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Abstract In this paper, we are concerned with hypersurfaces in IH × IR with constant r -
mean curvature, to be called Hr -hypersurfaces. We construct examples of complete Hr -
hypersurfaces, which are invariant by parabolic screw motion or by rotation. We prove that
there is a unique rotational strictly convex entire Hr -graph for each value 0 < Hr ≤ n−r

n .
Also, for each value Hr > n−r

n , there is a unique embedded compact strictly convex rotational
Hr -hypersurface. By using them as barriers, we obtain some interesting geometric results,
including height estimates and an Alexandrov-type Theorem. Namely, we prove that an
embedded compact Hr -hypersurface in IHn × IR is rotational (Hr > 0).

Keywords r -Mean curvature · Alexandrov Theorem · Hr -Hypersurfaces · Barriers ·
Entire vertical graphs · Complete horizontal graphs

Mathematics Subject Classification 53C42 · 53A10 · 53C21

1 Introduction

The r -mean curvature, Hr , of an n-hypersurface is defined as the normalized r -symmetric
function of the principal curvatures (see Sect. 2 for precise definitions). In this paper, we are
concernedwith hypersurfaceswith constant r -mean curvature, to be called Hr -hypersurfaces.
Although we sometimes work in a more general setting, we are particularly interested in
the case the ambient is the product space IHn × IR, where IHn denotes the hyperbolic space.
Throughout the paper, we establish some key equations for the theory. For instance, in Sect. 8,

The authors are partially supported by CNPq of Brazil.

M. F. Elbert
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

R. Sa Earp (B)
Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: rsaearp@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-014-0446-y&domain=pdf


1810 M. F. Elbert, R. Sa Earp

we deduce a suitable divergence formula for the r -mean curvature of a vertical graph over
M in M × IR.

We start, in Sects. 3, 4 and 5, by exploiting the geometry of the hypersurfaces with constant
H2 in IHn × IR. In Sect. 6, 7 and 8, we deal with the general case r > 2. When n = 2, we
recall that H2 is the extrinsic curvature Kext of the surface.

We classify the complete Hr -hypersurfaces that are invariant by parabolic translation with
Hr = 0 (see Theorem 6.2), and we classify some of the complete ones, which are invariant
by rotation, for Hr > 0 (see Theorem 6.6). Surprisingly, they show a strong analogy with
the study of the mean curvature case in IHn × IR. For the mean curvature, the behavior of
the H -hypersurfaces, H > 0, depends on the value of H, and we distinguish the cases of H
greater or less than the critical value n−1

n (see [5,10]). For the r -mean curvature, Hr > 0, the
same happens for the value n−r

n . We should also notice that similarly to what happens for
the mean curvature, there is a unique rotational strictly convex entire vertical graph for each
constant value 0 < Hr ≤ n−r

n . Also, for each constant value Hr > n−r
n , there is a unique

embedded compact strictly convex rotational Hr -hypersurface. Both are unique up to vertical
or horizontal translations (see Theorem6.6). The dependence on r and n is a distinguishing
point from the theory of Hr -hypersurfaces in IHn × IR (Hr > 0) from that of the euclidean
or hyperbolic spaces, where the critical points are 0 and 1, respectively ([22]).

By using some of the constructed examples as barriers, we were able to obtain some
interesting results (see Sect. 7). For instance, we prove that there is no compact without
boundary immersion in IHn × IR with prescribed r -mean curvature function Hr : M −→
(0, n−r

n ], n > r . We also obtain a priori height estimates for compact immersions of IHn ×
IR with boundary in a slice and with prescribed r -mean curvature function Hr : M −→
(0, n−r

n ], n > r . An interesting question is if we could obtain a height estimate for the
case Hr > n−r

n and we ask: Would the maximum height of a compact graph with boundary
in a slice with Hr = constant > n−r

n be given by half of the total height of the compact
rotational corresponding example? In fact, J. A. Aledo, J. M. Espinar and J. A Gálvez (see
[2]) proved that is true for H-graphs in IH2 × IR.

In Espinar et al. [12], address the case of surfaces with positive extrinsic curvature in some
3-dimensional product spaces. In particular, they show that a complete immersion in IH2× IR
with H2 = constant > 0 (i.e., r = n = 2) is a rotational sphere (see [12, Theorem (7.3)]).
For n > 2, our Example (4.4) shows that there exist entire graphs with H2 > 0 in IHn × IR.
It is natural to ask what kind of complete Hr -immersions, r = n, Hr > 0, we can find. As
one can see below, we have partial answer to this question.

In Theorem 7.6, we prove an Alexandrov-type Theorem (see [1] for the classical result)
for compact embedded Hr -hypersurfaces in IHn × IR, i.e., we characterize the embedded
compact Hr -hypersurfaces in IHn × IR, Hr > 0. Precisely, if Hr > 0, we prove that a
compact Hr -hypersurface embedded in IHn × IR is rotational (which is classified). Here, we
notice that we only have compact rotational Hr -hypersurfaces for Hr > n−r

n (see Theorem
6.6). In space forms, an Alexandrov-type result for the r -mean curvatures were obtained by
Korevaar in [15] and by Montiel and Ros in [18].

On the other hand, for Hr > n−r
n , there exist no entire rotational Hr -graph (see Theorem

6.6). It is interesting to investigate the complete Hr -hypersurface for this case. We ask, for
instance: Is there a non-compact complete embedded Hr -hypersurface in IHn×IR, Hr > n−r

n ,
with only one end? If n=2, in [12, Theorem (7.2)], the authors proved that if Kext > 0 (or
H > 1/2), there is no properly embedded Kext-surface (or H-surface) in IH2 × IR with finite
topology and one end.
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Constructions of Hr -hypersurfaces, barriers and Alexandrov theorem in IHn × IR 1811

We have then seen that for Hr > n−r
n , the only compact embedded immersion is a

rotational n-sphere and that there exist no entire rotational Hr -graph. We ask if for the
particular case r = n we have the same behavior of the case r = n = 2, that is :

Question Is a complete immersion in IHn × IR, with Hr = constant > 0 and r = n a
rotational n-sphere?

2 Preliminaries

Let Mn be an oriented Riemannian n-manifold, M̄n+1 be an oriented Riemannian manifold
and X : Mn → M̄n+1 be an isometric immersion. For each p ∈ M , let A : TpM → TpM
be the linear operator associated with the second fundamental form of X and k1, ..., kn be
its eigenvalues corresponding to the eigenvectors e1, . . . , en . The r -mean curvature of X is
then defined by

Hr (p) = 1
(n
r

)
∑

i1<···<ir

ki1 . . . kir = 1
(n
r

) Sr (p),

where Sr is the r -symmetric function of k1, . . . , kn . With this notation, H1 is the mean
curvature, H , of the immersion and Hn is the Gauss–Kronecker curvature. The Newton
tensors associated with X are inductively defined by

P0 = I,
Pr = Sr I − A ◦ Pr−1, r > 1

and it will be useful to recall that

(r + 1)Sr+1 = trace(Pr A), (1)

Pr−1(ei ) = ∂Sr
∂ki

(ei ) (2)

and that
trace(Pr ) = (n − r)Sr . (3)

For details and other properties, we suggest the paper from Barbosa and Colares [3].
If Hr+1 = 0, we say that the immersion is r -minimal. In this context, the classical minimal

immersions would be the 0-minimal ones.
We say that an immersion X is strictly convex (convex) at p ∈ M if ki (p) > 0 (respectively,

ki (p) ≥ 0) for all i = 1, . . . , n, with respect to the normal orientation at p. In the literature,
a strictly convex point is usually called an elliptic point.

Although we sometimes work in a more general setting, we are particularly interested in
the case M̄ = IHn × IR, where IHn denotes the hyperbolic space. We start with the case r = 2
and we recall that when n = 2, S2 = H2 is the extrinsic curvature Kext of the surface.

3 2-Mean curvature for vertical graphs over M

Let M = Mg denote a Riemannian n-manifold with metric g and consider on M̄ = M × IR
the product metric 〈, 〉 = g + dt2, where t is a global coordinate for IR.

If u is a real function defined over � ⊂ M , the set G = {(p, u(p)) ∈ M × IR| p ∈ �} is
called the vertical graph of u, or more simply, the graph of u. We denote by X : � ⊂ M →
M×IR the natural embedding ofG inM×IR. If u isC2 and if we choose the orientation given

by the upward unit normal, namely N =
(
−∇gu

W , 1
W

)
, it is proved in [8, Formula (3)] that
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1812 M. F. Elbert, R. Sa Earp

A(v) = ∇g
v

(∇gu

W

)
, for all v ∈ T M, (4)

where ∇g and ∇g are, respectively, the connection and the gradient of M and W =√
1 + |∇gu|2g .
Let Ricg(v1, v2) = trace(z → Rg(v1, z)v2) denote the Ricci tensor of M . Then, the

following proposition holds.

