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Abstract Let S be a semi-direct product S = N � A where N is a connected and simply
connected, nilpotent, non-meta-abelian, 3-abelian Lie group and A is isomorphic with R

k,

k > 1. On S, we consider a class of second-order left-invariant differential operators of the
form Lα = La + �α, where α ∈ R

k, and for each a ∈ R
k, La is left-invariant second-order

differential operator on N and �α = � − 〈α,∇〉, where � is the usual Laplacian on R
k . We

prove an upper bound for the Poisson kernel for the operator Lα .

Keywords Left-invariant differential operators · Poisson kernel · Time-dependent
parabolic operators · Brownian motion · Evolution kernel · Diffusion process ·
3-Meta-abelian nilpotent Lie groups
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1 Introduction

1.1 Statement of the main result

Let S be a semi-direct product, S = N � A where N is a connected, simply connected,
3-meta-abelian, nilpotent Lie group and A is isomorphic with R

k . We identify A with its Lie
algebra a. The dimension k of A is called the rank of S.
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Specifically, we assume that

N = N1 � (N2 � N3)

≡ N1 � N2 � N3, (1.1)

where Ni , i = 1, 2, 3, are abelian Lie groups with the corresponding Lie algebras ni . To
avoid trivialities, we assume that N3 is non-central in N (Otherwise, N is meta-abelian.).

Then, there are bases {X1, . . . , Xd1}, {Y1, . . . , Yd2}, and {Z1, . . . , Zd3} for ni , i = 1, 2, 3,
respectively, such that

{Xi , . . . , Xd1 , Y1, . . . , Yd2 , Z1, . . . , Zd3}
forms a Jordan–Hölder basis for the Lie algebra n of N . We assume that these bases are
ordered so that the matrix of adZ is strictly lower triangular for all Z ∈ n. We assume in
addition that this basis diagonalizes the ada action on n. We use these bases to identify n1,

n2, and n3 with R
d1 , R

d2 , and R
d3 , respectively, and we use the exponential map to identify

Ni with the corresponding Lie algebras ni = R
di .

For g ∈ S, we write g = x(g)a(g) = xa = (x, a), where x(g) = x ∈ N and a(g) = a ∈
A denote the components of g in N�A.Similarly, for x ∈ N , wewrite x = m(x)v(x)w(x) =
mvw = (m, v, w), where m(x) = m ∈ N1, v(x) = v ∈ N2, and w(x) = w ∈ N3 denote
the components of x in N1 � N2 � N3.

Let

�1 = {ξ1, . . . , ξd1},
�2 = {ϑ1, . . . , ϑd2},
�3 = {ψ1, . . . , ψd3},

be the roots of the ada action on n1, n2 and n3, respectively, corresponding to the given bases.
Let

� = �1 ∪ �2 ∪ �3.

Hence, for all H ∈ a,

adH Xi = [H, Xi ] = ξi (H)Xi , 1 ≤ i ≤ d1,

adH Y j = [H, Y j ] = ϑ j (H)Y j , 1 ≤ j ≤ d2,

adH Zk = [H, Zk] = ψk(H)Zk, 1 ≤ k ≤ d3.

(1.2)

Let d = d1 + d2 + d3. For 1 ≤ i ≤ d , we set

λi =

⎧
⎪⎨

⎪⎩

ξi , 1 ≤ i ≤ d1,

ϑi−d1 , d1 + 1 ≤ i ≤ d1 + d2,

ψi−d1−d2 , d1 + d2 + 1 ≤ i ≤ d.

We refer to the class of N A groups defined above as 3-meta-abelian N A groups. Similarly,
we can define a class of k-meta-abelian N A groups. This is a quite large class of N A groups.
It is not difficult to see that the AN parts of classical semisimple Lie groups of type A	, B	,,
and D	 are all k-meta-abelian for some k.

A simple example of 3-meta-abelian N A group is the group of all upper triangular 4× 4-
matrices with positive diagonal.
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The principal object of study in this work is the left-invariant differential operator on S,

Lα = �α +
d1∑

j=1

e2ξ j (a)X2
j +

d2∑

j=1

e2ϑ j (a)Y 2
j +

d3∑

j=1

e2ψ j (a)Z2
j , (1.3)

where, for α = (α1, . . . , αk) ∈ R
k ,

�α =
k∑

i=1

(∂2ai − 2αi∂ai ),

and the Xi , Y j , and Zk are considered as left-invariant differential operators on N1, N2, and
N3, respectively. We are particularly interested in the bounded harmonic functions for this
operator, i.e., bounded functions F on S satisfying LαF = 0.

