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Abstract In this paper, we study hypersurfaces of Euclidean spaces with arbitrary dimension.
First, we obtain some results on H-hypersurfaces. Then, we give the complete classification
of H-hypersurfaces with three distinct curvatures. We also give some explicit examples.
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1 Introduction

Let M be an n-dimensional submanifold of Euclidean m-space E” and x : M — E™ an
isometric immersion. M is said to be biharmonic if x satisfies A2x = 0, where A is the Laplace
operator of M. In [3,5], Bang-Yen Chen conjectured that every biharmonic submanifold of
a Euclidean space is minimal. Chen’s conjecture is supported by all of the results obtained
so far (see for example [8,9,13]).

On the other hand, M is said to be null 2-type if x can be expressed as x = xgo + x; for
some non-constant vector valued functions xp and x; satisfying Axg = 0 and Ax; = Ax; for
a nonzero constant A, [2,6]. Several works on null 2-type surfaces also have been appeared,
[4,10,12].

In particular, there are some recent results on biharmonic and null 2-type hypersurfaces,
[7,11,12]. For example, in [7], authors obtained some results on § (2)-ideal null 2-type hyper-
surfaces. Most recently, the complete classification of biharmonic hypersurfaces in E> with
three distinct principle curvatures has been obtained by Fu [11].

Now, suppose that M is a hypersurface in Euclidean space E"*! and let N be its unit
normal vector field. From the definition, one can see that if M is null 2-type or biharmonic,
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then the equation
A’x = AAx (1.1)

is satisfied for a constant . In addition, Beltrami’s well known formula Ax = —s1 N implies
2 2 S1
Ax = — (Asl + s1(s7 — 2s2)) N — (S(Vsl) + EVsl) ,

where S is the shape operator and s1, s denote the first and second mean curvatures of M,
respectively. Therefore, if a hypersurface M in E"*! is biharmonic or null 2-type, then the
system of differential equations

S(Vs)) = —%IVS], (1.22)
Asy = —s1(s7 — 252 — A) (1.2b)

is satisfied for a constant A. A hypersurface with non-constant first mean curvature is said to be
an H-hypersurface [13] or biconservative hypersurface [1, 14] if it satisfies (1.2a). Classifying
H-hypersurfaces, or at least understanding their geometry, may play an important role on the
theory of hypersurfaces satisfying (1.1).

In this work, we study hypersurfaces with three distinct principal curvatures in the Euclid-
ean space of arbitrary dimension. In Sect. 2, after we describe our notations, we give a
summary of the basic facts and formulas that we will use. In Sect. 3, we obtain some geomet-
rical properties of H-hypersurfaces. In Sect. 4, we give a classification of H-hypersurfaces
with three distinct principal curvatures.

2 Prelimineries

Let E™ denote the Euclidean m-space with the canonical Euclidean metric tensor given by

m
g=(.)= dx.
i=1

where (x1, X2, ..., Xp) is a rectangular coordinate system in E"”.

Consider an n-dimensional Riemannian submanifold M of the space E™. We denote Levi-
Civita connections of E” and M by VandV, respectively. Then, the Gauss and Weingarten
formulas are given, respectively, by

VxY = VxY + h(X,Y), 2.1)
Vxp = —8,(X) + Vyp (2.2)
for all tangent vectors fields X, Y and normal vector fields p, where £, V-5 and S are the
second fundamental form, the normal connection and the shape operator of M, respectively.
Note that for each p € T,;-M, the shape operator S, along the normal direction p is a
symmetric endomorphism of the tangent space T;, M at m € M. The shape operator and the

second fundamental form are related by (h(X, Y), p) = (S, X, Y).
The Gauss and Codazzi equations are given, respectively, by

(RIX,Y)Z, W)= (h(Y,Z),h(X, W)) — (h(X, Z), h(Y, W)), 2.3)
(Vxh)(Y, Z) = (Vyh)(X, Z), (2.4)
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H-hypersurfaces in the Euclidean spaces 1797

where R is the curvature tensor associated with connection V and V# is defined by
(Vxh)(Y, Z) = V)%h(Y, Z)—h(VxY,Z)—h(Y,VxZ).
The mean curvature vector ¢ of M is defined by