Proposition 3.1 The 2-mean curvature H2 of the graph G is given by

2S2 = n(n − 1)H2 = divg

(
P1

∇gu

W

)
+ Ricg

(∇gu

W
,
∇gu

W

)
, (5)

where divg means the divergence in M.

Proof By (1) and (4) we have

2S2 = trace

(
z → P1∇g

z

(∇gu

W

))
.

Claim:

trace
(
z → P1∇g

zv
) = trace

(
z → ∇g

z (P1v)
)+ Ricg

(
v,

∇gu

W

)
. (6)

The proposition will be proved by taking v = ∇gu
W in the latter. In order to prove the claim,

we follow the proof of [8, Lemma3.2] without assuming Ricg = 0. We sketch it here for
completeness.

By the definition of the curvature Rg and by (4,) we have

∇g
v(A(z)) − ∇g

z(A(v)) = R(z, v)

(∇gu

W

)
+ A([v, z]). (7)

Let p ∈ M and let {vi }i be an orthonormal basis in a neighborhood of p in M , which is
geodesic at p, that is, such that ∇g

v j vi (p) = 0. Let v =
∑

i

aivi .

Since {vi }i is geodesic at p we have

trace
(
z → P1∇g

z(v)
)
(p) = trace

(

z →
∑

i

z(ai )P1(vi )

)

(p).

On the other hand,

trace
(
z → ∇g

z(P1(v)
)
(p) = trace

(

z →
∑

i

z(ai )P1(vi )

)

(p)

+
∑

i

ai trace
(
z → ∇g

z(P1(vi ))
)
(p).

Putting things together we have

trace(z → P1∇g
z(v)(p)= trace

(
z → ∇g

z (P1(v))
)
(p)−

∑

i

ai trace
(
z → ∇g

z (P1(vi ))
)
(p).
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Constructions of Hr -hypersurfaces, barriers and Alexandrov theorem in IHn × IR 1813

The proof will be completed if we prove that

trace
(
z → ∇g

z(P1(vi ))
)
(p) = −Ricg

(
vi ,

∇gu

W

)
.

The latter holds as can be seen below, where in the third equality we use (7).

trace (z → ∇g
z(P1(vi ))) (p) = trace (z → ∇g

z (S1(vi ) − A(vi ))) (p)
= trace (z → z(S1)vi ) (p) − trace (z → ∇g

z(A(vi ))) (p)
= vi (S1)(p) − trace

(
z → ∇g

vi (A(z))
)

+trace
(
z → Rg(z, vi ))

(∇gu
W

))
(p)

= vi (S1)(p) − trace
(
z → ∇g

vi (A(z))
)

−trace
(
z → Rg(vi , z)

(∇gu
W

))
(p)

= −Ricg
(
vi ,

∇gu
W

)
.

��
We remark that Eq. (5), which gives the 2-mean curvature of the graph, is elliptic iff P1

is positive definite. If S2 > 0, a standard argument shows that it is elliptic (see, for instance,
[9, proof of Lemma 3.10]).

From now on, in this section, we consider the particular case where Mn ⊂ IRn and we
denote by (x1, x2, . . . , xn) the (euclidean) coordinates of M . On M , we consider the metric
given by

g = 1

F2 〈., .〉,
where 〈., .〉 = (dx12 + · · · + dxn2) is the euclidean metric. For such a particular M , Propo-
sition3.1 reads as follows.

Proposition 3.2 The 2-mean curvature of the graph of u when M is as above is given by

2S2 = n(n−1)H2 = F2div

(
P1

∇u

W

)
+ (2 − n)F〈P1∇u,∇F〉

W
+Ricg

(∇gu

W
,
∇gu

W

)
. (8)

Here, div, ∇, and ||.|| denote quantities in the euclidean metric and W can be written as
W = √1 + F2||∇u||2 .
Sketch of the Proof Let {ei }i be an orthonormal local field of M in the metric 〈., .〉. Then

divg

(
P1

∇gu

W

)
=
∑

i

〈
ei ,∇g

ei

(
P1

(∇gu

W

)) 〉
=
∑

i

〈
ei ,∇g

ei

(
P1

(
F2∇u

W

)) 〉
.

Now we use the relation between the connections and gradients of the two conformal
metrics g and 〈., .〉, Proposition3.1 and some computation to obtain the result. ��
Remark 3.3 An expression relating the Ricci Tensor of two conformal metrics can be
obtained in [22, page 183]. By using it for our case, we have that

Ricg(vi , v j ) = (n − 2)
Fi j
F

+
(

�F

F
− (n − 1)

|∇F |2
F2

)
δi j ,

where � denotes the laplacian in the euclidean metric and Fi j denotes the second derivative
of F . Doing this, one can express formula (8) in terms of the euclidean metric only.
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1814 M. F. Elbert, R. Sa Earp

Now we look forward to expressing the 2-mean curvature in the coordinates (x1, x2, . . . ,
xn). For this, let X (x1, x2, . . . , xn) = (x1, x2, . . . , xn, , u(x1, x2, . . . , xn)) be the natural
parametrization of G and let {e1, . . . , en} be an orthonormal basis of vector fields of M in the
euclidean metric.Wewrite Xi = dX (ei ) = (ei , ui ). Then, a computation gives the following
proposition.

Proposition 3.4 Let [I ] = [Ii j ] and [I I ] = [I Ii j ] denote the matrices of the first and the
second fundamental forms of the (isometric) embedding X in the basis {ei }i . Let [I ]−1 = [I i j ]
be the inverse matrix of [I ]. Then we have

Ii j = δi j

F2 + uiu j

I Ii j = −〈∇̄Xi N , X j 〉 = ui j
W

+ 1

FW

[

ui Fj + u j Fi −
(
∑

m

umFm

)

δi j

]

,

and

I i j = F2δi j − F4 uiu j

W 2

where we write ui and ui j for the corresponding first and second derivative of the function
u and ∇̄ for the connection of M × IR.

Remark 3.5 We can use the last proposition in order to re-obtain [10, formula(1.3)].

In the basis {ei }i , we can express the matrix of A as

[A] = [I i j ] × [I Ii j ] (9)

and in order to obtain an explicit expression for the 2-mean curvature of G in the coordinates
(x1, x2, . . . , xn), one can use (1). The computation, in the general case, is a tough job but can
be done by adapting the proof given by M. L. Leite in [17, Proposition (2.2)] and the result
is the following.

Proposition 3.6 The 2-mean curvature H2 of the graph G of u considering in M ⊂ IRn the
metric g = 1

F2 〈, 〉 and the coordinates (x1, x2, . . . , xn) is given by

S2
W 4

F4 = n(n − 1)H2
W 4

F4 =
∑

i< j

(
W 2 − F2(u2i + u2j )

) ∣∣∣∣
V{i i} V{i j}
V{ j i} V{ j j}

∣∣∣∣

− 2F2
∑

i<k

ui uk
∑

j =i,k

∣∣∣∣
V{ik} V{i j}
V{ jk} V{ j j}

∣∣∣∣ ,
(10)

where V{i j} = ui j + 1
F

[
ui Fj + u j Fi − (∑m umFm

)
δi j
] = I Ii j .W and the indices vary in

{1, . . . , n}.
In this paper, we are in fact interested in the case where M = IHn is the hyperbolic space.

Choosing F conveniently, we will be able to deal with different models for IHn . For future
use, we point out that by using that the Ricci curvature of IHn is −(n − 1), we can rewrite
the expression (8) for this case as

2S2 = n(n−1)H2 = F2div

(
P1

∇u

W

)
+ (2 − n)F〈P1∇u,∇F〉

W
−(n−1)F2

∣∣∣∣

∣∣∣∣
∇u

W

∣∣∣∣

∣∣∣∣

2

. (11)

Of course, one can use the formula of Remark (3.3) to obtain (11).
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4 Examples of complete H2-graphs in IHn × IR

In this section, we consider the half-space model for IHn , that is, we consider

IHn = {x = (x1, . . . , xn−1, xn = y) ∈ IRn |y > 0}
endowed with the metric

dx21 + · · · + dx2n
F2 = dx21 + · · · + dx2n

y2
.

Searching for examples, here we consider for each (l1, . . . , ln−1) ∈ IRn−1, the graph G
given by

t = u(x1, . . . , xn−1, y) = λ(y) + l1x1 + · · · + ln−1xn−1 (12)

and we have the following.

Proposition 4.1 The 2-mean curvature H2 of the graphG of t = λ(y)+l1x1+· · ·+ln−1xn−1

is given by

2S2
y2

= n(n − 1)H2

y2
=
(

− y
(
l2 + (n − 1)λ̇2

)

W 2

)′
+ (n − 1)(n − 3)λ̇2 − l2

W 2 , (13)

where l2 = l12 + · · · + ln−1
2 and W 2 = 1 + y2l2 + y2λ̇2.

