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Abstract In the early 1990s, Puig created his theory of fusion systems as a tool in modular
representation theory. Later, Broto, Levi andOliver used this theory to provide a formal setting
for and prove results about the p-completed classifying spaces of finite groups. Aschbacher
also started a program to establish a local theory of fusion systems similar to the local theory
of finite groups. In this paper, we define the notion of ranks for fusion systems which imitates
the notion of p-local ranks for finite groups and prove some results about weakly normal
subsystems and factor systems.
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1 Introduction

Puig thoroughly built up the common framework for fusion systems of finite groups and
p-blocks in the early 1990s, though Puig calls them Frobenius categories rather than fusion
systems, see [12,13]. With applications to algebraic topology, Broto et al. [5] introduced the
notion of p-local finite groups using fusion systems as the underlying algebraic structure.
Comparing with finite group theory, there are some theorems about finite groups which have
more attractive statements and proofs in the language of fusion systems. This theory has
attracted considerable and growing attention. Aschbacher [1] started a program to establish
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a local theory of fusion systems. With these applications in modular representation theory,
homotopy theory and finite group theory, the theory of fusion systems is becoming one of
the crucial parts of algebra.

For a finite group G and any pair of subgroups H, K ≤ G, we define HomG(H, K ) to be
the set of all monomorphisms from H to K induced by conjugation in G. Let S be a Sylow
p-subgroup of G. The standard example of a fusion system is the fusion category of G over
S, as named in [4], which is the category FS(G) whose objects are the subgroups of S, and
which has morphism sets MorFS(G)(P, Q) = HomG(P, Q). A subgroup H of G is said to
control p-fusion in G if H contains a Sylow p-subgroup S of G and the canonical inclusion
of H in G induces an equivalence of categories between FS(H) and FS(G). A subgroup Q
of S is said to control p-fusion in G if its normalizer NG(Q) controls p-fusion in G. Let F
be a fusion system over a finite p-group S. A subgroup Q of S is said to be normal in F ,
denoted by Q � F , if its normalizer NF (Q) is equal to F . There are several necessary and
sufficient conditions (see [6] for further references) for a subgroup to be normal in a saturated
fusion system. There exists a unique maximal normal subgroup, denoted by Op(F), in F .
In this paper, we will define the rank of a fusion system which might give an indication to
show how far a fusion system is from the case that F possesses a normal p-group S.

The paper is organized as follows. The second section contains foundationalmaterial about
fusion systems, including the most basic definitions, notation, concepts and lemmas. Then,
in the third section, we definite the notion of ranks for fusion systems. In the fourth section,
we prove the equivalence of two definitions. Finally, various properties of fusion systems are
described in terms of the rank in the last section. Throughout this paper, p denotes a prime
and all groups are finite.

2 Background material on fusion systems

Fusion systems were originally introduced by Puig [11], where he calls such objects “full
Frobenius systems.” Broto et al. [5] had a different definition of fusion systems which they
have proved to be equivalent to Puig’s definition. For more background, see [4,9]. Let G be
a group and g an element of G. Denote by cg , the map induced by conjugation by g.

Definition 2.1 [5,12] Let S be a p-group. A fusion system over S is a category F , whose
objects are the subgroups of S and whose morphism sets HomF (P, Q) consist, for any two
subgroups P and Q of S, of injective group homomorphisms P → Q, with the composition
in F as the usual composition of group homomorphisms, satisfying the following axioms:

• for each g ∈ S with g P ≤ Q, the associated map cg : P → Q is in HomF (P, Q);
• for each ϕ ∈ HomF (P, Q), the induced isomorphism P → ϕ(P) and its inverse are

morphisms in F .

Note that all inclusions, ι : P ↪→ Q, for P ≤ Q ≤ S are contained in F by the first axiom.
Motivated by properties of fusion in finite groups, additional conditions are needed for fusion
systems. This leads to the concept of what we call a “saturated fusion system”. The following
version is due to Roberts and Shpectorov [14].

Definition 2.2 Let F be a fusion system over a p-group S.

• Two subgroups P, Q ≤ S areF-conjugate if they are isomorphic as objects of the category
F . Let PF denote the set of all subgroups of S which are F-conjugate to P .
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• A subgroup P ≤ S is fully automised in F if AutS(P) ∈ Sylp(AutF (P)), where
AutS(P) = HomS(P, P) and AutF (P) = HomF (P, P).

• A subgroup P ≤ S is receptive in F if it has the following property: for each Q ≤ S and
each isomorphism ϕ : Q → P , if we set

Nϕ = {
x ∈ NS(Q)|there exists y ∈ NS(P) such that ϕ(x g) = yϕ(g), ∀g ∈ Q

}
,

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|Q = ϕ.
• A fusion system F over a p-group S is saturated if each subgroup of S is F-conjugate to

a subgroup which is fully automised and receptive.

