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Abstract We derive, by means of �-convergence, the equations of homogenized bending
rod starting from 3D nonlinear elasticity equations. The main assumption is that the energy
behaves like h2 (after dividing by h2, the order of vanishing volume), where h is the thickness
of the body.We do not presuppose any kind of periodicity andwork in the general framework.
The result shows that, on a subsequence, we always obtain the equations of the same type as
in bending–torsion rod theory and identifies, in an abstract formulation, the limiting quadratic
form connected with that model. This result is the generalization of periodic homogenization
of bending–torsion rod theory already present in the literature.
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1 Introduction

This paper deals with the derivation of homogenized bending–torsion theory for rods, starting
from 3D nonlinear elasticity by means of �-convergence. The main novelty is that we do not
presuppose any kind of periodicity, but work in a general framework.

There is vast literature on deriving rod, plate and shell equations from 3D elasticity. The
first work in deriving lower-dimensionalmodels by�-convergence techniqueswas [1], where
the authors derived the string model. It was well known that the obtained models depend on
the relation of the external loads (i.e., the energy) with respect to the thickness of the body h.
The first rigorous derivation of higher-order models was done in [8,9] for the case of bending
and von Kármán plate. The key mathematical ingredient in these cases was the theorem on
geometric rigidity.

After these pioneering works, there were many papers devoted to the rigorous derivation
of lower-dimensional models from 3D elasticity by means of �-convergence. We mention
only those works that refer to the derivation of rod theories.

In [17], the authors derived the bending–torsion rod theory by assuming that the stored
energydensity function is fixed, i.e., that there are nooscillations of thematerial.As customary
to derivations of bending theories, they assume that the energy is of the order h2, where h is
the thickness of the body (after division with the order of vanishing volume, which is h2).
In [18] the authors derived the rod model in the so-called von Kármán regime, where the
order of energy was assumed to be h4. In [19] the authors analyzed the stationary points
(i.e., the equations) in the case of bending rod and show that the limit equation is the one
corresponding to the limit energy obtained by �-convergence. However, due to nonlinearity,
it is not generally true that the global minimizers of 3D problem (even if we have their
existence) satisfy the Euler–Lagrange equations from which they start the derivation (see
[7,20] for details). We emphasize the fact that the techniques used here can also be adapted
to the approach in [19].

It is important to notice that, although the bending theory is small strain theory, defor-
mations are large, in contrast to von Kármán theory, where the limit deformation is a rigid
deformation and the energy depends on the correctors. Thus, we can say that bending theory
carries more nonlinearity. We also mention the work [24], where the author gave the full
asymptotic (higher-order) theory for curved rods.

This paper deals with the effects of simultaneous homogenization and dimensional reduc-
tion. There is vast literature on the effects of simultaneous homogenization and dimensional
reduction on limit equations, in different context. In [11], the authors study these effects for a
linear elasticity system without periodicity assumption, adapting H -convergence to dimen-
sional reduction. In [4], the authors study the same effects for nonlinear systems (membrane
plate) by means of �-convergence, also without periodicity assumptions. In [6], the authors
study nonlinear monotone operators in the context of simultaneous homogenization and
dimensional reduction in a general framework. Much earlier, in [15], the authors study the
same effects in the case of a linearized rod model, where it was assumed that the rod is
homogeneous along its central line, but the microstructure is given in the cross section. We
also mention the work of Arrieta on the Laplace equation and thin domains with oscillatory
boundaries (see, e.g., [3]). Finallywe emphasize thework [21],where the author presented the
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systematic approach which consisted in combining the techniques from [8,9] and two-scale
convergence methods [2] to obtain the model of homogenized bending rod.

Recently, the techniques from [8,9] were combined with two-scale convergence to obtain
the models of homogenized von Kármán plate (see [23,26]), homogenized von Kármán shell
(see [14]) and homogenized bending plate (see [13,27]). Most of these models were derived
under the assumption of periodic oscillations of material, where it was assumed that the
material oscillates on the scale ε(h), while the thickness of the body is h. The obtained
models depend on the parameter γ = limh→0

h
ε(h)

. In the case of the von Kármán plate, the
situation when γ = 0 corresponds to the case in which dimensional reduction is dominated
and the obtained model is the model of homogenized von Kármán plate and can be obtained
as the limit case when γ → 0. Analogously, the situation when γ = ∞ corresponds to the
case when homogenization dominates and can again be obtained as the limit when γ → ∞;
this is the model of the von Kármán plate, obtained starting from homogenized energy. In
the case of the von Kármán shell and the bending plate, the situation γ = 0 was more subtle
and the derived models depend on the further assumption of the relation between ε(h) and
h. We obtained different models for the cases ε(h)

2 � h � ε(h) and h ∼ ε(h)
2.

In this paper, we derive the bending–torsion rod model by simultaneous homogenization
and dimensional reduction without any periodicity assumption. This is a generalization of the
work [21],where the author derived the bending–torsion rod theory via two-scale convergence
techniques, assuming that the material oscillates periodically along the central line of the
rod. Our result can be interpreted as a form of a stability result: We obtain the same type of
equations starting with any kind of oscillating or non-oscillatingmaterial, and the oscillations
can happen in any direction (even in the cross section). Moreover, we derive an abstract
variational formula for the limit energy density which covers all the possible cases and can
also be used to obtain all the regimes in the periodic case.We use slight variations of standard
�-convergence techniques for homogenization, adapted to the special case of dimensional
reduction for higher-order models in elasticity. This approach has already been used in [25] to
derive the model of the von Kármán plate via simultaneous homogenization and dimensional
reduction techniques. Let us emphasize the fact that this kind of stability result is not expected
to be valid in the case of the bending plate or even the von Kármán shell due to more complex
phenomenology in the periodic case as explained above (see also the explanations in [27]
and the model obtained in [22]).

The main results in this paper are given in Theorem 2.13 and Theorem 2.14, where the
“lower bound” and the “upper bound” are proven, respectively. Together with Lemma 2.6
and Lemma 2.10 they imply standard �-compactness results, because these lemmas imply
that the Assumption 2.11 is valid on a subsequence. We prove that, on a subsequence, the
limit energy density is a quadratic form in the strain of the limit deformation. The limit
deformation and the strain itself are standard ones for the case of the bending rod.

1.1 Notation

• By B(x, r) we denote the open ball of radius r > 0 around x ∈ R
n in Euclidean norm;

• for x ∈ R, by �x� we denote the greatest integer less or equal to x ;
• e1, e2, e3 denotes the canonical basis in R

3;
• ∇h is the scaled gradient ∇h = (∂1,

1
h ∂2,

1
h ∂3);

• M
m×n is the space of matrices with m rows and n columns, while M

n is the space of
quadratic matrices of order n.Mn

sym denotes the space of symmetric matrices of order n,
while Mn

skw denotes the space of skew symmetric matrices of order n;
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1058 M. Marohnić, I. Velčić

• for A ∈ M
n by sym A we denote the symmetric part of A; sym A = 1

2 (A + At ), while
by skw A we denote the skew symmetric part of A; skw A = 1

2 (A − At );
• for A, B ∈ M

n by A · B we denote the scalar product tr(ABt );
• ι : R3 → M

3 is the natural inclusion

ι(m) =
3∑

i=1

miei ⊗ e1;

• we denote the projection of R3 on the x2x3-plane by dω, dω(x) = (0, x2, x3)t ;
• if O ⊂ R

n open, by W 1,p(O; M) we denote the subset of Sobolev space of functions
taking values in M ⊂ R

m for a.e. x ∈ O . It is easy to see if M is a subspace of Rm

then W 1,p(O; M) is a subspace of W 1,p(O;Rm). If M is closed subset of Rm , then
W 1,p(O; M) is a closed subset of W 1,p(O;Rm) in weak and strong topology;

• for S ⊂ R
n , by χS we denote the characteristic function of S; χS : Rn → {0, 1};

• by |S| we denote the Lebesgue measure of S;
• when writing sequences (hn), (Wh) etc., we usually omit the subscripts denoting where

there the indexes live (n ∈ N, h > 0).

1.2 General framework

Let ω ⊂ R
2 be an open connected set with Lipschitz boundary. We define by 	h = [0, L] ×

hω, the reference configuration of a rod-like body with thickness h. When h = 1 we omit
the superscript and write 	 = 	1. We may assume that the coordinate axes are chosen such
that ∫

ω

x2 dx2 dx3 =
∫

ω

x3 dx2 dx3 =
∫

ω

x2x3 dx2 dx3 = 0. (1)

We denote the moments of inertia by μi = ∫
ω
x2i dx2 dx3 for i = 2, 3.

For each h > 0, the elastic energy functional on the canonical domain 	 is given by
∫

	

Wh(x,∇h y
h) dx,

where Wh is an elastic energy density function and ∇h yh = (∂1yh,
1
h ∂2yh,

1
h ∂3yh) is the

scaled gradient of a deformation yh : 	 → R
3. We will assume that we are in the bending

regime, i.e., that there is a positive constant C independent of h such that the energy of a
minimizing sequence (yh) satisfies the inequality:

∫

	

Wh(x,∇h y
h) dx ≤ Ch2. (2)

This assumption can be replaced by the assumption on the scaling of external loads, see [9]
for details. Here we state the standard assumptions on the energy densitiesWh of a composite
material.