A fundamental result of Damek [3] implies that bounded Lα-harmonic functions exist
provided the following positivity assumption (which we also assume) holds:

λi (α) > 0, ∀i. (1.4)

In particular, none of the λi are identically 0 and the λi span a∗ (Their joint nullspace consists
of vectors annihilated by ada .). We set

A+ = {a ∈ R
k : λi (a) > 0 for 1 ≤ i ≤ d}.

It also follows from [3] that under our assumptions, the bounded harmonic functions are
precisely the “Poisson integrals” of L∞(N ). To describe this concept, let χ be the modular
function for left-invariant Haar measure on S. Thus, for all g ∈ S,

∫

S
f (sg)ds = χ(g)−1

∫

S
f (s)ds,

where ds is left-invariant Haar measure on S. Then,

χ(g) = det(Ad(g)) = eρ0(a), (1.5)

where

ρ0 =
d∑

j=1

λ j . (1.6)

Assumption (1.4) together with [3] implies that there exists a Poisson kernel ν for Lα.

That is, there is a C∞ function ν on N such that every bounded Lα-harmonic function F on
S may be written as a Poisson integral against a bounded function f on the quotient space
A\S = N ,

F(g) =
∫

A\S
f (gz)ν(z)dz =

∫

N
f (z)ν̌a(z−1zo)dz, g = (zo, ao),

where
ν̌a(z) = ν(a−1z−1a)χ(a)−1, where ν̌(z) = ν(z−1). (1.7)

Conversely, the Poisson integral of any f ∈ L∞(N ) is a bounded Lα-harmonic function.
Our goal in this work is to obtain explicit estimates on the rate of decay of ν on N . To

describe our results, we require some additional notation.
For t ∈ R

+ and α ∈ A+, let

δα
t = Ad((log t)α)

∣
∣
N .
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Then, t �→ δα
t is a one parameter group of automorphisms of N for which the corresponding

eigenvalues on n are all positive. It is known [10,12] that then N has δα
t -homogeneous norm:

A non-negative and subadditive continuous function | · |α on N which is homogeneous with
respect to δα

t , i.e.,
|δα
t x |α = t |x |α,

and |n|α = 0 if and only if n = e.
For a subset �o ⊆ �, and a ∈ A, define

γ �o
(a) = min

λ∈�o
λ(a)/‖λ‖2,

γ�o(a) = min
λ∈�o

λ(a).

We set
K (1) = {x ∈ N : |x |α = 1}.

For every x ∈ N , there is precisely one xo ∈ K (1) such that δα|x |α xo = x . Thus, we have a
map

N � x = (m, v, w) �→ xo = (mo, vo, wo) ∈ K (1).

The following is our main result.

Theorem 1.1 Let ν be the Poisson kernel for the operatorLα, defined in (1.3), with α ∈ A+.

Under the above assumptions, for every ε > 0 there exists a constant c = cε,α,� > 0 such
that for all points x = (m, v, w) ∈ N1 � N2 � N3,

ν(x) ≤

⎧
⎪⎨

⎪⎩

c(1 + |x |α)−β1 , if |(mo, 0, 0)|α > ε,

c(1 + |x |α)−β2 , if |(0, vo, 0)|α > ε,

c(1 + |x |α)−β3 , if |(0, 0, wo)|α > ε,

(1.8)

where

β1 = γ �(α)γ�(α),

β2 = γ �2∪�3
(α)γ�2∪�3(α),

β3 = γ �3
(α)γ�3(α).

In particular, there is a constant c = cα,� > 0 such that

ν(m, 0, 0) ≤ c(1 + |(m, 0, 0)|α)−β1 , for all m ∈ N1, (1.9)

ν(0, v, 0) ≤ c(1 + |(0, v, 0)|α)−β2 , for all v ∈ N2, (1.10)

ν(0, 0, w) ≤ c(1 + |(0, 0, w)|α)−β3 , for all w ∈ N3, (1.11)

Remark 1.2 Notice that β1 ≤ β2 ≤ β3.

Remark 1.3 We note that [18, Theorem 1.1] says that on a large class of nilpotent Lie groups
N containing the 3-meta-abelian groups one has that for every q > 1, there is c = cq,α,� > 0
such that for all x ∈ N ,

ν(x) ≤ c(1 + |x |α)
− 2

q γ �(α)γ�(α)
. (1.12)

In many cases, the estimate in Theorem 1.1 is strictly sharper than (1.12) since clearly the
inequalities

2

q
γ �(α)γ�(α) < βi for i = 1, 2, 3,
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can hold for many choices of � and α. Also, unlike (1.12), the estimates in Theorem 1.1
differentiate between the various directions of approach to infinity.