It is well known from the literature that the fusion category FS(G) is a saturated fusion
system (see for instance [5]).

We list some important classes of subgroups in a given fusion system, which are modeled
on analogous definitions for p-subgroups of groups.

Definition 2.3 Let F be a fusion system over a p-group S.

• A subgroup Q ≤ S is fully centralized in F if |CS(Q)| ≥ |CS(R)| for all R ∈ QF .
• A subgroup Q ≤ S is fully normalized in F if |NS(Q)| ≥ |NS(R)| for all R ∈ QF .
• A subgroup Q ≤ S is F-centric if CS(R) = Z(R) for any subgroup R ∈ QF .
• A subgroup Q ≤ S is F-radical if Op(AutF (Q)/AutQ(Q)) = 1.
• A subgroup Q ≤ S is F-essential if Q is F-centric, fully normalized in F and

AutF (Q)/AutQ(Q) has a strongly p-embedded subgroup M (that is, M contains a
Sylow p-subgroup T of AutF (Q)/AutP (Q) such that ϕT ∩ T = {1} for every
ϕ ∈ AutF (Q)/AutQ(Q)\M).

• A subgroup Q ≤ S is weakly F-closed, if for every morphism ϕ : Q → S in F we have
ϕ(Q) = Q.

• A subgroup Q ≤ S is strongly F-closed, if for every subgroup P ≤ Q, each R ∈ F and
each morphism ϕ : P → R in F , we have ϕ(P) ≤ Q.

As in group theory, one can define normalizers and centralizers in fusion systems.

Definition 2.4 Let F be a fusion system over a p-group S. For any Q ≤ S and any group
of automorphisms K ≤ Aut (Q), set NK

S (Q) = {x ∈ NS(Q)|cx ∈ K }. Let NK
F (Q) ⊆ F be

the fusion system over NK
S (Q) where for P, R ≤ NK

S (Q),

HomNK
F (Q)(P, R)

= {
ϕ ∈ HomF (P, R)| ∃ ψ ∈ HomF (QP, QR) with ψ |P = ϕ and ψ |Q ∈ K

}
.

As special cases, set NF (Q) = N Aut (Q)
F (Q) and CF (Q) = N {1}

F (Q): the normalizer and
centralizer, respectively, of Q in F .

Q is said to be normal in F , if F = NF (Q), i.e., for all P, R ≤ S and all
ϕ ∈ HomF (P, R), ϕ extends to a morphism ψ ∈ HomF (PQ, RQ) such that ψ(Q) = Q.
If Q is normal in F , we write Q � F .

It follows from the definition that if Q1, Q2 ≤ S are normal in F , then so is Q1Q2. So there
is a unique maximal normal subgroup, denoted by Op(F), in F .

Fix a fusion systemF over a p-group S. Let Q ≤ S and K ≤ Aut (Q). For any monomor-
phism ϕ ∈ Hom(Q, R), we write ϕK = {ϕσ |σ ∈ K } ≤ Aut (ϕ(Q)). We can generalize the
notion “fully normalized” as follows:
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Definition 2.5 Let F be a fusion system over a p-group S. For any Q ≤ S and any group of
automorphisms K ≤ Aut (Q), Q is fully K -normalized in F if

∣
∣NK

S (Q)
∣
∣ ≥ ∣

∣N
ϕK
S (ϕ(Q))

∣
∣

for all ϕ ∈ HomF (Q, S).

In general, NK
F (Q) is not saturated, but it is true if Q is fully K -normalized.

Theorem 2.6 [5,12] Fix a saturated fusion system F over a p-group S. Assume Q ≤ S and
K ≤ Aut (Q) are such that Q is fully K -normalized inF . Then, N K

F (Q) is a saturated fusion
system over N K

S (Q).

For a fusion system F over a p-group S, we define the quotient F = F/T of F by a
normal subgroup T � S.

Definition 2.7 Let F be a fusion system over a p-group S, and T a normal subgroup of
S. By the factor system F/T , we mean the category, whose objects are all subgroups of
S/T and for any two subgroups P, Q of S containing T, HomF/T (P/T, Q/T ) is the set of
homomorphisms ϕ induced from HomF (P, Q) such that ϕ(T ) = T .

Traditionally, in the definition above the subgroup T is strongly F-closed, but this is not
necessary for the following result.

Theorem 2.8 [6,9] Let F be a saturated fusion system over a p-group S, and T a weakly
F-closed subgroup of S. Then, the fusion system F/T is saturated.

There are several different definitions of normal fusion systems. Here, we introduce the
definition of “weakly normal” by Linckelmann [8] and Oliver [10] since “normal” refers to
the definition of normality given by Aschbacher in [1].