Definition 1.1 (Nonlinear material law) Let η1, η2 and ρ be any positive constants such that
η1 ≤ η2. The classW(η1, η2, ρ) consists of all measurable functionsW : R

3×3 → [0,+∞]
that satisfy the following properties:

frame indifference (W1)

W (RF) = W (F) for all F ∈ M
3, R ∈ SO(3);
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non-degeneracy (W2)

W (F) ≥ η1 dist
2(F,SO(3)) for all F ∈ M

3;
W (F) ≤ η2 dist

2(F,SO(3)) for all F ∈ M
3 with dist2(F,SO(3)) ≤ ρ;

W is minimal at I (W3)

W (I ) = 0;
W admits a quadratic expansion at I (W4)

W (I + G) = Q(G) + o(|G|2), as G → 0, G ∈ M
3

where Q : M
3 → R is a quadratic form.

In the following definition, we state our assumptions on the family (Wh).

Definition 1.2 (Admissible composite material) Let η1, η2 and ρ be positive constants such
that η1 ≤ η2. We say that a family (Wh)

Wh : 	 × M
3 → [0,+∞]

describes an admissible composite material of class W(η1, η2, ρ) if

(i) for each h > 0, Wh is almost everywhere equal to a Borel function on 	 × M
3,

(ii) Wh(x, ·) ∈ W(η1, η2, ρ) for every h > 0 and almost every x ∈ 	,
(iii) there exists a monotone function r : R+ → (0,+∞], such that r(δ) → 0 as δ → 0

and

∀G ∈ M
3 ,∀h > 0 : esssup

x∈	

|Wh(x, I + G) − Qh(x,G)| ≤ r(|G|)|G|2, (3)

where Qh(x, ·) are quadratic forms defined in (W4).

Notice that Qh inherits the measurability properties of Wh , since for each h > 0, it can be
written as the pointwise limit

(x,G) → Qh(x,G) := lim
ε→0

1
ε2
Wh(x, I d + εG). (4)

Lemma 1.3 Let (Wh) be as in Definition 1.2 and let (Qh) be the family of the quadratic
forms associated with (Wh) through the expansion (W4). Then for all h > 0 and almost all
x ∈ 	 the map Qh(x, ·) is quadratic and satisfies
(Q1) η1| sym G|2 ≤ Qh(x,G) = Qh(x, sym G) ≤ η2| sym G|2, for all G ∈ M

3;
(Q2) |Qh(x,G1) − Qh(x,G2)| ≤ η2| sym G1 − sym G2| · | sym G1 + sym G2|, for all

G1,G2 ∈ M
3.

Proof The property (Q1) is a direct consequence of (W2), while (Q2) follows from (Q1) and
quadraticity. ��
1.3 The strategy of the proofs

Here we briefly summarize the main steps of the proof of the lower bound and comment on
the proof of the upper bound. The approach taken here is analogous to the one used by the
second author in [25], where the equations of the von Kármán plate were derived. However,
for the proof of the upper bound we found a simpler argument in this case.
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1060 M. Marohnić, I. Velčić

Compactness. We use the rigidity estimate which was proved in [19, Proposition 4.1]
(see Theorem 2.15 in the “Appendix”). For an arbitrary sequence (yh), there is a sequence
of rotations (Rh) ⊂ C∞([0, L];R3×3) which approximate the scaled gradients ∇h yh . We
define the approximate strains by

Gh = (Rh)t∇h yh − I

h
.

Identifying the relaxation field. In the proof of the Theorem 2.13, we show that sym Gh

is equal to

sym ι(Adω) + ae1 ⊗ e1︸ ︷︷ ︸
limiting part

+ sym ι
(
(Ah)′dω

)
+ sym ∇hv

h

︸ ︷︷ ︸
relaxation field

,

on a large set and up to a term which converges to zero in L2. Here A ∈ L2([0, L];M3
skw )

is the limiting strain, a is the limiting variable that additionally appears, and dω is defined in
the notation paragraph. The relaxation field consists of sequences (Ah) ⊂ L2([0, L];M3

skw )

and (vh) ⊂ L2(	;R3), which are such that Ah → 0 and vh → 0 strongly in L2 and (Ah)′,
(∇hv

h) are bounded in L2. To enable the use of the truncation argument, we replace the
above-mentioned relaxation fields with equi-integrable ones (these are well-known results
given in [10] and adapted for the case of dimension reduction in [5]).

Equivalence of the relaxation fields. In Sect. 2.1 by using the modified Griso’s decom-
position ([12]), we proved that the above relaxation field is essentially equivalent to the
relaxation field sym ∇hψ

h , where ψh are such that (sym ∇hψ
h) is bounded in L2 and

(ψh
1 , hψh

2 , hψh
3 ) → 0 and

∫
ω
x3ψh

2 → 0 strongly in L2 (or
∫
ω
x2ψh

3 → 0 strongly in L2).
Notice also that the relaxation field sym ∇hψ

h is equivalent to the relaxation field ∇hψ
h ,

due to the property (Q1) given above.
Construction of the limit energy density function. Section 2.2 is devoted to the definition

of the limit energy density function. This construction is similar to the one in [25]. The
decomposition of the limiting strain and the relaxation field naturally imposes the definition
of the functional

K (Adω + ae1, B(x̄1, r) × ω) = inf
{
lim inf
h→0

∫

B(x̄1,r)×ω

Qh
(
x, ι(Adω+ae1)+∇hψ

h
)
dx :

(ψh
1 , hψh

2 , hψh
3 )→0 strongly in L2(B(x̄1, r)×ω;R3),

∫

ω

x3ψ
h
2 → 0 strongly in L2(B(x̄1, r))

}
.

Then we derive the integral representation of K through the quadratic density

Q(x̄1, A, a) = lim
r→0

1

2r
K (Adω + ae1, B(x̄1, r) × ω).

The natural candidate for the limit energy density is the function Q0

Q0(x̄1, A) = min
a∈R Q0(x̄1, A, a).

We finish the proof by invoking the truncation argument to establish the lower bound.
Construction of the recovery sequence. To prove the upper bound, we start from the

representation formula for K given in Lemma 2.8. As in the proof of the lower bound, we use
the equivalence of the relaxation fields to construct the sequences (Ah) and (vh) appearing
in the decomposition of the limiting strains. It is important to notice that for the proof of the
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upper bound we do not use any kind of additional regularity or higher integrability of the
minimizing sequence (this would be non-trivial, since we have scaled gradients), but only
their equi-integrability.

2 Derivation of the model

2.1 Characterization of relaxation field

As announced in the introduction, here we establish the equivalence of the relaxation field
appearing in the approximating strain. First we recall a result by G.Griso, which is a special
case of [12, Theorem 2.1] (given for general curved rod) obtained by applying it to the straight
rod and by rescaling argument.

Lemma 2.1 Let 	,ω, L be as above and 1 < q < +∞. There exists a constant C(ω) and
a number h0 > 0 such that the following holds: For an arbitrary 0 < h < Lh0 and any
given u ∈ W 1,q(	;R3), there are functions Ue and ū such that u = Ue + ū, where ū ∈
W 1,q(	;R3) and Ue is an elementary displacement, i.e., there exist U ∈ W 1,q([0, L];R3)

and R ∈ W 1,q([0, L];R3) such that

Ue(x) = U(x1) + R(x1) × (hx2e2 + hx3e3),

and the following estimates hold

‖ū‖Lq (	;R3) ≤ C(ω)h ‖sym ∇hu‖Lq (	;R3×3) , (5)

‖∇hū‖Lq (	;R3×3) ≤ C(ω) ‖sym ∇hu‖Lq (	;R3×3) , (6)

h
∥∥R′∥∥

Lq ([0,L];R3)
+ ∥∥U ′

1

∥∥
Lq ([0,L]) + ∥∥U ′

2 − R3
∥∥
Lq ([0,L])

+ ∥∥U ′
3 + R2

∥∥
Lq ([0,L]) ≤ C(ω) ‖sym ∇hu‖Lq (	;R3×3) . (7)

We slightly alter this claim.