Remark 1.4 We should also remark that in [20], we proved the analog of Theorem 1.1 in
the 2-meta-abelian case. We found that there are essential difficulties if one wants to prove
a similar estimate for the Poisson kernel on k-meta-abelian group with k ≥ 3. In Sect. 1.2
below, we describe these difficulties in more details (See in particular Remarks 1.5 and 1.6.).

1.2 Strategy of the proof

Letμt (resp.,Tt ) be the semigroups ofmeasures (resp., operators) generated byLα. It is known
(see Sect. 6.1) that the Poisson kernel ν is equal to limt→∞ πN (μt ), where πN (g) = x(g) is
a projection from S onto N . To get some information on μt , we use a well-known formula
which express Tt as a skew-product of the diffusions on N and A. (The idea of such a
decomposition goes back to [13,14,22]. In the context of N A groups with dim A = 1, this
decomposition was used in [4–7], and later was generalized by the authors and applied for
dim A > 1, see, e.g., [17,19].)

Specifically, for σ ∈ C([0,∞), A), A = R
k, let

Lσ
N =

d1∑

j=1

e2ξ j (σ (t))X2
j +

d2∑

j=1

e2ϑ j (σ (t))Y 2
j +

d3∑

j=1

e2ψ j (σ (t))Z2
j , (1.13)

considered as a time-dependent left-invariant differential operator on N . It is known that then
Lσ
N generates a time-inhomogeneous diffusion on N with transition kernel PN1�N2�N3,σ

t,s ,

t ≥ s ≥ 0, and the corresponding evolution operators UN1�N2�N3,σ
s,t (see [2,21]). The

skew-product formula says that

Tt f (x, a) = Eσ
aU

N1�N2�N3,σ
t,0 f (·, σ (t))

∣
∣
x = Eσ

a ( f ∗N PN1�N2�N3,σ
t,0 )(x, σ (t)), (1.14)

for f ∈ Cc(N ×R
k) and t ≥ 0,where the expectation is taken with respect to the distribution

of the Brownian motion σ(t) ∈ R
k with drift −2α, starting from a, i.e., σ(0) = a, and

generated by �α. The subscript N in the convolution ∗N means that f is convolved with the
kernel PN1�N2�N3,σ

t,0 with respect to the first variable in N .

The next step is to disintegrate the kernel PN1�N2�N3,σ
t,s using [20, Theorem 1.2] (see also

section 3 in [19]) which is a skew-product formula similar to formula (1.14). Specifically,
from the decomposition (1.1), the time-dependent family of operators

Lσ
N2�N3

=
d2∑

j=1

e2ϑ j (σ (t))Y 2
j +

d3∑

j=1

e2ψ j (σ (t))Z2
j , (1.15)

gives rise to an evolution on N2 � N3 = R
d2

� R
d3 that is described by a kernel PN2�N3,σ

t,s .

The semi-direct product N2 � N3 is a 2-meta-abelian group. Thus, we have a relatively good
knowledge about the kernel PN2�N3,σ

t,s (see [20]). Let η(t) = (ηN2(t), ηN3(t)) be the process
generated by Lσ

N2�N3
. The skew-product formula from [20] gives that

UN1�N2�N3,σ
s,t f (m, v, w) = Eη

s,(v,w)U
N1,σ,η
s,t f (·, ηN2(t), ηN3(t))

∣
∣
m, (1.16)
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where the subscript in the expectation means that η(s) = (v,w), and UN1,σ,η
s,t is the family

of evolution operators generated by the operator

Lσ,η
N1

=
d1∑

j=1

e2ξ j (σ (t))
(
Ad(η(t))

∣
∣
n1
X j

)2
.

Formula (1.16) allows us to compute and estimate in Sects. 5 and 6 the kernel PN1�N2�N3,σ
t,s

on certain subsets of N which, it turns out, are sufficient for our purposes (See formulas (5.1),
(6.3), and (6.5).).

Remark 1.5 In [20], we proved a result analogous to Theorem 1.1 for meta-abelian groups,
i.e., in the 2-meta-abelian case. The generalization to the 3-meta-abelian case is complicated
by the lack of an appropriate estimate for PN1�N2�N3,σ

t,s valid on all of N . The fact that it
is possible to obtain a good estimate for the Poisson kernel on all of N by piecing together
estimates of PN1�N2�N3,σ

t,s on subsets is somewhat surprising.

Remark 1.6 In order to consider k-meta-abelian N A groups with k ≥ 4, we need a better
understanding of the situation for k = 3. In particular, we need to invent some methods
which allow us to produce a good and global Gaussian estimate for PN1�N2�N3,σ

t,s . If we

try to apply methods from [20], the problem of estimating PN1�N2�N3,σ
t,s amounts to the

good knowledge of the properties of the time-inhomogeneous process η(t) generated by the
time-dependent operator (1.15). We hope that if this estimate is obtained, then we will be
able to apply induction argument and eventually get estimates for the Poisson kernel for all
k.