1
L =—trh.
n
2.1 Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space E"+!, x its position vector
and S its shape operator along the unit normal vector field N associated with the orientation

of M. We consider a local orthonormal frame field {eq, e2, . . ., ,; N} consisting of principal
directions of M with corresponding principal curvatures k1, ko, ..., k,. We denote the dual
basis of this frame field by {61, 62, ..., 6,}. Then, the first structural equation of Cartan is
n
do; =Y 0 rnwij, i=12,....n, 2.5)

i=1
where w;; denotes the connection forms corresponding to the chosen frame field, i.e.,
wij(e)) = (Veei, ej).
From the Codazzi equation (2.4), we have
ej(kj) = wijej) (ki —kj), (2.6a)
w;j(e)) (ki —kj) = wji(e;) ki — ki) (2.6b)
for distinct i, j,[ =1,2,...,n.
We put sy = k1 + k2 + - - - + k;, and, by abuse of terminology, we call this function as the

(first) mean curvature of M. Note that M is said to be (1-) minimal if s; = 0. Throughout
this work, we assume Vs; does not vanish at any point of M.

3 H-hypersurfaces

In this section, we give some results on H-hypersurfaces of Euclidean spaces by extending
the results obtained in [13].

3.1 Connection forms of H-hypersurfaces

Let M be an H-hypersurface of the Euclidean space E"*!. Then, (1.2a) is satisfied and s is
not constant. From (1.2a), we have Vs is a principal direction of M. We consider a frame

field {e;, ez, ..., ey} consisting of principal directions of M with corresponding principal
curvatures ki, kp, . .., k, such that e; = Vs1/|Vsy| and k| = —s1/2. Therefore, we have
e1(ky) #0, ex(k)) =0, x=2,3,...,n 3.1
and
3ki +ky +k3s+---+k, =0. (3.2)

Remark 1 [13] If k; = k, for some 2 < x <, n, then Codazzi equation (2.6a) fori = 1,
j = x implies e (k1) = e1(ky) = wix(ex) (k1 — ky) = 0 which contradicts with (3.1). Thus,
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1798 N. C. Turgay

the dimension of the distribution Dy given by
Do(m) ={X € T,,|SX = k1 X}

is 1. Integral curves of Dy are planar and geodesics of M. Furthermore, if & and § are integral
curves of Dy passing through m and m’, respectively, then « and B are congruent, [13].

By combining (3.1) with Codazzi equation (2.6a) fori = x, j = 1, we get
wix(e1) =0, x=2,3,...,n. 3.3)

On the other hand, for a tangent vector field X of M, (X, e¢;) = 0 if and only if Xk; = 0.
Therefore, [ey, ey](k;) = 0 implies ([ey, ey], e1) = 0 from which we have

wlx(ey):wly(ex), x,y=2,3,...,n, x £ y.

From this equation and Codazzi equation (2.6b) fori =1, j =x, [ =z, we get

wix(ey) =0, x,y=2,3,...,n,x #y. 3.4
Therefore, (2.6b) fori = x, j = y,l = 1and (2.6b) fori = x, j =1,/ = y imply
wyy(ler) =0, x,y=2,3,...,n, kx #ky. (3.5a)
In fact, we have
wyy(er) =0, x,y,2=1,2,3,...,n, x #2z, ky =k; #k, (3.5b)

from the Codazzi equation (2.6b) fori =x, j=y, [ =z.
Since (3.3) implies ([e], ex], e1) = 0, we have [e], e, ](k1) = O from which and (3.1) we
obtain
ecer(ky) =ecereik)) =0, x=2,3,...,n. (3.6)

3.2 Some lemmas on H-hypersurfaces

In this subsection, we obtain some lemmas that we will use on the rest of the paper.
First, we consider the distribution given by

D(m) = {X € TuyM|SX = kr X}. 3.7)

Remark 2 Obviously, the dimension of D is equal to multiplicity of k; as an eigenvalue of
the shape operator S of M.

We obtain the following lemma.

Lemma 3.1 Let M be an H-hypersurface in the Euclidean space B! and ky one of its
principal curvatures. Then, the distribution D given by (3.7) is involutive.

