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Abstract In this work, we will prove results that ensure the simplicity and the exceptionality
of vector bundles, which are defined by the splitting of pure resolutions. We will call such
objects syzygy bundles.
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1 Introduction

The study of particular families of vector bundles over projective varieties has always taken a
great part in algebraic geometry. In particular, many authors focused on the family of syzygy
bundles, defined as the kernel of an epimorphism of the form

φ : ⊕t
i=1OPn (−di ) −→ OPn ,

that have been studied in the last decades. Brenner in [4] gives combinatorial conditions for
(semi)stability of the syzygy bundles on Pn when they are given by monomial ideals. Coanda
in [5] studies stability for syzygies on P

n defined by polynomials of the same degree, of
any possible rank for n ≥ 3. Costa, Marques, and Miró-Roig, see [6], also study stability of
syzygies on P

n given by polynomials of same degree and studied moduli spaces.
Ein, Lazarsfeld, and Mustopa in [8,9] extend the problem for smooth projective varieties

X, studying the stability of the syzygy bundles that are given by the kernel of the evaluation
map evalL : H0(L) ⊗K OX −→ L where L is a very ample line bundle over X .
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42 S. Marchesi, D. M. Prata

We define the syzygy bundles on P
n as the vector bundles coming from the splitting of

pure resolutions of the form

0 �� Oβp
Pn (−dp) �� · · · �� Oβ1

Pn (−d1) �� Oβ0
Pn

�� 0 (1)

into short exact sequences. Observe that the first syzygy bundle F in (1) obtained as

0 −→ F −→ Oβ1
Pn (−d1) −→ Oβ0

Pn −→ 0

is also a syzygy bundle in the sense of [4,5] and [6].
In the second section, we recall some notions on pure resolutions, and we introduce in

detail what we will mean by syzygy bundle on the projective space.
In the third section, we will prove two results, see Theorems 3.1 and 3.6, which ensure

the simplicity of the syzygy bundles previously defined. Recall that a vector bundle E on P
n

is simple if dim Hom(E, E) = 1. The results here generalize the ones proved in Section 4
and Section 5 of [13].

In particular, we provide an answer to a question proposed by Herzog and Kühl in [11],
where they wonder whether the modules coming from linear pure resolution of monomial
ideals are indecomposable or not. We will be able to ensure such property under specific
hypotheses, see Remark 3.9.

In the fourth section, we will show necessary and sufficient conditions to prove exception-
ality of the bundles, see Theorem 4.1, and we will state a conjecture, which relates syzygy
bundles with Steiner bundles. There is a long-standing conjecture saying that every excep-
tional bundle on P

n is stable. For the case n = 2, it was proved by Drèzet and Le Potier in
[7], and for n = 3, it was proved by Zube in [17]. There are other results in this sense for
some families of vector bundles; for example, Brambilla [1] proved that exceptional Steiner
bundles S on P

n , for n ≥ 2, given by

0 �� Oa
Pn (−1) �� Ob

Pn
�� S �� 0 .

are stable.
In the fifth section, we will consider some classical pure resolutions, studying when the

bundles defined in their splitting are simple and when exceptional.

2 Preliminaries

In this section, we fix the notation that will be used in this work, and we recall some basic
definitions and results. Let K be an algebraically closed field of characteristic 0 and let
R = K[x0, . . . , xn] be the ring of polynomials in n + 1 variables. Let M be a graded R-
module.

An R-module N �= 0 is said to be a k-syzygy of M if there is an exact sequence of graded
R-modules

0 �� N �� Fk
ϕk ���� Fk−1 �� · · · �� F1

ϕ1 ���� M �� 0

where the modules Fi are free R-modules.
We say that M has a finite projective dimension if there exist a free resolution over R

0 �� Fs
ϕS �� Fs−1 �� · · · �� F1

ϕ1 �� F0 �� M �� 0 (2)
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The least length s of such resolutions is called the projective dimension of M and denoted
by pd(M). The resolution (2) is minimal if im ϕi ⊂ mFi−1, ∀ i , where m = (x0, . . . , xn) is
the irrelevant ideal of R. From the Hilbert syzygy Theorem, see for example [15, Theorem
1.1.8], we have that pd(M) ≤ n + 1. If M has a graded minimal free resolution

0 �� ⊕ j∈ZRβp, j (M)(− j) �� · · · �� ⊕ j∈ZRβ1, j (M)(− j) ��

⊕ j∈ZRβ0, j (M)(− j) �� M �� 0

then the integers βi, j (M) = dim TorRi (M,K) j are called the (i, j)-th graded Betti number
of M , and βi := ∑

j βi, j (M) is the i th total Betti number of M .
We say M has a pure resolution of type d = (d0, . . . , dp) if it is given by

0 �� Rβp (−dp) �� · · · �� Rβ1(−d1) �� Rβ0(−d0) �� M �� 0

with d0 < d1 < · · · < dp, di ∈ Z.
We say that M has a linear resolution if it has a pure resolution of type (0, 1, . . . , p).
Eisenbud and Schreyer [10] proved the following result conjectured byBoij and Söderberg

[3].

Theorem 2.1 For any degree sequence d = (d0, . . . , dp), there is a Cohen–Macaulay mod-
ule M with a pure resolution of type d.

Consider S = K[x0, . . . , xm] the ring of polynomials in m + 1 variables. Let d =
(d0, . . . , dp) be a degree sequence. Then, byTheorem2.1, there is aCohen–Macaulaymodule
M with pure resolution

0 �� Sβp (−dp) �� · · · �� Sβ1(−d1) �� Sβ0(−d0) �� M �� 0 .

Let M be the Artinian reduction of M . Then, M is an Artinian module with pure resolution

0 �� Rβp (−dp) �� · · · �� Rβ1(−d1) �� Rβ0(−d0) �� M �� 0 (3)

where R = K[x0, . . . , xn] with n = p − 1.
We nowwant to pass frommodules to vector bundles and study pure resolutions involving

them. Assume we have an Artinian module M with pure resolution (3); sheafifying the
complex, we obtain

0 �� Oβn+1
Pn (−dn+1)

�� · · · �� Oβ1
Pn (−d1) �� Oβ0

Pn (−d0) �� 0 . (4)

During this paper,wewill be interested in such resolution, in particular,wewill be interested in
studying properties of the bundles coming by splitting the resolution in short exact sequences.

