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Abstract We derive a second order estimate for the first m eigenvalues and eigenfunctions
of the linearized Gel’fand problem associated to solutions which blow-up at m points. This
allows us to determine, in some suitable situations, some qualitative properties of the first m
eigenfunctions as the number of points of concentration or the multiplicity of the eigenvalue.

Keywords Gel’fand problem · Asymptotic estimates · Green’s function

Mathematics Subject Classification 35J15 · 35J60 · 35J61

1 Introduction and statement of the main results

Let us consider the Gel’fand problem,{−�u = λeu in �

u = 0 on ∂�,
(1.1)

where� ⊂ R
2 is a bounded domain with smooth boundary ∂� and λ > 0 is a real parameter.

This problem appears in a wide variety of areas of mathematics such as the conformal
embedding of a flat domain into a sphere [1], self-dual gauge field theories [13], equilibrium
states of large number of vortices [3,4,14,15,19,20], stationary states of chemotaxis motion
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80 F. Gladiali et al.

[21], and so forth. See [12] for more about our motivation and [22] for other background
materials.

Let {λn}n∈N be a sequence of positive values such that λn → 0 as n → ∞ and let
un = un(x) be a sequence of solutions of (1.1) for λ = λn . In [17], the authors studied
solutions {un} which blow-up at m-points (see next section for more details). This means
that there is a set S = {κ1, . . . , κm} ⊂ � of m distinct points such that

(i) ‖un‖L∞(ω) = O(1) for any ω � � \ S,

(ii) un |S → +∞ as n → ∞.

In [2,8,18], and [7] some sufficient conditions which ensure the existence of this type
of solutions are given. Throughout the paper, we will consider solutions un to (1.1) with m
blow-up points and we investigate the eigenvalue problem⎧⎨

⎩
−�vkn = μk

nλne
unvkn in �

‖vkn‖∞ = max� vkn = 1
vkn = 0 on ∂�

(1.2)

which admits a sequence of eigenvalues μ1
n < μ2

n ≤ μ3
n ≤ · · · , where vkn is the kth eigen-

function of (1.2) corresponding to the eigenvalue μk
n . We also assume the orthogonality in

Dirichlet norm, ∫
�

∇vkn · ∇vk
′

n = 0 if k 
= k′.

In order to state our results, we need to introduce some notations and recall some well-
known facts.

Let R > 0 be such that B2R(κi ) ⊂⊂ � for i = 1, . . . ,m and BR(κi ) ∩ BR(κ j ) = ∅ if
i 
= j . For each κ j ∈ S there exists a sequence {x j,n} ∈ BR(κ j ) such that

un(x j,n) = sup
BR(x j,n)

un(x) → +∞ and x j,n → κ j as n → +∞.

For any j = 1, . . . ,m, we rescale un around x j,n , letting

ũ j,n(x̃) := un
(
δ j,n x̃ + x j,n

)− un(x j,n) in B R
δ j,n

(0), (1.3)

where the scaling parameter δ j,n is determined by

λne
un(x j,n)δ2j,n = 1. (1.4)

It is known that δ j,n −→ 0 and for any j = 1, . . . ,m

ũ j,n(x̃) → U (x̃) = log
1(

1 + |x̃ |2
8

)2 in C2,α
loc (R2). (1.5)

As we did for un , we rescale also the eigenfunctions vkn around x j,n for any j = 1, . . . ,m.
So we define

ṽkj,n(x̃) := vkn
(
δ j,n x̃ + x j,n

)
in B R

δ j,n
(0), (1.6)

where δ j,n is as in (1.4). The rescaled eigenfunctions ṽkj,n(x̃) satisfy⎧⎪⎨
⎪⎩
−�ṽkj,n = μk

ne
ũ j,n ṽkj,n in B R

δ j,n
(0)

‖ṽkj,n‖L∞
(
B R

δ j,n

(0)
) ≤ 1. (1.7)
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Eigenfunctions of the linearized Gel’fand problem 81

One of the main results of this paper concerns pointwise estimates of the eigenfunction. In
particular, we are interested in the number of peaks of vkn for k = 1, . . . ,m. Let us recall
that, by Corollary 2.9 in [12] (see also [9]), we have that

vkn → 0 in C1
(
�\ ∪m

j=1 BR
(
κ j
))

This means that vkn can concentrate only at κ j , j = 1, . . . ,m. This leads to the following
definition,

Definition 1 We say that an eigenfunction vkn concentrates at κ j ∈ � if there exist a constant
C > 0 and κ j,n → κ j such that

∣∣∣vkn(κ j,n)

∣∣∣ ≥ C > 0 for n large. (1.8)

A problem that arises naturally is the following,

Question 1 Let us suppose that un blows-up at the points {κ1, . . . , κm}. Is the same true for
the eigenfunction vkn , k = 1 . . . ,m?