Lemma 2.2 Let 1 < q < +∞. There exist a constant C(ω) > 0 and a number h0 > 0 such
that the following is true: For an arbitrary 0 < h < Lh0 and any given u ∈ W 1,q(	;R3),
there are a ∈ R

3, B ∈ M
3
skw, ϕα ∈ W 2,q([0, L]) for α = 1, 2, w ∈ W 1,q([0, L]) and

z ∈ W 1,q(	;R3) such that

u(x) = a + B(x1, hx2, hx3)
t +
⎛

⎝
−(ϕ1)

′(x1)x2 − (ϕ2)
′(x1)x3 + z1(x)

1
hϕ1(x1) + w(x1)x3 + z2(x)
1
hϕ2(x1) − w(x1)x2 + z3(x)

⎞

⎠ , (8)

and the following inequalities hold

‖ϕ1‖W 2,q ([0,L]) + ‖ϕ2‖W 2,q ([0,L]) + ‖w‖W 1,q ([0,L]) ≤ C(ω)‖ sym ∇hu‖Lq (	;R3), (9)

‖z‖Lq (	;R3) + ‖∇hz‖Lq (	;R3) ≤ C(ω)‖ sym ∇hu‖Lq (	;R3). (10)

Proof We define the functions:

a = (U1(0),U2(0),U3(0)) ,

B =
⎛

⎝
0 −R3(0) R2(0)

R3(0) 0 −R1(0)
−R2(0) R1(0) 0

⎞

⎠ ,
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1062 M. Marohnić, I. Velčić

ϕ1(x1) = h

(∫ x1

0
R3(t)dt − x1R3(0)

)
,

ϕ2(x1) = h

(
−
∫ x1

0
R2(t)dt + x1R2(0)

)
,

w(x1) = −h(R1(x1) − R1(0)),

z1(x) = U1(x1) − U1(0) + ū1(x),

z2(x) = U2(x1) − U2(0) −
∫ x1

0
R3(t)dt + ū2(x),

z3(x) = U3(x1) − U3(0) +
∫ x1

0
R2(t)dt + ū3(x).

It is now straightforward to check that (8) holds. Taking into account that ϕα(0) =
(ϕα)′(0) = w(0) = 0 and by using the Poincaré inequality and (6), we obtain that

‖ϕ1‖W 2,q + ‖ϕ2‖W 2,q + ‖w‖W 1,q ≤ CPh‖R′‖Lq ≤ C(ω)‖ sym ∇hu‖Lq .

By using the same arguments and (5 and 6), we also derive the second estimate

‖z‖Lq + ‖∇hz‖Lq ≤ CP
(∥∥U ′

1

∥∥
Lq + ∥∥U ′

2 − R3
∥∥
Lq + ∥∥U ′

3 + R2
∥∥
Lq

)

+‖ū‖Lq + ‖∇hū‖Lq + h‖R′‖Lq ≤ C(ω) ‖sym ∇hu‖Lq . ��
The following corollary gives us the full characterization of sequences with bounded sym-
metrized gradients.

Corollary 2.3 Let 1 < q < +∞, C(ω) and h0 the constants from Lemma 2.2 and let the
sequence (uh) ⊂ W 1,q(	,R3) (for 0 < h < Lh0) be such that (‖ sym ∇huh‖Lq ) is bounded,
(uh1, hu

h
2, hu

h
3) converges to zero strongly in Lq , and

∫
ω
x3uh2 (or

∫
ω
x2uh3) converges to

zero strongly in Lq . Take the sequences (ah) ⊂ R
3, (Bh) ⊂ M

3
skw , (zh) ⊂ W 1,q(	;R3),

(ϕh
α) ⊂ W 2,q([0, L];R3), for α = 1, 2, and (wh) ⊂ W 1,q([0, L];R3) from Lemma 2.2.

Then:

a. (ah1 , hah2 , hah3 ) → 0, hBh → 0, zh1 → 0 strongly in Lq , wh → 0 strongly in Lq and for
α = 1, 2, ϕh

α → 0 strongly in W 1,q as h → 0.
b. For the following decomposition of zh, zh = zh + z̃h , where zh = ∫

ω
zh, we have that

z̄h1 → 0 strongly in Lq and ‖z̃h‖Lq ≤ C(ω)h‖ sym ∇huh‖Lq , for some C(ω) > 0.
c. There are sequences (Ah) ⊂ W 1,q([0, L];M3

skw ) and (vh) ⊂ W 1,q(	;R3), such that
Ah → 0 and vh → 0 strongly in Lq and the following decomposition holds

sym ∇hu
h = sym ι((Ah)′dω) + sym ∇hz

h = sym ι((Ah)′dω) + sym ∇hv
h + O(h),

where ‖O(h)‖Lq < Ch, for some C > 0. Moreover, we have that

‖Ah‖W 1,q + ‖vh‖Lq + ‖∇hv
h‖Lq ≤ C(ω)‖ sym ∇hu

h‖Lq . (11)

Proof Since
∫
ω
z̃h = 0 we conclude from the Poincaré inequality that

‖z̃h‖Lq ≤ C(ω)h‖∇hz
h‖Lq ≤ C(ω)h‖ sym ∇hu

h‖Lq .

Thus, z̃h → 0 strongly in Lq . After redefining ah and Bh , we can assume that
∫

	

zh =
∫ L

0
z̄h =

∫ L

0
wh =

∫ L

0
ϕh

α =
∫ L

0
x1ϕ

h
α = 0, for α = 1, 2. (12)
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Integrating the first equation in (8) over ω and taking into account the choice of coordinate
axes (1), we conclude that ah1 |ω|+ z̄h1 → 0 strongly in Lq(ω). From this, by integration over
[0, L], we obtain that ah1 → 0 and, consequently, z̄h1 → 0 strongly in Lq(	). By taking into
account (9) and (10), we obtain that hBh

12 and hBh
13 are bounded sequences.

We multiply the second and third equations of (8) by h(x1− L
2 ), integrate over	 and take

the limit as h → 0 to obtain that hBh
12 → 0 and hBh

13 → 0. Again, multiplying the second
and third equations of (8) with h and then integrating over 	 and taking the limit as h → 0,
we deduce that hah2 → 0 and hah3 → 0. We also obtain that ϕh

α → 0 strongly in W 1,q , since
it is bounded in W 2,q .

Wemultiply the second equation in (8) by x3 and integrate overω. Using the decomposition
of zh , we conclude that hBh

23 +wh → 0 strongly in Lq . From this, using (12), it follows that
hBh

23 → 0 and wh → 0 strongly in Lq . This finishes the proof of (a) and (b).
To prove (c) we take a sequence ph = (ph2 , p

h
3 ) ⊂ C∞((0, L);R2) such that

‖ph − (z̄h2 , z̄
h
3)‖Lq → 0, ‖ph‖W 1,q ≤ C‖(z̄h2 , z̄h3)‖W 1,q , h‖ph‖W 2,q → 0,

for some C > 0. The sequence ph can be constructed by mollification of (z̄h2 , z̄
h
3) such that

the mollifiers are on a scale rh � h. We define

vh = zh − (0, ph2 , p
h
3 )

t + (hx2 p
h
2 + hx3 p

h
3 , 0, 0)

t , O(h) = (−hx2(p
h
2 )

′ − hx3(p
h
3 )

′)e1 ⊗ e1,

and conclude the proof. ��

It is easy to prove the other implication.

Lemma 2.4 Let q ≥ 1, h > 0 and let A ∈ W 1,q(	;M3
skw ) and v ∈ W 1,q(	;R3). Then

there exists uh ∈ W 1,q(	;R3) such that

sym ∇hu
h = sym

(
ι(A′dω)

)+ sym ∇hv.

If, in addition, A = 0 and v = 0 in the neighborhood of {0, L} × ω, then uh = 0 in
a neighborhood of {0} × ω and uh is constant in a neighborhood of {L} × ω. If (Ah) ⊂
W 1,q([0, L];M3

skw ) and (vh) ⊂ W 1,q(	;R3) are such that Ah → 0 and vh → 0 strongly
in Lq , then (uh1, hu

h
2, hu

h
3) → 0 and

∫
ω
x3uh2 → 0 and

∫
ω
x2uh3 → 0 strongly in Lq .

Proof The proof is easily obtained by defining

uh =
(
A12(x1)x2 + A13(x1)x3,

1
h

∫ x1

0
A21(t) dt + A23(x1)x3,

1
h

∫ x1

0
A31(t) dt + A32(x1)x2

)t + v.

��
2.2 Definition of limit energy density

The goal here is to derive the integral representation of the limit functional. The approach
and techniques here are analogous to the one used in [25] to derive von Kármán equations.
Hence, we only state the necessary results and refer the reader to [25] for details.

One of the main points is to establish the claim in Lemma 2.6, which tells us that Assump-
tion 2.7 is satisfied on a subsequence.
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For any open set O ⊂ [0, L], function m in L2(	;R3) and sequence (hn) monotonically
decreasing to zero, we define

K−
(hn)

(m, O) = inf
{
lim inf
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnψ

hn
)
dx :

(ψ
hn
1 , hnψ

hn
2 , hnψ

hn
3 ) → 0 strongly in L2(O × ω;R3),

∫

ω

x3ψ
hn
2 →0 strongly in L2(O)

}
,

K+
(hn)

(m, O) = inf
{
lim sup
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnψ

hn
)
dx :

(ψ
hn
1 , hnψ

hn
2 , hnψ

hn
3 ) → 0 strongly in L2(O × ω;R3),

∫

ω

x3ψ
hn
2 → 0stronglyinL2(O)

}
.

Remark 1 By using standard diagonalization argument, it can be shown that for any (hn)
monotonically decreasing to 0 the infima are attained.

The following lemma, together with Lemma 2.8, is a key to establish the properties of the
functional K .