Definition 2.2 We will call syzygy bundles the vector bundles, which arise by splitting of
resolutions of the type (4).

We conclude this section recalling the following notions and results on vector bundles.
Let E be a vector bundle on P

n . A resolution of E is an exact sequence

0 �� Fd �� Fd−1 �� · · · �� F1 �� F0 �� E �� 0 (5)

where every Fi splits as a direct sum of line bundles.
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One can show that every vector bundle on P
n admits resolution of the form (5), see [12,

Proposition 5.3]. The minimal number d of such resolution is called homological dimension
of E , and it is denoted by hd(E). For a coherent sheaf F on P

n , let us denote the graded
R-module ⊕ j∈ZHq(F( j)) = Hq∗ (F). Bohnhorst and Spindler proved the following two
results, [2, Proposition 1.4] and [2, Corollary 1.7], respectively.

Proposition 2.3 Let E be a vector bundle on P
n. Then,

hd(E) ≤ d ⇐⇒ Hq∗ (E) = 0,∀ 1 ≤ q ≤ n − d − 1.

Proposition 2.4 Let E be a nonsplitting vector bundle on P
n. Then,

rk(E) ≥ n + 1 − hd(E).

Recall that a vector bundle E on Pn is simple if dim Hom(E, E) = 1, and it is exceptional
if it is simple and Exti (E, E) = 0, for i ≥ 1. We also recall the notion of cokernel bundles
and Steiner bundles, as defined, respectively, in [1] and [16].

Definition 2.5 Let E0 and E1 be two vector bundles on P
n , with n ≥ 2. A cokernel bundle

of type (E0, E1) on P
n is a vector bundle C defined by the following short exact sequence

0 −→ Ea
0 −→ Eb

1 −→ C −→ 0

where b rk E1 − a rk E0 ≥ n, with a, b ∈ N, and E0, E1 satisfy the following conditions:

– E0 and E1 are simple;
– Hom(E1, E0) = 0;
– Ext1(E1, E0) = 0;
– the bundle E∨

0 ⊗ E1 is globally generated;
– W = Hom(E0, E1) has dimension w ≥ 3.

If, moreover,

Exti (E1, E0) = 0, for each i ≥ 2

and

Exti (E0, E1) = 0, for each i ≥ 1,

the pair (E0, E1) is called strongly exceptional, and the bundle C is called a Steiner bundle
of type (E0, E1) on P

n .

3 Simplicity of syzygy bundles

In this section, we will give some results that ensure the simplicity of the syzygy bundles of
the following pure resolution

0 �� Oβn+1
Pn (−dn+1)

�� Oβn
Pn (−dn) · · · ���� Oβ1

Pn (−d1) �� Oβ0
Pn

�� 0

(6)
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Simplicity and exceptionality of syzygy bundles over Pn 45

with d1 < d2 < . . . < dn+1 and di > 0 for each i , which splits in short exact sequences

0 −→ Oβn+1
Pn (−dn+1) −→ Oβn

Pn (−dn) −→ G1 −→ 0
...

0 −→ Gi −→ Oβn−i
Pn (−dn−i ) −→ Gi+1 −→ 0

...

0 −→ Gn−1 −→ Oβ1
Pn (−d1) −→ Oβ0

Pn
−→ 0

(7)

We will also consider the dual resolution of (6) and tensor it by OPn (−dn+1), obtaining

0 �� OPn (−dn+1)
β0 �� Oβ1

Pn (d1 − dn+1)
�� · · · ��

Oβn
Pn (dn − dn+1)

�� Oβn+1
Pn

�� 0 (8)

which splits as

0 −→ Oβ0
Pn (−dn+1) −→ Oβ1

Pn (d1 − dn+1) −→ F1 −→ 0
...

0 −→ Fj −→ Oβ j+1
Pn (d j+1 − dn+1) −→ Fj+1 −→ 0

...

0 −→ Fn−1 −→ Oβn
Pn (dn − dn+1) −→ Oβn+1

Pn
−→ 0

(9)

Let us notice that we have supposed, without loss of generality, that d0 = 0; else we can
tensor the resolution (4) by OPn (−d0) in order to obtain a new resolution as in (6). Let us
prove now some results which ensure the simplicity of the bundles Fi , for i from 1 to n − 1;
in particular, the next theorem tell us when the syzigies are simple only looking at the first
or the last Betti number.

Theorem 3.1 Consider a pure resolution as in (6). If β0 = 1 or βn+1 = 1, then all bundles
Fi , for i from 1 to n − 1, are simple.

Proof Let us consider first the case β0 = 1, whose importance will be explained by Corol-
lary 3.2.

Let us prove first that the bundle F1 is simple.
Consider the exact sequence, obtained by (9),

0 −→ (F∨
1 )β0(−dn+1) −→ (F∨

1 )β1(d1 − dn+1) −→ F∨
1 ⊗ F1 −→ 0

which induces the long exact sequence in cohomology

0 −→ H0((F∨
1 )β0(−dn+1)) −→ H0((F∨

1 )β1(d1 − dn+1))

−→ H0(F∨
1 ⊗ F1) −→ H1((F∨

1 )β0(−dn+1)) −→ · · ·
Taking again the short exact sequences obtained by dualizing (9) and tensoring byOPn (d1 −
dn+1)

0 −→ F∨
i+1(d1 − dn+1) −→ Oβi+1

Pn (d1 − di+1) −→ F∨
i (d1 − dn+1) −→ 0,

for i from 1 to n − 2, we obtain the following chain of isomorphisms

H0(F∨
1 (d1 − dn+1)) � H1(F∨

2 (d1 − dn+1)) � · · · � Hn−2(F∨
n−1(d1 − dn+1)) = 0,
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and the isomorphisms are true (especially the first one) because d1 < dn+1 and the vanishing
comes from the short exact sequences of (9). Combining these two results, we get an injective
map

H0(F∨
1 ⊗ F1) ↪→ H1((F∨

1 )β0(−dn+1)).