Proof If the dimension of D is 1, then it is obviously involutive. Thus, we assume dimD =
p > 1 and, by renaming the indices if necessary,

ky=k3=...=kpi1. (3.8)

Therefore, (3.5b) implies (V,,ep, ¢;) = wpi(ea) =0foralli =1, p+2,p+3,...,nand
A,B=2,3,...,p+1with A # B. Thus, we have (V,,ep), € D(m) from which we see
that X,,, Y,,, € D(m) implies [X,,, Y;,] € D(m). Hence, D is involutive. ]

Now, we want to construct integral submanifolds of the distribution D given by (3.7).
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H-hypersurfaces in the Euclidean spaces 1799

Lemma 3.2 Let M be an H-hypersurface in the Euclidean space E™' and ky one of its
principal curvatures. Assume that the distribution D given by (3.7) has dimension greater
than 1. Then, any integral submanifold H of D has parallel mean curvature vector field ¢
in "1, Moreover, for any normal vector field p in H, we have 3‘,, = tl for a function t,
where 8 denotes the shape operator of H in E"*1,

Proof Let the dimension of D is p > 1. Then, by renaming indices if necessary, we assume
(3.8). Using (3.5), we obtain

p+l
Vesea = —wialea)er + ) waclea)ec + Z waa(ea)ea + k2N,
Cc=2 a=p+2
p+l
Vesen = D wpclealec (3.9)
c=2

forall A, B=2,3,..., p+1with A # B. Note that Codazzi equation (2.6a) fori =1, j =

Aandi =a, j = A givewa(es) = e‘(k/‘) and wa,(ep) = ,f‘/:(kk , respectively. Thus, (3.8)
implies

& = —owpn(e) = —wiz(e3) = - = —w1p+1)(€pt1),

Na = wg2(€2) = wg3(e3) = -+ = wu(p+1)(€p+1) (3.10)

for some functions & and n, fora =p+2,p+3,...,n
Now, let H be an integral submanifold of D and consider the local orthonormal frame
field

U fos oo Jps fotts fpt2s oo fast}
on H given by
fa—1=ealn, fp+1 =elly, fa=eily, fur1 = Nlg. (3.1D
From (3.9) and (3.10), we have

n
Vifi=Vifi+&fpri+ D fafatkafun (3.12a)
a=p+2

Vifi=Vafi, ij=12...,p i#] (3.12b)

where V denotes the Levi-Civita connection of H and é, Na» 122 are restrictions of &, n,, k
to H, respectively.
Therefore, we have . o .
Spr1 =8I, Sq =1al, Spy1 =kal (3.13)

or, equivalently,
¢=hifi, ) =hifa, f) = =h(fp, f) =Efpr1+ D fafatkafarr, (B.14)
a=p+2

where / stands for the second fundamental form of H in E**! and S’a =8 fu
Furthermore, Codazzi equation (2.4) for X = Z = f; and Y = f; fori # j gives

VEh(fis 1) = bV fis ) = h(fia Vi ) = VR f) = 20(V g, fis )
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where V= is the normal connection of H in E"+!, Using (3.12) in this equation and consid-
ering (3.14), we get ij;jg =0forall j =1,2,..., p. Hence, ¢ is parallel. O

Remark 3 Let M be an H-hypersurface in the Euclidean space E"+! and k, one of its principal
curvatures. Assume that the distribution D given by (3.7) has dimension greater than 1 and
H is an (connected) integral submanifold of D. From the proof of Lemma 3.2, one can see
that k>, £ = wia(es) and n, = wa,(e4) are constant on H.

By the following proposition, we obtain integral submanfiolds of the distribution D given
by (3.7).

Proposition 3.3 Let M be an H-hypersurface in the Euclidean space E"T' and ko one of
its principal curvatures. Assume that the distribution D given by (3.7) has dimension p > 1
and H is an (connected) integral submanifold of D passing throughm € M. If ko(m) = 0
and (Vka), = O then H is a p-plane of E"*1. Otherwise, H lies on a (p + 1)-plane of E'+!
and it is congruent to a hypersphere of EP*1,

Proof First, suppose that k, and Vk; vanish at m. Then, we have 7,(m) = é(m) = 0 for
a=p+2,p+3,...,n, where 7, and§ are functions defined in the proof of Lemma 3.2.
Remark 3 implies that 122 =0, é‘ = 0and 7 = 0 on H. Thus, from (3.14) we have h = 0,
i.e., M is a totally geodesic p-dimensional submanifold of E*+!. Hence, M is a p-plane.