A first partial answer related to this question was given in [12], where the following result
was proved.

Theorem 1.1 For each k ∈ {1, . . . ,m} we have that μk
n → 0 and there exists a vector

ck = (ck1, . . . , c
k
m) ∈ [−1, 1]m ⊂ R

m, ck 
= 0 (1.9)

such that for each j ∈ {1, . . . ,m}, there exists a sub-sequence satisfying

ṽkj,n(x) → ckj in C2,α
loc

(
R
2) (1.10)

ck · ch = 0 if h 
= k (1.11)

and

vkn

μk
n

→ 8π
m∑
j=1

ckj G(·, κ j ) in C2,α
loc

(
� \ {κ1, . . . , κm}) . (1.12)

Here G(x, y) denotes the Green function of −� in � with Dirichlet boundary condition,
i.e.,

G(x, y) = 1

2π
log |x − y|−1 + K (x, y), (1.13)

K (x, y) is the regular part ofG(x, y) and R(x) = K (x, x) theRobin function.Aconsequence
of Theorem 1.1 and Proposition 2.11 of [12] is that

vkn concentrates at κ j if and only if ckj 
= 0. (1.14)

In this paper, we characterize the values ckj in term of the Green function and this will allow

us to determine whether ckj is equal to 0 or not.
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82 F. Gladiali et al.

Theorem 1.2 For each k ∈ {1, . . . ,m}, we have that

(i) The vector ck = (ck1, . . . , c
k
m) ∈ [−1, 1]m ⊂ R

m\{0} is a kth eigenvector of the matrix

hi j =
{
R(κi ) + 2

∑
1≤h≤m
h 
=i

G(κh, κi ) if i = j,

−G(κi , κ j ) if i 
= j,
(1.15)

(ii) A sub-sequence of {vkn} satisfies
ṽkj,n(x̃) = vkn(x j,n) + μk

nc
k
jU (x̃) + o

(
μk
n

)
in C2,α

loc

(
R
2) (1.16)

for each j ∈ {1, . . . ,m}, where U (x̃) is as defined in (1.5).

Let us observe that (1.16) is a second order estimates for vkn . We stress that this is new even
for the case of one-peak solutions (k = 1). From Theorem 1.2, we can deduce the answer to
the Question 1,

Corollary 1.3 Let ck = (ck1, . . . , c
k
m) be the kth eigenvector of the matrix (hi j ) associated

to a simple eigenvalue. Then if ckj 
= 0 vkn concentrates at κ j .

Our next aim is to understand better when ckj 
= 0. The following proposition gives some
information in this direction.

Theorem 1.4 Let k ∈ {1, . . . ,m} and vkn be the corresponding eigenfunction.
Then we have that,

(i) v1n concentrates at m points κ1, . . . , κm,
(ii) any vkn concentrates at least at two points κi , κ j with i, j ∈ {1, . . . ,m}, i 
= j .

However, there are other interesting questions. One is the following:

Question 2 Let us suppose that μk
n is a multiple eigenvalue of (1.2). What about its multi-

plicity?

We will give an answer to this question in the case where � is an annulus.
Let us fix an integer m > 2. In [18], there was constructed a m-mode solution un to (1.1),

i.e., a solution which is invariant with respect to a rotation of 2π
m in R

2,

u(r, θ) = u

(
r, θ + 2π

m

)
. (1.17)

Reasoning as in [8] one can construct, in an annulus, an m-mode solution verifying (2.1)
with the symmetry properties (1.17).