Sketch of the Proof By using Propositions3.4 and Eq. (9), we can obtain the matrix [A] and,
a fortiori, [P1]. Then, we obtain the result by computing formula (11). ��
Remark 4.2 By using Proposition (3.6) for graphs given by (12), we obtain the equation

2S2W
4 = (n − 1)(n − 4)λ̇2y2 + (n − 1)(n − 2)λ̇4y4 + (n − 1)(n − 2)λ̇2y4l2

+ 2λ̇λ̈y3[(2 − n)l2y2 − (n − 1)] − 2l2y2,

that turns out to be equivalent to (13). The latter can also be obtained by using (1).

We want to solve Eq. (13) for some particular data finding then some interesting graphs
with constant 2-mean curvature. For simplifying purposes, we introduce in (13) the variable
z = l2 + (n − 1)λ̇2 obtaining

2S2
y2

= −
( z

W 2 y
)′ + (n − 3)

z

W 2 + (2 − n)
l2

W 2 ,

or equivalently,
2S2
yn−1 = −

( z

W 2 y
4−n
)′ + (2 − n)

l2y3−n

W 2 . (14)

We recall that a parabolic translation can be identified with a horizontal euclidean trans-
lation in this model for IHn . Then, when l = 0, the graph G given by (12) is invariant by
parabolic translation. When l = 0, the parabolic translation is composed with a vertical
translation and we say that G is invariant by parabolic screw motion.

We notice that in IHn × IR, we can also define the notion of a horizontal graph,
y = g(x1, . . . , xn−1, t), of a real and positive function g.

We first deal with the case l = 0 and S2 = 0, and we obtain the following classification
result.
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1816 M. F. Elbert, R. Sa Earp

Theorem 4.3 (1-minimal hypersurfaces in IHn × IR invariant by parabolic translations)
Despite the slice, 1-minimal vertical graphs invariant by parabolic translations are, up to
vertical translations or reflections, of the following type:

(a) If n = 2, λ(y) = c ln(y), for all y > 0 and for c > 0.

(b) If n > 2, λ(y) = 2
n−2 arcsin(

y
n−2
2

c ), for a positive constant c and y ∈ (0, c
2

n−2 ).

The function λ(y) in (a) gives rise to an entire vertical graph. The function λ(y) in (b)
generate a family of non-entire horizontal 1-minimal complete graphs in IHn × IR invariant
by parabolic translations. The asymptotic boundary of each graph of this family is formed
by two parallel (n − 1)-planes.

Proof Equation (14) for l = 0 and S2 = 0 yields

z

W 2 y
4−n = d, for a constant d that must be nonnegative.

Replacing the values for z and W and integrating we obtain, up to reflection,

λ(y) =
∫ y

0

√
d ξ

n−4
2

√
(n − 1) − dξn−2

dξ.

If n = 2, we obtain (a) with c =
√

d
1−d and if n > 2, we set c =

√
n−1
d and we obtain (b).

The function λ(y) given by b) is increasing in the interval (0, c
2

n−2 ) and is vertical at

y = c
2

n−2 . Since the induced metric in the yt-plane is euclidean, a simple computation shows

that the euclidean curvature is finite and strictly positive at this point. If we set t0 = λ
(
c

2
n−2

)
,

we can then glue together the graph t = λ(y) with its reflection given by

2t0 − λ(y)

in order to obtain a horizontal 1-minimal complete graph invariant by parabolic screwmotion
defined over {(x1, . . . , xn−1, t) ∈ IHn−1 × IR | 0 ≤ t ≤ 2t0}. The asymptotic boundary of
this example is formed by two parallel hyperplanes. ��
Remark 4.4 Recalling thatwhenn = 2, S2 is the extrinsic curvature of the surface,we see that
each solution of Theorem (4.3) a) gives rise to an entire graph with null extrinsic curvature.
By considering the result given in [10, Proposition (4.1)], one can see that this solution has
constant mean curvature H = 1

2
c√
1+c2

. Then, the solution λ(y) = c ln(y), c ∈ IR, is an

entire graph with null extrinsic curvature and constant mean curvature |H | < 1
2 . We wonder

if this is the only example of an entire graph with null extrinsic curvature and constant mean
curvature in IH2 × IR.

Question Is there any entire graph with null extrinsic curvature and constant mean curvature
in IH2 × IR other than λ(y) = c ln(y), c ∈ IR?

We could handle to find solutions for Eq. (14) for some values of n, l and S2. We do not
aim to exhaust the cases here, but we choose some particular data in order to present some
interesting examples.

Example 4.1 (Graphs with null extrinsic curvature in IH2 × IR invariant by parabolic
screw motion) Equation (14) for n = 2, l = 0 and S2 = 0 yields

z

W 2 y
2 = d

123



Constructions of Hr -hypersurfaces, barriers and Alexandrov theorem in IHn × IR 1817

which implies that d > 0 and gives

λ = ±
∫ y

∗

√
c − ξ2l2

ξ
dξ, where c = d

1 − d
> 0.

The integration gives, up to vertical translations or reflection, the explicit solution

λ = −√
c ln(

√
c +

√
c − l2y2) + √

c ln(ly) +
√
c − l2y2, for y ∈ (0,

√
c

l
).

��
Example 4.2 (Entire H2-graphs in IHn × IR invariant by parabolic translations, 0 <

H2 < n−2
n , n > 2)

Equation (14) for l = 0 and H2 = k = 0 yields

n(n − 1)k

yn−1 = −
( z

W 2 y
4−n
)′

,

which, for n > 2, gives

z

W 2 =
(
n(n − 1)k

n − 2

)
1

y2
.

The latter implies that k > 0 and can be written as

((n − 2) − nk) λ̇2 = (nk)
1

y2
.

Then, wemust have 0 < k <
(n−2)

n . Integration gives, up to vertical translations, the solution

λ = c ln(y), c ∈ IR, y > 0.

��
In [12, Theorem (7.3)], the authors proved that, when n = 2, a complete immersion with

H2 = constant > 0 is a rotational sphere. In contrast, when n > 2, the last example shows
that there exist entire graphs with H2 = constant > 0.

Remark 4.5 One can easily see that when n = 2 or l = 0, we can obtain explicit solutions
of (14) by integration. For each case, a careful analysis of the behavior should be taken.

5 Examples of rotational H2-hypersurfaces in IHn × IR

Now, we search for rotational hypersurfaces of IHn × IR with H2 = constant, and we use the
ball model of the hyperbolic space IHn (n ≥ 2), i.e., we consider

IHn = {x = (x1, . . . , xn) ∈ IRn |x21 + · · · + x2n ≤ 1}
endowed with the metric

gIH := dx21 + · · · + dx2n
F2 = 1

F2 〈., .〉,

where F =
(
1−|x |2

2

)
.
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1818 M. F. Elbert, R. Sa Earp

We notice that in [12, Section 5], the authors classify the complete rotational surfaces
in IH2 × IR with constant positive extrinsic curvature. With our method, we could re-obtain
their examples (see Example (4.3) below). In [7,16,21] and references therein, one can find
examples of rotational hypersurfaceswith constant Hr in space forms, aswell as classification
results.

In the vertical plane V := {(x1, . . . , xn, t) ∈ IHn ×IR|x1 = . . . = xn−1 = 0}, we consider
a generating curve (tanh(ρ/2), λ(ρ)), for positive values of ρ, the hyperbolic distance to the
axis IR.

For our purpose, we define a rotational hypersurface in IHn × IR by the parametrization

X :
{
IR+ × Sn−1 → IHn × IR
(ρ, ξ) → (tanh(ρ/2), λ(ρ)).

The normal field to the immersion and the associated principal curvatures will be given by

N = (1 + λ̇2)−1/2
( −λ̇

2 cosh2(ρ/2)
ξ, 1

)
,

k1 = k2 = · · · = kn−1 = cotgh (ρ)λ̇(1 + λ̇2)−1/2 and kn = λ̈(1 + λ̇2)−3/2.

(See [4, Section 3.1] with a slight modification writing functions in terms of ρ instead of t).
Then, the 2-mean curvature

(n
2

)
H2 = S2 =

∑

i1<i2

ki1ki2

is given by

nH2
(sinhn−1(ρ))

cosh(ρ)
= ∂

∂ρ

[
sinhn−2(ρ)

(
λ̇2

1 + λ̇2

)]
. (15)

By setting I (ξ) = ∫ ξ

0
(sinh(n−1)(s))
cosh(s) ds and integrating twice we obtain, up to vertical transla-

tion or reflection,

λ(ρ) =
∫ ρ

∗

√
nH2 I + d

sinh(n−2)(ξ) − (nH2 I + d)
dξ, (16)

where the constant d comes from the first integration.
Now we set

p(ξ) = nH2 I + d and q(ξ) = sinh(n−2)(ξ) − (nH2 I + d) = sinh(n−2)(ξ) − p(ξ)

and we write

λ(ρ) =
∫ ρ

∗

√
p(ξ)

q(ξ)
dξ.

We notice that we must have p(ξ) ≥ 0 and q(ξ) > 0. We also notice that when d = 0, λ

could not be defined for ρ = 0, since, in this case, p(0)
q(0) = −1.