Next, assume ky(m) # 0. Define n — p normal vector fields &1, {py2...., 8, by &1 =
Ing,, — é‘f,,+1 and {, = Inga — g fnt1. Clearly, ¢y, Cp42s - -, &y are linearly independent
constant vector fields normal to H. Thus, H lies in a (p + 1)-plane [T = EPT! of E"+!. As
its mean curvature vector is parallel, and shape operator is proportional to identity operator
1, it is a hypersphere of I1.

If (Vk2), # 0O, then we have §(m) # 0 or n,(m) # 0 for some a because of Codazzi
equation (2.6a). Same proof can be done for both cases. O

4 H-hypersurfaces with three distinct principal curvatures
Let M be an H-hypersurfaces in E" ! with three distinct principal curvatures k{, k> and k P42

and S its shape operator. Because of Remark 1, the multiplicity of k1 is 1. Therefore, the
matrix representation of S is

S =diag(k1, ko, ko, ..., k2, kpio, kpio, ..o kpra), ko #F kpyo “4.1)
—— —
p times ¢ times
corresponding to a local orthonormal frame field {ey, ez, ..., e,} consisting of principal

directions of M, where p + g + 1 = n. We also assume that the functions k — k2, k1 — k2
and kp — kp42 do not vanish on M.
First, we consider the distribution D+ given by

D(m) = (X, € TuM|(X, Y) =0, forall Y € D(m)}. 4.2)

Lemma 4.1 Let M be an H-hypersurface in the Euclidean space B! with the shape oper-
ator given by (4.1). Then, the distribution D+ given by (4.2) is involutive.

Proof From the definition, we have DLt(m) = span{(e)m, (ep+2)m, (€p+3)ms - -, (€)m}-
Moreover, from (3.5) and (4.1) we have V, e, Ve, e1, Ve eq € D+ foralla, b = p+2, p+
3,...,n. Thus, forall X, Y € D1, we have [X,Y] € DL. Hence D is involutive. O
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H-hypersurfaces in the Euclidean spaces 1801

Remark 4 By combining (3.3) and (3.4) with Cartan’s first structural equation (2.5), we
obtained df; = 0, i.e., 61 is closed. Thus, Poincare¢ lemma implies that d0; is exact, i.e.,
there exists a function s such that ; = ds. Moreover, since the distributions D and D+
given by (3.7) and (4.2) are involutive, there exists a local coordinate system 1, t2, . .., t; on
a neighborhood of m € M such that 1,13, ...,t,41 span D and 1| = s, fp42,tp43, ..., 1y
span D because of the local Frobenius theorem. Thus, by redefining the vector fields e;, i =
2,3, ..., n properly, we can assume

el =105, ¢ =Fd,i=273,...,n 4.3)
for some smooth non-vanishing functions F; = F;(s, t2, 13, ..., t).

Since the study on E* is completed in [13], we focus on the case n > 3. Therefore, without
loss of generality, we may assume p > 1. Thus, we have (3.8) and Codazzi equation (2.6a)
implies

eatky) =0, A=2,3,....p+1. 4.4)
From (3.1), (3.2), (4.1) and (4.4), we also get
eatkpi2) =0, a=p+2,p+3,....n (4.5)

from which and Codazzi equation (2.6a) fori = A, j = a, we obtain

waal(eq) = 0. (4.6)
4.1Case p>landg > 1
In this case, we have
ealkpta) =0, (4.7a)
eq(kz2) =0, (4.7b)
waqlea) =0, A=23,....,p+1,a=p+2,p+3,...,n. 4.7¢)
By combining (3.3), (3.4), (3.5), (4.6) and (4.7¢c), we get
p+1
Veiea = Y waclenec, (4.82)
c=2
Ve, e1 = wi2(e2)ea, (4.8b)
Ve,€1 = 01(p+2)(ept2)eq. (4.8¢c)

On the other hand, since [e}, es](k2) = eaeq(k2), we have

p+1
eaeq(ky) = Z wac(er)ec —wialea)es | (k)
c=2

from (4.8a) and (4.8b). The right- hand side of this equation is zero because of (4.4). Thus,
we obtain
eper(kr) =0. 4.9)

