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Abstract In this paper, we will show the existence and uniqueness of the solution of the
Björling problem for minimal surfaces in a three-dimensional Lorentzian Lie group.
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1 Introduction

The Weierstrass representation formula for minimal surfaces in R
3 has been a fundamen-

tal tool for producing examples and proving general properties of such surfaces, since the
surfaces can be parametrized by holomorphic data. In [18], the authors describe a general
Weierstrass representation formula for simply connected minimal surfaces in an arbitrary
Riemannian manifold. The partial differential equations involved are, in general, too com-
plicated to be solved explicitly. However, for particular ambient 3-manifolds, such as the
Heisenberg group, the hyperbolic space and the product of the hyperbolic plane with R,
the equations are more manageable and the formula can be used to produce examples (see
[15,18]).
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96 A. A. Cintra et al.

In the Lorentz–Minkowski space L
3, i.e., the affine three space R

3 endowed with the
Lorentzian metric

ds2 = dx21 + dx22 − dx23 ,

a Weierstrass representation type theorem was proved by Kobayashi for spacelike minimal
immersions (see [14]) and by Konderak for the case of timelike minimal surfaces (see [16]).
Recently, these theorems were extended for minimal surfaces in Riemannian and Lorentzian
three-dimensional manifolds by Lira et al. (see [17]).

The aim of this paper is to show how theWeierstrass representation formula can be used, if
the ambient manifold is a three-dimensional Lorentzian Lie group, in order to prove existence
and uniqueness of the solution of the Björling problem. We remember that the classical
Björling problem, proposed by Björling in 1844 (see [5]), asks for the construction of a
minimal surface in R

3 containing a given analytic curve β with a given analytic unit normal
V along it. The problem was solved by Schwarz in 1890 (see [22]) by means of an integral
formula in terms of β and V . Some extensions of this problem in others ambient spaces
have been proposed and solved in [3,4,8,9,19,20]. Other geometric problems, inspired by
the classical Björling problem, that can be formulated as a Cauchy problem for second-order
partial differential equations may be consulted in [1,2,6,7,11–13].

The paper is organized as follows. In Sect. 2, we recall some basics facts of Lorentzian
calculus, which plays the role of complex calculus in the classical case, for timelike minimal
surfaces. Section 3 is devoted to present a Weierstrass- type representation for minimal
surfaces in Lorentzian three-dimensional manifolds, following [17]. In Sect. 4, we state
and solve the Björling problem for timelike and spacelike minimal surfaces in a Lorentzian
three-dimensional Lie group. For timelike minimal surfaces, this is done by considering
two different cases: When β is a timelike curve, we will call the corresponding problem
the timelike Björling problem, and when β is a spacelike curve, we will have the spacelike
Björling problem.

In Sects. 5, 6 and 7, we present some examples of minimal surfaces constructed via
Björling problem for the case in which the ambient manifold is the Heisenberg groupH3, the
de Sitter space S31 and the space H2 × R, equipped with left-invariant Lorentzian metrics.

2 The algebra L of paracomplex numbers

In [16], the author uses paracomplex analysis to deduce aWeierstrass representation formula
for timelike minimal surfaces in L

3. We recall that the algebra of paracomplex (or Lorentz)
numbers is the algebra

L = {a + τ b | a, b ∈ R},
where τ is an imaginary unit with τ 2 = 1. The two internal operations are the obvious ones.
We define the conjugation in L as a + τ b := a − τ b and the L-norm of z = a + τb ∈ L is
defined by

||z|| = |z z̄| 12 = |a2 − b2| 12 .
The algebra L admits the set consisting of zero divisors K = {a ± τ a ∈ L : a �= 0}. If
z /∈ K ∪ {0}, then z is invertible with inverse z−1 = z̄/(zz̄).

We have that L is isomorphic to the algebra R ⊕ R via the map:

ρ(a + τ b) = (a + b, a − b).

The set L has a natural topology as a two-dimensional real vector space.
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The Björling problem for minimal surfaces 97

Definition 1 Let Ω ⊆ L be an open set and z0 ∈ Ω . The L-derivative of a function f :
Ω → L at z0 is defined by

f ′(z0) := lim
z→z0

z−z0∈L\K∪{0}

f (z) − f (z0)

z − z0
, (1)

if the limit exists. If f ′(z0) exists, we will say that f is L-differentiable at z0.

Remark 1 The condition of L-differentiability is much less restrictive that the usual com-
plex differentiability. For example, L-differentiability at z0 does not imply continuity at z0.
However, L-differentiability in an open set Ω ⊂ L implies usual differentiability in Ω .