Differentiation gives

λ̇ ≥ 0,

ṗ = nH2
sinh(n−1)(ξ)

cosh(ξ)
,
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q̇ = sinhn−3(ξ)

cosh(ξ)

[
(n − 2) cosh2(ξ) − nH2 sinh

2(ξ)
] = sinhn−3(ξ)

cosh3(ξ)

[
1 − nH2

(n − 2)
tgh 2(ξ)

]

(17)
and

λ̈= 1

2

(
q

p

)1/2 [ ṗq − pq̇

q2

]
= 1

2q2

(
q

p

)1/2 sinhn−3(ξ)

cosh(ξ)
[nH2 sinh

n(ξ)−(n−2) cosh2(ξ)p], for ξ > 0.

Now, exploring (16) and analyzing the behavior of the functions p and q , we highlight
some interesting examples of rotational H2-hypersurfaces in IHn × IR and their geometric
properties.

Example 5.1 (The slice) We easily see that the slice, λ = constant, is a solution of (15) for
H2 = 0 and any dimension. ��
Example 5.2 (1-minimal cones in IH2 × IR) Setting n = 2 and H2 = 0 in (15) we obtain
the solution

λ(ρ) = ±
√

d

1 − d
ρ, 0 < d < 1.

Thus, we see that the cone λ(ρ) = cρ, c ∈ IR, ρ > 0, is a 1-minimal surface in IH2 × IR, i.e.,
a surface with null extrinsic curvature. In Euclidean coordinates, we can write them as

t = 2c arctgh (

√
x2 + y2), c ∈ IR, x2 + y2 < 1.

��
Example 5.3 (Compact rotational surface with positive extrinsic curvature in IH2 × IR)
Setting n = 2, d = 0 and H2 > 0, the expression in (16) reads as follows

λ(ρ) =
∫ ρ

0

√
2H2 ln(cosh(ξ))

1 − (2H2 ln(cosh(ξ)))
dξ

and we must have ρ < ρo := arcosh (e
1

2H2 ). We want to analyze the convergence of the
integral at ρ0. By using that ln(cosh(ξ)) and tgh (ξ) are increasing functions we have, for
all a ∈ (0, ρ0),

∫ ρ0

a

√
2H2 ln(cosh(ξ))

1 − (2H2 ln(cosh(ξ)))
dξ ≤

∫ ρ0

a

√
1

1 − (2H2 ln(cosh(ξ)))
dξ

≤ 1

2H2 tgh (a)

∫ ρ0

a

2H2 tgh (ξ)√
1 − (2H2 ln(cosh(ξ)))

dξ.

By setting v(ξ) = 2H2 ln(cosh(ξ)) and using the inequalities above, we can see that

∫ ρ0

a

√
2H2 ln(cosh(ξ))

1 − (2H2 ln(cosh(ξ)))
dξ ≤ 1

2H2 tgh (a)

∫ 1

v(a)

√
1

1 − v
dv

and then the integral is convergent at ρ0 and λ(ρ0) is well defined.
Now, we use (17) to see that, for ξ > 0,

ṗ > 0, q̇ < 0 and λ̈ = 1

2

(
q

p

)1/2 [ ṗq − pq̇

q2

]
> 0.
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Bringing all together, we see that λ is increasing and strictly convex in the interval (0, ρ0)
and is vertical and assume a finite value at ρ = ρ0.

Since the induced metric in the ρt-plane is Euclidean, a simple computation shows that
the Euclidean curvature is finite at this point and strictly positive at this point. If we set
t0 = λ(ρ0), we can then glue together the graph t = λ(y) with its reflection given by

2t0 − λ(y)

in order to obtain a compact rotational surface. ��
We now choose d = 0 and n > 2 in the expression (16). We notice that, for this case,

lim
ξ→0

p(ξ)

q(ξ)
= 0 then we can set p(0)

q(0) = 0 and we have

λ(ρ) =
∫ ρ

0

√
nH2 I

sinh(n−2)(ξ) − nH2 I
dξ. (18)

We also notice that, with these conditions, there is no solution for H2 < 0, since we would
have p(ξ)

q(ξ)
< 0. Then, it remains to treat the case H2 > 0.

Lemma 5.1 The function λ given by (18), for H2 > 0 and n > 2:

(i) is increasing.
(ii) satisfies λ̈ > 0, for all ξ > 0.

(iii) satisfies λ =
√
H2
2 ρ2 + o(ρ3), near 0.

In particular, the corresponding hypersurface is strictly convex.

Proof (i) is clear. We proceed with the proof of (ii).
For all ξ > 0, we write the last equation in (17) as

λ̈ = 1

2q2

(
q

p

)1/2 sinhn−3(ξ)

cosh(ξ)
S(ξ),

where S(ξ) = nH2 sinhn(ξ) − (n − 2) cosh2(ξ)p. A computation gives

Ṡ(ξ) = 2 sinh(ξ) cosh(ξ)(nH2 sinh
n−2(ξ) − (n − 2)p).

Now, we set R(ξ) = nH2 sinhn−2(ξ) − (n − 2)p and we have

Ṡ(ξ) = 2 sinh(ξ) cosh(ξ)R(ξ).

We easily see that

Ṙ(ξ) = (n − 2)nH2
sinhn−3(ξ)

cosh(ξ)
> 0 for all ξ > 0.

Then, we can see that R, and a fortiori S, vanish at ξ = 0 and is positive for ξ > 0. This
finishes the proof of (ii).

For (iii), we consider the integrand
√

p(ξ)
q(ξ)

of λ in (18) and we recall that
√

p(0)
q(0) = 0. Now,

we compute its derivative at ξ = 0 obtaining
√
H2. Its Taylor approximation near zero is

then given by
√

p(ξ)

q(ξ)
= √H2 ξ + o(ξ2)

which gives the result by integration. ��
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0

5

10

15

ρ

λ(
ρ)

n = 4

H2 = 1/ 2

H2 = 1/ 3

Fig. 1 Entire rotational strictly convex H2-graph with 0 < H2 ≤ n−2
n , n = 4

Example 5.4 (Entire rotational strictly convex H2 -graph in IHn×IRwith 0 < H2 ≤ n−2
n ,

n > 2)
We have q(0) = 0 and λ =

√
H2
2 ρ2 + o(ρ3) near 0. Since tgh (ξ) < 1, the expression for q̇

in (17) gives that q̇ > 0 for ξ > 0. Then, the generating curve is given by a function λ(ρ)

defined for ρ > 0. By applying Lemma5.1 it follows that the generating curve is strictly
convex (Fig. 1). ��

Example 5.5 (Compact embedded strictly convex rotational H2 -hypersurface in
IHn × IR with H2 >

n−2
n , n > 2) (Fig. 2)

We have q(0) = 0 and as before, near 0, λ has the following behavior

λ =
√
H2

2
ρ2 + o(ρ3).

Claim: The asymptotic behavior of q(ξ), n > 2 when ξ tends to infinity is as follows

q(ξ) = e(n−2)ξ

2n−2

[(
1 − e−2ξ )(n−2) −

(
nH2

n − 2

)
+ O

(
e−2ξ )

]
. (19)

Proof of the Claim: We start by analyzing the function sinh(n−1)(s)
cosh(s) , the integrand of I . We

have

sinh(n−1)(s)

cosh(s)
= e(n−2)s

2n−2

(
1 − z2

)n−1

(
1 + z2

) , where z = e−s .

The behavior of
(
1−z2

)n−1

(1+z2)
near z = 0 given by its Taylor approximation helps us to see

the behavior of sinh(n−1)(s)
cosh(s) at infinity, namely,

sinh(n−1)(s)

cosh(s)
= e(n−2)ξ

2n−2 + O(e(n−4)ξ ).
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Then, a computation leads us to the asymptotic behavior of q when ξ tends to infinity. This
concludes the proof of the claim.
By using the expression in (19), we can see that when H2 > n−2

n > 0, q(ξ) becomes
negative when ξ tends to infinity. Also, the behavior of the function tgh (ξ) gives, by using

the expression for q̇ in (17), that q̇ is positive near zero, vanishes at ξ = arctgh (

√
n−2
nH2

)

and becomes negative later. This shows that q is positive near 0, attains a maximum at

arctgh (

√
n−2
nH2

), has a positive root ρ0 > arctgh (

√
n−2
nH2

) and is negative for ξ > ρ0.

Then λ(ρ) is defined for ρ ∈ [0, ρ0) and at ρ0 we have nH2 I (ρ0) = sinh(n−2)(ρ0). Also,
since nH2 I (ξ) is increasing we obtain

∫ ρ0

0

√
nH2 I

sinh(n−2)(ξ) − nH2 I
dξ ≤

∫ ρ0

0

√
sinh(n−2)(ρ0)

sinh(n−2)(ξ) − sinh(n−2)(ρ0)
dξ

By setting v = sinh(ξ)
sinh(ρ0)

we see that

∫ ρ0

0

√
nH2 I

sinh(n−2)(ξ) − nH2 I
dξ ≤

∫ 1

0

sinh(ρ0)√
1 + v2 sinh2(ρ0)

. (vn−2 − 1)−1/2dv

≤
∫ 1

0
v−1(vn−2 − 1)−1/2dv.