Definition 2.9 Let F be a fusion system over a p-group S, and Q a subgroup of S. A
subsystem E of F , over Q, is a subcategory of F that is a fusion system over Q. We say that
E isF-invariant if Q is stronglyF-closed and, for each R ≤ T ≤ Q, φ ∈ HomE (R, T ), and
ψ ∈ HomF (T, S), we have that ψφψ−1 is a morphism in HomE (ψ(R), S). If in addition E
is saturated, we say that E is weakly normal in F . We denote weak normality by E ≺ F .

The intersection of two subsystems is defined in the obvious way: If G andH are subsys-
tems of F over Q and R, respectively, then G∩H is the fusion system over Q∩ R consisting
of all morphisms of F that are in both G and H.

3 Definitions

In this section, we will define the notion of ranks for fusion systems. Firstly, we define a class
of subgroups.

Definition 3.1 Let F be a fusion system over a p-group S. A subgroup R � S is called a
modified F-radical, or m-radical for short, subgroup of F if R = Op(NF (R)). When R is
m-radical in F , we call NF (R) a parabolic subsystem of F if NF (R) is properly contained
in F .

Remark Let G be a finite group, S a Sylow p-subgroup of G. A p-subgroup R of G is said
to be radical if NG(R)/R is p-reduced, namely, if R = Op(NG(R)), where Op(H) denotes
the unique maximal normal p-subgroup of H . Comparing the notions, radical, F-radical in

123



The rank of fusion systems 33

Definition 2.3 and m-radical, it is clear that these three notions are not equivalent, though
they are related and defined to satisfy similar conditions. ForF = FS(G), a subgroup R ≤ S
is F-radical if and only if Op(NG(R)/RCG(R)) = 1 while R is radical in G if and only
if Op(NG(R)/R) = 1. For example, let G be a finite group with a non-normal abelian
Sylow p-subgroup S which is a T. I. set in G. The radical p-subgroups of G are 1 and S;
each subgroup of S is F-radical and the unique m-radical subgroup of F is S itself, where
F = FS(G).

Definition 3.2 Let F be a fusion system over a p-group S. We define the rank, rank(F), of
F recursively as follows:

1. if Op(F) = S, then rank(F) = 0;
2. if Op(F) �= S, then rank(F) is by definition equal to

1 + max {rank(P) |P is a parabolic subsystem of F} .

4 An alternate definition and the equivalence

In [15], Robinson introduced the notion of p-local ranks for finite groups. There are two
equivalent definitions of p-local rank for a finite group G, namely by induction and by
radical p-chains. In the followings, we will similarly definite the rank of a fusion system by
using p-chains.

LetF be a fusion system over a p-group S. Given a chain of p-subgroups σ : Q0 < Q1 <

· · · < Qn of S, define the length |σ | = n, the initial subgroup Vσ = Q0, the k-th initial
sub-chain σk : Q0 < Q1 < · · · < Qk . It would be natural to define the normalizer of σ to
be NF (σ )I := NF (Q0) ∩ NF (Q1) ∩ · · · ∩ NF (Qn). But for a saturated fusion system, the
intersection of two saturated subsystems in general is not saturated. So for a special p-chain
σ : Q0 < Q1 < · · · < Qn in F where each of Qi ’s is normal in S, it seems better to define
the normalizer NF (σ ) recursively as follows to guarantee that is saturated.

1. If |σ | = 0, then NF (σ ) = NF (Q0);
2. If |σ | = n, NF (σ ) is by definition equal to NNF (σn−1)(Qn).

Note that NF (σ ) is a subsystem of NF (σ )I and we will prove that they are equal in some
cases.

Lemma 4.1 Let F be a fusion system over S, R a weakly F-closed subgroup in F and
R ≤ T ≤ S. Then, NF (R) ∩ NF (T ) = NNF (R)(T ).

Proof It is obviously NNF (R)(T ) ⊆ NF (R)∩ NF (T ) and both systems are over NS(T ). Let
P, Q ≤ NS(T ) and ϕ ∈ HomNF (R)∩NF (T )(P, Q). There exists ψ ∈ HomF (T P, T Q) such
thatψ |P = ϕ andψ(T ) = T . We only need to showψ ∈ NF (R). But this follows as R ≤ T
and R is weakly F-closed, so ψ(R) = R. Since ϕ ∈ NF (R), we have ϕ ∈ NNF (R)(T ). So
NF (R) ∩ NF (T ) = NNF (R)(T ) as required. �

Corollary 4.2 Let F be a fusion system over S and R a weakly F-closed subgroup of S.
If R ≤ U ≤ V ≤ S and U is weakly NF (R)-closed, then NF (R) ∩ NF (U ) ∩ NF (V ) =
NNF (R)(U ) ∩ NF (V ) = NNF (R)∩NF (U )(V ).
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Proof In fact, we have that

NF (R) ∩ NF (U ) ∩ NF (V ) = (NF (R) ∩ NF (U )) ∩ (NF (R) ∩ NF (V ))

= NNF (R)(U ) ∩ NNF (R)(V )

= NNNF (R)(U )(V )

= NNF (R)∩NF (U )(V ).