Introducing the paracomplex operators:

∂

∂z
= 1

2

(
∂

∂u
+ τ

∂

∂v

)
,

∂

∂ z̄
= 1

2

(
∂

∂u
− τ

∂

∂v

)
,

where z = u + τ v, we have that a differentiable function f : Ω → L is L-differentiable if
and only if

∂ f

∂ z̄
= 0. (2)

We observe that, writing f (u, v) = a(u, v) + τ b(u, v), u + τv ∈ Ω , the condition (2) is
equivalent to the para-Cauchy–Riemann equations:⎧⎪⎨

⎪⎩
∂a

∂u
= ∂b

∂v
,

∂a

∂v
= ∂b

∂u
,

(3)

whose integrability conditions are given by the wave equations

auu − avv = 0 = buu − bvv.

3 The Weierstrass representation formula in a Lorentzian 3-manifold

We will denote by K either the complex numbers C or the paracomplex numbers L, and
by Ω ⊂ K an open set. Let (M, g) be a Lorentzian 3-manifold and f : Ω ⊂ K → M
a smooth conformal immersion. We endow Ω with the induced metric that makes f an
isometric immersion. We will say that f is spacelike if the induced metric on Ω , via f , is a
Riemannian metric, and that f is timelike if the induced metric is a Lorentzian metric.

We observe that in the Lorentzian case, we can endow Ω with paracomplex isother-
mic coordinates and, as in the Riemannian case, they are locally described by paracomplex
isothermic charts with conformal changes of coordinates. We will denote by z = u + i v

(respectively, z = u + τ v) a complex (respectively, paracomplex) isothermal coordinate in
Ω .

The metric g may be extended to E = f ∗T M ⊗ K as:

– a (para)complex bilinear form (., .) : E × E → K;
– a (para)Hermitian metric 〈〈., .〉〉 : E × E → K;

and the two extensions are related by:

〈〈V, W 〉〉 = (V, W̄ ).
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98 A. A. Cintra et al.

Theorem 1 (Weierstrass Representation ([17])) Let f : Ω ⊂ K → M3 be a conformal
minimal spacelike (or timelike) immersion and g = (gi j ) be the induced metric. Define the
(para)complex tangent vector φ ∈ Γ ( f ∗T M ⊗ K) by

φ(z) = ∂ f

∂z

∣∣∣∣
f (z)

=
∑

i

φi
∂

∂xi
.

Then, φ j , j = 1, 2, 3 satisfy the following conditions:

(i) 〈〈φ, φ〉〉 �= 0,
(ii) (φ, φ) = 0,

(iii)
∂φk

∂ z̄
+

3∑
i, j=1

Γ k
i j φ̄iφ j = 0,

where {Γ k
i j } are the Christoffel symbols of M. Conversely, if Ω ⊂ K is a simply connected

domain and φ j : Ω → K, j = 1, 2, 3 are (para) complex functions satisfying the conditions
above, then the map

f : Ω → M, f j (z) = 2Re
∫ z

z0
φ j dz, (4)

is a well-defined conformal spacelike (or timelike) minimal immersion (here, z0 is an arbitrary
fixed point of Ω , and the integral is along any curve joining z0 to z).

Remark 2 The equation (iii) in Theorem 1 is a system of partial differential equations (really
an integral differential equations, since the Γ ’s must be computed along a solution). Hence,
in general, it is quite hard to find explicit solutions. However, for certain ambient spaces,
these equations become a system of partial differential equations with constant coefficients
(see Remark 3).

3.1 The case of Lorentzian Lie groups

Let M be a three-dimensional Lie group endowed with a left-invariant Lorentzian metric
g and {E1, E2, E3} a left-invariant orthonormal frame field, with E1, E2 spacelike and E3

timelike. For tangent vectors W = ∑3
i=1 wi Ei e Y = ∑3

i=1 yi Ei , the Lorentzian cross
product Y × W is given by:

Y × W = (y2 w3 − w2 y3) E1 + (y3 w1 − w3 y1) E2 + (y2 w1 − w2 y1) E3.