Lemma 2.5 (continuity in m) There exists a constant C > 0 dependent only on η1 and η2
such that for every sequence (hn) monotonically decreasing to 0 and A ⊂ [0, L] open set
the following inequality holds

∣∣∣K−
(hn)

(m1, A) − K−
(hn)

(m2, A)

∣∣∣ ≤ C‖m1 − m2‖L2
(‖m1‖L2 + ‖m2‖L2

)
, (13)

∀m1,m2 ∈ L2(	,R3),

The analogous claim holds for K+
(hn)

.

Proof The proof is identical as the one in [25, Lemma 3.4]. The only difference is that not
only (ψ

hn
1 , hnψ

hn
2 , hnψ

hn
3 ) → 0, but also

∫
ω
x3ψ

hn
2 → 0, but this condition can be handled

in an analogous way. ��
If A and B are subsets of [0, L], we denote by A � B if Ā is compact and contained in

B. We recall the property of density of family of sets (see [16]). We say that a family D of
subsets is dense in a familyA, if for every A, B ∈ A, with A � B, there exists D ∈ D, such
that A � D � B.

Let D denote a countable family of open subsets of [0, L] which is dense in the class A
of all open subsets of [0, L] and such that every D ∈ D is a finite union of open intervals
which are subsets of [0, L].

By using Lemma 2.5 and diagonal procedure, we can easily argument the following claim
(see [25, Lemma 2.6]).

Lemma 2.6 For every sequence (hn) monotonically decreasing to zero, there exists a sub-
sequence, still denoted by (hn), such that

K+
(hn)

(m, D) = K−
(hn)

(m, D), ∀m ∈ L2(	,R3), ∀D ∈ D.

We will now make an assumption on the sequence (hn) and family (Qhn ).

Assumption 2.7 For a given sequence (hn) monotonically decreasing to zero, we suppose
that

K+
(hn)

(m, D) = K−
(hn)

(m, D) =: K (m, D), ∀m ∈ L2(	,R3), ∀D ∈ D.
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Although the numbers K (m, D) also depend on the sequence, we will not write it, since it
will be clear from the context on which sequence we are referring to.

Remark 2 As in [25, Lemma 3.8] we can see that if a sequence (hn) satisfies the Assumption
2.7 then we have that

K+
(hn)

(m, O) = K−
(hn)

(m, O) =: K (m, O), ∀m ∈ L2(	,R3), ∀O ⊂ [0, L] open.
Lemma 2.8 Let (hn) be a sequence monotonically decreasing to 0 which satisfies Assump-
tion 2.7. For m ∈ L2(	,R3) and O ⊂ ω open, there exist a subsequence (hn(k)) and
(ϑk) ⊂ W 1,2(O × ω,R3) such that

(a) ((ϑk)1, hn(k)(ϑk)2, hn(k)(ϑk)3) → 0,
∫
ω
x3(ϑk)2 → 0 strongly in L2,

(b) (| sym ∇hn(k)ϑk |2) is equi-integrable and there are sequences (Ak)⊂W 1,2([0, L];M3
skw ),

Ak → 0 strongly in L2 and (vk) ⊂ W 1,2(	;R3), vk → 0 strongly in L2 such that

sym ∇hn(k)ϑk = sym ι((Ak)
′dω) + sym ∇hn(k)vk .

Moreover, we have that
(|(Ak)

′|2)k∈N and
(|∇hn(k)vk |2

)
are equi-integrable. Also the

following is valid

lim sup
k→∞

(‖Ak‖W 1,2(O) + ‖∇hn(k)vk‖L2(O×ω)

) ≤ C
(
η2‖m‖2L2 + 1

)
,

where C is independent of the domain O. For each k ∈ N we have that Ak = 0 in a
neighborhood of ∂O and vk = 0 in a neighborhood of ∂O × ω.

(c) K (m, O) = lim
k→∞

∫

O×ω

Qhn(k) (x, ι(m) + ∇hn(k)ϑk) dx .

Proof The proof is analogous to the one in [25, Lemma 3.10]. Therefore, we just state the
main arguments.

Firstly, it is easy to establish the claim of lemma if the set O ⊂ [0, L] is nice, e.g., a finite
union of intervals. Then we use Corollary 2.3 to write the relaxation field in the form given
there. Next, by using Lemma 2.16 and Lemma 2.17, we replace this relaxation field with
the equi-integrabile one (this is possible since the relaxation field is a minimizing sequence).
The truncation argument on the equi-integrabile sequence can easily be made to obtain the
relaxation field which is zero near the boundary.

Then this claim, together with Lemma 2.5, is used to establish some properties of the
functional K ([25, Lemma 3.7]). Using the localization property, we obtain the claim of the
lemma for an arbitrary O ⊂ [0, L] open. ��

The following lemma gives us the important claim that if we know the relaxation sequence
for [0, L], we obtain by restriction the relaxation sequence for arbitrary O ⊂ [0, L] open (if
m is fixed).Moreover, it gives a kind of uniqueness of relaxation field, up to a term converging
to zero in L2.

Lemma 2.9 Take a sequence (hn) monotonically decreasing to 0 that satisfies Assumption
2.7 and m ∈ L2(	;R3). Let (ϑn) ⊂ W 1,2(	,R3) be such that

(a) ((ϑn)1, hn(ϑn)2, hn(ϑn)3) → 0,
∫
ω
x3ϑn,2 → 0 strongly in L2;

(b) K (m, [0, L]) = lim
n→∞

∫

	

Qhn (x, ι(m) + ∇hnϑn) dx .

Then we have that:
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(I) (| sym ∇hnϑn |2) is equi-integrable;
(II) for every O open subset of [0, L], we have that

K (m, O) = lim
n→∞

∫

O×ω

Qhn (x, ι(m) + ∇hnϑn) dx; (14)

(III) if (ψn) ⊂ W 1,2(	;R3) is any other sequence that satisfies (a) and (b), then

‖ sym ∇hnψn − sym ∇hnϑn‖L2 → 0,

and (| sym ∇hnψn |2) is equi-integrable.
Proof From (Q1) and by taking the zero subsequence, we obtain the bound

lim sup
n→∞

‖ sym ∇hnϑn‖L2(	) ≤ C
(
η2‖m‖2L2 + 1

)
. (15)

From Corollary 2.3 there are sequences (An) ⊂ W 1,2((0, L);M3
skw ) and (vn) ⊂

W 1,2(	;R3) such that An → 0 and vn → 0 strongly in L2 and
∥∥sym ∇hnϑn − sym ι((An)

′dω) − sym ∇hnvn
∥∥
L2 → 0.

From (11) we obtain that

lim sup
k→∞

(‖An‖W 1,2(	) + ‖∇hnvn‖L2(	)

) ≤ C(ω)
(
η2‖m‖2L2 + 1

)
.

To prove that (| sym ∇hnϑn |2) is equi-integrable, let us assume the opposite, i.e., that there
is ε > 0 such that for every k > 0 there are measurable sets (Sk) such that |Sk | < 1

k and
there is an increasing function n : N → N such that

∫

Sk
| sym ∇hn(k)ϑn(k)|2 dx ≥ ε.

On the other hand, by Lemma 2.16 and 2.17 there is a further subsequence, still denoted
by n(k) and sequences ( Ãk) ⊂ W 1,2((0, L);M3

skw ) and (ṽk) ⊂ W 1,2(	;R3) such that

(i) lim
k→∞

∣∣∣	 ∩
{
Ãk �= An(k) or Ã

′
k �= A′

n(k)

}∣∣∣ = 0;
(ii) limk→∞

∣∣	 ∩ {ṽk �= vn(k) or ∇ṽk �= ∇vn(k)
}∣∣ = 0;

(iii) Ã′
k and ∇hn(k) ṽk are equi-integrabile.

We have

K (m, [0, L]) = lim inf
k→∞

∫

	

Qhn(k)
(
x, ι(m) + ∇hn(k)ϑn(k)

)
dx

> lim inf
k→∞

∫

	

χ	\Sk Qhn(k)
(
x, ι(m) + ∇hn(k)ϑnk

)
dx

= lim inf
k→∞

∫

	

χ	\Sk Qhn(k)
(
x, ι(m) + sym ι(( Ãk)

′dω) + sym ∇hn(k) ṽk

)
dx

= lim inf
k→∞

∫

	

Qhn(k)
(
x, ι(m) + sym ι(( Ãk)

′dω) + sym ∇hn(k) ṽk

)
dx

= K (m, [0, L]),
which is a contradiction. Therefore, (| sym ∇hnϑn |2) is equi-integrabile.

We now show that (ϑn) is optimal for any open set O ∈ D which is a finite union of
disjoint open intervals. Otherwise, there would be a subsequence, still denoted by (hn), such
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that there is a sequence (ψ1
n ) ⊂ W 1,2(O × ω,R3) satisfying the conditions of Lemma 2.8

and

K (m, O) = lim
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnψ

1
n

)
dx

< lim
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnϑn

)
dx .