So we are done. �
We say that a p-chain σ is m-radical if Q0 is an m-radical subgroup of F and Qi is

an m-radical subgroup of NF (σi−1) for each i ≥ 1. Write R = R(F) for the set of m-
radical p-chains in F and writeR(F |Q) = {σ ∈ R(F)|Vσ = Q}. Let rankC (F) denote the
length of a longest chain in R(F). We will prove that for a fusion system F over a p-group
S, rank(F) = rankC (F). As the corresponding notion, p-local rank, in the block theory of
finite groups, it was proved in [17]. Though we can follow approaches in group theory, for
fusion systems we must establish some basic results, the correspondences of which are well
known in the category of finite groups.

The group theoretic version of the following lemma is well known.

Lemma 4.3 Let F be a fusion system over S. Assume that R ≤ S is an m-radical subgroup
of F and U ≤ S. If NF (R) ⊆ NF (U ), then U ≤ R.

Proof We will show that U is normal in NF (R). Note that R is m-radical in F . So we
have NS(R) = S and hence U � S as NF (R) ⊆ NF (U ) over S. For any P, Q ≤ S, ϕ ∈
HomNF (R)(P, Q), there is a morphism ψ ∈ HomNF (R)(RP, RQ) such that ψ |P = ϕ

and ψ(R) = R. Since NF (R) ⊆ NF (U ), there is a morphism ψ ∈ HomF (URP,URQ)

such that ψ |RP = ψ and ψ(U ) = (U ). Let ϕ = ψ |U P . Then, by the construction, ϕ ∈
HomNF (R)(U P,UQ) is an extension of ϕ such that ϕ(U ) = ψ(U ) = U . SoU is normal in
NF (R). Since R = Op(NF (R)), we have U ≤ R as required. �

Recall that if R is a radical p-subgroup of a finite group G, then R ≥ Op(G). In a fusion
system F , we have a similar result that is a direct corollary of Lemma 4.3.

Lemma 4.4 Let F be a fusion system over S. If R ≤ S is m-radical, then Op(F) ≤ R.

Lemma 4.5 Let F be a fusion system over S, N = NF (R) a parabolic subsystem of F ,
where R is m-radical in F . Then, rank(N )C < rank(F)C .

Proof Take σ : Q0 < · · · < Qs to be one of the longest m-radical chains of N . By
Lemma 4.4, we have Q0 ≥ R, since R = Op(N ). In fact, R = Q0 since σ has the
greatest length. Note that N is a parabolic subsystem which is properly contained in F . So
R > Op(F). Then σ : Op(F) < Q0 < · · · < Qs is an m-radical chain of F . By the
definition, we have rank(N )C < rank(F)C . �
Theorem 4.6 Let F be a fusion system over S. Then, rank(F) = rank(F)C .

Proof We prove our assertion by induction.
Note that S is m-radical in F . It is easy to verify that rank(F)C = 0 if and only if S � F .

In fact, if rank(F)C = 0, then Op(F) = S, or Op(F) < S is an m-radical chain of length 1,
which is a contradiction. By Lemma 4.4, if S � F , then S is the unique m-radical subgroup;
hence, rank(F)C = 0.
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The rank of fusion systems 35

We claim that for any fusion system H, rank(H) ≥ rank(H)C . Assume rank(H)C = s.
Let σ : Q0 < · · · < Qs be a longest m-radical chain of H, where Q0 = Op(H). Then,
N = NF (σ1) is a parabolic subsystem of H, as Q1 > Q0 is m-radical in H. Since each
m-radical chain of N can extend to an m-radical chain of H by adding Q0 as an initial
subgroup (see the proof of Lemma4.5), then rank(N )C = s−1. By the induction assumption,
rank(N ) ≥ s − 1 and hence rank(H) ≥ s as required.

Suppose that for any fusion systemHwith rank(H) ≤ k our assertion holds. If rank(F) =
k + 1, then there is a parabolic subsystem N such that rank(N ) = k. Let σ : Q0 < · · · <

Qk be one of the longest m-radical chains of N , where Q0 = Op(N ) > Op(F). Then,
rank(F)C ≥ k + 1 since the chain Op(F) < Q0 < · · · < Qk is m-radical in F . As shown
above rank(F) ≥ rank(F)C , we have rank(F)C = k + 1 as required. �

5 Properties of fusion systems

While we define the notion of ranks for all fusion systems, in quite a number of results in
this section, we assume that a fusion system F is saturated. We suppose that S is a p-group
for a fixed prime p throughout this section.