Consider the short exact sequence

0 −→ F∨
1 (−dn+1) −→ Oβ1

Pn (−d1) −→ Oβ0
Pn −→ 0 (10)

from which it is straightforward to obtain β0 = h1
(
F∨
1 (−dn−1)

)
; this implies, in the case

β0 = 1, that the F1 is a simple bundle.
Let us prove now that each bundle Fi is simple, for i from 2 to n − 1.
Consider the following exact sequence obtained from (9)

0 −→ Fi−1 ⊗ F∨
i −→ (F∨

i )βi (di − dn+1) −→ Fi ⊗ F∨
i −→ 0 (11)

Taking the exact sequences of type

0 −→ F∨
i+1(di − dn+1) −→ Oβi+1

Pn (di − di+1) −→ F∨
i (di − dn+1) −→ 0

for i from 1 to n − 2, and their induced long exact sequence in cohomology, we get a chain
of isomorphisms of type

H0(F∨
i (di −dn+1)) � H1(F∨

i+1(di −dn+1)) � · · · � Hn−1−i (F∨
n−1(di −dn+1) = 0, (12)

again because di < dn+1 and the vanishing comes from short exact sequences of (9). There-
fore, inducing the long exact sequence in cohomology of (11), we have an inclusion of type

H0(Fi ⊗ F∨
i ) ↪→ H1(Fi−1 ⊗ F∨

i ).

Proceeding step by step, lowering by one the value of i , and using similar isomorphisms as
in (12) that are consequence of the short exact sequences in (9), we manage to obtain the
following inclusions

H1(Fi−1 ⊗ F∨
i ) ↪→ H2(Fi−2 ⊗ F∨

i ) ↪→ · · · ↪→ Hi−1(F1 ⊗ F∨
i ) ↪→ Hi (F∨

i (−dn+1)).

In order to compute the last cohomology group, we consider, as before, the exact sequences
of the following form

0 −→ F∨
i+1(−dn+1) −→ Oβi+1

Pn (−di+1) −→ F∨
i (−dn+1) −→ 0

for i from 1 to n − 2, obtaining, by our hypothesis β0 = 1,

Hi (F∨
i (−dn+1)) � Hi−1(F∨

i−1(−dn+1)) � · · · � H1(F∨
1 (−dn+1)) � C.

This proves that the bundle Fi is simple.
The case βn+1 = 1 can be proved, by duality, applying the same technique. Indeed, we can

define d̃i = dn+1 − dn+1−i , and dualizing the resolution (8) and tensoring by OPn (−d̃n+1),
we obtain a new resolution of the form

0 �� OPn (−d̃n+1)
�� Oβn

Pn (d̃1 − d̃n+1)
�� · · · ��

Oβ1
Pn (d̃n − d̃n+1)

�� Oβ0
Pn

�� 0 (13)

where, as before, the integers d̃i satisfy d̃n+1 > d̃n > . . . > d̃1 > 0, and we apply the
previous technique. ��
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As a corollary, we have the following.

Corollary 3.2 Consider a quotient ring A = R/I where I is Artinian module and its pure
resolution. Then, each vector bundle Fi , arising from the splitting of the resolution in short
exact sequences, is simple.

Proof Since A is a quotient, we have that β0 = 1, then we can apply the previous theorem
and obtain that all the bundles Fi are simple. ��

With the next lemmas, we give an explicit description and boundaries for the Betti number
arising in the resolution we are considering, which will be useful to prove a different theorem
about simplicity of the syzygies.

Lemma 3.3 The syzygies in the short exact sequences (9) satisfies

h0(F∨
i−1(di − dn+1)) = βi , f or i = 2, . . . , n.

Proof Twisting the short exact sequences, we have

0 �� F∨
i (di − dn+1) �� Oβi

Pn
�� F∨

i−1(di − dn+1) �� 0 .

One can check that

h0(F∨
i (di − dn+1)) = h1(F∨

i (di − dn+1))

and the result follows. ��
Lemma 3.4 Consider the syzygies Gi and Fi from the short exact sequences (7) and (9).
Then, hd(Gi ) =hd(Fi ) = i , for i = 1, . . . , n − 1.

Proof Let us prove for Fi . The case of Gi is analogous. We prove it by induction on i . From
the short exact sequences (9), it is clear that hd(F1) = 1. Let us suppose that hd(Fi−1) = i−1.
We know that hd(Fi ) ≤ i . Suppose hd(Fi ) ≤ i − 1. By Proposition 2.3,

Hq∗ (Fi ) = 0, ∀ 1 ≤ q ≤ n − i.

Since Hn−i∗ (Fi ) � Hn−i+1∗ (Fi−1) from the sequences (9), and hd(Fi−1) = i − 1, by induc-
tion, there exists t ∈ Z such that Hn−i+1(Fi−1(t)) �= 0. Therefore, hd(Fi ) = i . ��
Lemma 3.5 The Betti numbers βi from the sequence (6) satisfy the inequalities

β1 − β0 ≥ n
βi ≥ 2n − 2i + 3, for 2 ≤ i ≤ n+1

2
βi ≥ 2i + 1, for n+1

2 ≤ i ≤ n − 1
βn − βn+1 ≥ n

In particular, βi ≥ 3, for 2 ≤ i ≤ n − 1.

Proof We have by Lemma 3.4 that hd(Gi ) =hd(Fi ) = i , 1 ≤ i ≤ n − 1. With Proposition
2.4

rk(E) ≥ n + 1 − hd(E)

and using the short exact sequences of Fi for 1 ≤ i ≤ n+1
2 and the sequences of Gi for

n+1
2 ≤ i ≤ n − 1, we prove the inequalities. ��
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We are now ready to state the second theorem on the simplicity of the syzygy bundles.

Theorem 3.6 Consider the pure resolution (8) and the syzygies given by the short exact
sequences. Then, if F1 or Fn−1 are simple, all the syzygies are simple.