1.3 Structure of the paper

The outline of the rest of the paper is as follows. In Sect. 2, we recall some basic facts
about exponential functionals of Brownian motion. In Sect. 3, we consider the evolution
process η(t) on N2 � N3 generated by the operator (1.15) and state the estimate for the
corresponding transition kernels. Next, in Sect. 4, we study the evolution kernel on N1 which
is the second ingredient of the skew-product formula (1.16). In Sect. 5, we prove an estimate
for the kernel PN1�N2�N3,σ

t,s . Finally in Sect. 6, we construct the Poisson kernel and prove
our main theorem.

2 Preliminaries

2.1 Exponential functionals of Brownian motion

Let b(s), s ≥ 0, be the Brownian motion on R staring from a ∈ R and normalized so that

Ea f (b(s)) = 1√
4πs

∫

R

f (x + a)e−x2/4sdx . (2.1)

Hence, b(s) has a normal distribution with mean Eb(s) = a and variance Var b(s) = 2s.

Remark Our normalization of the Brownian motion b(s) is different than that typically used
by probabilists who tend to assume that Var b(s) = s.
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For d > 0 and μ > 0, we define the following exponential functional

Id,μ =
∫ ∞

0
ed(b(s)−μs)ds. (2.2)

Theorem 2.1 (Dufresne, [9]) Let b(0) = 0. Then, the functional I2,μ is distributed as
(4γμ/2)

−1, where γμ/2 denotes a gamma random variable with parameter μ/2, i.e., γμ/2

has a density (1/�(μ/2))x
μ
2 −1e−x1[0,+∞)(x).

As a corollary of Theorem 2.1, by scaling the Brownian motion and changing the variable,
we get the following theorem (See [17, Lemma 5.4] for details.).

Theorem 2.2 Let σ(u) = b(u) − 2αu be the k-dimensional Brownian motion with a drift
−2α, d > 0, and let 	 ∈ (Rk)∗ be such that 	(α) > 0. Then,

Ea f

(∫ ∞

0
ed	(σ (u))du

)

= cd,	,αe
	(a)

∫ ∞

0
f (u)u−�/d exp

(

− ed	(a)

2d2	2u

)
du

u
,

where � = 2	(α)/‖	‖2.

Remark Exponential functionals of type (2.2) are called perpetual functionals in financial
mathematics, and they play an important role there (see, e.g., [15,16,23]). In particular, the
distribution of the integral over finite interval (0, t) in (2.2) has many applications in Asian
options (see, e.g., [1,8,11]).

2.2 Notation for exponential functionals

For a continuous function σ : [0,∞) → A = R
k,

Aσ
N1,i (s, t) =

∫ t

s
e2ξi (σ (u))du, i = 1, . . . , d1,

Aσ
N2, j (s, t) =

∫ t

s
e2ϑ j (σ (u))du, j = 1, . . . , d2,

Aσ
N3,k(s, t) =

∫ t

s
e2ψk (σ (u))du, k = 1, . . . , d3,

and

Aσ
N , j (s, t) =

∫ t

s
e2λ j (σ (u))du, j = 1, . . . , d.

We also define, for i = 1, 2, 3,

Aσ
Ni ,�

(s, t) =
di∑

j=1

Aσ
Ni , j (s, t), Aσ

Ni ,�
(s, t) =

di∏

j=1

Aσ
Ni , j (s, t).

Finally, we put

Aσ
N ,�(s, t) =

3∑

i=1

Aσ
Ni ,�

(s, t), Aσ
N ,�(s, t) =

3∏

i=1

Aσ
Ni ,�

(s, t).
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2.3 Moments of exponential functionals

The following lemma follows from Theorem 2.2.

Lemma 2.3 The functional Aσ
N , j (0,∞), j = 1, . . . , d, has a finite s-th moment (for every

a ∈ R
k)

Eσ Aσ
N , j (0,∞)s < +∞

if and only if λ j (α)/‖λ‖2 > s, where ‖ · ‖ is 	2 norm on R
k . In particular, Aσ

N , j (0,∞) has
all negative moments.

2.4 Action of A on N

For a ∈ R
k, �(a) denotes the action of a on n, see (1.2). By (1.2), the automorphisms

{�(a)}a∈R
k leave ni , i = 1, 2, 3 invariant. We identify linear transformation �(a) on n with

d × d matrix,

�(a) =
⎡

⎢
⎣

�(a)
∣
∣
n1

0 0
0 �(a)

∣
∣
n2

0
0 0 �(a)

∣
∣
n3

⎤

⎥
⎦ ,

where

�(a)
∣
∣
n1

= diag
[
eξ1(a), . . . , eξd1 (a)

]
,

�(a)
∣
∣
n2

= diag
[
eϑ1(a), . . . , eϑd2 (a)

]
,

�(a)
∣
∣
n3

= diag
[
eψ1(a), . . . , eψd3 (a)

]
.