Furthermore, from (2.6a) fori = 1, j = 2 we have

k
ep(win(er)) = eq (l:](—zlc)z) .
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1802 N. C. Turgay
By combining this equation with (3.1), (4.4) and (4.9) we get
ea(wi2(e2)) = 0. (4.10a)
By a similar way, we obtain
eq(wi2(e2)) =0, (4.10b)
ea(w1(p+2)(ept2)) = eq(wi(p+2)(ep+2)) = 0. (4.10c)
By combining the equations in (4.10), we get
wia(e2) = &), wip+2)(€pr2) =1(s) (4.11)

for some functions &, 1, where s is the local coordinate given in Remark 4. Now, we are ready

to prove

Theorem 1 Let M be a hypersurface in E'H with the shape operator given by (4.1), ko #
kpi2 and p > 1,q > 1. Then, M is an H-hypersurface if and only if it is congruent to one

of the following hypersurfaces.

(i) A generalized rotational hypersurface given by

x(s, 2, ..., 1) =(¢(s) costy, Y(s)sintycosts, ..., y(s)sinty...sint, costyiq,

Y(s)sinty...sint, sintpqq, ¢(s) costyyo ¢(s)sintyi2co8tpi3, ...

¢ (s)sintpin...sint,_1COSty, p(s)sint,is...sint,_1sin tn)

)

(4.12)
with the profile curve (, ¢) satisfying ¥'*> + ¢’> = 1 and
SV -9 = (p% - q%) : (4.13)
(i) A generalized cylinder over a rotational hypersurface given by
x(s,t1, ..., 1) :(1//(s) costy, Y(s)sinty costs, ..., y(s)sinty...sintycostpiq,
Y(s)sinty...sint,sinty 1, @(8), tpi2, tpt3, ..., t,,) (4.14)
with the profile curve (W, ¢) satisfying ¥'> + ¢'> = 1 and
/
oy =g =22, @15)
Proof We assume that M is an H-hypersurface. Then, (3.2) is satisfied. Let s, 12, 13, . .., 1,
be the local coordinate system given in Remark 4. From (4.8b) and (4.8c) we have
Xsey, = w12(€2)x,, A=23,...,p+1 (4.16a)
Xsi, = 01(p+2)(€py2)Xy,, a=p+2,p+3,...,n (4.16b)
By taking into account the (4.11), we integrate (4.16) to obtain
Xy = E)X + Oo(S, tpi2, Tpt3s oo 1) = 1(S)X + O1(s, 12,13, . ., Tpi1)
for some vector valued functions @}, ©@,. Therefore, we have
X(S, 12, 13y o 1) = O1(S, 12,13, - oy Tp1) + O2(S, Lpi2s [pi3s - - s In) 4.17)

for some vector valued functions & 1 and @2.
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H-hypersurfaces in the Euclidean spaces 1803

Next, we put (4.17) in (4.16) to get
OLsiy =§©)O11y, Ong, =n(5)O2y,.
By integrating these equations, we obtain
XS 283y 1) = WSO, 13, o 1p) + ) O2(Upi2, tpi3s .-y In) + 9(5)

for some functions ¢, ¥ and vector valued functions @1, ®,, ¢. By taking into account
Remark 1, we see that ¢ is a constant vector. Thus, we may assume

xX(s5, 02,83, ..., 1n) =Y ()O1(2, 13, ..., Lp41) + () O2(tpi2, [p43, ..., In).  (4.18)
Because of (4.3), we have

(@1,[Aa @2,1‘”) = 03 (4.193)
(x5, x5) = L. (4.19b)

Since ko # kj42, without loss of generality, we may assume k> # 0. Now, we consider
the slice H of M given by

V(2. 83s oot ) = XG0, 13, Ep s L2, B3 )
passing through the point m = x (3, i, 13, . . ., ,) € M. From (4.18) we have
yilt2, 13, ..., tpy1) = coO1(f2, 13, ..., tp1) + Vo, (4.20)
where ¢o = ¢ (5) is a constant and vo = ¥ (5)@2(Tp42, p43, - - ., Iy) i a constant vector.