5.1 Normal subgroups and products of fusion systems

Lemma 5.1 Let F be a fusion system over S and R a subgroup of S. If T ≤ R is weakly
F-closed, then T � NF (R).

Proof Let ϕ ∈ homNF (R)(P, Q) where P, Q ≤ NS(R). Then, ϕ extends to some ψ ∈
HomF (RP, RQ) such that ψ(R) = R. Note that T is weakly F-closed. Take ϕ = ψ |T P ,
so ϕ ∈ HomF (T P, T Q) is an extension of ϕ such that ϕ(T ) = T . And ϕ is contained in
NF (R), since ψ is the required extension of ϕ. So T � NF (R). �

We consider the products of fusion systems which are defined in the obvious way.

Definition 5.2 For any pair F1 and F2 of fusion systems over p-groups S1 and S2, respec-
tively, F1 × F2 is the fusion system over S1 × S2 generated by the set of all (ϕ1, ϕ2) ∈
Hom(P1 × P2, Q1 × Q2) for ϕi ∈ HomFi (Pi , Qi ).

Proposition 5.3 [5] Assume F1 and F2 are fusion systems over p-groups S1 and S2, respec-
tively. Then, for all P, Q ≤ S1 × S2, if Pi and Qi denote the images of P and Q under the
projection to Si ,

HomF1×F2(P, Q) = {
(ϕ1, ϕ2)|P | ϕi ∈ HomFi (Pi , Qi ), (ϕ1, ϕ2)(P) ≤ Q

}
.

If F1 and F2 are both saturated, then so is F1 × F2.

Lemma 5.4 Assume F1 and F2 are fusion systems over p-groups S1 and S2, respectively.
Then, Op(Fi ) � F1 × F2 (i = 1, 2), and Op(F1 × F2) = Op(F1) × Op(F2).

Proof In fact, this is a direct corollary of [3, (2.5)]. Set S = S1 × S2,F = F1 × F2 and let
πi : S → Si be the projection of S onto Si (i = 1, 2). Denote O = Op(F1 × F2), Oi =
Op(Fi ), i = 1, 2. Note that πi (Oi ) = Oi , π3−i (Oi ) = 1. By [3, (2.5)], we have NF (O1) =
NF (π1(O1)π2(O1)) = NF1(O1) × NF2(1) = F . So O1 � F and similarly O2 � F , hence
O1 × O2 ≤ O . On the other hand, also by [3, (2.5)], F = NF (O) ≤ NF (π1(O)π2(O)) =
NF1(π1(O)) × NF2(π2(O)) ≤ F1 × F2 = F . So NFi (πi (O)) = Fi , hence πi (O) ≤ Oi

and O ≤ O1 × O2. �
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Theorem 5.5 Assume F1 and F2 are fusion systems over p-groups S1 and S2, respectively.
Then, rank(F1 × F2) = rank(F1) + rank(F2).

Proof Let F = F1 × F2, S = S1 × S2 and πi (i = 1, 2) the natural projection to Si .
If S � F , then Si � Fi by Lemma 5.4, hence rank(F1×F2) = 0 = rank(F1)+rank(F2).

By Lemma 4.4, we may take U to be an m-radical subgroup of F which properly contains
Op(F). Let Ui = πi (U ), i = 1, 2. We have U ≤ U1 ×U2. Since U � S, then Ui � Si , i =
1, 2. Let Ni = NFi (Ui ) and N = N1 × N2. For any P, Q ≤ NS(U ) = S and ϕ ∈
HomNF (U )(P, Q), we see that ϕ = (ϕ1, ϕ2)|P for some ϕi ∈ HomFi (πi (P), πi (Q)), i =
1, 2. By definition, ϕ can extend to ψ ∈ HomF (U P,UQ). So ψ = (ψ1, ψ2)|U P , for some
ψi ∈ HomFi (Uiπi (P),Uiπi (Q)), i = 1, 2. Since ψ |P = ϕ and ψ(U ) = U , we have
ψi |πi (P) = ϕi and ψi (Ui ) = Ui . So ϕi is contained in Ni , and hence that NF (U ) is a
subsystem of N . By Lemma 5.4, Ui is normal in N . So by Lemma 4.3, Ui ≤ U and hence
that U = U1 × U2. By [3, (2.5)], NF (U ) = N . By Lemma 5.4, Ui is m-radical in Fi for
i = 1, 2. On the other hand, ifUi ism-radical inFi for i = 1, 2, thenU1 ×U2 ism-radical in
F since NF (U1 ×U2) = NF1(U1) × NF2(U2), and U1 ×U2 = Op(NF1(U1) × NF2(U2))

by Lemma 5.4.
Let P = NF (U ) be a parabolic subsystem of F , where U = Op(P), and P is chosen

with rank(P) = rank(F) − 1. Then, U = U1 × U2 and P = NF1(U1) × NF2(U2), where
Ui = πi (U ). At least oneUi properly contains Op(Fi ), so we have by induction assumption
that rank(P) = rank(NF1(U1))+rank(NF2(U2)). Thus, rank(P) ≤ rank(F1)+rank(F2)−1,
hence rank(F) ≤ rank(F1) + rank(F2).