Let σ be a continuous function from [0,+∞) to A = R
k . We define

�σ (t) = �(σ(t)). (2.3)

3 Evolution kernel on N2 � N3

In this section, we consider time-dependent operator on N2 � N3,

Lσ
N2�N3

=
d2∑

j=1

e2ϑ j (σ (t))Y 2
j +

d3∑

j=1

e2ψ j (σ (t))Z2
j .

The operator Lσ
N2�N3

gives rise to an evolution on N2 � N3 = R
d2

� R
d3 that is described

by a kernel PN2�N3,σ
t,s and the corresponding operator UN2�N3,σ

t,s . The semi-direct product
N2 � N3 is a 2-meta-abelian group.

The Euclidean space R
n is endowed with the usual scalar product 〈x, y〉 = x · y =

∑n
i=1 xi yi and the corresponding 	2 norm ‖x‖ = 〈x, x〉1/2.
The following estimate is proved in [20, Theorem 4.1].
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Theorem 3.1 There are positive constants C, D and ko such that for all t > s ≥ 0 and all
(v,w) ∈ N2 � N3,

Aσ
N2,�

(s, t)1/2Aσ
N3,�

(s, t)1/2PN2�N3,σ
t,s (v,w)

≤ C(‖v‖ 1
2ko + 1) exp

⎛

⎝− D‖w‖2
Aσ
N3,�

(s, t)
− D‖v‖2

(‖v‖ 1
2ko + ‖w‖ + 2)2ko Aσ

N2,�
(s, t)

⎞

⎠

+CAσ
N3,�

(s, t)1/2 exp

(

−D
‖v‖ 1

ko + ‖w‖2
Aσ
N3,�

(s, t)

)

.

Remark Here, ko is the smallest non-negative integer such that

(adX )ko+1
∣
∣
n2

= 0, ∀X ∈ n3.

Note that ko > 0 since by hypothesis N3 is non-central.

4 Evolution kernel on N1

Let
η(t) =

(
ηN2(t), ηN3(t)

)
=

(
η1(t), . . . , ηd2+d3(t)

)

be the time-inhomogeneous Markov process generated by the operator

Lσ
N2�N3

=
d2∑

j=1

e2ϑ j (σ (t))Y 2
j +

d3∑

j=1

e2ψ j (σ (t))Z2
j

considered in Sect. 3.
Now on N1, we consider time-dependent operator

Lσ,η
N1

=
d1∑

j=1

e2ξ j (σ (t))(Ad(η(t))
∣
∣
n1
X j )

2.

The following notation will be useful. For a n × n invertible matrix A, we set

B(A)(x) = 2−1A−1x · x and D(A) = (2π)−n/2(det A)−1/2. (4.1)

Since N1 is abelian, the transition kernels PN1,σ,η
t,s of the time-inhomogeneous process ω(t)

generated by Lσ,η
N1

are given (see Proposition 2.10 in [19]) by

PN1,σ,η
t,s (m;m′) = D

(
Aσ,η
N1

(s, t)
)
e
−B

(
Aσ,η
N1

(s,t)
)

(m−m′)
, (4.2)

where

Aσ,η
N1

(s, t) = 2
∫ t

0

[
Ad (η(u))

∣
∣
n1

�σ (u)
∣
∣
n1

] [
Ad (η(u))

∣
∣
n1

�σ (u)
∣
∣
n1

]∗
du,

where �σ (u) is defined in (2.3).
Exactly in the same way as Lemma 3.3 in [20], one can prove the following lemma.

Lemma 4.1 There is a constant C > 0 such that

D(Aσ,η
N1

(s, t)) ≤ CAσ
N1,�

(s, t)−1/2.
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5 Evolution kernel on N1 � N2 � N3

To get the kernel PN1�N2�N3,σ
t,s , we apply the skew-product formula (1.16) (for the proof,

see [20, Theorem 1.2]),

PN1�N2�N3,σ
t,s (0, 0, 0;m, v, w) = lim

ε→0
Eη

0,(0,0)P
N1,σ,η
t,s (0;m)ψε(η(t)), (5.1)

where for (v,w) ∈ N2 � N3 = R
d2

� R
d3 given and ε > 0,

ψε(v
′, w′) = ε−d2−d31Bε(v)(v

′)1Bε(w)(w
′)

is the (normalized in L1) indicator function of the product of two ε-balls around v and w,

Bε(v) =
d2∏

j=1

B1
ε (v j ), Bε(w) =

d3∏

j=1

B1
ε (w j )

and
B1

ε (x) = [x − ε/2, x + ε/2].
The following theorem will be used in order to get the estimates for the evolution kernel
PN1�N2�N3,σ
t,s on those sets which are necessary for the upper bound for the Poisson kernel.