Since
∫

v−1(vn−2 − 1)−1/2 = 2
n−2 arctan(v

n−2 − 1)1/2 + constant, we conclude that the
integral converges to a finite value t0 = λ(ρ0) at ρ0.
Then, we see that for each value of H2 greater that n−2

n , we obtain that λ is increasing and
strictly convex in the interval (0, ρ0) and is vertical and assume a finite value at ρ = ρ0.

Since the induced metric in the ρt-plane is Euclidean, a simple computation shows that
the Euclidean curvature is finite and strictly positive at this point. If we set t0 = λ(ρ0), we
can then glue together the graph t = λ(y) with its reflection given by

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

ρ

λ(
ρ)

n = 4

H2 = 1

Fig. 2 Embedded compact strictly convex rotational H2-hypersurface with H2 > n−2
n , n = 4
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2t0 − λ(y)

in order to obtain an embedded compact rotational surface. ��
In order to highlight the geometric properties of the examples with d = 0, we notice that

careful analysis of (18) gives the following proposition that we will need later.

Proposition 5.2 For fixed n, the profile curves of the rotational H2-hypersurfaces obtained
by (18) satisfy:

(i) For a fixed ρ, λ increases when H2 increases.
(ii) For H2 > n−2

n , we have that ρ0 tends to infinity when H2 tends to
n−2
n .

(iii) λ(ρ) → 0 uniformly in compacts subsets of [0,∞]when H2 → 0. This means that when
H2 → 0, the rotational H2-hypersurfaces converge to the slice, uniformly in compact
subsets of IHn × {0}.

6 Generalizations for Hr -hypersurfaces, r > 2

In this section, we give an insight into the case r > 2. Again, by adapting the proof of [17,
Proposition (2.2)] given by M. L. Leite, we obtain

Proposition 6.1 The r-mean curvature Hr of the graph G of u considering in M ⊂ IRn the
metric g = 1

F2 〈, 〉 and the coordinates (x1, x2, . . . , xn) is given by

Sr
Wr+2

F2r =
∑

j1<···< jr

(
W 2 − F2

(
u2j1 + · · · + u2jr

))

∣∣∣∣∣∣∣∣

V{ j1 j1} V{ j1 j2} . . . V{ j1 jr }
V{ j1 j2} V{ j2 j2} . . . V{ j2 jr }

. . . . . . . . . . . .

V{ j1 jr } V{ j2 jr } . . . V{ jr jr }

∣∣∣∣∣∣∣∣

−2F2
∑

i<k

ui uk

⎛

⎜⎜
⎝

∑

j2,..., jr =i,k

∣∣∣∣∣∣∣∣

V{ik} V{i j2} . . . V{i jr }
V{ j2k} V{ j2 j2} . . . V{ j2 jr }
. . . . . . . . . . . .

V{ jr k} V{ jr j2} . . . V{ jr jr }

∣∣∣∣∣∣∣∣

⎞

⎟⎟
⎠,

(20)

where V{i j} = ui j + 1

F

[

ui Fj + u j Fi −
(
∑

m

umFm

)

δi j

]

= I Ii j .W and the indices vary

in {1, ..., n}, where we recall that W =
√
1 + |∇gu|2g.

For r = 1, formula (20) is equivalent to [23, formula (3)] and for r = 2 it reduces to formula
(10) of Proposition3.6. We can use it to construct many examples of Hr -hypersurfaces. For
instance, we can consider the half-space model for IHn and the graph G of differentiable
functions of the form t = v(x1) in order to obtain hypersurfaces with Hr = 0. Now, as in
Sect. 4, we consider the graph G of functions of the form t = u(x1, . . . , xn−1, y) = λ(y).
We have the following.

Theorem 6.2 (Hypersurfaces with Hr = 0 in IHn × IR invariant by parabolic translations)
Despite the slice, vertical graphs G with Hr = 0 are, up to vertical translations or reflections,
of the following types:
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1824 M. F. Elbert, R. Sa Earp

a) If n = r , λ(y) = c ln(y), for all y > 0 and for c > 0.

b) If n > r , λ(y) = r
n−r arcsin(

y
n−r
r

c ), for a positive constant c and y ∈ (0, c
r

n−r ).

The function λ(y) in a) gives rise to an entire vertical graph. The function λ(y) in b) generate
a family of non-entire horizontal (r − 1)-minimal complete graphs in IHn × IR invariant by
parabolic translations. The asymptotic boundary of each graph of this family is formed by
two parallel (n − 1)-planes.

Proof For G, we have the following

Vi j = − λ̇(y)

y
δi j , for i, j ≤ n, Vnn = λ̈(y) + λ̇(y)

y

and

W 2 = 1 + y2λ̇2(y).

The last proposition then yields

Sr
Wr+2

F2r =
(
n − 1

r

)
W 2(−1)r

(
λ̇

y

)r
+
(
n − 1

r − 1

)
(−1)r−1

(
λ̇

y

)r−1 (
λ̈(y) + λ̇(y)

y

)
(21)

Rearranging the terms and imposing Sr = 0, we obtain the slice as a solution or

ryλ̈ = (n − 2r)λ̇ + (n − r)λ̇3y2.

The latter can be rewritten as
(

λ̇−2 . y

(
2(n−2r)

r

))′
= 2(r − n)

r
. y

(
2n−3r

r

)

.

For r = n, integrating twice, we obtain, up to vertical translations, the one parameter family
of solutions

λ(y) = c ln(y), for all y > 0 and for c ∈ IR.

Each solution gives then rise to a entire graph with Hr = 0.
For n > r , the first integration gives

λ̇−2y

(
2(n−2r)

r

)

= c2 − y

(
2(n−r)

r

)

,

where c2, c > 0, comes from the integration and we must have y < c
r

n−r . We then have

λ̇ = y
(n−2r)

r
√
c2 − y

2(n−r)
r

,

which gives, up to vertical translations, the one parameter family of solutions

λ(y) = ± r

n − r
arcsin

(
y

n−r
r

c

)

, for a positive constant c.

The function λ(y) given by b) is increasing in the interval (0, c
2

n−2 ) and is vertical at

y = c
2

n−2 . Since the induced metric in the yt-plane is euclidean, a simple computation shows
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that the euclidean curvature is finite and strictly positive at this point. If we set t0 = λ
(
c

2
n−2

)
,

we can then glue together the graph t = λ(y) with its reflection given by

2t0 − λ(y)

in order to obtain a horizontal (r − 1)-minimal complete graph invariant by parabolic screw
motion defined over {(x1, . . . , xn−1, t) ∈ IHn−1 × IR | 0 ≤ t ≤ 2t0}. The asymptotic
boundary of this example is formed by two parallel hyperplanes. ��

Now, we give a tour on rotational Hr -hypersurfaces. Following the steps of Sect. 5, with
the ball model for IHn , we can see that the r -mean curvature

(
n

r

)
Hr (p) =

∑

i1<...<ir

ki1 · · · kir

w.r.t. the upward normal vector is given by

nHr
(sinhn−1(ρ))

coshr−1(ρ)
= ∂

∂ρ

[

sinhn−r (ρ)

(
λ̇2

1 + λ̇2

)r/2]

. (22)

By setting I (ξ) = ∫ ξ

0
(sinh(n−1)(s))
coshr−1(s)

ds and integrating twice we obtain, up to vertical transla-
tion or reflection,

λ(ρ) =
∫ ρ

∗

√
(nHr I + d)2/r

(sinh(n−r)(ξ))2/r − (nHr I + d)2/r
dξ, (23)

where the constant d comes from the first integration.
From the computation, we deduce that the term (nHr I + d) must be positive. We set

pr (ξ) = (nHr I + d)2/r and qr (ξ) = (sinh(n−r))2/r (ξ) − (nHr I + d)2/r , but for the sake of
simplicity, we drop the subscript r . We also notice that when d = 0, λ could not be defined
for ρ = 0, since, in this case, p(0)

q(0) = −1.
We can easily see that the slice λ = constant is a solution of (22) for Hr = 0 and any

dimension. We also see that putting n = r and Hr = 0 in (22) we obtain that the cone
λ(ρ) = cρ, c ∈ IR, ρ > 0 is a (r − 1)-minimal hypersurface.

Now we consider the case d = 0, which implies Hr > 0 since (nHr I + d) > 0. We then
have

λ(ρ) =
∫ ρ

0

√
(nHr I )2/r

(sinh(n−r))2/r (ξ) − (nHr I )2/r
dξ (24)

and the following lemma holds.

Lemma 6.3 The function λ given by (24) for Hr > 0:

(i) is increasing.
(ii) satisfies λ̈ > 0, for all ξ > 0.