Theorem 1.5 Let� be an annulus and un be them-mode solutions of (1.1) that verify (1.17).
Let V k

n the eigenspace associated to μk
n and dim

(
V k
n

)
denote its dimension. Then,

• if m is odd then dim
(
V k
n

) ≥ 2 for any k ≥ 2.
• If m is even and μh

n is simple for h ≥ 2 then the limiting eigenvector ch verifies ch =
(−1, 1,−1, 1, . . . ,−1, 1). All the other eigenvalues satisfy dim

(
V k
n

) ≥ 2 for any k ≥
2, k 
= h.

The previous results rely on the next theorem which is a refinement up the second order
of some estimates proved of [12]. In our opinion, this result is interesting in itself.
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Eigenfunctions of the linearized Gel’fand problem 83

Theorem 1.6 For each k ∈ {1, . . . ,m}, it holds that

μk
n = −1

2

1

log λn
+
(
2π�k − 3 log 2 − 1

2

)
1

(log λn)
2 + o

(
1

(log λn)
2

)
(1.18)

as n → +∞, where �k is the kth eigenvalue of the m × m matrix (hi j ) defined in (1.15)
assuming �1 ≤ · · · ≤ �m.

So the effect of the domain � on the eigenvalues μk
n appears in the second order term of the

expansion of μk
n .

The paper is organized as follows: in Sect. 2, we give some definitions and we recall some
known facts. In Sect. 3, we prove Theorem 1.6 and some results on the vector ck introduced
in Theorem 1.2. In Sect. 4, we complete the proof of Theorem 1.2 and prove Theorem 1.4
and Theorem 1.5.

2 Preliminaries and known facts

Let us recall some results about the asymptotic behavior of un = un(x) as n → +∞. In
[17], the authors proved that, along a sub-sequence,

λn

∫
�

eun dx → 8πm (2.1)

for some m = 0, 1, 2, . . . ,+∞. Moreover

• If m = 0 the pair (λn, uλn ) converges to (0, 0) as λn → 0.
• If m = +∞ the entire blow-up of the solutions {un} occurs , i.e. infK un → +∞ for

any K � �.
• If 0 < m < ∞ the solutions {un} blow-up at m-points. Thus there is a set S =

{κ1, . . . , κm} ⊂ � of m distinct points such that ‖un‖L∞(ω) = O(1) for any ω � � \S,
un |S → +∞ as n → ∞,

and

un →
m∑
j=1

8π G(·, κ j ) in C2
loc(� \ S). (2.2)

In [17], it is also proved that the blow-up points S = {κ1, . . . , κm} satisfy
∇Hm(κ1, . . . , κm) = 0, (2.3)

where

Hm(x1, . . . , xm) = 1

2

m∑
j=1

R(x j ) + 1

2

∑
1≤ j,h≤m

j 
=h

G(x j , xh).

Here Hm is the Hamiltonian function of the theory of vortices with equal intensities, see
[3,4,14,15,20] and references therein.

As we did in the introduction, let R > 0 be such that B2R(κi ) ⊂⊂ � for i = 1, . . . ,m
and BR(κi ) ∩ BR(κ j ) = ∅ if i 
= j and x j,n , un , ũ j,n , and δ j,n as in (1.3), (1.4). In [11],
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84 F. Gladiali et al.

Corollary 4.3, it is shown that there exists a constant d j > 0 such that

δ j,n = d jλ
1
2
n + o

(
λ

1
2
n

)
(2.4)

as n → ∞ for a sub-sequence, and in particular, δ j,n −→ 0. In [11], the exact value of d j

was not computed, but for our aim, it is crucial to have it. We will give it in (3.10). From
(1.4) and (2.4), we have

un(x j,n) = −2 log λn − 2 log d j + o(1) (2.5)

as n → ∞ for any j = 1, . . . ,m.
The function ũ j,n defined in the Introduction satisfies

⎧⎨
⎩
−�ũ j,n = eũ j,n in B R

δ j,n
(0)

ũ j,n ≤ ũ j,n(0) = 0 in B R
δ j,n

(0).