On the other hand, on a further subsequence, still denoted by (hn) we take the sequence
(ψ2

n ) ⊂ W 1,2([0, L] \ Ō,R3) satisfying the conditions of Lemma 2.8 and

K (m, (0, L)\Ō) = lim
n→∞

∫

((0,L)\Ō)×ω

Qhn
(
x, ι(m) + ∇hnψ

2
n

)
dx

≤ lim
n→∞

∫

([0,L]\Ō)×ω

Qhn
(
x, ι(m) + ∇hnϑn

)
dx .

By using Lemma 2.4 we define (ψn) ⊂ W 1,2(	;R3) such that

sym ∇hnψn = χO sym ∇hnψ
1
n + χ[0,L]\Ō sym ∇hnψ

2
n .

We conclude that

lim
n→∞

∫

[0,L]×ω

Qhn
(
x, ι(m) + ∇hnψn

)
dx < lim

n→∞

∫

[0,L]×ω

Qhn
(
x, ι(m) + ∇hnϑn

)
dx

= K (m, [0, L]),
which yields a contradiction with the optimality of the sequence (ϑn).

For any open O ⊂ [0, L], by density, there is an increasing family of sets (Dk) ⊂ D
which exhausts O . Since (ϑn) is optimal on each Dk and since K (m, O) ≥ K (m, Dk) (this
can be easily seen from Lemma 2.8), we deduce from equi-integrability of

(| sym ∇hnϑn |2
)

that

K (m, O) ≥ lim
k→∞ K (m, Dk) = lim

n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnϑn

)
dx .

Hence (ϑk) is also optimal for K (m, O), and (II) is proved.
Notice that, for every h > 0, there is a measurable mapping Lh : 	 × M

3 → M
3
sym such

that for a.e. x ∈ 	, Lh(x, ·) is a positive semidefinite linear operator and

Qh(x, M) = Lh(x, M) · M
holds for all M ∈ M

3. Notice also that

Lh(x, M) = Lh(x, sym M), ‖Lh‖L∞ ≤ η2. (16)

To prove (III) we first show that

lim
n→∞

∫

	

Lh(x, ι(m) + ∇hnϑn) · ∇hn ψ̃n = 0, (17)

for every (ψ̃n) ⊂ W 1,2(	;R3) that satisfies (a) and such that (| sym ∇hn ψ̃n |) is bounded in
L2.
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To prove this we take ε > 0, and for n large enough we derive:

0 ≤
∫

	

Qhn (x, ι(m) + ∇hnϑn + ε∇hn ψ̃n) dx −
∫

	

Qhn (x, ι(m) + ∇hnϑn) dx

=
∫

	

Lh(x, ι(m) + ∇hnϑn + ε∇hn ψ̃n) · (ι(m) + ∇hnϑn + ε∇hn ψ̃n) dx

−
∫

	

Lh(x, ι(m) + ∇hnϑn) · (ι(m) + ∇hnϑn) dx

= 2ε
∫

	

Lh(x, ι(m) + ∇hnϑn) · (∇hn ψ̃n) dx + ε2
∫

	

Lh(x,∇hn ψ̃n) · (∇hn ψ̃n) dx

≤ 2ε
∫

	

Lh(x, ι(m) + ∇hnϑn) · (∇hn ψ̃n) dx + ε2η2| sym ∇hn ψ̃n |2

= 2ε
∫

	

Lh(x, ι(m) + sym ∇hnϑn) · (sym ∇hn ψ̃n) dx + ε2η2| sym ∇hn ψ̃n |2.
If (17) did not hold, we would choose ε (by taking the appropriate sign) such that the linear
term dominates and the inequality is violated. Thus, we deduce (17), by the contradiction.
To finish the proof, we take two sequences (ϑn) ⊂ W 1,2(	;R3), (ψn) ⊂ W 1,2(	;R3) that
satisfy (a) and (b). We have, using (17)

η1‖ sym ∇hn (ψn − ϑn)‖2L2 ≤
∫

	

Lhn (x,∇hn (ψn − ϑn)) · ∇hn (ψn − ϑn) dx

=
∫

	

Lhn (x, ι(m) + ∇hnψn) · ∇hn (ψn − ϑn) dx

−
∫

	

Lhn (x, ι(m) + ∇hnϑn) · ∇hn (ψn − ϑn) dx → 0.

��
The following lemma proves the compactness result we need.

Lemma 2.10 For every sequence (hn) that satisfy the Assumption 2.7, there exists a sub-
sequence, still denoted by (hn) such that for each m ∈ L2(	;R3) there exists

(
ϑm
n

) ⊂
W 1,2(	;R3) which satisfies

(a)
(
(ϑm

n )1, hn(ϑm
n )2, hn(ϑm

n )3
)→ 0,

∫
ω
x3(ϑm

n )2 → 0 strongly in L2,
(b)

K (m, [0, L]) = lim
n→∞

∫

	

Qhn (x, ι(m) + ∇hnϑ
m
n ) dx .

Proof LetM ⊂ L2(	;R3) be a countable dense family. By diagonalization procedure, it is
possible to construct the subsequence, still denoted by (hn), such that for each m ∈ M there
is a sequence (ϑ(m)n) for which (a) and (b) holds. Now we take the sequence (mn) ⊂ M
such that mn → m in L2 as n → ∞ and define the strictly increasing function k : N → N

in a way that for every n0 ∈ N we have
∣∣∣∣K (mn0 , [0, L]) −

∫

	

Qhn
(
x, ι(mn0) + ∇hnϑ

mn0
n

)
dx

∣∣∣∣ <
1

n0
, for every n ≥ k(n0),

∥∥∥
(
(ϑ

mn0
n )1, hn(ϑ

mn0
n )2, hn(ϑ

mn0
n )3

)∥∥∥
L2

<
1

n0
, for every n ≥ k(n0),

∥∥∥∥
∫

ω

x3(ϑ
mn0
n )2

∥∥∥∥
L2

<
1

n0
, for every n ≥ k(n0).
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For every i ∈ N and j ∈ [k(i), k(i + 1)) take ϑm
j := ϑ

mk(i)
j and use Lemma 2.5 to show (b).

��
We make the assumption on the sequence (Qhn ) of quadratic forms.

Assumption 2.11 For given (hn) monotonically decreasing to zero, we suppose that for
every m ∈ L2(	;R3) there exists (ϑn) ⊂ W 1,2(	;R3) (we omit the superscript m) such
that

(a) ((ϑn)1, hn(ϑn)2, hn(ϑn)3) → 0,
∫
ω
x3(ϑn)2 → 0 strongly in L2,

(b) for every O ⊂ [0, L] open we have

K (m, O) = lim
n→∞

∫

O×ω

Qhn (x, ι(m) + ∇hnϑn) dx .

Here

K (m, O) = min
{
lim inf
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnψ

hn
)
dx :

(ψ
hn
1 , hnψ

hn
2 , hnψ

hn
3 ) → 0 strongly in L2(O × ω;R3)

∫

ω

x3ψ
hn
2 → 0 strongly in L2(O)

}

= min
{
lim sup
n→∞

∫

O×ω

Qhn
(
x, ι(m) + ∇hnψ

hn
)
dx :

(ψ
hn
1 , hnψ

hn
2 , hnψ

hn
3 ) → 0 strongly in L2(O × ω;R3),

∫

ω

x3ψ
hn
2 → 0 strongly in L2(O)

}
.

We define the mappingm : L2([0, L];M3
skw )× L2([0, L]) → L2([0, L];R3) bym(A, a) =

A(0, x2, x3)t + ae1. Finally, we derive the integral representation of K .

Proposition 2.12 Let (hn) be a sequence monotonically decreasing to zero for which the
Assumption 2.11 is valid. Then there exists a measurable function Q : [0, L]×M

3
skw ×R →

[0,+∞〉 possibly depending on this sequence such that for every O ⊂ [0, L] open and every
A ∈ L2([0, L];M3

skw ) we have

K (m(A, a), O) =
∫

O
Q(x1, A(x1), a(x1)) dx1. (18)

Moreover, Q satisfies the following property

(Q’1) for almost all x1 ∈ [0, L] the map Q(x1, ·, ·) is a quadratic form and there is a positive
constant Cω, independent of x1, such that

Cω(|A|2 + |a|2) ≤ Q(x1, A, a)

≤ η2
(
max{μ2, μ3}|A|2 + |a|2) for all (A, a) ∈ M

3
skw × R. (19)

Proof The existence of Q and the proof of (18) is identical as in [25, Proposition 2.9].
Therefore, we will only prove the boundedness and coercivity property. The function Q is
defined via:

Q(x̄1, A, a) = lim
r→0

1

2r
K (m(A, a), B(x̄1, r)) , for a.e. x̄1 ∈ [0, L]. (20)
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The upper bound in (19) is easily obtained by taking the zero subsequence ϑn = 0 and by
using (Q1) and (1) to deduce

|Q(x̄1, A, a)| ≤ η2
(| sym ι(ae1 + Adω)|2) ≤ η2

(
max {μ2, μ3}|A|2 + |a|2) ,

for a.e. x̄1 ∈ (0, L).
From Assumption 2.11 and Corollary 2.3 we deduce that there are bounded sequences