(iii) satisfies λ = (Hr )
1/r

2 ρ2 + o(ρ3), near 0.

In particular, the corresponding hypersurface is strictly convex.

Sketch of the Proof We follow step by step the proofs for the case r = 2 making appropriate
adjustments. We sketch the proof of ii) for completeness. We have

λ̈ = 1

rq2

(
q

p

)1/2

(nHr I. sinh
n−r (ξ))(2/r)−1 sinhn−r−1(ξ)

coshr−1(ξ)
S(ξ),
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where S(ξ) = nHr sinhn(ξ) − (n − r) coshr (ξ)nHr I . If n = r , S(ξ) and therefore λ̈ are
positive for ξ > 0. We now consider the case n > r . A computation gives

Ṡ(ξ) = 2nHr sinh(ξ) coshr−1(ξ)(sinhn−2(ξ) cosh2−r (ξ) − (n − r)I ).

Now, we set R(ξ) = sinhn−2(ξ) cosh2−r (ξ) − (n − r)I and we write

Ṡ(ξ) = rnHr sinh(ξ) coshr−1(ξ)R(ξ).

We easily see that

Ṙ(ξ) = (n − 2)
sinhn−3(ξ)

coshr−1(ξ)
> 0 for all ξ > 0.

Then, we can see that R, and a fortiori S, vanish at ξ = 0 and is positive for ξ > 0. ��
We want to see for which values of ξ > 0, the denominator q in (24) is positive, that is, for

which values of ξ > 0,
sinh(n−r)(ξ)

nHr I
> 1. For that, we analyze the sign of

g(ξ) := sinh(n−r)(ξ) − (nHr I ).

Differentiating and rearranging, we obtain

ġ(ξ) = sinhn−r−1(ξ)

cosh2r−1(ξ)
nHr

[
(n − r)

nHr
− tgh r (ξ)

]
(25)

Similarly to what we have done in Sect. 5, we can see that the sign of g, and a fortiori the
type of solution, depends on whether the value of Hr is greater or less than n−r

n . We have the
following proposition.

Proposition 6.4 (i) For each Hr , 0 < Hr ≤ (n−r)
n , the solution of (24) is an entire rota-

tional strictly convex Hr -graph in IHn × IR.
(ii) For each Hr , Hr >

(n−r)
n , a solution of (24) gives rise to an embedded compact strictly

convex rotational Hr -hypersurface in IHn × IR.

Sketch of the Proof From (25), since tgh (ξ) < 1, we easily see that for the case i), g > 0
for ξ > 0. Therefore, q > 0 for ξ > 0 and then λ(ρ) is defined for ρ ∈ [0,∞). In view of
Lemma6.3, item i) of the proposition is proved.

For the case ii), we first claim that, under our hypothesis, g becomes negative when ξ tends
to infinity. This is clear for r = n. For n > r , this can be seen by observing the asymptotic
behavior of g(ξ) when ξ tends to infinity, namely,

g(ξ) = e(n−r)ξ

2n−r

[
(1 − e−2ξ )(n−r) −

(
nHr

n − r

)
+ O

(
e−2ξ )

]
.

Now, we notice that the expression (25) gives that ġ is positive near zero, vanishes at

ξ = arctgh (
√

n−r
nHr

) and becomes negative later. This shows that g, and therefore q , is positive

near 0, attains a maximum at arctgh (
√

n−r
nHr

), has a positive root ρ0 > arctgh (
√

n−r
nHr

),

and is negative for ξ > ρ0. Then, λ(ρ) is defined for ρ ∈ [0, ρ0) and at ρ0 we have
nHr I (ρ0) = sinh(n−r)(ρ0).

Moreover, since nHr I (ξ) is increasing, we obtain
∫ ρ0

0

√
(nHr I )2/r

(sinh(n−r)(ξ))2/r − (nHr I )2/r
dξ ≤

∫ ρ0

0

√
(sinh(n−r)(ρ0)2/r

(sinh(n−r)(ξ))2/r − (sinh(n−r)(ρ0))2/r
dξ
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and then, by setting v =
(

sinh(ξ)
sinh(ρ0)

)2/r
we see that

∫ ρ0

0

√
(nHr I )2/r

(sinh(n−r)(ξ))2/r − (nHr I )2/r
dξ ≤

∫ 1

0

r

2
v−1(vn−r − 1)−1/2 dv.

Now, we use that
∫

v−1(vn−r − 1)−1/2 = r
n−r arctan(v

n−r − 1)1/2 + constant to conclude
that the integral converges to a finite value t0 = λ(ρ0) at ρ0.

Thus, all this together with Lemma6.3 gives that for each value of Hr greater than n−r
n ,

we obtain that λ is increasing and strictly convex in the interval (0, ρ0) and is vertical and
assume a finite value at ρ = ρ0.

Since the induced metric in the ρt-plane is euclidean, a simple computation shows that
the euclidean curvature is finite and strictly positive at this point. If we set t0 = λ(ρ0), we
can then glue together the graph t = λ(y) with its reflection given by

2t0 − λ(y)

in order to obtain a compact rotational surface. ��
We now state a result similar to that of Proposition5.2, for r > 2.

Proposition 6.5 For fixed n and r, the profile curves of the rotational Hr -hypersurfaces
obtained by (24) satisfy:

(i) For a fixed ρ, λ increases when Hr increases.
(ii) For Hr > n−r

n , we have that ρ0 tends to infinity when Hr tends to
n−r
n .

(iii) λ(ρ) → 0 uniformly in compacts subsets of [0,∞] when Hr → 0. This means that
when Hr → 0, the rotational Hr -hypersurfaces converge to the slice, uniformly in
compact subsets of IHn × {0}.

Before finishing this section, we state an existence and uniqueness result for complete
rotational Hr -hypersurfaces.

Theorem 6.6 (i) For each 0 < Hr ≤ (n−r)
n , there exists, up to translations or reflections, a

unique entire rotational Hr -graph in IHn × IR and it is strictly convex.
(ii) For each Hr >

(n−r)
n , there exists, up to translations or reflections, a unique embedded

compact rotational Hr -hypersurface and it is strictly convex.
Moreover, in IHn × IR, an embedded compact rotational Hr -hypersurface must have Hr >
(n−r)
n and an entire rotational Hr -graph must have 0 < Hr ≤ (n−r)

n .

Proof As we notice before, a careful analysis of (23) shows that if d = 0, the solution λ is
not defined for ρ = 0. Then, in order to obtain, either an entire rotational graph or a compact
rotational hypersurface, we must have d = 0. The solutions of (24) are then, up to vertical
translations or reflections, the ones obtained in Proposition6.4. ��

For future use, for each r , we denote by Pr the entire rotational strictly convex Hr -
graph with Hr = n−r

n of Proposition6.4(i) and by Qr the embedded rotational strictly
convex Hr -hypersurface with Hr > n−r

n obtained in Proposition6.4(ii).

7 Barriers for hypersurfaces with prescribed Hr

For n > r , the hypersurfaces obtained in Proposition6.4(i) are complete simply con-
nected hypersurfaces which are entire strictly convex graphs with constant r -mean curvature,
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0 < Hr ≤ n−r
n . The hypersurface obtained in Proposition6.4(ii) gives an example of con-

stant r -mean curvature, Hr > n−r
n , sphere-like hypersurface. They suggest, as mentioned in

the introduction, a strong analogy with the constant mean curvature case in IHn × IR. In this
section, we use these hypersurfaces as barrier in order to prove some beautiful geometric
results. For that, we use suitable versions of theMaximum Principle extracted from [13, The-
orem (1.1)], by F. Fontenele and S. Silva, where the reader can find details and proofs, based
on a classical Maximum Principle for elliptic functions. By using (2) and [13, Proposition
(3.2) and Lemma (3.3)] we can see that ellipticity, in this case, is equivalent to the definite
positiveness of Pr−1. The positiveness of Pr−1 is somehow well explored in the literature
and we quote, for instance, [6, Proposition (3.2)] that states the following.

[6, Proposition (3.2)] Let M̄n+1 be an (n + 1)-dimensional oriented Riemannian manifold
and let M be a connected n-dimensional orientable Riemannian manifold (with or without
boundary). Suppose x : M → M̄ is an isometric immersionwith Hr > 0 for some1 ≤ r ≤ n.
If there exists a convex point q ∈ M , then for all 1 ≤ j ≤ r − 1, Pj is positive definite, and
the j-mean curvature Hj is positive.

Then, based on [13, Theorems (1.1) and (1.2)], we obtain the following.

Interior Geometric Maximum Principle
Let M1 and M2 be oriented connected hypersurfaces of an oriented Riemannian manifold

that are tangent at p. Let η0 be a unitary normal to M2 and suppose that M2is strictly convex
at a point q . If Hr (M2) ≥ Hr (M1) > 0 and M1 remains above M2 w.r.t. η0 then M1 = M2.