Using the result of [5], it is easy to see that, for any j = 1, . . . ,m

ũ j,n(x̃) → U (x̃) = log
1(

1 + |x̃ |2
8

)2 in C2,α
loc (R2). (2.6)

Moreover, it holds
∣∣ũ j,n(x̃) −U (x̃)

∣∣ ≤ C ∀x̃ ∈ B R
δ j,n

(0) (2.7)

for any j = 1, . . . ,m for a suitable positive constant C , see [16].
Let us consider the eigenfunction vkn defined in (1.2) and recall the following result:

Theorem 2.1 ([12]) For λn → 0, it holds that

μk
n = −1

2

1

log λn
+ o

(
1

log λn

)
for 1 ≤ k ≤ m, (2.8)

μk
n = 1 − 48πη2m−(k−m)+1λn + o (λn) for m + 1 ≤ k ≤ 3m, (2.9)

and

μk
n > 1 for k ≥ 3m + 1, (2.10)

where ηk (k = 1, . . . , 2m) is the kth eigenvalue of the matrix D(HessHm)D at (κ1, . . . , κm).
Here D = (Di j ) is the diagonal matrix diag[d1, d1, d2, d2, . . . , dm, dm] (see (2.4) for the
definition of the constants d j and (3.10) for the precise value of it).

One of the purposes of this paper is to refine (2.8) (see Theorem 1.6 in the introduction).

3 Fine behavior of eigenvalues

We start from the following proposition, which plays a crucial role in our argument.
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Eigenfunctions of the linearized Gel’fand problem 85

Proposition 3.1 For any k = 1, . . . ,m we have{
1

μk
n

− un(x j,n)

}
λn

∫
BR(x j,n)

eunvkn dx

= (8π)2
∑

1≤i≤m
i 
= j

(cki − ckj )G(κ j , κi ) − 16πckj + o(1). (3.1)

Proof From (1.1) and (1.2), we have∫
∂BR(x j,n)

{∂un
∂ν

vkn

μk
n

− un
∂

∂ν

(
vkn

μk
n

)}
dσ =

∫
BR(x j,n)

{
�un

vkn

μk
n

− un�
vkn

μk
n

}
dx

= − 1

μk
n
λn

∫
BR(x j,n)

eunvkn dx

+ λn

∫
BR(x j,n)

eunvknun dx

= − 1

μk
n
λn

∫
BR(x j,n)

eunvkn dx

+ un(x j,n)λn

∫
BR(x j,n)

eunvkn dx

+
∫
B R

δ j,n

(0)
eũ j,n ṽkj,nũ j,n dx̃ (3.2)

and ∫
B R

δ j,n

(0)
eũ j,n ṽkj,nũ j,n dx →

∫
R2

eUckjU dx = −16πckj . (3.3)

On the other hand, from (2.2) and (1.12), we have∫
∂BR(x j,n)

{∂un
∂ν

vkn

μk
n

− un
∂

∂ν

(
vkn

μk
n

)}
dσ

→ (8π)2
m∑
i=1

m∑
h=1

ckh

∫
∂BR(κ j )

{
∂

∂ν
G(x, κi )G(x, κh) − G(x, ki )

∂

∂ν
G(x, κh)

}
dσ. (3.4)

We let

Ii,h =
∫

∂BR(κ j )

{
∂

∂ν
G(x, κi )G(x, κh) − G(x, κi )

∂

∂ν
G(x, κh)

}
dσ.

Then we have
case 1 i = h

Ii,h = 0.

case 2 i 
= h In this case, we have

Ii,h =
∫
BR(κ j )

{
�G(x, κi )G(x, κh) − G(x, κi )�G(x, κh)

}
dσ

= −G(κ j , κh)δ
j
i + G(κ j , κi )δ

h
j ,
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86 F. Gladiali et al.

where δba = 1 if a = b and δba = 0 otherwise.
Therefore, from (3.4) we have

∫
∂BR(x j,n)

{
∂un
∂ν

vkn

μk
n

− un
∂

∂ν

(
vkn

μk
n

)}
dσ

= (8π)2
m∑
i=1

∑
1≤h≤m
h 
=i

ckh

{
−G(κ j , κh)δ

j
i + G(κ j , κi )δ

h
j

}
+ o(1)

= (8π)2
{

−
∑

1≤h≤m
h 
= j

ckhG(κ j , κh) +
∑

1≤i≤m
i 
= j

ckjG(κ j , κi )
}

+ o(1)

= −(8π)2
∑

1≤i≤m
i 
= j

(
cki − ckj

)
G(κ j , κi ) + o(1). (3.5)

The proof follows from (3.2), (3.3), and (3.5). ��

Next we are going to get the precise value of d j in (2.5). For this purpose we need to
strengthen (2.5).