On the other hand,wemay choose a parabolic subsystemQ ofF such thatQ = NF1(U1)×
NF2(U2), where U1 = Op(F1),U2 = Op(NF2(U2)) > Op(F2), and rank(NF2(U2)) =
rank(F2) − 1 (where we may assume that rank(F2) > 0). Then, by induction assumption on
the rank, we have rank(Q) = rank(NF1(U1)) + rank(NF2(U2)), so rank(Q) = rank(F1) +
rank(F2) − 1, while also rank(Q) ≤ rank(F) − 1. Thus, we have rank(F) ≥ rank(F1) +
rank(F2). �
5.2 Weakly normal subsystems

In this subsection, F is a saturated fusion system over S.

Lemma 5.6 Let E be a subsystem of F over T ≤ S and E ≺ F . Suppose that a subgroup R
of T is fully normalized in F . Then, NE (R) ≺ NF (R).

Proof Since R is fully normalized in F and E is a subsystem of F, R is fully nor-
malized in E . So NE (R) and NF (R) are both saturated. Since T is strongly F-closed,
NT (R) is strongly NF (R)-closed. For any P, Q ≤ NT (R), φ ∈ HomNE (R)(P, Q),
and ψ ∈ HomNF (R)(Q, NS(R)), since E is weakly normal in F , then ψϕψ−1 ∈
HomE (ψ(P), ψ(Q)). We only need to show that ψϕψ−1 is contained in NE (R). In fact,
there are morphisms ϕ ∈ HomE (RP, RQ) and ψ ∈ HomF (RQ, NS(R)) such that
ϕ|P = ϕ, ψ |Q = ψ and ϕ(R) = ψ(R) = R. So θ := ψϕψ −1 is contained in E and
θ ∈ HomE (Rψ(P), Rψ(Q)) such that θ(R) = R and θ |ψ(P) = ψϕψ−1. Then, NE (R) is
NF (R)-invariant, hence weakly normal in NF (R) as required. �
Lemma 5.7 Let E be a subsystem of F over T ≤ S and E ≺ F . Suppose that a subgroup R
of T is m-radical in F . Then, R is m-radical in E .
Proof As R�S, R is normal in T . Then, NE (R) and NF (R) are both saturated and NE (R) ≺
NF (R) by Lemma 5.6. By [6, Proposition 4.1], we have Op(NE (R)) = Op(NF (R)) ∩
T = R. �
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Theorem 5.8 Let E be a fusion system over S and E ≺ F . Then, F and E have the same
m-radical subgroups. In particular, rank(F) = rank(E).

Proof By Lemma 5.7, we have that any m-radical subgroup R of F is m-radical in E . Now
we suppose that R is an m-radical subgroup of E . As E is over S, R � S. Also by Lemma
5.6, NE (R) and NF (R) are both saturated and NE (R) ≺ NF (R). Take L = Op(NF (R)).
By [6, Proposition 4.1], R = Op(NE (R)) = Op(NF (R)) ∩ S = L ∩ S = L . So R is
m-radical in F . Proceeding by induction on the rank of F , if R �= Op(F) is m-radical then
rank(NF (R)) = rank(NE (R)), so rank(F) = rank(E) by the recursive definition of rank.

�
5.3 Solvable systems

There are at least two natural definitions of solvable saturated fusion systems which turn out
to be inequivalent. One of them (see [12]) involves taking repeated subsystems as a series
which is analogous to the derived series of a group. In this paper, we focus on a weaker one.

Definition 5.9 [6] Let F be a saturated fusion system over S. F is said to be p-solvable if
there exists a chain of strongly F-closed subgroups

1 = P0 ≤ P1 ≤ · · · ≤ Pn = S,

such that Pi/Pi−1 ≤ Op(F/Pi−1) for all 1 ≤ i ≤ n. If F is p-solvable, then the length n of
a smallest such chain above will be called the p-length, denoted by 
(F), of F .

Define O(0)
p (F) = 1, and the i th term by O(i)

p (F)/O(i−1)
p (F) = Op(F/O(i−1)

p (F)).

Lemma 5.10 [6] Let F be a saturated fusion system over S, and Q a strongly F-closed
subgroup of S.