Proof Suppose F1 is simple. Let us prove by induction hypothesis that Fi is simple for
i = 1, . . . , n − 1. Consider an injective generic map

αi : Fi−1 → Oβi
Pn (di − dn+1).

We have the following properties:

(i) Fi−1,OPn (di − dn+1) are simple, the first bundle by induction hypothesis;
(i i) Hom(OPn (di − dn+1), Fi−1) = 0. It follows from

H0(Fi−1(dn+1 − di )) � H j (Fi− j−1(dn+1 − di )), 0 ≤ j ≤ i − 2

and Hi−2(F1(dn+1 − di )) = Hi−1(OPn (−di )) = 0, by the sequence (9);
(i i i) Ext1(OPn (di − dn+1), Fi−1) = 0. In fact, by the above sequence (9)

H1(Fi−1(dn+1 − di )) � H j (Fi− j (dn+1 − di )), 0 ≤ j ≤ i − 1

and Hi−1(F1(dn+1 − di )) = Hi (OPn (−di )) = 0;
(iv) F∨

i−1⊗OPn (di−dn+1) is globally generated. This is clear from the short exact sequences
also in (9).

(iv) dimHom(Fi−1,OPn (di − dn+1)) ≥ 3. Follows from Lemmas 3.3 and 3.5.

Hence, we have that Fi−1 and OPn (di − dn+1) satisfies the conditions of cokernel bundles
(see Definition 2.5); therefore, Fi = cokerαi is a cokernel bundle and since 1 + βi

2 −
h0(F∨

i−1(di − dn+1))βi = 1 by Lemma 3.3, we have that Fi is simple, see [1, Theorem 4.3].
Notice that we have two short exact sequences of the form

0 �� Fi−1

λI

��

gi

�������������
�� Oβi

Pn (di − dn+1)

hi
��

�� Fi ��

��

0

0 �� Fi−1
αi �� Oβi

Pn (di − dn+1)
�� Fi �� 0

Having a 1:1 correspondence between αi and hi , we can always get hi an isomorphism and
therefore, Fi � Fi and Fi is simple.

Regarding the other case, i.e., supposing that Fn−1 is simple,we candefinenewcoefficients
d̃i , in the same way as in the last part of the proof of Theorem 3.1, and take the dual of (8),
tensor it by OPn (−d̃n+1) and apply the same technique. ��

We would like to find conditions to grant simplicity for every syzygy bundle in the reso-
lution; therefore, in the next results, we ask for conditions which give us either F1 or Fn−1

simple bundles.

Corollary 3.7 Consider the complex (6). If βn − βn+1 = n or β1 − β0 = n, then all the
syzygies are simple.

Proof Under this hypothesis, it follows from [2, Theorem 2.7] that either Fn−1 is stable or
F1 is stable, then all the syzygies are simple. ��
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Corollary 3.8 Consider the complex (6). If the injective map

αn+1 : Oβn+1
Pn (−dn+1) −→ Oβn

Pn (−dn)

is generic and βn+1
2 + β2

n − h0(OPn (dn+1 − dn))βn+1βn ≤ 1, or the injective map

α∨
1 : Oβ0

Pn −→ Oβ1
Pn (d1)

is generic and β0
2 + β2

1 − h0(OPn (d1))β0β1 ≤ 1, then all the syzygies are simple.

Proof If we have the hypothesis above, cokerαn+1 = F∨
n−1(−dn+1) or cokerα∨

1 = F1 are
simple cokernel bundles, see [1, Theorem 4.3], and the previous theorem applies. ��

We conclude this part with the following observation.

Remark 3.9 Consider the syzygy modules Ni , for i from 1 to p − 2, which are obtained by
the pure resolution

0 �� Rβp (−dp) �� · · · �� Rβ1(−d1) �� Rβ0(−d0) �� M �� 0

N1

�����������

0

������������

Recalling the equivalence of category between modules and their sheafifications, we get that,
if the vector bundles Fi are simple, the modules Ni are indecomposable.

4 Exceptionality of syzygy bundles

In this section, we state and prove sufficient and necessary conditions to ensure the excep-
tionality of the syzygy bundles Fi . We obtain the following result.

Theorem 4.1 Consider the syzygy bundles Fi as defined in (9), for i from 1 to n−1. Suppose
also that Fi are simple for each i , then every Fi is exceptional if and only if each one of the
following conditions hold

(i) β2
0 + β2

1 − (d1+n
n

)
β0β1 = 1;

(ii) d1 ≤ n;
(iii)

⎧
⎪⎨

⎪⎩

Hn−i+1(Fi−1(dn+1 − di )) = Hi (F∨
i (di − dn+1)) = 0 if n is even;

Hn−i+1(Fi−1(dn+1 − di )) = Hi (F∨
i (di − dn+1)) = 0 if n is odd and i �= n+1

2 ;
Hn−i+1(Fi−1(dn+1 − di ))

Hi (ϕ)� Hi (F∨
i (di − dn+1)) if n is odd and i = n+1

2 .

If n is odd and i = n+1
2 , then Hn−i+1(Fi−1(dn+1 − di )) � Hi (Fi−1 ⊗ F∨

i ) and the
morphism Hi (ϕ) : Hi (F∨

i ⊗ Fi−1) → Hi ((F∨
i )βi (di − dn+1)) is the one obtained by

the short exact sequence

0 −→ F∨
i ⊗ Fi−1

ϕ−→ (F∨
i )βi (di − dn+1) −→ F∨

i ⊗ Fi −→ 0

considering the long exact induced in cohomology.
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Proof We will first look for conditions, which are equivalent to the exceptionality of the
bundle F1; therefore, we must compute the cohomology of the bundle F∨

1 ⊗ F1. Consider
the short exact sequence

0 −→ (F∨
1 )β0(−dn+1) −→ (F∨

1 )β1(d1 − dn+1) −→ F∨
1 ⊗ F1 −→ 0. (14)

The first step consists now in calculating the cohomology of F∨
1 (−dn+1). We now consider

the sequence

0 −→ F∨
1 (−dn+1) −→ Oβ1

Pn (−d1) −→ Oβ0
Pn −→ 0

obtaining that

Hi (F∨
1 (−dn+1)) = 0 for i = 0, 2, 3, . . . , n − 2, n − 1

H1(F∨
1 (−dn+1) � H0(Oβ0

Pn ) � K
β0

Hn(F∨
1 (−dn+1) � Hn(Oβ1

Pn (−d1))