Proposition 3.2 (cf. Estimate D in [6]) Let un be a solution of (1.1) corresponding to λn,
and let x j,n and R be as in Sect. 1. Then, for any j = 1, . . . ,m we have

un(x j,n) = − σ j,n

σ j,n − 4π
log λn − 8π

{
R(x j,n) +

∑
1≤i≤m
i 
= j

G(x j,n, xi,n)
}

+ 6 log 2 + o(1),

(3.6)

where

σ j,n = λn

∫
BR(x j,n)

eun dx → 8π. (3.7)

Proof Using the Green representation formula, from (1.1), we have

un(x j,n) =
∫

�

G(x j,n, y)λne
un(y) dy

= 1

2π

∫
BR(x j,n)

log |x j,n − y|−1λne
un(y) dy

+
∫
BR(x j,n)

K (x j,n, y)λne
un(y) dy

+
∑

1≤i≤m
i 
= j

∫
BR(xi,n)

G(x j,n, y)λne
un(y) dy

+
∫

�\⋃m
i=1 BR(xi,n)

G(x j,n, y)λne
un(y) dy

= − σ j,n

2π
log δ j,n + 1

2π

∫
B R

δ j,n

(0)
log |ỹ|−1eũ j,n(ỹ) d ỹ
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Eigenfunctions of the linearized Gel’fand problem 87

+ 8π

⎧⎪⎪⎨
⎪⎪⎩
R(x j,n) +

∑
1≤i≤m
i 
= j

G(x j,n, xi,n)

⎫⎪⎪⎬
⎪⎪⎭

+ o(1).

Using the estimate (2.7), we get here

1

2π

∫
B R

δ j,n

(0)
log |ỹ|−1eũ j,n(ỹ) d ỹ → 1

2π

∫
R2

log |ỹ|−1eU (ỹ) d ỹ = −6 log 2. (3.8)

Then the conclusion follows by (1.4) and (3.7). ��
Here we recall a fine behavior of the local mass σ j,n defined in (3.7).

Proposition 3.3 For any j ∈ {1, . . . ,m}, we have
σ j,n = 8π + o(λn) (3.9)

Proof see (3.56) of [6]. ��
Using Proposition 3.2 and Proposition 3.3, we get the precise value of d j given in (2.4).

Proposition 3.4 For any j = 1, . . . , k it holds,

d j = 1

8
exp

⎧⎪⎪⎨
⎪⎪⎩
4πR(κ j ) + 4π

∑
1≤i≤m
i 
= j

G(κ j , κi )

⎫⎪⎪⎬
⎪⎪⎭

. (3.10)

Proof From (3.6), we get

un(x j,n) = − 2 log λn + σ j,n − 8π

σ j,n − 4π
log λn

− 8π

⎧⎪⎪⎨
⎪⎪⎩
R(κ j ) +

∑
1≤i≤m
i 
= j

G(κ j , κi )

⎫⎪⎪⎬
⎪⎪⎭

+ 6 log 2 + o(1). (3.11)

From (3.9), it follows that
σ j,n−8π
σ j,n−4π log λn = o(1). Therefore, the claim follows from (2.5). ��

As a consequence of (2.5) and Proposition 3.4, we get, using (3.1){
1

μk
n

+ 2 log λn

}∫
BR(x j,n)

λne
unvkn dx = (8π)2

∑
1≤i≤m
i 
= j

cki G(κ j , κi )

− (8π)2ckj

{
R(κ j ) + 2

∑
1≤i≤m
i 
= j

G(κ j , κi )
}

+ 48πckj log 2 − 16πckj + o(1)

= −(8π)2
m∑
i=1

h ji c
k
i + 16πckj (3 log 2 − 1) + o(1), (3.12)

(see the definition of the matrix (hi j ) in (1.15).
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Proposition 3.5 For any j, h ∈ {1, . . . ,m}, it holds that

ckh

m∑
i=1

h ji c
k
i = ckj

m∑
i=1

hhi c
k
i (3.13)

Proof Multiplying
∫
BR(xh,n)

λneunvkn dx to (3.12) and
∫
BR(x j,n)

λneunvkn dx to (3.12) with
j = h, and then subtracting the latter from the former, we get the conclusion from (1.5) and
(1.10). ��

Proposition 3.6 The vector ck , defined in (1.9), is an eigenvector of (hi j ).