(Ahn ) ⊂ W 1,2([0, L];M3
skw ) and (vhn ) ⊂ W 1,2(	;R3) such that Ahn → 0 and vhn → 0

strongly in L2 and

K (m(A, a), B(x̄1, r))

= lim
n→∞

∫

B(x̄1,r)×ω

Qhn
(
x, ι(m)+sym ι((Ahn )′dω)+sym ∇hnv

hn
)
dx .

for some C > 0. We can assume, by the density argument, that vhn and Ahn are smooth
functions. Using the property (Q1), we have

K (m(A, a), B(x̄1, r)) ≥ η1(I1 + I2),

where I1 and I2 are defined by:

I1 = lim
h→0

∫

B(x̄1,r)×ω

(
a + A12x2 + A13x3 + (Ahn

12)
′x2 + (Ahn

13)
′x3 + ∂1v

hn
1

)2
dx

I2 =1

2
lim
h→0

⎧
⎪⎨

⎪⎩

∫

B(x̄1,r)×ω

(
A23x3 + (Ahn

23)
′x3 + ∂1v

hn
2 + ∂2v

hn
1

h

)2

dx

+
∫

B(x̄1,r)×ω

(
−A23x2 − (Ahn

23)
′x2 + ∂1v

hn
3 + ∂3v

hn
1

hn

)2

dx

⎫
⎪⎬

⎪⎭

From the choice of the coordinate axis (1), we have that for every x1 ∈ B(x̄1, r)
∫

{x1}×ω

aA12x2 dx2 dx3 =
∫

{x1}×ω

aA13x3 dx2 dx3 =
∫

{x1}×ω

A13A12x2x3 dx2 dx3 = 0.

Thus, we derive that

I1 ≥
∫

B(x̄1,r)×ω

(|a|2 + x22 A
2
12 + x23 A

2
13

)
dx

+ 2 lim
n→∞

∫

B(x̄1,r)×ω

(a + A12x2 + A13x3)
(
(Ahn

12)
′x2 + (Ahn

13)
′x3 + ∂1v

hn
1

)
dx .

Since (Ahn )
′ ⇀ 0 and ∂1v1

hn ⇀ 0 weakly in L2, the mixed term vanishes as n → ∞.
Hence, we obtain that

I1 ≥ 2r
(|a|2 + μ2|A12|2 + μ3|A13|2

)
. (21)

To obtain the lower bound for I2, we look for a solution of the minimum problem

min
ψ∈H1(ω)

∫

ω

|u − ∇ψ |2 dx .
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The solution of this problem is unique up to constant and satisfies the variational equation
∫

ω

(∇ϕu − u) · ∇ψ dx = 0, (22)

for every ψ ∈ H1(ω). The solution corresponds to L2 projection on the space

G(ω) = {w ∈ L2(ω;R2) : w = ∇ p, for some p ∈ H1(ω)
}
,

which is a closed subspace in L2(ω;R2). We denote by Pu = u − ∇ϕu .
Denote also by

�h(x) =
(
A23 + (Ah

23)
′)
(

x3
−x2

)
+
(

∂1v
hn
2

∂1v
hn
3

)
+ 1

hn

(
∂2v

hn
1

∂3v
hn
1

)
.

Since P is a projection, we conclude

I2 =
∫

B(x̄1,r)×ω

|�hn |2dx ≥
∫

B(x̄1,r)×ω

|P�hn |2dx,

where P�h equals

P(�hn (x)) =
(
A23 + (Ahn

23)
′) P

(
x3

−x2

)
+ P

(
∂1v

hn
2

∂1v
hn
3

)
.

Notice that the projection is taken for every x1 ∈ [0, L]. This yields that:

I2 ≥C̄ω lim
n→∞

(∫

B(x̄1,r)
|A23|2 + 2

∫

B(x1,r)
A23(A

hn
23)

′dx1
)

+ 2 lim
n→∞

∫

B(x̄1,r)×ω

A23P

(
x3

−x2

)
· P
(

∂1v
hn
2

∂1v
hn
3

)
dx,

where the constant C̄ω equals

C̄ω =
∫

ω

∣∣∣∣P
(

x3
−x2

)∣∣∣∣
2

dx2 dx3. (23)

Since A′
h ⇀ 0 in L2, the second term converges to zero. Since P is the projection, we have

that
∫

B(x̄1,r)×ω

A23P

(
x3

−x2

)
· P
(

∂1v
hn
2

∂1v
hn
3

)
dx =

∫

B(x̄1,r)×ω

A23P

(
x3

−x2

)
·
(

∂1v
hn
2

∂1v
hn
3

)
dx → 0,

since ∂1v
hn ⇀ 0 weakly in L2. We obtain that

I2 ≥ 2rC̄ωA
2
23.

Combing this with (20) and (21) and taking the limit as r → 0 yield the coercivity of Q. ��
For a given sequence (hn) monotonically decreasing to zero for which the Assumption 2.11
is satisfied, we also define the function Q0 : [0, L] × M

3
skw → R such that

Q0(x1, A) = min
a∈R Q(x1, A, a), (24)
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and mapping amin : [0, L] × M
3
skw → R that satisfies

Q0(x1, A) = Q(x1, A, amin(x1, A)). (25)

It is easy to see that Q0 satisfies the following property.

(Q′
01) For almost all x1 ∈ [0, L] the map Q0(x1, ·) is a quadratic form and satisfies

C1(η1, η2, μ1, μ2, C̄ω)|A|2
≤ Q0(x1, A) ≤ C2(η1, η2, μ1, μ2, C̄ω)|A|2, for all A ∈ M

3
skw ,

where C̄ω is defined in (23) and C1,C2 depend only on the constants in the bracket.

Themapping amin is well defined, linear in A and for someCa = Ca(η1, η2, μ1, μ2, C̄ω) > 0
we have

|amin(x1, A)| ≤ Ca |A|, for a.e.x1 ∈ [0, L].
The function Q0 will be the energy density of the limit functional.

2.3 Identification of limit equations

We will state and prove liminf and limsup inequality.

Theorem 2.13 Let the family (Wh) describe an admissible composite material in the sense
of the Definition 1.2. Let (hn) be a sequence monotonically decreasing to zero such that the
Assumption 2.11 is valid. Let (yhn ) ⊂ W 1,2(	;R3) be a sequence of deformations such that

∫

	

Whn (x,∇hn y
hn ) dx ≤ Ch2n, for someC > 0.

Then, there is a subsequence (still denoted by (hn)) such that ∇hn y
hn → R strongly in L2,

where R ∈ W 1,2([0, L];SO(3)). Moreover we have

lim inf
n→∞

1
h2n

∫

	

Whn (x,∇hn y
hn ) ≥

∫

[0,L]
Q0(R

t R′)dx1.

Proof By Theorem 2.15 there is a sequence (Rhn ) ⊂ C∞([0, L];R3×3) such that Rhn (x1) ∈
SO(3) for a.e. x1 ∈ [0, L] and Rh satisfies (41) and (42). From (42) we conclude that on a
subsequence Rhn ⇀ R weakly in W 1,2([0, L];R3) and thus also in C([0, L];R3). We take
a further subsequence, without relabeling, on which lim inf is accomplished. We define the
sequence vh by the following decomposition

yhn = 1
|ω|
∫

{x1}×ω

yhn + hnx2R
hn e2 + hnx3R

hn e3 + hnv
hn . (26)

Integrating over ω and using (1) yield:
∫

{x1}×ω

vhn dx = 0, (27)

for a.e. x1 ∈ [0, L]. Note that
∇hnv

hn = 1
hn

(∇hn y
hn − Rhn ) −

(
phn + x2(R

hn )′e2 + x3(R
hn )′e3|0|0

)
,

where

phn = 1
hn |ω|

∫

{x1}×ω

(
∂1y

hn − Rhn e1
)

.
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From (41) we obtain that ‖phn‖L2 is bounded. Hence, there is p ∈ L2([0, L];R3) such that
phn ⇀ p weakly in L2 (on a subsequence). By using (41) and (42), we deduce that there
exists a constant C > 0 such that

‖∇hnv
hn‖L2 ≤ C. (28)

Using (27) and the Poincaré inequality, we conclude that for some C > 0

‖vhn‖L2 ≤ Chn . (29)

Define the approximate strain by

Ghn = (Rhn )T∇hn y
hn − I

hn
. (30)

From (41) we conclude that (Ghn ) is bounded in L2. It can be easily checked that

Ghn = ι
(
(A + Ahn )dω

)
+ ((Rhn )t phn |0|0) + (Rhn )t∇hnv

hn , (31)

where A = Rt R′, Ahn = (Rhn )t (Rhn )′ − Rt R′. Take any sequence (rn) ⊂ C1([0, L];R3)

such that
rn → Rt p and hn(rn)

′ → 0,

strongly in L2 and define the functions:

p̃hn =
∫ x1

0

(
(Rhn )t phn − Rt p

)
,

ṽhn = (Rhn )tvhn + (hnx2(rn)2 + hnx3(rn)3, 0, 0)
t + p̃hn ,

ohn = (Rhn )t∇hnv
hn − ∇hn ((R

hn )tvhn ) − (hnx2(rn)
′
2 + hnx3(rn)

′
3)e1 ⊗ e1

+
∑

i=2,3

(
(Rt p)i − (rn)i

)
ei ⊗ e1.