It is easy to check that Y × W = −W × Y and, also,

g(U × Y, W × V ) = g(U, V ) g(Y, W ) − g(U, W ) g(Y, V ),

(U × Y ) × W = g(Y, W ) U − g(U, W ) Y.
(5)

Let f : Ω ⊂ K → M be a conformal minimal spacelike (or timelike) immersion, where
Ω ⊂ K is an open set. Fixed an isothermal parameter z ∈ Ω , we can write the (para)complex

tangent vector φ = ∂ f

∂z
along f both in terms of local coordinates {x1, x2, x3} in M and,

also, using the left-invariant frame field. Hence, one has

φ =
3∑

a=1

φa
∂

∂xa
=

3∑
a=1

ψa Ea,
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The Björling problem for minimal surfaces 99

where the functions φa and ψb, with a, b = 1, 2, 3, are related by

φa =
3∑

b=1

Aabψb, a = 1, 2, 3, (6)

where A : Ω → GL(3,R) is a smooth map. In terms of the components ψa, a = 1, 2, 3,
the equation (i i i) in Theorem 1 may be written as

∂ψc

∂ z̄
+ 1

2

3∑
a,b=1

Lc
abψ̄aψb = 0, c = 1, 2, 3,

where the symbols Lc
ab are defined by

∇Ea Eb =
3∑

c=1

Lc
ab

2
Ec, a, b = 1, 2, 3.

Let Cc
ab be the structure constants of the Lie algebra of M , i.e., [Ea, Eb] = ∑3

c=1 Cc
ab Ec.

Therefore, by the Levi-Civita Theorem, we have

Lc
ab = (Cc

ab − Ca
bc εa εc − Cb

ac εb εc), (7)

where εa = 〈Ea, Ea〉, with a = 1, 2, 3.
Consequently, in the case of three-dimensional Lie groups, the Theorem 1 may be written

as follows.

Theorem 2 ([17]) Let M be a three-dimensional Lie group endowed with a left-invariant
Lorentzian metric and let {E1, E2, E3} be a left-invariant orthonormal frame field. Let f :
Ω → M be a conformal minimal immersion, where Ω ⊂ K is an open set. We denote by
φ ∈ Γ ( f ∗T M ⊗ K) the (para)complex tangent vector

φ(z) = ∂ f

∂z
.

Then, the components ψa, a = 1, 2, 3, of φ defined by

φ(z) =
3∑

a=1

ψa Ea | f (z),

satisfy the followings conditions:

(i) |ψ1|2 + |ψ2|2 − |ψ3|2 �= 0,
(ii) ψ1

2 + ψ2
2 − ψ3

2 = 0,

(iii)
∂ψc

∂ z̄
+

3∑
a,b=1

Lc
ab

2
ψ̄aψb = 0,

where the derivative with respect to z is in the classical sense in the spacelike case and in
the Lorentz sense in the timelike case.

Conversely, if Ω ⊂ K is a simply connected domain and ψa : Ω → K, a = 1, 2, 3, are
(para)complex functions satisfying the conditions above, then the map f : Ω → M which
coordinate functions are given by:

fa = 2Re
∫ 3∑

b=1

Aab ψb dz, a = 1, 2, 3, (8)

is a well-defined conformal minimal immersion.
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100 A. A. Cintra et al.

Remark 3 Weobserve explicitly that the equations above do not give the coordinate functions
of the immersion f just by a direct integration since the functions Aab must be computed
along the solutions fa . The formula (8) is in fact an integral equation. However, as we will
see, for special ambient manifolds this problem can be avoided by ad hoc arguments.

4 The Björling problem for three-dimensional Lie groups

We denote by M a three-dimensional Lie group endowed with a left-invariant Lorentzian
metric g. Let β : I → M be an analytic curve in M and V : I → T M a unitary analytic
spacelike (respectively, timelike) vector field along β, such that g(β̇, V ) ≡ 0. The Björling
problem can be formulated as follows:
Determine a timelike (respectively, spacelike) minimal surface

f : I × (−ε, ε) = Ω ⊆ K → M

such that

i. f (u, 0) = β(u),
ii. N (u, 0) = V (u),

for all u ∈ I , where N : Ω → T M is the Gauss map of the surface.
Before showing that the above problem has a unique solution, we prove the following:

Lemma 1 Let ψi : Ω ⊆ K → K, i = 1, 2, be two differentiable functions and ψ2
3 =

ψ2
1 + ψ2

2 . We suppose that ψi , i = 1, 2, satisfy the two first equations of the third item in
Theorem 2. Then, ψ3 satisfies the third equation.