We must now compute the cohomology of the second bundle appearing in (14), and we will
do it using the short exact sequence

0 −→ F∨
1 (d1 − dn+1) −→ Oβ1

Pn −→ Oβ0
Pn (d1) −→ 0

from which we obtain that

H0(F∨
1 (d1 − dn+1)) � · · · � Hn−2(F∨

n−1(d1 − dn+1)) = 0,

that we have already computed in the proof of Theorem 3.1, and moreover

h1(F∨
1 (d1 − dn+1)) = dimH1(F∨

1 (d1 − dn+1)) = β0

(
d1 + n

n

)

− β1,

H2(F∨
1 (d1 − dn+1)) � · · · � Hn(F∨

1 (d1 − dn+1)) = 0.

From the cohomology we have already calculated, we get that

H2(F∨
1 ⊗ F1) � · · · � Hn−2(F∨

1 ⊗ F1) � Hn(F∨
1 ⊗ F1) = 0.

Recall that we supposed F1 to be simple, hence we have the following exact sequence in
cohomology

0−→K−→H1((F∨
1 )β0(−dn+1))−→H1((F∨

1 )β1(d1 − dn+1))−→H1(F∨
1 ⊗ F1) −→ 0.

Therefore, H1(F∨
1 ⊗ F1) vanishes if and only if

β2
0 + β2

1 −
(
d1 + n

n

)

β0β1 = 1.

The other cohomology which we need to vanish is given by

Hn−1(F∨
1 ⊗ F1) � Hn(F∨

1 (−dn+1) � Hn(Oβ1
Pn (−d1)),

that is equal to zero if and only if d1 ≤ n.
Let us suppose the bundle Fi−1 to be exceptional, and let us find conditions ensuring the

exceptionality of Fi . In order to do so, consider an i fixed from 2 to n − 1 and consider also
the following short exact sequences

0 −→ F∨
i ⊗ Fi−1 −→ (F∨

i )βi (di − dn+1) −→ F∨
i ⊗ Fi −→ 0 (15)

0 −→ F∨
i ⊗ Fi−1 −→ Fβi

i−1(dn+1 − di ) −→ F∨
i−1 ⊗ Fi−1 −→ 0 (16)
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Recall that by induction hypothesis, we have that

H0(F∨
i−1 ⊗ Fi−1) � K and Hk(F∨

i−1 ⊗ Fi−1) = 0 for each k > 0.

Let us compute the cohomology of the bundle F∨
i (di − dn+1); using the usual short exact

sequences defined in (9), we have that:

– if k < i then Hk(F∨
i (di − dn+1)) � Hk+n−i−1(F∨

n−1(di − dn+1)) = 0, because k + n−
1 − i ≤ n − 2;

– similarly, if k > i then Hk(F∨
i (di − dn+1)) � Hk+1−i (F∨

1 (di − dn+1)) = 0, because
k + 1 − i ≥ 2;

hence, we notice that the only possible nonvanishing cohomology of the bundle is given
exactly by Hi (F∨

i (di − dn+1)).

Using Serre duality and a similar argument, we obtain that

Hk(Fi−1(dn+1 − di )) = 0, if k �= n − i + 1

the only possible nonvanishing cohomology of the bundle is given exactly by Hn−i+1(Fi−1

(dn+1 − di )). Considering this and the induction hypothesis, we get from the exact sequence
(16), that

H1(F∨
i ⊗ Fi−1) � H0(F∨

i−1 ⊗ Fi−1) � K

and

Hk(F∨
i ⊗ Fi−1) � Hk(Fi−1(dn+1 − di )) ∀ i = 2, . . . , n.

Notice that the following cohomology groups are isomorphic

Hi (F∨
i (di − dn+1)) � H1(F∨

1 (di − dn+1)) � Hn−1(F∨
n−1(di − dn+1)).

Let us first look for an explicit expression of the group H1(F∨
1 (di − dn+1)) and in order to

do so, take the sequence

0 −→ F∨
1 (di − dn+1) −→ Oβ1

Pn (di − d1) −→ Oβ0
Pn (di ) −→ 0

and we are interested in the following part of the induced sequence in cohomology

0 −→ H0(F∨
1 (di − dn+1)) −→ H0(Oβ1

Pn (di − d1)) −→ H0(Oβ0
Pn (di ))

−→ H1(F∨
1 (di − dn+1)) −→ 0

The problemnowmoves to the computation of the dimension of the vector space H0(F∨
1 (di−

dn+1)).
Consider the exact sequences

0 −→ F∨
2 (di − dn+1) −→ Oβ2

Pn (di − d2) −→ F∨
1 (di − dn+1) −→ 0

...

0 −→ F∨
i−1(di − dn+1) −→ Oβi−1

Pn (di − di−1) −→ F∨
i−2(di − dn+1) −→ 0

0 −→ F∨
i (di − dn+1) −→ Oβi

Pn −→ F∨
i−1(di − dn+1) −→ 0

0 −→ F∨
i+1(di − dn+1) −→ Oβi+1

Pn (di − di+1︸ ︷︷ ︸
<0

) −→ F∨
i (di − dn+1) −→ 0
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We have already proven that H0(F∨
i (di − dn+1)) = H1(F∨

i (di − dn+1)) = 0 and also
H1(F∨

j (di − dn+1)) = 0 for each j = 2, . . . , i + 1; hence, we obtain that

hi (F∨
i (di − dn+1)) = h1(F∨

1 (di − dn + 1)) =
i∑

k=0

(−1)kβk

(
di − dk + n

n

)

.

Let us now “go to the other side”, arriving to Hn−1(F∨
n−1(di − dn+1)).