Ãhn =
∫ x1

0
Ahn .

It is straightforward to check that

sym Ghn = sym ι(Adω) + (Rt p)1e1 ⊗ e1 + sym ι(( Ãhn )′dω) + sym ∇hn ṽ
hn + sym ohn .

(32)
By the Sobolev embedding theorem, we deduce from (42) that ‖hn(Rhn )′‖L∞ → 0. By

combining this and (29), we obtain that

(Rh)t∇hnv
hn − ∇hn ((R

hn )tvhn ) = −((Rhn )′vhn |0|0) −→ 0, strongly inL2.

From that it follows that
ohn → 0 strongly in L2. (33)

It also easily follows that

Ãhn → 0, ṽhn → 0, strongly in L2, ‖∇hn ṽ
hn‖L2 ≤ C, (34)

for some C > 0.
Using Lemma 2.16 and Lemma 2.17, we take a subsequence (hn(k)) such that there exist

sequences ( Āk) ⊂ W 1,2([0, L]; M3
skw ), v̄k ⊂ W 1,2(	;R3) which satisfy
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(i) limk→∞ |{v̄k �= ṽhn(k) or ∇v̄k �= ∇ṽhn(k)}| = 0,
limk→∞ |{ Āk �= Ãhn(k) or Ā′

k �= ( Ãhn(k) )′}| = 0;
(ii) | Ā′

k |2 and (|∇hn(k) v̄k |2) are equi-integrable.
It can be easily seen that Āk → 0, v̄k → 0, strongly in L2 (i.e., weakly in W 1,2). By using
Lemma 2.4, we obtain a sequence (ψk) ⊂ W 1,2(	;R3) such that

sym ∇hn(k)ψk = sym ι(( Āk)
′dω) + sym ∇hn(k) v̄k,

((ψk)1, hn(k)(ψk)2, hn(k)(ψk)3) → 0,
∫

ω

x3(ψk)2 → 0 strongly inL2, (35)

and the sequence (| sym ∇hn(k)ψk |2) is equi-integrable. We define the sets

Chn =
{
x ∈ 	 : |Ghn | ≤ 1√

hn

}
.

From the boundedness of the sequence (Ghn ) in L2,we conclude that |	\Chn | → 0 ash → 0.
Using (Q1), the decomposition of Ghn , (35) and the equi-integrability of (| sym ∇hn(k)ψk |2),
we deduce that

lim inf
k→∞

∫

	

Qhn(k) (x, χChn(k) G
hn )

= lim inf
k→∞

∫

	

Qhn(k)
(
x, χChn(k)

(
ι(Adω) + (Rt p)1e1 ⊗ e1 + ι(( Ãhn )′dω) + ∇hn ṽ

hn
))

= lim inf
k→∞

∫

	

Qhn(k)
(
x, ι(Adω) + (Rt p)1e1 ⊗ e1 + ∇hn(k)ψ

hn(k)
)

. (36)

Using frame indifference property (W1),we have thatWhn (x,∇h yh) = Whn (x, I+hGh).
From (3), by integrating, we conclude that

lim sup
n→∞

∣∣∣∣
1

hn2

∫

	

Whn (·, I + hnχChn Ghn ) −
∫

	

Qhn (·, χChn Ghn )

∣∣∣∣

≤ r(
√
hn)
∫

	

|χChn Ghn |2 → 0. (37)

Finally, we conclude, using (36), (37) and the definition of K and Q0

lim inf
k→∞

1
h2n(k)

∫

	

Whn(k) (x,∇hn(k) y
hn(k) ) ≥ lim inf

k→∞
1

h2n(k)

∫

	

χChn(k) W
hn(k) (x,∇hn(k) y

hn(k) )

= lim inf
k→∞

∫

	

Qhn(k) (x, χChn(k) G
hn )

≥ K (m(A, (Rt p)1, [0, L])
≥
∫

[0,L]
Q0
(
Rt R′(x1)

)
dx1.

��
The next theorem gives the construction of the recovery sequence. Note that the statement of
the Theorem 2.14 is not the classical upper bound statement, since the subsequence depends
on R, but we can find one subsequence on which the convergences are true for all R, by using
the density argument. However, Theorem 2.13 and Theorem 2.14 do imply in their form the
convergence of minimizers on every subsequence of (hn), on which they are converging.
Thus, Theorem 2.14 can also be seen as an upper bound statement.
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Theorem 2.14 Let the family (Wh) describe an admissible composite material in the sense
of the Definition 1.2. Let (hn) be a sequence monotonically decreasing to zero for which the
Assumption 2.11 is valid. Then for every R ∈ W 1,2([0, L];SO(3)) there exists a subsequence,
still denoted by (hn), such that

a. there exists (yn) ⊂ W 1,2(	;R3) such that yn → ∫ x1
0 Re1 strongly in W 1,2 and∇hn yn →

R strongly in L2.
b. limn→∞ 1

h2n

∫
	
Whn (x,∇hn yn) = ∫[0,L] Q0

(
Rt R′(x1)

)
dx1.

Proof It is easy to see that smooth rotations are dense in W 1,2([0, L];SO(3)). This can
be seen by approximating with smooth maps taking values in M

3 and then projecting on
SO(3) (by Sobolev embedding weak W 1,2 implies strong convergence in L∞ and we can
project from tubular neighborhood of SO(3)). Therefore, without the loss of generality we
may assume that R ∈ C2([0, L];SO(3)), since in the general case we can use the diagonal
procedure.

Take any a ∈ C([0, L]) and define A ∈ C1([0, L];M3
skw ) by A = Rt R′. Now we

take m = m(Rt R′, a) and the sequence (ϑn) ⊂ W 1,2(	;R3) which satisfies (a) and (b)
of the Assumption 2.11. From Lemma 2.9 we have that the sequence (| sym ∇hnϑn |2) is
bounded (see (15)) and equi-integrabile. By Corollary 2.3, there are sequences (An) ⊂
W 1,2([0, L];M3

skw ) and (vn) ⊂ W 1,2(	;R3) such that An → 0, vn → 0 strongly in L2 and

‖ sym ∇hnϑn − sym ι(A′
ndω) − sym ∇hnvn‖L2 → 0.

Moreover, we have that

sup ‖An‖W 1,2 + sup
(‖vn‖L2 + ‖∇hnvn‖L2

)
< ∞. (38)

Choose a subsequence (hn(k)) such that khn(k) → 0. Using Lemma 2.16 and Lemma 2.17, we
conclude that there exist sequences ( Ãk) ⊂ W 1,∞([0, L];M3

skw ) and (ṽk) ⊂ W 1,∞(	;R3)

such that for some C > 0 we have (on a further subsequence; not relabeled)

(i) | Ā′
k | ≤ Ck, for a.e. x1 ∈ [0, L], |∇hn(k) ṽk | ≤ Ck for a.e. x ∈ 	;

(ii) limk→∞ |{ Ãk �= An(k) or Ã′
k �= A′

n(k)}| = 0;
limk→∞ |{ṽk �= vn(k) or ∇ṽk �= ∇vn(k)}| = 0.

(iii) the sequences (| Ã′
k |2), (|∇hn(k) ṽk |2) are equi-integrable.

It is easy to argument that Ãk → 0, ṽk → 0 strongly in L2 (i.e., weakly in W 1,2). We define
the sequence (Rk) ⊂ W 1,∞([0, L];M3) as the solutions of the following Cauchy problem

{
R′
k = Rk(A + Ã′

k),

Rk(0) = R(0).
(39)

Since the right-hand side of the first equation in (39) is Lipschitz function, this system has
a unique solution. Moreover, since it is tangential to SO(3) it can be easily argumented that
we have Rk(x1) ∈ SO(3) for every x1 ∈ [0, L] (this can be done, e.g., by approximating
Ak with smooth fields and then using the standard theorem for the solutions of ODE system
whose right-hand side is tangential to some smooth manifold). Notice also that Rk ⇀ R
weakly in W 1,2 and thus, by Sobolev embedding, strongly in L∞. Define for every k ∈ N;
v̄k = ṽk − ∫

	
ṽk to accomplish ‖v̄k‖W 1,∞ ≤ Ck, which follows by the Poincaré inequality.

By the equi-integrability property, we obtain that

‖ sym ∇hn(k)ϑn(k) − sym ι( Ã′
kdω) − sym ∇hn(k) v̄k‖L2 → 0. (40)
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Define the recovery sequence with the formulae

yk =
∫ x1

0
Rke1 + hn(k)x2Rke2 + hn(k)x3Rke3 + hn(k)Rv̄k + hn(k)

∫ x1

0
aRe1.

Define also the approximate strain by

Gk = Rt
k∇hn(k) yk − I

hn(k)
.