Since H is an integral submanifold of the distribution D given by (3.7), and k> # O, it
is congruent to hypersphere of EP*! because of Proposition 3.3. Thus, by choosing suitable
coordinates and redefining ¥/, we may assume

O1(ta, ..., tp2) = (cos fp,sintp costs, ..., sinty...sint, cost,q,
sinty...sintpsinty41,0,0,...,0). 4.21)
Now, consider the submanifold H' given by
V2(tpa2, tpt3, oo t) = X(5, 12,13, .., Tps 1, Ip42, Epg3s In)

which is an integral submanifold of the distribution D’ givenby D'(m’') = {X € T,y M|SX =

kp+2X} passing through the point m. Now, we have two cases: k12 = 0 and k12 # 0.
Case 1.k, 1> = 0.In this case, H' is a g-plane because of Proposition 3.3. Thus, @, is the

position vector of a g-plane. Because of (4.19a) without loss of generality, we may assume

@z(thrg, Ip43, .- vs l‘n) :(O, 0,...,1, o2, Ip43, - -0y tn).

By redefining 7,42, . . ., t,, we obtain (4.14). Because of (4.19b), we have Y9 =1.
Moreover, the shape operator of this hypersurface is

/ ’ /
S:diag(kl,ﬂ,g,...,g,o,o,...,O). 4.22)
Yoy e
4 times
p times

From (3.2) and (4.22), we get (4.15). Hence, we have the case (ii) of theorem.
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1804 N. C. Turgay

Case 2. k4o # 0. In this case, H’ is congruent to a hypersphere of E4*! because of
Proposition 3.3. Because of (4.19a), without loss of generality, we choose
Or(tpan, thas, ..., 1) =(0,0,...,0,c08¢t,10,8IN¢t,10CO8tpr3, ...,
p+2> Ip+ ) =( Pt p+ p+
p+1 times
Sintpq2...8iNt,—1 COSty, Ysintpin...sinty,).

Therefore, we obtain (4.12). Because of (4.19b), we have 2 + ¢/2 = 1.
Moreover, the shape operator of this hypersurface is

7 / / I I I
S:diag(kl,g,g,...,g,—w—,—w—,...,—ﬁ). 4.23)
vy v 9 ¢
p times g times
From (3.2) and (4.23) we get (4.13). Hence, we have the case (i) of theorem. ]

Remark 5 In [14], Montaldo et al. proved that a curve satisfying (4.13) is of catenary type.
The authors also proved that none of these type of hypersurfaces are biharmonic. Recently,
in [11], Yu Fu remarked that he extended this result by proving that there is no non-minimal
biharmonic hypersurface in E**+! with three distinct principal curvature. However, classifying
null 2-type hypersurfaces with three distinct principal curvature is an open problem.

42 Casep>1landg =1

In the remaining part, we consider the case p > 1 and g = 1 to obtain a necessary condition
for null 2-type hypersurfaces with 3 principal curvatures. In this case (4.1) becomes

S = diag(kl,kz,kz, ...,kz,kn). (4.24)
—
n—2 times

Since p = n — 2 > 1, the equations (4.4)-(4.6) are still satisfied. Moreover, the distribution
D given in (3.7) is involutive and its integral submanifold are congruent to hyperspheres or
hyperplanes of E"~! because of Lemma 3.1 and Lemma 3.2. From [13, Lemma 2.2], we also
know that integral curves of e; = d; are some planar curves and congruent to each other.
Therefore, we first want to focus on the remaining part, integral curves of e;,.

Let M be a hypersurface with the shape operator given in (4.24). We also suppose that
the functions k; — kp, ki — k, and kp — k,, do not vanish on M. Now, assume that M is a
null 2-type hypersurface. Then, M is an H-surface satisfying (1.2b). Moreover, from (3.2)
and (4.24), we have

3ki1+mn—2)ka+k, =0 (4.25)

because M is an H-hypersurface.
By combining (4.4) and (4.5) with Codazzi equation (2.6a), we have wy,(e,) = 0.
Therefore, we have
Ve,e1 = w1n(en)en, Ve,e1 = wialea)ea (4.26a)
Vesen = —wan(ea)ea, Ve,ea = wap(en)ep (4.26b)
Now, we want to show e, (k) = 0 using a method similar with [11].
Since e (ko) = 0 and e (k,) = 0, we have [ea, e1|(k2) = esei(kp) and [eq, e1](k,) =
eaeq(ky). By computing the left-hand side of each of these equations using (4.26b), we get