Boundary Geometric Maximum Principle
Let M1and M2 be oriented connected hypersurfaces of an oriented Riemannian manifold

with boundaries ∂M1and ∂M2,respectively. Suppose that M1and M2,as well as ∂M1and
∂M2,are tangent at p ∈ ∂M1 ∩ ∂M2.Let η0be a unitary normal to M2and suppose that M2is
strictly convex at a point q.If Hr (M2) ≥ Hr (M1) > 0and M1remains above M2w.r.t. η0then
M1 = M2.

With the Maximum Principles in hand, we can proceed with the geometric results. We
start by noticing that the existence of a compact (without boundary) hypersurface in IHn × IR
with constant Hr > n−r

n , does not allow, by the Maximum Principle, the existence of an
entire Hr -graph, Hr > n−r

n , strictly convex at some point.
Now, we prove a Convex Hull Lemma. For the mean curvature case in IHn × IR, it was

proved in [5,11]. Here, the proof is essentially the same. The real difference is on the version
of the Maximum Principle. We sketch it here for completeness.

Let Pr be as defined above and let P̆r be the symmetric of Pr with respect to a horizontal
slice. We consider the set ϒr of hypersurfaces obtained from Pr or P̆r by a vertical or a
horizontal translation in IHn × IR. We denote by C(S) the mean convex side of S ∈ ϒr . Let
K be a compact set in IHn × IR and set

Fr
K = {B ⊂ IHn × IR | K ⊂ B, B = C(S) for some S ∈ ϒr }.

Lemma 7.1 (Convex Hull Lemma) Let M be a compact connected immersion in IHn × IR,
n > r ,with prescribedr-mean curvature function Hr : M −→ (0, n−r

n ].Then M is contained
in the convex hull of the family Fr

∂M .

Proof Let S ∈ ϒr be such that ∂M ⊂ C(S). We will prove that M ⊂ C(S) and this will
finish the proof. Since M is compact and S is an entire graph, we can obtain a copy of S by a
vertical translation that contains M in its mean convex side. Now, we start moving this copy
back by vertical translations. Suppose that in this process, S touches M at a point p. Then,
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M and S are tangent at p. By hypothesis, the r -mean curvature of M is less than or equal to
the r -mean curvature of S and since S is strictly convex, we can use the Maximum Principle
to obtain that either M is contained in S or the point of contact belongs to ∂M . In both cases,
we could not have ∂M ⊂ C(S), then we can come back into the original position without
touching M . This proves that M ⊂ C(S). ��

As a corollary, we can see that an immersion in IHn × IR, n > r , with prescribed r -mean
curvature function Hr : M −→ (0, n−r

n ] cannot be compact without boundary.
The Convex Hull Lemma also gives a priori height estimates for graphs over compact

domains with prescribed r -mean curvature function Hr : M −→ (0, n−r
n ] whose boundary

lies in a slice (see Corollary7.3 below).Wewonder if a height estimate could also be obtained
for the case Hr > n−r

n and we ask:

Question Would themaximumheight of a compact graphwith boundary in a slicewith Hr =
constant > n−r

n be given by half of the total height of the compact rotational corresponding
example?

As far as we know, height estimates for Hr -hypersurfaces in product spaces were first
obtained in [6]. Thereafter, it was approached again in [12] for extrinsic curvature in a
3-dimensional product space, in the recent preprint [14], where the authors deal with Hr -
hypersurfaces in n-dimensional warped products and for some especial Weingarten surfaces
in M2(c) × IR in the paper [19].

Before stating the next results we establish some notation. Let B ⊂ IHn ×{0} be an n-ball
and let SB,+ and SB,− be the hypersurfaces in ϒr , r < n, passing through the (n− 1)-sphere
∂B and symmetric with respect to the slice IHn × {0}. SB,+ is above the slice and SB,− is
below the slice.

Let φ : M → IHn × IR a connected hypersurface and let π : IHn × IR → IR denote the
natural projection. We denote by h : M → IR the height function of M , that is, h(p) =
π(φ(p)), we have the following.

Theorem 7.2 Let M be a compact connected immersion in IHn × IR with prescribed r-mean
curvature function Hr : M −→ (0, n−r

n ], n > r , such that ∂M ⊂ IHn × {0}. Let � ⊂ IHn be
the bounded domain of M such that ∂M = ∂�. Then, there exists a constant C (depending
on � and n) such that |h(p)| ≤ C for all p ∈ M.

Proof Let B ⊂ IHn be an n-ball such that ∂M ⊂ B. By the Convex Hull Lemma, M ⊂(C(SB,−) ∩ C(SB,+)
)
. ��

Let � ⊂ IHn be compact, u be a real function over � with u|∂� = 0 and let G be the
vertical graph of u in IHn × IR. As corollaries of the last theorem we obtain a priori height
and gradient estimates for graphs described in the two following results.

Corollary 7.3 Suppose that G has prescribed r-mean curvature function Hr : M −→
(0, n−r

n ], n > r . Then, there exists a constant C (depending on � and n) such that
max
p∈�

|u(p)| ≤ C.

Corollary 7.4 Suppose that G has prescribed r-mean curvature function Hr : M −→
(0, n−r

n ],n > r , and that  = ∂� is connected and has all its principal curvatures (w.r.t. the
inner normal vector) greater than 1. Then, there exists a constant C (depending on � and n)
such that max

p∈∂�
|∇IHu(p)| ≤ C.
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Proof We first notice that the hypothesis on the principal curvatures of  imply that we can
find a radius R such that, for each p ∈ , there is an n-ball Bp of radius R whose boundary
is tangent to p at  and satisfying  ⊂ Bp . Now, as in the proof of Theorem7.2, we have,
for each p, M ⊂ (C(SBp,−) ∩ C(SBp,+)

)
and the result follows. ��

In the sequel, we prove two uniqueness results, but before that, we need to prove a lemma
and we recall [20, Proposition (4.1)].

Lemma 7.5 Let M be a compact Hr -immersion in IHn × IR, Hr = k > 0, such that if
∂M = ∅ we have ∂M ⊂ IHn × {0}. Then there is an interior point of M where M is strictly
convex, that is, M has an elliptic point.

Proof Since M is compact, there is a P̆r ∈ ϒr such that M ⊂ C(P̆r ). Without loss of gener-
ality, we can assume that there is a subset of M above the slice IHn ×{0}. Set p for the highest
point of P̆r . Now, we consider a sequence of rotational strictly convex Hr -hypersurfaces L̆i ,
tangent to P̆r at p, such that Hr (L̆i ) < k and Hr (L̆i ) → 0 (see Proposition6.5). We start
moving p toward its projection on IHn × {0} along the vertical axis while i → ∞. By using
the behavior of the sequence L̆i described in Proposition6.5, we can do this process keeping
M in C(L̆i ). We do this until a translated L̆i meet M at a point q0. It is clear by construction
that q0 is not at ∂M . Then, we obtain that L̆i contains M in its mean convex side and L̆i is
tangent to M at q0. Since L̆i is strictly convex, we obtain the result. ��
[20, Proposition (4.1)] Let S ⊂ IHnbe a finite union of connected, closed and embedded
(n − 1)-submanifolds C j , j = 1, . . . , k,such that the bounded domains whose boundary are
the C jare pairwise disjoint. Assume that for any geodesic γ ∈ IHn ,there exists a (n − 1)-
geodesic plane πγ ⊂ IHn of symmetry of S which is orthogonal to γ . Then S is a (n − 1)-
geodesic sphere of IHn .

Now, we prove an Alexandrov-type Theorem for Hr in IHn × IR.

Theorem 7.6 (Alexandrov Theorem) Let M be a compact (without boundary) connected
embedded hypersurface in IHn × IR with constant r-mean curvature function Hr > 0 then
M is, up to translations, the rotational hypersurface Qr .

Proof By Lemma7.5, M is strictly convex at a point p ∈ M . Then, the Maximum Principle
allow us to use Alexandrov Reflection Method. Let us suppose that q is the highest point of
M , say at t = t0. We use Alexandrov Reflection Method reflecting M through horizontal
slices IHn ×{t}. For each t , we denote the part of M above (respectively, below) IHn ×{t} by
Mt

+ (respectively, Mt
−). We denote by Mt

+∗ the reflection of Mt
+ through the slice. For

t slightly smaller than t0, Mt
+ is a graph of bounded slope over a domain in IHn × {t} and

Mt
+∗ is above Mt

−. We keep doing reflection, for decreasing t , until finding an interior or
boundary tangent point for both Mt

− and Mt
+∗. Then the, interior or boundary, Maximum

Principle imply that they coincide and we obtain a slice of symmetry that w.l.g. we suppose
is IHn × {0}. With this process, we also obtain that the above and below parts of M w.r.t the
slice are vertical graphs.