Proof First we assume that there are ckj 
= 0 and ckh 
= 0 for j 
= h. Then (3.13) gives

1

ckj

m∑
i=1

h ji c
k
i = 1

ckh

m∑
i=1

hhi c
k
i = �k . (3.14)

Then �k is an eigenvalue of (hi j ) if ckj 
= 0 for all j = 1, . . . ,m.

On the other hand, for j ∈ {1, . . . ,m} satisfying ckj = 0, we can choose ckh 
= 0 (see (1.9))
so that

m∑
i=1

h ji c
k
i = 0 if ckj = 0. (3.15)

From (3.14) and (3.15), we get that ck is an eigenvector of (hi j ) if there are at least two j
satisfying ckj 
= 0.

The last case is that there is only one j satisfying ckj 
= 0, but this never happens. Indeed,
in this case (3.13) becomes

m∑
i=1

hhi c
k
i = hhj c

k
j = 0 ( j 
= h)

which contradicts hhj = −G(κh, κ j ) 
= 0. ��

Proof of Theorem 1.6 Take ckj 
= 0. Then Proposition 3.6 implies that
∑m

i=1 h ji cki = �kckj
and therefore (3.12) implies that

1

μk
n

= −2 log λn − 8π�k + 2(3 log 2 − 1) + o(1). (3.16)

Indeed, letting L = −8π�k + 2(3 log 2 − 1), (3.16) leads that

μk
n = 1

−2 log λn + L + o(1)
= − 1

2 log λn
− L

4
· 1

(log λn)2
+ o

(
1

(log λn)2

)
. (3.17)

Therefore (1.18) follows.
The formula (1.18) gives �1 ≤ · · · ≤ �m , since μ1

n < μ2
n ≤ · · · ≤ μm

n . Consequently,
we get �k is the kth eigenvalue. Since �k depends only on (hi j ) then equation (1.18) holds
without taking a sub-sequence. ��
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4 Fine behavior of eigenfunctions

We start this section with the following

Proposition 4.1 For any k, j ∈ {1, . . . ,m}, we have
vkn(x j,n)

μk
n

= 1

2π
log δ−1

j,n

∫
BR(x j,n)

λne
un(y)vkn(y) dy

+ 8π
{
ckj R(κ j ) +

∑
1≤i≤m
i 
= j

cki G(κ j , κi )
}

− 6ckj log 2 + o(1). (4.1)

Proof Using the Green representation formula and (1.2), we have, as in the proof of the
Proposition 3.2

vkn(x j,n)

μk
n

=
∫

�

G(x j,n, y)λne
un(y)vkn(y) dy

= 1

2π
log δ−1

j,n

∫
BR(x j,n)

λne
un(y)vkn(y) dy

+ 1

2π

∫
B R

δ j,n

(0)
log |ỹ|−1eũ j,n(ỹ)ṽkj,n(ỹ) d ỹ

+
{
8πckj R(κ j ) + 8π

∑
1≤i≤m
i 
= j

cki G(κ j , κi )
}

+ o(1)

and the claim follows. ��
Remark 4.2 From (4.1), (1.4), (3.6), and Proposition 3.3, we get

1

μk
n

∫
BR(x j,n)

λne
unvkn(x j,n) dx = σ j,nv

k
n(x j,n)

μk
n

= −2 log λn

∫
BR(x j,n)

λne
unvkn dx − (8π)2

m∑
i=1

h ji c
k
i

+ 48πckj log 2 + o(1). (4.2)

Proposition 4.3 For any k, j ∈ {1, . . . ,m} we have

λn

∫
BR(x j,n)

eun
vkn(x) − vkn(x j,n)

μk
n

dx = −16πckj + o(1).

Proof Subtracting (3.12) by (4.2) we get the claim. ��
Proof of Theorem 1.2 Set

z̃n := ṽkj,n − vkn(x j,n)

μk
n

in B R
δ j,n

(0).