1. If F is p-solvable, then all saturated subsystems and quotients F/Q are p-solvable.
2. Let E be a weakly normal subsystem of F , over the subgroup Q. If both E and F/Q are

p-solvable, then so is F .
3. F is p-solvable if and only if O(n)

p (F) = S for some n, and the smallest such n is the
p-length of F .

Lemma 5.11 LetF be a saturated fusion systemover S, and R ≤ S. Suppose O = Op(F) ≤
R. Denote R = R/O. If R is m-radical in F/O, then R is m-radical in F .

Proof Let T = Op(NF (R)). Since R/O is m-radical in F/O, R is normal in S and
hence NF (R) is saturated. By [1,6,16], T/O is strongly NF (R)/O-closed. Suppose
ϕ ∈ HomNF (R)/O (A/O, B/O). Let ϕ ∈ HomNF (R)(A, B) which induces ϕ in NF (R)/O .
Since T is normal in NF (R), there is a morphism ψ ∈ HomF (T A, T B) such that
ψ |A = ϕ and ψ(T ) = T . Note that ψ is also in NF (R). So ψ induces a morphism
ψ ∈ HomNF (R)/O(T A/O, T B/O) such that ψ |A/O = ϕ and ψ(T/O) = T/O . So
T/O is normal in NF (R)/O . Since O is strongly F-closed, by [7, Lemma 3.9], we
have NF (R)/O = NF/O(R/O) and NS(R)/O = NS/O(R/O). So T/O is normal in
NS/O(R/O), hence T/O ≤ R/O . Since T ≥ R, we have T = R. �
Theorem 5.12 Let F be a saturated fusion system over S. If F is p-solvable, then 
(F) ≤
rank(F) + 1.
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Proof If S is trivial, there is nothing to prove. Suppose S �= 1. Note that 
(F) = 1 if and
only if Op(F) = S and hence if and only if rank(F) = 0, by the definitions. Suppose that
rank(F) ≥ 1. We have that 1 < Op(F) < S since F is p-solvable. Let O = Op(F) and
S = S/O . Take σ : Q0 < · · · < Qt to be a longest m-radical chain of F/O , where Qi

is the preimage of Qi in S. By Lemma 5.11 and [7], σ : Q0 < · · · < Qt is an m-radical
chain of F . Note that Q0 = O(2)

p (F) > O since 
(F) > 1. So ς : O < Q0 < · · · < Qt is
an m-radical chain of F , hence rank(F) > rank(F/O). By the induction assumption on the
p-length, we have 
(F) − 1 ≤ rank(F/O) + 1 < rank(F) + 1, hence 
(F) ≤ rank(F) + 1
as required. �

Following [2], in a saturated fusion system F over a finite p-group S, a fully normalized
non-trivial subgroup U is called an FTI-subgroup of S if whenever P ≤ NS(U ) and ϕ ∈
HomF (P, S)with 1 �= ϕ(U∩P)∩U , thenϕ extends toψ ∈ HomF (U P, S)withψ(U ) = U .
In fact, in [2], FTI-subgroups are assumed to be abelian. Here, we eliminate the constraint
“abelian” and consider general cases.

Proposition 5.13 Let F be a saturated fusion system over S which is non-trivial. Then, the
following conditions are equivalent.

(1) rank(F) = 0;
(2) F is p-solvable and 
(F) = 1;
(3) S � F;
(4) S is a F TI-subgroup.

Proof By the discussion in the proof of Theorem 5.12, (1) and (2) are equivalent, while (1)
and (3) are equivalent by the definition of rank. Thus, we only need to show (3) ⇔ (4).

(3) ⇒ (4). Since S is normal in F , for any ϕ ∈ HomF (P, Q), ϕ extends to ψ ∈
HomF (PS, QS). So S is an FTI-subgroup.

(4) ⇒ (3). Let P, Q ≤ S and ϕ ∈ HomF (P, Q). We must show that ϕ extends to S. If
P = 1, there is nothing to prove. Suppose that P �= 1. So 1 �= ϕ(S ∩ P) ∩ S, since ϕ is an
injection. By definition, ϕ extends to ψ ∈ HomF (PS, S) with ψ(S) = S. So S is normal
in F . �
5.4 Miscellany

Proposition 5.14 Let F be a fusion system over S with rank(F) > 0 and O = Op(F).
Then, rank(F) = 1 if and only if for any O < U � S, NF (U ) ⊆ NF (S).

Proof Since rank(F) > 0, O is a proper subgroup of S.
Firstly, suppose that for any O < U � S, NF (U ) ⊆ NF (S). Let O �= R be an m-radical

subgroup of F . Then, R properly contains O and R � S; hence, NF (R) ⊆ NF (S). By
Lemma 4.3, R = S. So rank(F) = 1, since the length of an m-radical p-chain of F is at
most 1.