Theorem 5.1 There is a constant C > 0 such that for every t > s ≥ 0, and for every
(m, v, w) ∈ N1 � N2 � N3,

PN1�N2�N3,σ
t,s (0, 0, 0;m, v, w) ≤ CAσ

N1,�
(s, t)−1/2PN2�N3,σ

t,s (0, 0; v,w).

Proof It follows from (4.2) and Lemma 4.1 that

PN1,σ,η
t,s (0;m) ≤ PN1,σ,η

t,s (0; 0) = D
(
Aσ,η
N1

(s, t)
)

≤ CAσ
N1,�

(s, t)−1/2.

Then, from (5.1)

PN1�N2�N3,σ
t,s (0, 0, 0;m, v, w) ≤ CAσ

N1,�
(s, t)−1/2 lim

ε→0
Eη

0,(0,0)ψε(η(t))

Clearly,
lim
ε→0

Eη

0,(0,0)ψε(η(t)) = PN2�N3,σ
t,s (0, 0; v,w)

and the lemma follows. ��

6 Poisson kernel on N1 � N2 � N3

In this section, we will give the proof of Theorem 1.1.

6.1 Construction of the Poisson kernel

Here, we recall the construction of the Poisson kernel ν—the principle object of our study.
At the same time, this construction provides convenient formula for the Poisson kernel. Let
μt be the semigroup of probability measures on S = N � R

k generated by Lα. It is known
[5] that

lim
t→∞(πN (μ̌t ), f ) = (ν, f ),
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where πN denotes the projection from S onto N and (μ̌, f ) = (μ, f̌ ), f̌ (x) = f (x−1). Let
a ∈ R

k and let μ be a measure on N . We define

(μa, f ) = (μ, f ◦ Ad(a)).

For a ∈ R
k , we have

νa(x) = ν(a−1xa)χ(a)−1, x ∈ N , (6.1)

where χ is as in (1.5).
We will need the following fact (see [17, Lemma 4.1] for a proof).

Lemma 6.1 We have

(νa, f ) = lim
t→∞(πN (μ̌t )

a, f ) = lim
t→∞(Eσ

a P̌
N3�N2�N1,σ
t,0 (0, 0, 0; ·, ·, ·), f ),

where PN3�N2�N1,σ
t,0 is the evolution kernel for the operator Lσ

N defined in (1.13).

6.2 Upper bound for νsα

Our main aim in this subsection is to obtain an upper bound for

νsα(x) = ν((sα)−1x(sα))χ(sα)−1

for all s < 0, where α ∈ A+ is a drift vector of the operator (1.3). Then, in Sect. 6.4, in
order to get an upper bound for ν we will apply a simple homogeneity argument together
with some comparison results about evolution kernels.

By Lemma 6.1,

νsα(m, v, w) = lim
t→∞Eσ

sα P̌
N1�N2�N3,σ
t,0 (0, 0, 0;m, v, w). (6.2)

Hence, in order to estimate νsα we need to estimate PN1�N2�N3,σ
t,0 . The main results of this

section are the following upper bounds for νsα.

Theorem 6.2 Let α ∈ A+, and let K3 be a compact subset of N3 such that 0 /∈ N3. Then,
there is a constant c = c�,K3,α > 0 such that for every s < 0, and all w ∈ K3 ⊂ N3,

νsα(0, 0, w) ≤ ce−ρ0(sα)esγ �3
(α)γ�3 (α)

.

Theorem 6.3 Let α ∈ A+, and let K2 be a compact subset of N2 such that 0 /∈ N2. Then,
there is a constant c = c�,K2,α > 0 such that for every s < 0, and all v ∈ K2 ⊂ N2,

νsα(0, v, 0) ≤ ce−ρ0(sα)esγ �2∪�3
(α)γ�2∪�3 (α)

.

6.3 Proofs of Theorems 6.2 and 6.3

We start with three lemmas. In all of them, the exponential functionals are on the interval
(0,∞), i.e., Aσ

�,� denotes A
σ
�,�(0,∞).

