma 7, MaxDim(G,2) > m(Gg42) = 3. Assume now, by contradiction, that
My, M>, M3, My are a family of maximal subgroups of G ». As in the proof of the previous
proposition, at least two of these maximal subgroups, say M| and M», are complements of V
in G4 2. But then, by Lemma 10, |M N M>| < 2, hence M1 N M N M3 = 1, a contradiction.

[m}
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