Now suppose that rank(F) = 1. Take T to be a normal subgroup of S with T > O . We
will prove our assertion by induction on |S : T |. If T = S, there is nothing to prove. Suppose
that T is a proper normal subgroup of S. Let P = Op(NF (T )). Since rank(F) = 1, there are
only two m-radical p-subgroups, i.e., O and S, in F . So T is not m-radical in F and P > T .
Note that P is strongly NF (T )-closed. Then, P is normal in S, since NF (T ) is over S. Note
that NF (T ) ⊆ NF (P). By induction assumption, we have NF (T ) ⊆ NF (P) ⊆ NF (S) as
required. �
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A saturated fusion system F is called realizable if there is a finite group G with S ∈
Sylp(G) such thatF = FS(G). In [15], p-local rank of a finite groupG is defined recursively,
where p is a prime divisor of the order of G. For a realizable fusion system, we have the
followings.

Proposition 5.15 Let F = FS(G), where G is a finite group and S ∈ Sylp(G). Then,
plr(G) ≥ rank(F), where plr(H) denotes the p-local rank of a finite group H.

Proof We prove our assertion by induction on plr(G). If plr(G) = 0, then S � G, hence
S � F . So plr(G) = rank(F) = 0. Let Op(F) < R ≤ S be an m-radical subgroup of F .
Then, R� S and S ≤ N = NG(R) is a Sylow p-subgroup of N . Since R is fully normalized,
NF (R) = FS(N ) (see [4, I.5.4]). Note that Op(G) ≤ Op(F), since Op(G) is normal in G.
So R > Op(G) and there is a radical p-subgroup T such that R ≤ T ≤ S and NG(T ) ≥ N .
Note that plr(G) > plr(NG(T )) since T is radical in G. By induction assumption, we have
plr(NG(T )) ≥ plr(N ) ≥ rank(FS(N )). By definition, we have

plr(G) ≥ 1 + max
{
plr(NG(R)) | Op(F) < R is an m-radical subgroup of F}

≥ 1 + max
{
rank(FS(NG(R))) | Op(F) < R is an m-radical subgroup of F}

= 1 + max {rank(P) |P is a parabolic subsystem of F}
= rank(F)

as required. �
Acknowledgments The authors cordially thank the referees for their careful reading and helpful comments.

References

1. Aschbacher, M.: Normal subsystems of fusion systems. Proc. Lond. Math. Soc. 97(3), 239–271 (2008)
2. Aschbacher,M.: Generation of fusion systems of characteristic 2-type. Invent.Math. 180, 255–299 (2010)
3. Aschbacher, M.: The generalized Fitting subsystem of a fusion system.Memoirs AmericanMathematical

Society, vol. 209, no. 986 (2011)
4. Aschbacher, M., Kessar, R., Oliver, B.: Fusions System in Algebra and Topology, London Mathematical

Society Lecture Note Series, 391. Cambridge University Press, Cambridge (2011)
5. Broto, C., Levi, R., Oliver, R.: The homotopy theory of fusion systems. J. Am. Math. Soc. 16, 779–856

(2003)
6. Craven, D.: Control of fusion and solubility in fusion systems. J. Algebra 323, 2429–2448 (2010)
7. Craven, D.: Normal subsystems of fusion systems. J. Lond. Math. Soc. 84(1), 137–158 (2011)
8. Linckelmann,M.: Simple fusion systems and the Solomon 2-local groups. J. Algebra 296, 385–401 (2006)
9. Linckelmann, M.: Introduction to fusion systems. In: Group Representation Theory, pp 79–113. EPEL

Press, Lausanne (2007)
10. Oliver, B.: Extensions of linking systems and fusion systems. Trans. Am.Math. Soc. 362(10), 5483–5500

(2010)
11. Puig, L.: Full Frobenius systems and their localizing categories, preprint (2001)
12. Puig, L.: Frobenius categories. J. Algebra 303, 309–357 (2006)
13. Puig, L.: Frobenius Categories Versus Brauer Blocks. Birkhäuser, Basel (2009)
14. Roberts, K., Shpectorov, S.: On the definition of saturated fusion systems. J. Group Theory 12, 679–687

(2009)
15. Robinson, G.: Local structure, vertices and Alperin’s conjecture. Proc. Lond. Math. Soc. 72(3), 312–330

(1996)
16. Stancu, R.: Control of fusion in fusion system. J. Algebra Appl. 5, 817–837 (2006)
17. Wang, B.: A note on the p-local rank. Arch. Math. 84, 198–204 (2005)

123


	The rank of fusion systems
	Abstract
	1 Introduction
	2 Background material on fusion systems
	3 Definitions
	4 An alternate definition and the equivalence
	5 Properties of fusion systems
	5.1 Normal subgroups and products of fusion systems
	5.2 Weakly normal subsystems
	5.3 Solvable systems
	5.4 Miscellany

	Acknowledgments
	References