Consider the short exact sequence

0 −→ Oβn+1
Pn (di − dn+1) −→ Oβn

Pn (di − dn) −→ F∨
n−1(di − dn+1) −→ 0

from which we induce the following part induced in cohomology

0 −→ Hn−1(F∨
n−1(di − dn+1)) −→ Hn(Oβn+1

Pn (di − dn+1)) −→ Hn(Oβn
Pn (di − dn))

−→ Hn(F∨
n−1(di − dn+1)) −→ 0.

As before, take

0 −→ F∨
n−1(di − dn+1) −→ Oβn−1

Pn (di − dn+1) −→ F∨
n−2(di − dn+1) −→ 0

...

0 −→ F∨
i+2(di − dn+1) −→ Oβi+2

Pn (di − di+2) −→ F∨
i+1(di − dn+1) −→ 0

0 −→ F∨
i+1(di − dn+1) −→ Oβi+1

Pn (di − di+1) −→ F∨
i (di − dn+1) −→ 0

0 −→ F∨
i (di − dn+1) −→ Oβi

Pn −→ F∨
i−1(di − dn+1) −→ 0

Suppose that i < n − 1 (or else the computation comes directly considering only the first
exact sequence and we will obtain the same result), we have that

Hn(F∨
i (di − dn+1)) � Hn−1(F∨

i (di − dn+1)) = 0

and also

Hn−1(F∨
j (di − dn+1)) = 0, for each j = i + 1, . . . , n − 2.

We can conclude that

hi (F∨
i (di − dn+1))=hn−1(F∨

n−1(di − dn+1)) =
{∑n+1

k=i+1(−1)k+1βk
(dk−di−1

n

)
for n even

∑n+1
k=i+1(−1)kβk

(dk−di−1
n

)
for n odd.

Let us focus now on the cohomology of the bundle Fi−1(dn+1 − di ).
We obtain by Serre duality that

Hk(Fi−1(dn+1 − di )) � Hn−k(F∨
i−1(di − dn+1 − n − 1));

therefore, we already know that

– Hk(Fi−1(dn+1 − di )) = 0 if k �= n − i + 1,
– Hn−i+1(Fi−1(dn+1 − di )) � Hi−1(F∨

i−1(di − dn+1 − n − 1)).

As before, we have the isomorphisms

Hi−1(F∨
i−1(di − dn+1 − n − 1)) � H1(F∨

1 (di − dn+1 − n − 1))

� Hn−1(F∨
n−1(di − dn+1 − n − 1)).
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Using the same techniques as before, if we focus on the first isomorphism, then we have to
consider the exact sequences

0 −→ F∨
1 (di − dn+1 − n − 1) −→ Oβ1

Pn (di − d1 − n − 1) −→ Oβ0
Pn (di − n − 1) −→ 0

0 −→ F∨
2 (di − dn+1 − n − 1) −→ Oβ2

Pn (di − d2 − n − 1) −→ F∨
1 (di − dn+1 − n − 1) −→ 0

.

.

.

0 −→ F∨
i−1(di − dn+1 − n − 1) −→ Oβi−1

Pn (di − di−1 − n − 1) −→ F∨
i−2(di − dn+1− n− 1) −→ 0

0 −→ F∨
i (di − dn+1 − n − 1) −→ Oβi

Pn (−n − 1) −→ F∨
i−1(di − dn+1 − n − 1) −→ 0

and knowing that if i ≥ 3 (or else, as before, we only consider the first short exact sequence
and obtain the same result), we have H0(F∨

i−1(di − dn+1 − n− 1)) = H1(F∨
i−1(di − dn+1 −

n − 1)) = 0, and therefore,

hn−i+1(Fi−1(dn+1 − di )) = h1(F∨
1 (di − dn+1 − n − 1)) =

i−1∑

k=0

(−1)kβk

(
di − dk − 1

n

)

.

Let us focus now on the other isomorphism, computing Hn−1(F∨
n−1(di − dn+1 − n − 1)).

Take the sequences

0 −→ Oβn+1
Pn (di − dn+1 − n − 1) −→ Oβn

Pn (di − dn − n − 1) −→ F∨
n−1(di − dn+1 − n − 1) −→ 0

0 −→ F∨
n−1(di − dn+1 − n − 1) −→ Oβn−1

Pn (di − dn+1 − n − 1) −→ F∨
n−2(di − dn+1 − n − 1) −→ 0

.

.

.

0 −→ F∨
i+2(di − dn+1 − n − 1) −→ Oβi+2

Pn (di − di+2 − n − 1) −→ F∨
i+1(di − dn+1 − n − 1) −→ 0

0 −→ F∨
i+1(di − dn+1 − n − 1) −→ Oβi+1

Pn (di − di+1 − n − 1) −→ F∨
i (di − dn+1 − n − 1) −→ 0

0 −→ F∨
i (di − dn+1 − n − 1) −→ Oβi

Pn (−n − 1) −→ F∨
i−1(di − dn+1 − n − 1) −→ 0

and, being i −1 < n−1 we can state that Hn−1(F∨
i−1(di −dn+1 −n−1)) = Hn(F∨

i−1(di −
dn+1 − n − 1)) = 0 and also that

Hn−1(F∨
j (di − dn+1 − n − 1)) = 0 for each j = i, . . . , n − 2.

We obtain that

hn−i+1(Fi−1(dn+1 − di )) = hn−1(F∨
n−1(di − dn+1 − n − 1))

=
{∑n+1

k=i (−1)k+1βk
(dk−di+n

n

)
for n even

∑n+1
k=i (−1)kβk

(dk−di+n
n

)
for n odd

Let us fix some notation, for each i fixed, we will call

�i,1 = hi (F∨
i (di − dn+1))

�i,2 = hn−i+1(Fi−1(dn+1 − di )).

We have learned that for each i fixed from 2 to n−1 the cohomology group of F∨
i (di −dn+1)

whichmaynot vanish is the i-th group; hence, the important part of the exact sequence induced
in cohomology by (15) is

−→ Hi−1((F∨
i )βi (di − dn+1))

︸ ︷︷ ︸
=0

−→ Hi−1(F∨
i ⊗ Fi ) −→ Hi (Fβi

i−1(dn+1 − di ))

−→ Hi ((F∨
i )βi (di − dn+1))

︸ ︷︷ ︸
dimension βi�i,1

−→−→ Hi (F∨
i ⊗ Fi ) −→ Hi+1(Fβi

i−1(dn+1 − di ))

−→ Hi+1((F∨
i )βi (di − dn+1))

︸ ︷︷ ︸
=0

−→

(17)
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We now need to check out how the nonvanishing group in cohomology, associated with the
bundle Fi−1(dn+1 − di ), relates to the first group, we can have the following situations.