Now we fix a geodesic γ in IHn × {0} that passes through the origin, and we apply
Alexandrov Reflection Method with vertical geodesic n-planes orthogonal to γ . Similarly
to what we have done above, we obtain a geodesic n-plane ϕγ of symmetry of M which is
orthogonal to γ . ϕγ divides then M in two symmetric parts that are horizontal graphs, with
respect to γ , over ϕγ . We do the same process for each γ . For each copy of IHn at height t ,
and for each γ , let πγ = ϕγ ∩ (IHn × {t}). Then, we are able to use [20, Proposition (4.1)]
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above for each t , in order to conclude that M is a rotational hypersurface homeomorphic to
an n-sphere. We obtain Qr , up to translations. ��
Theorem 7.7 Let M be a compact connected embedded hypersurface in IHn × IR such that
∂M ⊂ IHn × {0}, with constant r-mean curvature function satisfying 0 < Hr ≤ n−r

n , n > r
. Suppose that  = ∂M is connected and has all its principal curvatures (w.r.t. the inner
normal vector) greater than 1. Let � ⊂ IHn be the bounded domain such that  = ∂�. Then
M is a vertical graph over�. Moreover, if  is an (n−1)-sphere bounding the n-ball B then
M = SB,+ or M = SB,−.

Proof Since Hr > 0, M cannot be the slice. Let us suppose that there exists a part of
M above the slice IHn × {0}. By Lemma7.5, M is strictly convex at a point p ∈ M ,
and we can therefore use the Maximum Principle. Now, as in Corollary7.4, for each
q ∈ , let Bq be the ball of radius R tangent to q at  and satisfying  ⊂ Bq . Since
M ⊂ (C(SBq ,−) ∩ C(SBq ,+)

)
the intersection of the vertical cylinder over ∂� with M\∂M

is empty. Let �̃ be any fixed vertical copy of �, below the slice IHn × {0}, such that
�̃ ∪ M = ∅. Let � be the piece of the vertical cylinder over  bounded by  and �̃.
Then M ∪ � ∪ �̃ is an orientable homological boundary of a (n+1)-dimensional chain in
IHn×IR.We choose the inwards normal toM∩�∩�̃, and then, the normal toM is downward
pointing.

Suppose that M is not a graph. Then, the vertical line over a point w of � intersects M
in, at least, two points. Set w2 for the highest point of M in this vertical line and w1 for the
lowest. Consider a vertical translate M̃ above M such that M ∩ M̃ = ∅. Let w̃1 and w̃2 be
the corresponding points in M̃ . Now we vertically translate M̃ down and we stop when we
find a first point of contact or when w̃1 = w2. In the latter, w̃1 = w2 will be the first point of
contact. In both situations, the Maximum Principle would imply that M and the translated
copy should be equal. This is gives a contradiction since we would not have reached the
initial position.

If M has no part above the slice, we proceed in an analogous way with the lowest point
of M . This completes the proof of the first part.

Now we suppose that  is an (n − 1)-sphere bounding the n-ball B. Let us fix a geodesic
γ in IH × {0} that passes through the origin and we apply Alexandrov Reflection Method
with vertical geodesic n-planes orthogonal to γ . By applying Alexandrov reflection Method
with vertical geodesic n-planes we obtain, by using [20, Proposition (4.1)] that M is part of
a rotational hypersurface. Then, M is completely above or below the slice IHn × {0}. Let us
suppose that it is above. By translating SB,+ upwards and downwards suitably and by using
the Maximum Principle we conclude that M is above and below SB,+. Then they should
coincide. The same happens with SB,− if M is below the slice. ��

8 Appendix: r-Mean curvature for vertical graphs

Here, we generalize some results of Sect. 3 and we use the same notation of that section. We
recall that M = Mg denotes a Riemannian n-manifold with metric g and that we consider
on M̄ = M × IR the product metric 〈, 〉 = g+ dt2. G = {(p, u(p)) ∈ M × IR| p ∈ �} is the
vertical graph of u, W =

√
1 + |∇gu|2g and we choose the orientation given by the upward

unit normal.
Now, we set

τr (v1, v2) = trace(z → Pr−1Rg(v1, z)v2)

123



1832 M. F. Elbert, R. Sa Earp

and we define inductively,

J1(v1, v2) = τ1(v1, v2) = Ricg(v, v2),

Js(v1, v2) = τs(v1, v2) − Js−1(Av1, v2).

Then, similar to Proposition3.1, we have the following.

Proposition 8.1 The (r+1)-mean curvature Hr+1 of the graph G is given by

(r + 1)Sr+1 = (r + 1)

(
n + 1

r

)
Hr = divg

(
Pr

∇gu

W

)
+ Jr

(∇gu

W
,
∇gu

W

)
, (26)

where divg means the divergence in M.

Proof By (1) and (4) we have

(r + 1)Sr+1 = trace

(
z → Pr∇g

z

(∇gu

W

))
.

Claim:

trace
(
z → Pr∇g

zv
) = trace

(
z → ∇g

z (Prv)
)+ Jr

(
v,

∇gu

W

)
. (27)

The proposition will be proved by taking v = ∇gu
W in (27). We prove (27) by induction. For

r = 1, it was proved before, see Eq. (6). We assume that it is true for r − 1.
Let p ∈ M and let {vi }i be an orthonormal basis in a neighborhood of p in M which is

geodesic at p, that is, such that ∇g
v j vi (p) = 0. Let v = ∑

i aivi . As in Proposition3.1, the
proof will be completed if we prove (27) for v = vi , for some i . The left hand side vanishes
and then we have to prove that

trace
(
z → ∇g

z(Prvi )
)
(p) = −Jr

(
vi ,

∇gu

W

)
(p).

Since Pr = Sr I − Pr−1A, this holds provided that

trace
(
z → ∇g

z(Pr−1A(vi ))
)
(p) = trace

(
z → ∇g

z(Sr (vi ))
)
(p) + Jr

(
vi ,

∇gu

W

)
(p).

(28)
We use that (27) is true for r − 1, (7) and the definition of Js(v) to obtain
trace (z → ∇g

z(Pr−1A(vi ))) (p) = trace (z → Pr−1∇g
z(Avi )) (p) − Jr−1

(
Avi ,

∇gu
W

)
(p)

= trace
(
z → Pr−1∇g

vi (Az)
)
(p)−trace

(
z → Pr−1Rg(z, vi )

∇gu
W

)

−Jr−1

(
Avi ,

∇gu
W

)
(p)

= trace
(
z → Pr−1∇g

vi (Az)
)
(p)+trace

(
z → Pr−1Rg(vi , z)

∇gu
W

)

−Jr−1

(
Avi ,

∇gu
W

)
(p)

= trace
(
z → Pr−1∇g

vi (Az)
)
(p) + Jr

(
vi ,

∇gu
W

)
(p).

We complete the proof of the claim by using that trace (z → Pr−1∇g
v(Az)) (p) = v(Sr ) (see

[8, Formula (7)]) and that trace (z → ∇g
z(Sr (vi ))) (p) = vi (Sr ) in order to obtain (28). ��

Proposition 8.2 If Mg has constant curvature c, then we have

τr+1(v, z) = c〈
(
(n − r)Sr I − Pr

)
v, z〉g
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Proof Let ei be the principal directions and set v =∑ a j e j and z =∑ blel . We recall that
Pr is self-adjoint ant we set mi for its eigenvalues. We have

τr+1(v, z) =
∑

i

〈Pr Rg(v, ei )z, ei 〉

=
∑

i, j,l

mia j bl〈Rg(e j , ei )el , ei 〉 =
∑

i, j

mia j b j 〈Rg(e j , ei )e j , ei 〉

= c
∑

i

mi

∑

j =i

a j b j = c
∑

i

mi (〈v, z〉 − aibi )

= c
∑

i

mi 〈v, z〉 − c
∑

i

miai bi = c trace(Pr )〈v, z〉 − c〈Prv, z〉
= c (n − r)Sr 〈v, z〉 − c〈Prv, z〉 = c〈((n − r)Sr I − Pr

)
v, z〉

where in the last equality we use (3). ��
Using the last proposition and the inductive definition of Jr , we obtain

Corollary 8.3 If Mg has constant curvature c, then we have

Jr (v, z) = c(n − r)〈Pr−1v, z〉g
We, now, consider the particular case where Mn = IHn ⊂ IRn and we denote by

(x1, x2, . . . , xn) the (euclidean) coordinates of M . On IHn , we consider the metric given
by

g = 1

F2 〈., .〉,

where 〈., .〉 = (dx12 + · · · + dxn2) is the euclidean metric. For this case, Proposition8.1
reads as follows. The proof is the same of Proposition3.1.

Proposition 8.4 The (r+1)-mean curvature of the graph of u when M = IHn is as above is
given by

(r + 1)Sr+1 = F2div

(
Pr

∇u

W

)
+ (2 − n)F〈Pr∇u,∇F〉

W
− (n − r)F2〈Pr−1

(∇u

W

)
,
∇u

W
〉.

(29)
Here, div and ∇ denote quantities in the euclidean metric.

The last equation is elliptic if Pr is positive definite.
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