Lemma 6.4 There is a constant C > 0 such that for all s < 0 and α ∈ A+,

Eσ
sα(Aσ

N ,�)−1 ≤ Ce−2ρ0(sα)

and
Eσ
sα(Aσ

N ,�)−1Aσ
N3,�

≤ Ce−2ρ0(sα).
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Proof We have
Eσ
sα(Aσ

N ,�)−1 = e−2ρ0(sα)Eσ
0 (Aσ

N ,�)−1.

The expected value Eσ
0 (Aσ

N ,�)−1 is finite. This follows by applying Cauchy–Schwarz
inequality succesively and the fact that exponential functionals Aσ

N , j have negative moments
(Lemma 2.3).

Similarly, since s < 0 and α ∈ A+,

Eσ
sα(Aσ

N ,�)−1Aσ
N3,�

=
d3∑

j=1

Eσ
sα

d∏

k=1
k �= j

(Aσ
N ,k)

−1

=
d3∑

j=1

e−2ρ0(sα)+ψ j (sα)Eσ
0

d∏

k=1
k �= j

(Aσ
N ,k)

−1

≤ e−2ρ0(sα)

d3∑

j=1

Eσ
0

d∏

k=1
k �= j

(Aσ
N ,k)

−1.

Again, by Lemma 2.3, the expectations Eσ
0

d∏

k=1
k �= j

(Aσ
N ,k)

−1 for j = 1, . . . , d3 are finite. ��

The next two lemmas follows immediately from the proof of [17, Lemma 6.2] and the
inequality (6.3) on p. 269 in [17].

Lemma 6.5 Let α ∈ A+. For every β > 0, there is a constant c = c�3,α,β > 0 such that
for every s < 0,

Eσ
sαe

−β/Aσ
N3,� ≤ ce2sγ �3

(α)γ�3 (α)
.

Lemma 6.6 Let α ∈ A+. For every β > 0, there is a constant c = c�2,�3,α,β > 0 such that
for every s < 0,

Eσ
sαe

−β/(Aσ
N2,�+Aσ

N3,�) ≤ ce2sγ �2∪�3
(α)γ�2∪�3 (α)

.

Proof of Theorem 6.2 By Theorem 5.1,

PN1�N2�N3,σ
t,0 (0, 0, 0; 0, 0, w) ≤ CAσ

N1,�
(0, t)−1/2PN2�N3,σ

t,0 (0, w).

From Theorem 3.1, since 0 /∈ K3 there is a constant c > 0 such that for all w ∈ K3,

PN2�N3,σ
t,0 (0, w) ≤

CAσ
N2,�

(0, t)−1/2Aσ
N3,�

(0, t)−1/2 (
1 + Aσ

N3,�
(0, t)1/2

)
e
−c/Aσ

N3,�(0,t)
.

Consequently, for w ∈ K3,

PN1�N2�N3,σ
t,0 (0, 0, 0; 0, 0, w)

≤ CAσ
N3,�

(0, t)−1/2 (
1 + Aσ

N3,�
(0, t)1/2

)
e
−c/Aσ

N3,�(0,t)
. (6.3)

Using (6.2), we get that for all w ∈ K3, (note that below the range of integration in all
functionals is (0,+∞))

νsα(0, 0, w) ≤ CEσ
sα(Aσ

N ,�)−1/2e
−c/Aσ

N3,�

+ CEσ
sα(Aσ

N ,�)−1/2(Aσ
N3,�

)1/2e
−c/Aσ

N3,� . (6.4)
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By the Cauchy–Schwarz inequality

νsα(0, 0, w) ≤ C
(
Eσ
sα(Aσ

N ,�)−1)1/2
(
Eσ
sαe

−2c/Aσ
N3,�

)1/2

+C
(
Eσ
sα(Aσ

N ,�)−1Aσ
N3,�

)1/2
(
Eσ
sαe

−2c/Aσ
N3,�

)1/2
.

Now Theorem 6.2 follows from Lemma 6.4 and Lemma 6.5. ��
Proof of Theorem 6.3 By Theorem 5.1,

PN1�N2�N3,σ
t,0 (0, 0, 0; 0, v, 0) ≤ CAσ

N1,�
(0, t)−1/2PN2�N3,σ

t,0 (v, 0). (6.5)

From Theorem 3.1 with w = 0, since 0 /∈ K2 there is a constant c > 0 such that for all
v ∈ K2,

Aσ
N2,�

(0, t)1/2Aσ
N3,�

(0, t)1/2PN2�N3,σ
t,0 (v, 0)

≤ Ce
−c1/Aσ

N2,�(0,t) + CAσ
N3,�

(0, t)1/2e−c2/Aσ
N3,�(0,t)

≤ C(1 + Aσ
N3,�

(0, t)1/2)e−c/(Aσ
N2,�(0,t)+Aσ

N3,�(0,t))
.