Proof Differentiating ψ2
3 = ψ2

1 + ψ2
2 with respect to z̄ and using that ψi , i = 1, 2, satisfy

the two first equations of item (i i i) in Theorem 2, we have that

ψ3
∂ψ3

∂ z̄
= ψ1

∂ψ1

∂ z̄
+ ψ2

∂ψ2

∂ z̄
= −1

2

3∑
j,k=1

[L1
jkψ1 + L2

jkψ2]ψ̄ jψk .

Therefore, to prove the lemma, it suffices to show that

3∑
j,k=1

[
L1

jkψ1 + L2
jkψ2 − L3

jkψ3

]
ψ̄ jψk = 0.

We may write the above sum as follows:

3∑
i=1

{
L1

i1ψ1
2 + L2

i2ψ2
2 − L3

i3ψ3
2 + (L2

i1 + L1
i2)ψ1ψ2

+(L1
i3 − L3

i1)ψ1ψ3 + (L2
i3 − L3

i2)ψ3ψ2
}
ψ̄i .

Now, using (7), we have that

Lk
ik = L2

i1 + L1
i2 = L1

i3 − L3
i1 = L2

i3 − L3
i2 = 0, i = 1, 2, 3.

Then,

∂ψ3

∂ z̄
+ 1

2

3∑
j,k=1

L3
jkψ̄ jψk = 0.

��
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4.1 The Björling problem for timelike surfaces

We observe that if f is a timelike conformal minimal immersion we have that ψi = ∂ fi

∂z
,

i = 1, 2, 3, satisfy the condition (i i i) in Theorem 2, which is equivalent to the hyperbolic
system of partial differential equations (see [10]):

∂2 fi

∂u2 − ∂2 fi

∂v2
+ Bi

(
∂ fi

∂u
,
∂ fi

∂v

)
= 0, (9)

where Bi , i = 1, 2, 3, contain at most first-order derivatives of the functions fi . So the
Björling problem may be interpreted as a Cauchy problem involving quasilinear partial
differentiable equations (9).

Remark 4 Let γ (s) = (u(s), v(s)) be a characteristic curve in Ω (see [10]), then

u′(s)2 − v′(s)2 = 0

that is, γ is a straight line parallel to u = ±v in Ω .
It is known that the Cauchy problem may not have a unique solution, or it does not

have solutions at all if the initial data is along characteristic curves. Moreover, these lines
correspond to the lightlike curves of the Björling problem. Consequently, we consider two
cases: When β is a timelike curve, we will call the corresponding problem the timelike
Björling problem, and when β is a spacelike curve, we will have the spacelike Björling
problem.

Therefore, the Björling problem is a Cauchy problem with initial data:

fi (u, 0) = βi (u), (V (u) × β̇(u))i = ±
(

∂ f

∂v
(u, 0)

)
i
, i = 1, 2, 3,

where in the above equation we have the sign “+” (respectively, “−”) if β is a timelike
(respectively, spacelike) curve.

Theorem 3 (Timelike Björling problem) Let β : I → M be an analytic timelike curve in M
and V : I → T M a unitary analytic spacelike vector field along β, such that g(β̇, V ) ≡ 0.
Then, there exists an analytic conformal timelike minimal surface

f : I × (−ε, ε) = Ω ⊆ L → M

such that

i. f (u, 0) = β(u),
ii. N (u, 0) = V (u),

for all u ∈ I , where N : Ω → T M is the Gauss map of the surface. Moreover two such
surfaces coincide along the intersection of their domains.

Proof Consider the system ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ψ1

∂ z̄
+ 1

2

3∑
j,k=1

L1
jkψ̄ jψk = 0,

∂ψ2

∂ z̄
+ 1

2

3∑
j,k=1

L2
jkψ̄ jψk = 0,

(10)
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102 A. A. Cintra et al.

where ψi : Ω → L and ψ2
3 = ψ2

1 + ψ2
2 .

As β is a timelike curve, then it is not a characteristic curve and, so, this system is
of Cauchy–Kovalevskaya type ([21]). Therefore, fixing the initial data, it admits a unique
analytic solution (locally). Hence, we must find the initial data so that the minimal surface
has the required properties. We observe that, if f is a solution of the Björling problem, we
have that

∂ f

∂u
(u, 0) = β̇(u) and

∂ f

∂v
(u, 0) = V (u) × β̇(u). (11)

Then,

φ(u, 0) = 1

2

(
∂ f

∂u
+ τ

∂ f

∂v

)
(u, 0) = 1

2

(
β̇(u) + τ V (u) × β̇(u)

)
. (12)

So the initial condition for the system is given by

ψ(u, 0) = A−1(β(u)) φ(u, 0),

where A is given in (6).
We note that Lemma 1 implies that the functions ψi satisfy the equations (ii) and (iii) of

Theorem 2. Furthermore, from (12), it follows that

〈〈φ(u, 0), φ(u, 0)〉〉 = 1

4
[g(β̇, β̇) − g(V × β̇, V × β̇)] < 0,

because, from (5), it results that g(V × β̇, V × β̇) = −g(β̇, β̇) and β is a timelike curve.
Shrinking Ω if necessary, we can assume that

〈〈φ(u, v), φ(u, v)〉〉 < 0, (u, v) ∈ Ω.