Case 1 If i �= n+1
2 and i �= n

2 , which means that n − i �= i − 1 and n − i − 1 �= i − 1, then
the two groups belong to two different exact sequences of type (17), and we have

Hn−i (F∨
i ⊗ Fi ) � Hn−i+1(Fβi

i−1(dn+1 − di ))

and

Hi (F∨
i ⊗ Fi ) = Hi ((F∨

i )βi (di − dn+1))

hence Fi is exceptional if and only if Hn−i+1(Fi−1(dn+1 −di )) = Hi (F∨
i (di −dn+1)) = 0.

Case 2 If i = n
2 , so only in the even cases, we are in the following situation

0 −→ Hi ((F∨
i )βi (di − dn+1))

︸ ︷︷ ︸
dimension βi�i,1

−→ Hi (F∨
i ⊗ Fi ) −→ Hi+1(Fβi

i−1(dn+1 − di ))
︸ ︷︷ ︸

βi�i,2

−→ 0.

Being �i,p ≥ 0 for p = 1, 2, we can state that Fi is exceptional if and only if

Hi ((F∨
i )βi (di − dn+1)) = Hi+1(Fβi

i−1(dn+1 − di )) = 0.

Case 3 If i = n+1
2 , so only in the odd cases, we are in the following situation

0 −→ Hi−1(F∨
i ⊗ Fi ) −→ Hi (Fβi

i−1(dn+1 − di ))
︸ ︷︷ ︸

dimension βi�i,2

Hi (ϕ)−→ Hi ((F∨
i )βi (di − dn+1))

︸ ︷︷ ︸
dimension βi�i,1

−→ Hi (F∨
i ⊗ Fi ) −→ 0,

where Hi (ϕ) is the morphism induced in cohomology by ϕ : F∨
i ⊗ Fi−1 → (F∨

i )βi (di
− dn+1). Therefore Fi is exceptional if and only if Hi−1(F∨

i ⊗ Fi ) = Hi (F∨
i ⊗ Fi ) = 0 if

and only if Hi (ϕ) is an isomorphism.
This concludes the proof. ��

Corollary 4.2 If each bundle Fi for i = 2, . . . , n − 1, defined as

0 −→ Fi−1 −→ Oβi
Pn (di − dn+1) −→ Fi −→ 0,

is a Steiner bundle of type (Fi−1,OPn (di − dn+1)) and β2
0 + β2

1 − (d1+n
n

)
β0β1 = 1; then all

bundles Fi are exceptional, for i = 1, . . . , n − 1.

Proof The cohomological vanishings appearing in the definition of strongly exceptional
pairs, used to define Steiner bundles (recall Definition 2.5), imply the hypothesis (iii) of
Theorem 4.1. ��

We would like to know if the viceversa of the previous result holds, but at the moment,
we are only able to state the following.

Conjecture 1 The syzygy bundles Fi are Steiner if and only if they are also exceptional.

The conjecture would be true if, considering n odd and i = n+1
2 , we prove that the two

cohomology groups

Hn−i+1(Fi−1(dn+1 − di )) and Hi (F∨
i (di − dn+1))
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are isomorphic if and only if they are zero.
As for the results implying simplicity, also for the last theorem, we have a correspondent

result obtained considering the dual resolution. Recall that the bundles Fi are simple or
exceptional if and only if the bundles Gi are.

Theorem 4.3 Consider the syzygy bundles Gi as defined in (7), for i from 1 to n−1. Suppose
also that Gi are simple for each i; then Gi , for i = 1, . . . , n − 1, is exceptional if and only
if each one of the following conditions hold

(i) β2
n+1 + β2

n − (dn+1−dn+n
n

)
βn+1βn = 1;

(ii) dn+1 − dn ≤ n;
(iii)

⎧
⎪⎨

⎪⎩

Hn−i+1(Gi−1(dn+1−i )) = Hi (G∨
i (−dn+1−i )) = 0 if n is even;

Hn−i+1(Gi−1(dn+1−i )) = Hi (G∨
i (−dn+1−i )) = 0 if n is odd and i �= n+1

2 ;
Hn−i+1(Gi−1(dn+1−i ))

Hi (ϕ)� Hi (G∨
i (−dn+1−i )) if n is odd and i = n+1

2 .

where, if n is odd and i = n+1
2 , we get Hn−i+1(Gi−1(dn+1−i )) � Hi (Gi−1⊗G∨

i ) and
the morphism Hi (ϕ) : Hi (G∨

i ⊗Gi−1) → Hi ((G∨
i )βi (−dn+1−i )) is the one obtained

by the short exact sequence

0 −→ G∨
i ⊗ Gi−1

ϕ−→ (G∨
i )βn+1−i (−dn+1−i ) −→ G∨

i ⊗ Gi −→ 0

considering the long exact induced in cohomology.

5 Examples

In this section, we present some famous pure resolutions, and we will apply the results
obtained to determine whenever the syzygies are simple or exceptional. Some of these reso-
lutions were studied by [13].

5.1 Pure linear resolution

Let R = K[x0, . . . , xn] be the ring of polynomials and I = (x0, . . . , xn) be the ideal
generated by the coordinate variables . The Koszul complex K (x0, . . . , xn) is given by

0 �� R(−n − 1)) �� R(n+1
n )(−n)

�� · · · �� Rn+1(−1) ��

R �� R/I �� 0

Sheafifying we get the exact sequence

0 �� OPn (−n − 1)) �� OPn
(n+1

n )(−n)
�� . . . ��

OPn
n+1(−1) �� OPn

�� 0 . (18)

Proposition 5.1 The syzygy bundles arising from the complex (18) are all simple and excep-
tional.