Then

− �z̃n = μk
ne

ũ j,n z̃n + vkn(x j,n)e
ũ j,n . (4.3)
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The claim follows from elliptic estimates once we prove that

z̃n = ckjU (x̃) + o(1) locally uniformly in R
2. (4.4)

Using again the Green representation formula for (1.2), we have for x ∈ ω ⊂⊂ BR(x j,n)

vkn(x)

μk
n

=λn

∫
�

G(x, y)eun(y)vkn(y) dy

=
∫
B R

δ j,n

(0)

1

2π
log

1

|x − (δ j,n ỹ + x j,n)|e
ũn ṽkj,n d ỹ

+ 8πckj K (x, κ j ) + 8π
∑

1≤i≤m
i 
= j

cki G(x, κi ) + o(1).

Therefore, letting x = δ j,n x̃ + x j,n , we have for every x̃ ∈ ω̃ ⊂⊂ R
2 that

ṽkj,n(x̃)

μk
n

= 1

2π

∫
B R

δ j,n

(0)
log

1

|δ j,n x̃ + x j,n − δ j,n ỹ − x j,n |e
ũ j,n ṽkj,n d ỹ

+ 8πckj K (δ j,n x̃ + x j,n, κ j ) + 8π
∑

1≤i≤m
i 
= j

cki G(δ j,n x̃ + x j,n, κi ) + o(1)

= 1

2π
log

1

δ j,n

∫
B R

δ j,n

(0)
eũ j,n ṽkj,n d ỹ + 1

2π

∫
B R

δ j,n

(0)
log

1|x̃ − ỹ|
e

ũ j,n

ṽkj,n d ỹ

+ 8πckj R(κ j ) + 8π
∑

1≤i≤m
i 
= j

cki G(κ j , κi ) + o(1) (using (4.1))

=vkn(x j,n)

μk
n

+ 1

2π

∫
B R

δ j,n

(0)
log

1

|x̃ − ỹ|e
ũ j,n ṽkj,n d ỹ + 6ckj log 2 + o(1)

Then recalling the definition of z̃n , we have

z̃n = 1

2π

∫
B R

δ j,n

(0)
log

1

|x̃ − ỹ|e
ũ j,n ṽkj,n d ỹ + 6ckj log 2 + o(1)

so that

z̃n = 1

2π
ckj

∫
R2

log
1

|x̃ − ỹ|e
U d ỹ + 6ckj log 2 + o(1)

locally uniformly with respect to x̃ since eũ j,n = O(|x̃ |−4) uniformly as |x̃ | → ∞.
Observe that

�̃(x̃) := 1

2π

∫
R2

log
1

|x̃ − ỹ|e
U d ỹ

satisfy

−��̃ = eU in D′(R2).
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and it is a radially symmetric function. Then, since −�U = eU and U (0) = 0, we have
�̃ −�̃(0) = U , where �̃(0) = −6 log 2, see (3.8). Therefore, �̃ = U −6 log 2. This implies
that z̃n → ckjU locally uniformly and this proves (4.4). Finally, by Proposition 3.6, we have
that the proof of Theorem 1.2 is complete. ��

5 Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4 The final part of the proof of Proposition 3.5 shows that, for any vector
ck , we have that at least two components of ck are different from zero. This shows i i). Now
we are going to prove i).

We can assume that v1n > 0 and then c1j ≥ 0 for any j = 1, . . . ,m. We want to prove that

c1j > 0 for any j = 1, . . . ,m and so, by contradiction, let us assume that c11 = 0 (the generic

case is analogous). By (3.13), we deduce that c1h
∑m

i=2 h1i c
1
i = 0. Since c1 
= 0, there exists

h ≥ 2 such that c1h 
= 0. Moreover h1i < 0 for any i ≥ 2 and this gives a contradiction. ��
Proof of Theorem 1.5 Without loss of generality, we may assume that � = {

x ∈ R
2 such

that 0 < a < |x | < 1}. The m blow-up points κ1, · · · , κm are located on a circle concentric
with the annulus and are vertices of a regular polygon with m sides. So we can assume that