As A is the Jacobian matrix of a left-invariant translation in M , it results that

|ψ1(u, v)|2 + |ψ2(u, v)|2 − |ψ3(u, v)|2 = 〈〈φ(u, v), φ(u, v)〉〉 < 0, (u, v) ∈ Ω.

Therefore, the functions ψi , i = 1, 2, 3 satisfy the conditions of Theorem 2. So, from the
Cauchy–Kovalevskaya Theorem, there exists a unique analytic conformal timelike minimal
immersion, which is a local solution of the timelike Björling problem. Observe that the initial
condition forces the choice of one of the determinations of ψ2

3 = ψ2
1 + ψ2

2 .
Up to now we have proved the existence and uniqueness of a local solution. We may

consider that I is compact. Using compactness of I and local uniqueness, in the case of
β(I ) is contained in a coordinate neighborhood, for ε > 0 sufficiently small, we can prove
(immediately) existence and uniqueness of the solution. In the general case, as I is compact,
we can cover it with a finite number of inverse images, via β, of coordinate neighborhoods,
and using (again) the local uniqueness of the problem, we obtain the global solution. ��

We can prove that the spacelike Björling problem has a unique analytic solution analo-
gously to the timelike case. In this case, the initial data are

ψ(u, 0) = A−1(β(u)) φ(u, 0),

where

φ(u, 0) = 1

2
(β̇(u) − τ V (u) × β̇(u)).

Theorem 4 (Spacelike Björling problem) Let β : I → M be an analytic spacelike curve in
M and V : I → T M a unitary analytic spacelike vector field along β, such that g(β̇, V ) ≡ 0.
Then, there exists an analytic conformal timelike minimal surface

f : I × (−ε, ε) = Ω ⊆ L → M
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The Björling problem for minimal surfaces 103

such that:

i. f (u, 0) = β(u),
ii. N (u, 0) = V (u),

for all u ∈ I , where N : Ω → T M is the Gauss map of the surface. Moreover, two such
surfaces coincide along the intersection of their domains.

4.2 The Björling problem for spacelike surfaces

The Björling problem for spacelike surfaces has a unique solution, and the proof is analogous
to the case of the timelike surfaces. In this case, the system of condition (i i i) in Theorem 2
is equivalent to the elliptic system of partial differential equations (see [10]):

∂2 fi

∂u2 + ∂2 fi

∂v2
+ Bi

(
∂ fi

∂u
,
∂ fi

∂v

)
= 0, (13)

where Bi , i = 1, 2, 3 contain at most first-order derivatives of the functions fi .
So the Björling problem may be interpreted as a Cauchy problem involving quasilinear

partial differentiable equations (13) with initial data:

fi (u, 0) = βi (u), (V (u) × β̇(u))i = −
(

∂ f

∂v
(u, 0)

)
i
, i = 1, 2, 3.

Therefore, we can use again the Cauchy–Kovalevskaya Theorem (see [10]) to show that the
problem has a unique analytic solution with the initial data given by

ψ(u, 0) = A−1(β(u)) φ(u, 0),

where

φ(u, 0) = 1

2
(β̇(u) + i V (u) × β̇(u)).

Theorem 5 (Björling problem) Let β : I → M be an analytic spacelike curve in M and
V : I → T M a unitary analytic timelike vector field along β, such that g(β̇, V ) ≡ 0. Then,
there exists an analytic conformal spacelike minimal surface

f : I × (−ε, ε) = Ω ⊆ C → M

such that:

i. f (u, 0) = β(u),
ii. N (u, 0) = V (u),

for all u ∈ I , where N : Ω → T M is the Gauss map of the surface. Moreover, two such
surfaces coincide along the intersection of their domains.

Now we will construct some examples of minimal surfaces in the Heisenberg group H3,
in the de Sitter space S

3
1 and in the space H

2 × R, equipped with left-invariant Lorentzian
metrics.