eaer(ka) = eqer(kn) =0, A=2,3,....n—1. 4.27)
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Furthermore, from the Gauss equation (2.3) for X =e4, Y =¢,, Z =e¢j,and W = ¢4
we obtained
en (ko)

ko — ky
By a direct calculation using Codazzi equation (2.6a), (3.1), (4.25) and (4.28), we also obtain
(2ka — k1 — ky)en (k2)
=mn-2 — . 4.29
en(win(en)) (n ) (k1 — k) (ko — k) (w12(e2) — win(en)) ( )
On the other hand, from (4.24) and (1.2b) we have

ere1 (k) +(n —2)wia(er)er (ki) +win(en)er (k) =ki (kI + (n —2)k3 + k2 —2).  (4.30)

eqp(wi2(ez)) = (w12(e2) — win(en)). (4.28)

By applying e, to both hand side of this equation and using (3.6), (4.28) and (4.29) we obtain

enln) (e1(kn) (@12(e2) = w1n(en)) — ki ks = k) (ki =kn)) = 0. 43D)

From the assumptions, we have the functions w12 (e2) — w1, (e,) and k1 do not vanish. Thus,
if e, (k,) # 0, then we have

er(ky) _ (k2 — ky) (ki — ky)

ki w12(e2) — wip(en)
because of (4.31). By applying e, to this equation we obtain
((kZ - kn)(kl - kn))
en =0.
wi2(e2) — win(en)

Next, we compute the left-hand side of this equation using (3.1), (4.25), (4.28) and (4.29) to
get k, = apk> for a constant ag. However, this equation, (3.1) and (4.25) give us e, (k2) =0
which is a contradiction. Therefore, we have

en(ky) =0 (4.32)

and (3.1), (4.25) imply
€n (kn) =0. (433)

Moreover, from Codazzi equation (2.6a) and (4.32) we have

wan(eq) =0. (4.34)
On the other hand, from (4.28), (4.29) and (4.32) we get
en(win(ey)) = ey(wiales)) =0 (4.35a)

and by taking into account (4.26) and using Gauss equation (2.3) for X = ey, ¥ = ey,
Z = e, W = ¢, we obtain
ea(win(en)) = 0. (4.35b)

From Codazzi equation (2.6a) fori = 1, j = A we have wia(es) = e1(ka)/ (k1 — ka).
Thus, we have
ea(wialea)) =0. (4.35¢)

Next, we want to give a geometric interpretation of these results.

Proposition 4.2 Let M be a null 2-type hypersurface in E" ' with the shape operator given
by (4.24) and non-constant first mean curvature. Then, an integral curve of e, is either a
circle or line.
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Proof Using (4.34), we get
6enen = —wip(eq)er + kN, 6e,,el = wip(en)en, 6en]v = —kpey, (4.36)

Moreover, (4.35a) and (4.33) imply that wy,(e,) and k, are constant on any (connected)
integral curve « of e,. Let ¢, n be tangent and normal vector fields of «. Note that we have
t=eply . If

Vit =a =0

then « is a line and proof is completed, where V is the Levi-Civita connection of « and a is
the constant given by (wi,(en)* + k2) 1/2‘ .

o
We assume V;r # 0. Then, we have n = V;t/||V;t||. From (4.36) we have V;t =

an, Vin = —an. Thus, « is planar and its curvature a > 0. O

By summing up (4.35), we see that (4.11) is satisfied for ¢ = 1. Thus, by taking into
account Proposition 4.2, we obtain a necessary condition for being null 2-type of hyper-
surfaces that we are considering. The following proposition can be proved like Theorem 1.

Proposition 4.3 Let M be an hypersurface with non-constant first mean curvature and the
shape operator given by (4.24). If M is a null 2-type hypersurface then it must be congruent
to one of the following hypersurfaces.

(i) A generalized rotational hypersurfaces given by (4.12) with p = n —2, q = 1 for some
functions satisfying ¥'* + ¢'*> = 1 and (4.13),
(ii) A generalized cylinder over a rotational hypersurface, given by (4.14) with p = n — 2,
g = 1 for some functions satisfying ¥'> + ¢'> = 1 and (4.15),
(iii) A generalized cylinder over a rotational surface, given by (4.14) withp = 1,q = n—2,
for some functions satisfying "> + ¢'> = 1 and (4.15).
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