As in the proof of Theorem 6.2, we conclude that on K2, (the range of integration in all
functionals below is (0,+∞))

νsα(0, v, 0) ≤ CEσ
sα(Aσ

N ,�)−1/2e
−c/(Aσ

N2,�(0,t)+Aσ
N3,�(0,t))

+CEσ
sα(Aσ

N ,�)−1/2(Aσ
N3,�

)1/2e
−c/(Aσ

N2,�(0,t)+Aσ
N3,�(0,t))

.

This together with Lemma 6.4 and Lemma 6.6 finish the proof. ��
6.4 Upper bound for the Poisson kernel ν

Having Theorem 5.1, Theorem 6.2, and Theorem 6.3, we are ready to prove the estimate for
the Poisson kernel.

Proof of Theorem 1.1 By continuity of ν, there is a constant Cα > 0 such that for all x ∈ N
with the norm |x |α ≤ 1, we have ν(x) ≤ Cα.

Consider x ∈ N with |x |α > 1. Let δα
t = Ad((log t)α). Then, |δα

t x |α = t |x |α. We write
x as x = δα

exp(−s)xo with |xo|α = 1 and s < 0. Then, |x |α = e−s > 1. Let K (1) = {xo :
|xo|α = 1}. By definition (6.1) of νsα, we get

ν(x) = ν(δα
exp(−s)xo) = ν((sα)−1xo(sα)) = eρ0(sα)νsα(xo), (6.6)

where ρ0 = ∑d
j=1 λ j . Now, estimates (1.10) and (1.11) follow from Theorems 6.3 and

6.2, respectively, if we apply (6.6) to x = (0, v, 0) and x = (0, 0, w), respectively. Then,
xo = (0, vo, 0) and xo = (0, 0, wo). Estimate (1.9) is a consequence of (1.12). Finally, in
order to prove (1.8), we proceed as follows.

Let Uσ
t (v,w), (v,w) ∈ N2 � N3, be the estimate for the evolution kernel PN2�N3,σ

t,0
(0, 0; v,w) given by Theorem 3.1.

By Theorem 5.1,

PN1�N2�N3,σ
t,0 (0, 0, 0;m, v, w) ≤ CAσ

N1,�
(0, t)−1/2PN2�N3,σ

t,0 (v,w)

≤ CAσ
N1,�

(0, t)−1/2Uσ
t (v,w). (6.7)
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Note that P̌ N1�N2�N3,σ
t,0 (0, 0, 0;m, v, w) has the same estimate. Now we consider (m, v, w)

in a compact sets K (1) (clearly, 0 /∈ K (1)). By Lemma 6.1 and (6.7),

νsα(m, v, w) = lim
t→∞Eσ

sα P̌
N1�N2�N3,σ
t,0 (0, 0, 0;m, v, w)

≤ CEσ
sαA

σ
N1,�

(0,∞)−1/2Uσ∞(v,w). (6.8)

Notice that it follows from Theorem 3.1 that there is c > 0 such that for all (u, w) ∈
K (1) ∩ (N2 � N3), and all t > 0,

Uσ
t (v,w) ≤ cUσ

t (0, w) and Uσ
t (v,w) ≤ cUσ

t (v, 0).

Applying the above inequalities to (6.8), we get

νsα(m, v, w) ≤ Eσ
sαA

σ
N1,�

(0,∞)−1/2Uσ∞(0, w)

and νsα(m, v, w) ≤ Eσ
sαA

σ
N1,�

(0,∞)−1/2Uσ∞(v, 0).

In fact, the quantities

Eσ
sαA

σ
N1,�

(0,∞)−1/2Uσ∞(0, w) and Aσ
N1,�

(0,∞)−1/2Eσ
sαUσ∞(v, 0)

are estimated in the proofs of Theorem 6.2 and Theorem 6.3, respectively. Therefore, we have
that for every ε > 0, there exists a constant c = cε,�,α such that for all (m, v, w) ∈ K (1),

νsα(m, v, w) ≤ ce−ρ0(sα)esγ �3
(α)γ�3 (α) if ‖w‖ ≥ ε > 0

and
νsα(m, v, w) ≤ ce−ρ0(sα)esγ �2∪�3

(α)γ�2∪�3 (α) if ‖v‖ ≥ ε > 0.

Thus by the homogeneity (6.6),

ν(m, v, w) ≤ c(1 + |(m, v, w)|α)
−γ �3

(α)γ�3 (α) if ‖wo‖ ≥ ε > 0

and
ν(m, v, w) ≤ c(1 + |(m, v, w)|α)

−γ �2∪�3
(α)γ�2∪�3 (α) if ‖vo‖ ≥ ε > 0.

The inequality (1.8) follows. ��
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are credited.
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