5 The Lorentzian Heisenberg group H3

We consider the Heisenberg group

H3 =
⎧⎨
⎩

⎡
⎣ 1 x z + 1

2 xy
0 1 y
0 0 1

⎤
⎦ : x, y, z ∈ R

⎫⎬
⎭ ,
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104 A. A. Cintra et al.

equipped with the left-invariant Lorentzian metric given by

g = dx2 + dy2 −
(
1

2
y dx − 1

2
x dy + dz

)2

.

With respect to g, the left-invariant frame field given by

E1 = ∂

∂x
− y

2

∂

∂z
, E2 = ∂

∂y
+ x

2

∂

∂z
, E3 = ∂

∂z
,

is orthonormal, {E1, E2} are spacelike and E3 is timelike. Also, the matrix A is

A =
⎡
⎣ 1 0 0

0 1 0
− y

2
x
2 1

⎤
⎦ ,

and the nonzero Lk
i j are L3

12 = L2
13 = L2

31 = 1
2 and L3

21 = L1
32 = L1

23 = − 1
2 . Consequently,

the system (10) becomes ⎧⎪⎪⎨
⎪⎪⎩

∂ψ1

∂ z̄
− Re(ψ̄3ψ2) = 0,

∂ψ2

∂ z̄
+ Re(ψ̄3ψ1) = 0.

(14)

Then, the coordinate functions of the minimal immersion f are given by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 = 2Re
∫

ψ1 dz,

f2 = 2Re
∫

ψ2 dz,

f3 = 2Re
∫ (

f1
2

ψ2 − f2
2

ψ1 + ψ3

)
dz.

(15)

So, knowing the ψi , i = 1, 2, 3, that are solutions of a constant coefficients PDE, we can
compute f1, f2 by integration and, substituting in the third equation of (15), we can compute
f3 by direct integration (see Remark 3).

Example 1 ( The timelike vertical plane y = c, timelike case) First of all, we consider the
curve

β(u) = (cosh u, c,− c

2
cosh u + sinh u), u ∈ R, c ∈ R,

and the unit vector field V (u) = E2(β(u)). Since

β̇(u) = sinh u E1 + cosh u E3,

then g(β̇, β̇) = −1. Moreover, g(V, V ) = 1 and g(β̇, V ) = 0. Thus, we have a timelike
Björling problem. As

E2 × E1 = E3 and E2 × E3 = E1,

we have that V (u) × β̇(u) = cosh u E1 + sinh u E3. So

φ(u, 0) = 1

2
[(sinh u + τ cosh u) E1 + (cosh u + τ sinh u) E3].

Consequently,

ψ(u, 0) = A−1(β(u))φ(u, 0) = 1

2
(sinh u + τ cosh u, 0, cosh u + τ sinh u). (16)
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Therefore, the solution of system (14), which satisfies the initial condition (16), is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1(u, v) = ev

2
(sinh u + τ cosh u),

ψ2(u, v) = 0,

ψ3(u, v) = ev

2
(cosh u + τ sinh u).

(17)

Furthermore, (17) satisfy the conditions ofTheorem3.Then,weobtain the conformal timelike
minimal immersion

f (u, v) =
(

ev cosh u, c, ev
(
− c

2
cosh u + sinh u

))

that is a timelike vertical plane y = c, and it represents the solution of the Björling problem
for the given pair (β, V ).

Example 2 [Helicoids] Consider β(u) = (ρ(u), 0, b), b ∈ R and

V (u) = ρ2(u) − 2c

2ρ′(u)
E2 − ρ(u)

ρ′(u)
E3, c ∈ R,

where ρ(u), u ∈ (a, d) ⊂ R, is a real function satisfying

√
(ρ′)2 + ρ2 = ρ2

2
− c.

As β̇(u) = ρ′(u) E1, then g(β̇, β̇) = ρ′2. Moreover,

g(V, V ) = 1, g(β̇, V ) = 0.

Thus, we have a spacelike Björling problem. Since E2 × E1 = E3 and E3 × E1 = E2, we
obtain

V (u) × β̇(u) = ρ2(u) − 2c

2
E3 − ρ(u) E2. (18)

Then,

φ(u, 0) =
(

ρ′(u)

2
,
τ ρ(u)

2
,

c τ

2

)

and, so, it follows that

ψ(u, 0) =
(

ρ′(u)

2
,
τ ρ(u)

2
,−τ(ρ2(u) − 2c)

4

)
. (19)

Therefore, the solution of (14), which satisfies the initial condition (19), is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ1(u, v) = 1

2
(ρ′(u) cos v − τρ(u) sin v),

ψ2(u, v) = 1

2
(ρ′(u) sin v + τρ(u) cos v),

ψ3(u, v) = −τ

4
(ρ2(u) − 2c).