Proof It is a simple computation that the complex satisfies the hypothesis of Theorem 3.1
and of Theorem 3.6 for simplicity, and the hypothesis of Theorem 4.1 for the exceptionality.

��
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5.2 Compressed Gorenstein Artinian graded algebras

Let I = ( f1, . . . , fα1) be an ideal generated by α1 forms of degree t+1, such that the algebra
A = R/I is a compressed Gorenstein Artinian graded algebra of embedding dimension n+1
and socle degree 2t . Thus, by Proposition 3.2 of [14], the minimal free resolution of A is

0 �� R(−2t − n − 1) �� Rαn (−t − n) �� Rαn−1(−t − n + 1) �� · · ·
· · · �� Rαp (−t − p) �� · · · �� Rα2(−t − 2) ��

Rα1(−t − 1) �� R �� A �� 0

where

αi =
(
t + i − 1

i − 1

)(
t + n + 1

n + 1 − i

)

−
(
t + n − i

n + 1 − i

)(
t + n

i − 1

)

, for i = 1, . . . , n.

Sheafifying the complex above, we have

0 �� OPn (−2t − n − 1) �� Oαn
Pn (−t − n) �� Oαn−1

Pn (−t − n + 1) �� · · ·
(19)

· · · �� Oαp
Pn (−t − p) �� · · · �� Oα2

Pn (−t − 2) �� Oα1
Pn (−t − 1)

β �� OPn
�� 0

where β is the map given by the α1 forms of degree t + 1.

Remark 5.2 By applying Theorem 3.1 , we have that the syzygies Fi of the complex (19) are
simple vector bundles. Moreover, hd(Fi ) = n − i , h0(F∗

i (−t − i)) = αi for 1 ≤ i ≤ n − 1.
If we take t = 1, then we get the linear resolution and we already know that all syzygies
are exceptional. Nevertheless, it is easy to loose the exceptionality. For instance, if we take
t such that t > n − 1, the second condition of Theorem 4.1 is not satisfied. Moreover, being
β0 = 1, the first condition of Theorem 4.1 is equivalent to prove that

(
t + n + 1

n

)

−
(
t + n − 1

n

)

= β1 =
(
d1 + n

n

)

=
(
t + n + 1

n

)

,

which are not equal if t ≥ 1. Hence, for this example, the only exceptional bundles come
from the linear resolution.

5.3 Generalized Koszul complex

The reference for this section is [15].

Definition 5.3 LetA be a p×q matrix with entries in R. We say thatA is a t-homogeneous
matrix if the minors of size j × j are homogeneous polinomials for all j ≤ t . The matrix A
is an homogeneous matrix if their minors of any size are homogeneous.

LetA be an homogeneousmatrix.We denote by I (A) the ideal of R generated by themaximal
minors of A. Le A be a t-homogeneous matrix. For all j ≤ t , we denote by I j (A) the ideal
of R generated by the minors of size j of A.

Note that to any homogeneous p × q matrix A, we have a morphism ϕ : F → G of free
graded R-modulos of ranks p and q , respectively. We write I (ϕ) = I (A).

An homogeneous ideal I ⊂ R is called determinantal ideal if
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(1) there exists a r -homogeneousmatrixA of size p×q with entries in R such that I = Ir (A)

and
(2) ht (I ) = (p − r + 1)(q − r + 1), where ht (I ) is the height of I.

An homogeneous determinantal ideal I ⊂ R is called standard determinantal ideal if
r = max{p, q}. That is, an homogeneous ideal I ⊂ R of codimension c is called standard
determinantal ideal if I = Ir (A) for some homogeneous matrix A of size r × (r + c − 1).

Let X ⊂ P
n+c, and A homogeneous matrix associated with X . Let ϕ : F → G be a

morphism of free graded R-modules of ranks t and t + c − 1, respectively, defined by A.

The generalized Koszul complex Ci (ϕ
∗) is given by

0 �� ∧i G∗ ⊗ S0(F∗) �� ∧i−1G∗ ⊗ S1(F∗) �� · · · �� ∧0G∗ ⊗ Si (F∗) �� 0

From this complex, we have the complex Di (ϕ
∗)

0 �� ∧t+c−1G∗ ⊗ Sc−i−1(F) ⊗ ∧t F �� ∧t+c−2G∗ ⊗ Sc−i−2(F) ⊗ ∧t (F) ��

· · · · · · �� ∧t+i G∗ ⊗ S0(F) ⊗ ∧F �� ∧i G∗ ⊗ S0(F∗) ��

∧i−1G∗ ⊗ S1(F∗) �� · · · · · · �� ∧0G∗ ⊗ Si F∗ �� 0

where D0(ϕ
∗) is called Eagon–Northcott complex and D1(ϕ

∗) is called Buchsbaum–Rim
complex.

Let ϕ : R(−d)a → Ra+n be a map, let M be the matrix associated with the map, and
I = Ia(M) be the ideal generated by the maximal minors of M . The Eagon–Northcott
complex D0(ϕ

∗) gives us a minimal free resolution of R/I

0 �� R(n+a−1
n−1 )(−d(n + a))

�� R(n+a)(n+a−2
a−1 )(−d(n + a − 1)) �� · · ·

· · · �� R(a+n
a )(−da)

�� R �� R/I �� 0

Sheafifying, we get the complex

0 �� O(n+a−1
a−1 )

Pn (−d(n + a))
�� O(n+a)(n+a−2

a−1 )
Pn (−d(n + a − 1)) �� · · ·

· · · �� O(a+n
a )

Pn (−da)
�� OPn

�� 0 (20)

Remark 5.4 Applying Theorem 3.1, all syzygies Fi of the complex (20) are simple. If we
take d = a = 1, then we get the linear resolution, and we already know that all syzygies
are exceptional. We obtain exceptionality, for example, also for n = 3, d = 1, and a = 2.
Nevertheless, it is easy to loose the exceptionality. For instance, if we take d, a such that
da > n, the second condition of Theorem 4.1 is not satisfied. Moreover, if we consider
n = 3, d = 2, and a = 1, the syzygy bundles are not exceptional because the first condition
of Theorem 4.1 is not satisfied.
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