κ1 = (r0, 0), κ2 = r0
(
cos 2π

m , sin 2π
m

)
, . . . , κm = r0

(
cos 2(m−1)π

m , sin 2(m−1)π
m

)
for some

r0 ∈ (a, 1).
Observe that since G(x, κ1) is symmetric with respect to the x1-axis, (see Lemma 2.1

in [10]), we get G(κ j , κ1) = G(κm− j+2, κ1), j = 2, . . . ,m. Similarly the value G(κi , κ j )

depends only on the distance between κi and κ j . For example, G(x, κ2) = G(L− 2π
m
x, κ1)

and consequently G(κi+1, κ2) = G(κi , κ1), where Lθ denotes the rotation operator around
0 with angle θ . Similarly G(κi+k, κ1+k) = G(κi , κ1). Note also that, if � is an annulus, the
Robin function R(x) is radial, so that R(κ1) = · · · = R(κm) = R.

Here we set G(κi , κ1) = Gi and Rl = R + 4
∑l

h=2 Gh .
The matrix (hi j ) becomes
if m = 2l (l = 1, 2, . . .),

(hi j ) =

⎛
⎜⎜⎝
Rl + 2Gl+1 −G2 −G3 . . . −Gl+1 . . . −G2

−G2 Rl + 2Gl+1 −G2 . . . . . . . . . −G3

. . .

−G2 −G3 . . . . . . . . . . . . Rl + 2Gl+1

⎞
⎟⎟⎠ ,

and for m = 2l + 1 (l = 1, 2, . . .),

(hi j ) =

⎛
⎜⎜⎝

Rl −G2 −G3 . . . −Gl −Gl . . . −G2

−G2 Rl −G2 . . . . . . . . . . . . −G3

. . .

−G2 −G3 . . . . . . . . . . . . −G2 Rl

⎞
⎟⎟⎠ ,

A straightforward computation shows that the first eigenvalue of (hi j ) is �1 = R +
2
∑l

h=2 Gh + Gl+1 for m = 2l and R + 2
∑l

h=2 Gh for m = 2l + 1 which is simple. It is
easy to see that the eigenspace corresponding to �1 is spanned by c1 = (1, 1, . . . , 1).

Now consider separately the cases where m is odd and m is even.
Case 1 m is odd.
Let vkn be an eigenfunction related to the eigenvalue μk

n with k ≥ 2 and rotate it by an
angle of 2π

m . By the symmetry of the problem, we get that the rotated function v̄kn(r, θ) =
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vkn
(
r, θ + 2π

m

)
is still an eigenfuction related to the same eigenvalue μk

n . If by contradiction
the eigenvalue μk

n is simple we have that

v̄kn = αnv
k
n, (5.1)

for some αn 
= 0 with αn ≤ 1.
Let ck and c̄k be the limiting eigenvectors given by (1.15) associated to vkn and v̄kn , respec-

tively. Denoting by ck = (ck1, . . . , c
k
m), we have, by the definition of v̄kn ,

c̄k =
(
ck2, c

k
3 . . . , ckm, ck1

)
. (5.2)

By (5.1) and (5.2), we derive that

αcki = cki+1 for i = 1, . . . ,m, meaning that cm+1 = c1, (5.3)

where α = limn−→∞ αn . From (5.3), we get that cki = αmcki . Since c
k 
= 0, we get αm = 1

and since m is odd we derive that ck = (1, 1, . . . , 1) = c1. This gives a contradiction since
k ≥ 2.

Case 2 m is even.
Let vkn be an eigenfunction related to the eigenvalue μk

n with k ≥ 2 and define v̄kn as in
the previous case. Repeating step by step the proof, assuming that μk

n is a simple eigenvalue,
we again deduce that αm = 1. However, since in this case m is even, we have the solution
α = −1 and by (5.3), we get ck = (−1, 1,−1, 1, . . . ,−1, 1). ��
Remark 5.1 When m = 2l, the eigenvalue �k corresponding to ck = (−1, 1,−1, 1, . . . ,
−1, 1) is given by

�k = R +
(
2 + (−1)

m+2
2

)
G m+2

2
+ 2

l∑
h=2

(
2 + (−1)h

)
Gh .

A direct computation proves that for m = 4 the eigenvalue �k is simple if G2 
= G3. For
m > 4, similar conditions hold. Anyway these conditions are not easy to check because
we do not know explicitly the Green function of the annulus. For this reason, we will not
investigate further.
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