(20)

Furthermore, (20) satisfy the conditions of Theorem 4. Then, integrating we obtain the
following solution of the Björling problem:

f (u, v) = (ρ(u) cos v, ρ(u) sin v, c v + b),

which represents a timelike helicoid if c �= 0, and the horizontal plane z = b, if c = 0.

123



106 A. A. Cintra et al.

Example 3 [The saddle-type surface] Consider β(u) = (4 c u,−4 Q(0),−8 c u Q(0)) and

V (u) = −4 c Q(0)

Q′(0)
E1 + c

Q′(0)
E3, u ∈ (a, b) ⊂ R, c ∈ R,

where Q(v) is a real differentiable function with Q′(v) �= 0, for all v ∈ R, which satisfies

4 c Q(v) =
√

Q′(v)2 + c2.

As
β̇(u) = 4 c E1 − 16 c Q(0) E3,

then g(β̇(u), β̇(u)) = −16 Q′(0)2. Moreover, g(V (u), V (u)) = 1 and g(β̇(u), V (u)) = 0.
Thus, we have a timelike Björling problem. Since

V (u) × β̇(u) = −4 Q′(0) E2,

then
φ(u, 0) = (

2 c,−2 Q′(0)τ,−4 c Q(0) − 4 a u Q′(0)τ
)

and, so, it follows that

ψ(u, 0) = (
2 c,−2 Q′(0)τ,−8 c Q(0)

)
. (21)

Therefore, the solution of (14), which satisfies the initial condition (21), is⎧⎪⎨
⎪⎩

ψ1(u, v) = 2 c,

ψ2(u, v) = −2 τ Q′(v),

ψ3(u, v) = −8 c Q(v).

(22)

Furthermore, (22) satisfy the conditions of the Theorem 3. Then, integrating we obtain

f (u, v) = (4 c u,−4 Q(v),−8 c u Q(v)),

whose image lies on the graph of the function z = 1

2
x y.

6 The de Sitter space S
3
1

The de Sitter space S31 might be modeled as the halfspace

R
3+ = {(x1, x2, x3) ∈ R

3 : x3 > 0}
endowed with the left-invariant Lorentzian metric given by

g = 1

x23
(dx21 + dx22 − dx23 ).

An orthonormal basis of left-invariant vector fields is given by

E1 = x3
∂

∂x1
, E2 = x3

∂

∂x2
, E3 = x3

∂

∂x3
,

where {E1, E2} are spacelike and E3 timelike. Then,

A =
⎡
⎣ x3 0 0

0 x3 0
0 0 x3

⎤
⎦ .
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The only Lk
i j nonzero are L1

13 = L2
23 = L3

11 = L3
22 = −1. So (10) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂ψ1

∂ z̄
− ψ̄1ψ3 = 0,

∂ψ2

∂ z̄
− ψ̄2ψ3 = 0.

(23)

Therefore, the conformal minimal immersion f is given by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 = 2Re
∫

f3 ψ1 dz,

f2 = 2Re
∫

f3 ψ2 dz,

f3 = exp

(
2Re

∫
ψ3 dz

)
.

(24)

Again, knowing theψi , i = 1, 2, 3, we can compute f3 by direct integration and, substituting
in the first two equations, we can also compute f1, f2 by direct integration (see, again,
Remark 3).

Example 4 (Timelike vertical plane y=c, the spacelike case) Consider

β(u) = (sinh u, c, cosh u), u ∈ R

and V (u) = E2. We have that

β̇(u) = E1 + sinh u

cosh u
E3, g(β̇(u), β̇(u)) = 1

cosh2(u)
> 0.

Furthermore, g(V, V ) = 1 and g(β̇, V ) = 0. Thus, the pair (β, V ) produces a spacelike
Björling problem. Since

V (u) × β̇(u) = E3 + sinh u

cosh u
E1 = (sinh u, 0, cosh u),

we obtain that

φ(u, 0) = 1

2
(β̇(u) − τ V (u) × β̇(u)) = 1

2
(cosh u − τ sinh u, 0, sinh u − τ cosh u).

Therefore,

ψ(u, 0) = A−1(β(u))φ(u, 0) = 1

2

(
cosh u − τ sinh u

cosh u
, 0,

sinh u − τ cosh u

cosh u

)
.