The following properties can easily be verified:

(i) ‖yk − ∫ x10 Re1‖L∞ → 0, ‖∇hn(k) yk − Rk‖L∞ → 0;
(ii) ‖hn(k)Gk‖L∞ → 0;

(iii)
∥∥∥sym Gk − ae1 ⊗ e1 − sym ι((A + Ã′

k)dω) − sym ∇hn(k) v̄k

∥∥∥
L2

→ 0.

This proves (a). To prove (b) notice that from the frame indifference property (W1) of
Definition 1.1, we have that Whn(k) (x,∇hn(k) yk) = Whn(k) (x, I + hn(k)Gk), for a.e. x ∈ 	.
Using property (iii) of Definition 1.2 and the property (ii) of Gk , we conclude that

∣∣∣∣
1

h2n(k)

∫

	

Whn(k) (x,∇hn(k) yk) −
∫

	

Qhn(k) (x,Gk)

∣∣∣∣→ 0.

From (40) we have that
∥∥sym Gk − ae1 ⊗ e1 − sym ι (Adω) − sym ∇hn(k)ϑn(k)

∥∥
L2 → 0.

Using this we obtain that
∣∣∣∣ limk→∞

∫

	

Qhn(k) (x,Gk) −
∫

[0,L]
Q(x1, A, a)

∣∣∣∣→ 0.

Finally, we approximate amin(·, A(·)) ∈ L∞([0, L]), defined in (25), with continuous maps
in L2 norm and use the diagonalizing procedure to prove (b). ��
Acknowledgments The authors were informed about the decomposition in Lemma 2.2 at the conference
“Third workshop on thin structures” in Naples, September, 2013. It was there announced as part of the work
(and more general theorem) of J. Casado-Diaz, M. Luna-Laynez and F. J. Suarez-Grau. Here we used that in
the rod case this decomposition is a consequence of Griso’s decomposition.We are grateful toM. Luna-Laynez
on a personal communication. The work on this paper was fully supported by Croatian Science Foundation
grant number 9477.

Appendix

Here we state some auxiliary results that we use. First is a variant of the rigidity estimate for
rods proved in [19].

Theorem 2.15 Assume that the sequence of deformations yh ∈ W 1,2(	;R3) satisfies
∫

	

dist2(∇h y
h,SO(3)) dx ≤ C1h

2,

for some C1 > 0, independent of h. Then there exist a constant C > 0 and a sequence
(Rh) ⊂ C∞([0, L];R3×3), such that Rh(x1) ∈ SO(3), for every x1 ∈ [0, L], and

‖∇h y
h − Rh‖L2 ≤ Ch, (41)

‖(Rh)′‖L2 + ‖h(Rh)′′‖L2 ≤ C. (42)
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From the estimate (42), we conclude that there is a subsequence (Rh) which con-
verges weakly in W 1,2([0, L];R3×3) and, by the Sobolev embedding theorem, strongly in
L∞([0, L];R3×3).

We also state two lemmas that enable us to pass to equi-integrabile sequences.

Lemma 2.16 Let 	 ⊂ R
N be a Lipschitz set and p > 1. Let (wn) be a bounded sequence

in W 1,p(	;Rm). There exists a subsequence (wn(k)) such that for every k ∈ N there exists
zk ∈ W 1,p(	;Rm) which satisfies

(i) |∇zk | ≤ C(N )k, fora.e.x ∈ 	;
(ii) limn→∞ |	 ∩ {zk �= wn(k) or ∇zk �= ∇wn(k)}| = 0;
(iii) (|∇zk |p) is equi-integrable.
Proof The proof is implicitly contained in the proof of Lemma 1.2. (decomposition lemma)
in [10] when the authors use a truncation argument. We shall skip it here. ��
Lemma 2.17 Let ω ⊂ R

2 be a set with Lipschitz boundary, let 	 = [0, L] × ω, and let
p > 1. Let (whn ) be a sequence bounded in W 1,p(	;Rm), and let us additionally assume
that the sequence (∇hnw

hn ) is bounded in L p. Then there exists a subsequence (whn(k) ) such
that for every k ∈ N there exists zk ∈ W 1,p(	;Rm) which satisfies

(i) |∇hn(k) zk | ≤ C(N )k, fora.e.x ∈ 	;
(ii) limk→∞ |	 ∩ {zk �= whn(k) or ∇zk �= ∇whn(k)}| = 0;
(iii) (|∇hn(k) zk |p) is equi-integrable.

Proof In [5] the authors provide a general proof for the function space W 1,p(ωα × ωβ;Rm)

where ωα ⊂ R
n and ωβ ⊂ R

l and {n,m, l} are arbitrary space dimensions. For completeness
we give the proof for our case.

By de la Vallée Poussin’s criterion, a sequence (ζk) ⊂ L1(	;Rm) is equi-integrabile if
and only if there exists a nonnegative Borel function ϕ : [0,∞) → [0,∞] such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

k

∫

	

ϕ(|ζk |) < +∞.

By translation and dilatation,we can assumewithout loss of generality thatω ⊂ Q2, where
Q2 = (0, 1)2. Let (whn ) be a given bounded sequence in W 1,p(	,R3) such that (∇hnw

hn )

is also bounded in L p . By using standard extension techniques, we extend the definition of
whn to W 1,p((0, L) × Q2;R3) (the extension is done for every fixed x1 ∈ (0, L)), while
keeping the boundness properties. We separate the proof into several steps.

1. Define the functions ŵhn (x) := whn
(
x1,

x ′
hn

)
on a strip (0, L)× (0, hn)2. Then ŵhn is in

W 1,p((0, L) × (0, hn)2;R3), and from the boundness of whn and ∇hnw
hn , by rescaling

the integrals on the new domain we obtain that there is a constant C > 0 such that

1

h2n

∫

(0,L)×(0,hn)2
|ŵhn |p dx + 1

h2n

∫

(0,L)×(0,hn)2

(
|∂1ŵhn |p + |∇′ŵhn |p

)
dx ≤ C. (43)

2. Next, define w̃hn on (0, L) × (−hn, hn)2 by reflecting the functions ŵhn with respect to
the x2 and x3 variable w̃hn (x) = ŵhn (x1, |x2|, |x3|). We define the functions w̄hn (x) =
w̃hn (x1, x ′ − (2ihk, 2 jhk)), i, j ∈ Z on (0, L) × R

2 by periodically extending w̃hn .
From the construction of w̃hn , it is easy to see that w̄hn ∈ W 1,p

loc ((0, L) ×R
2;R3). Since
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(0, L) × Q2 is contained in (� 1
2hn

� + 2)2 cubes and since w̃hn is symmetric with respect
to x2 and x3 axes, we derive that for n large enough:

∫

(0,L)×Q2
|w̄hn |p dx ≤ 4

(
2 +

⌊
1

2hn

⌋)2 ∫

(0,L)×(0,hn)2
|ŵhn |p dx

≤ 4

h2n

∫

(0,L)×(0,hn)2
|ŵhn |p dx .

Thus, from (43) we deduce that w̃hn is bounded with respect to n. Using the same
arguments, the gradients ∇w̄hn are also bounded with respect to n.

3. Since the sequences (w̄hn ) satisfy the assumptions of the lemma (2.16), there is a sequence
(vk) ⊂ W 1,p((0, L) × Q2) such that |∇vk | < C(N )k a.e. on (0, L) × Q2 and

lim
k→∞

∣∣∣(0, L) × Q2 ∩ {vk �= whn(k) or ∇vk �= ∇whn(k)}
∣∣∣ = 0,

and (|∇vk |p) is equi-integrable on (0, L)×Q2. By de la Vallée Poussin’s criterion, there
is a positive Borel function ϕ : [0,∞) → [0,∞] such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

k

∫

(0,L)×Q2
ϕ(|∇vk |p) < +∞.

We denote with

Mk =
∫

(0,L)×Q2
ϕ(|∇vk |p),

mk =
∣∣∣(0, L) × Q2 ∩ {vk �= whn(k) or ∇vk �= ∇whn(k)}

∣∣∣ ,

and (by Lemma 2.16) we have that supk Mk < ∞ and limk→∞ mk = 0.

4. It is easy to argument that for k large enough there exists a part of the domain S
hn(k)
i j ⊂

(0, L) × Q2 of the form

S
hn(k)
i j = (0, L) × (ihn(k), (i + 1)hn(k)) × ( jhn(k), ( j + 1)hn(k)),

such that
∫

S
hn(k)
i j

ϕ(|∇vk |p) ≤ 3h2n(k)Mk,

∣∣∣Shn(k)
i j ∩ {vk �= whn(k) or ∇zk �= ∇whn(k)}

∣∣∣ ≤ 3h2n(k)mk .

5. Finally, we define the functions z̃k = vk |
S
hn(k)
j

and the functions zk ∈ W 1,p((0, L) ×
Q2;R3)by translation, dilatation in x2, x3 variable and possible reflection of the functions
z̃k .

��
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13. Hornung, P., Neukamm, S., Velčić, I.: Derivation of a homogenized nonlinear plate theory from 3d
elasticity. Calc. Var. Partial Differ. Equ. 51(3–4), 677–699 (2014)
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