As ψ(u, 0) is a solution of (23), the uniqueness implies that ψ(u, v) = ψ(u, 0). So the
conformal timelike minimal immersion is given by

f (u, v) = (e−v sinh u, c, e−v cosh u).

Example 5 Consider

β(u) =
(

1√
2
sinh u,

1√
2
sinh u, cosh u

)
, V (u) = − E1√

2
+ E2√

2
.

As

β̇(u) = E1√
2

+ E2√
2

+ sinh u

cosh u
E3
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and

g(β̇(u), β̇(u)) = 1

cosh2(u)
,

then, we have a spacelike Björling problem. Also,

g(V (u), V (u)) = 1, g(β̇(u), V (u)) = 0

and

V (u) × β̇(u) =
(

1√
2
sinh u,

1√
2
sinh u, cosh u

)
.

Therefore,

φ(u, 0) = 1

2

(
1√
2
(cosh u − τ sinh u),

1√
2
(cosh u − τ sinh u), sinh u − τ cosh u

)

and

ψ(u, 0) = A−1(β(u))φ(u, 0) = 1

2

(
cosh u − τ sinh u√

2 cosh u
,
cosh u − τ sinh u√

2 cosh u
,
sinh u − τ cosh u

cosh u

)
.

Sinceψ(u, 0) is solution of (23), the uniqueness implies that ψ(u, v) = ψ(u, 0). Integrating
(24), it results that

f (u, v) = e−v

(
sinh u√

2
,
sinh u√

2
, cosh u

)
.

7 The space H
2 × R

We consider the hyperbolic space H2 modeled as the halfspace

R
2+ = {(x1, x2) ∈ R

2 : x2 > 0}
and endowed with the left-invariant metric given by

gH = 1

x22
(dx21 + dx22 ).

The space H2 × R is a Lie group with the product structure and the product metric

g = gH − dx23

is a left-invariant Lorentzian metric. An orthonormal basis of left-invariant vector fields is
given by

E1 = x2
∂

∂x1
, E2 = x2

∂

∂x2
, E3 = ∂

∂x3
,

where {E1, E2} are spacelike and E3 timelike. Then,

A =
⎡
⎣ x2 0 0

0 x2 0
0 0 1

⎤
⎦ .
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The only Lk
i j nonzero are L1

12 = −2 and L2
11 = 2. So (10) becomes

⎧⎪⎪⎨
⎪⎪⎩

∂ψ1

∂ z̄
− ψ1ψ̄2 = 0,

∂ψ2

∂ z̄
+ ψ̄1ψ1 = 0.

(25)

Therefore, the conformal minimal immersion f is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(u, v) = 2Re
∫

f2 ψ1 dz,

f2(u, v) = exp

(
2Re

∫
ψ2 dz

)
,

f3(u, v) = 2Re
∫

ψ3 dz.

Again, knowing the ψi , i = 1, 2, 3, we can compute f2 and f3 by direct integration and,
substituting in the first equation, we can also compute f1 by direct integration (see, again,
Remark 3)

We observe that if ψ2 is a L-differentiable (or holomorphic) function, then from (25) it

follows thatψ1ψ̄1 = 0 andψ1
∂ψ1

∂ z̄
= 0. For example, ifψ1 = 0, we get the planes x1 = cte.

Example 6 (Spacelike horizontal plane z=c) Consider

β(u) = (cos u, sin u, c), u ∈ (0, π)

and V (u) = E3. We have that

β̇(u) = −E1 + cos u

sin u
E2, g(β̇(u), β̇(u)) = 1

sin2(u)
> 0.

Furthermore, g(V, V ) = −1 and g(β̇, V ) = 0. Thus, the pair (β, V ) produces a Björling
problem for spacelike surfaces. As

V (u) × β̇(u) = −E2 − cos u

sin u
E1 = (− cos u,− sin u, 0),

we obtain that

φ(u, 0) = 1

2
(β̇(u) + i V (u) × β̇(u)) = 1

2
(− sin u − i cos u, cos u − i sin u, 0).

Therefore,

ψ(u, 0) = A−1(β(u))φ(u, 0) = 1

2

(
− sin u + i cos u

sin u
,
cos u − i sin u

sin u
, 0

)
.

Since ψ(u, 0) is a solution of (25), the uniqueness implies that ψ(u, v) = ψ(u, 0). Conse-
quently, we have the conformal spacelike minimal immersion given by

f (u, v) = (ev cos u, ev sin u, c).
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