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Abstract In this paper, we prove existence of solutions for an elliptic system of the type
⎧
⎪⎪⎨

⎪⎪⎩

−div(a(x, z)∇u) = f, in Ω;

−div(b(x)∇z) + h(x, z)|∇u|2 = g, in Ω;

u = 0 = z, on ∂Ω ,

under various assumptions on the functions a(x, s) and h(x, s), and on the data f and g (in
Lebesgue spaces).

Keywords Nonlinear elliptic systems ·Quasilinear quadratic elliptic equations · Existence
and nonexistence of solutions
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1 Introduction

In this paper, we study the existence of solutions of elliptic systems of the type
⎧
⎪⎪⎨

⎪⎪⎩

−div(a(x, z)∇u) = f, in Ω;

−div(b(x)∇z) + h(x, z)|∇u|2 = g, in Ω;

u = 0 = z, on ∂Ω;

(1.1)
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1734 L. Boccardo et al.

where we assume thatΩ is a bounded open subset of RN , with N > 2, f and g are functions
belonging to suitable Lebesgue spaces, a(x, s) : Ω ×R → R and h(x, s) : Ω ×R → R are
Carathéodory functions, and b : Ω → R is a measurable function, such that

α ≤ a(x, s), α ≤ b(x) ≤ β, h(x, s) · s ≥ 0, (1.2)

for some 0 < α ≤ β in R+ (see the various sections of this paper for the precise assumptions
on a, b and h).

Our interest in studying system (1.1) is motivated by the following example of the calculus
of variations. Suppose that f and g are functions in Lm(Ω), with m > N

2 , and that s �→
a(x, s) is increasing, continuously differentiable, with as(x, s) a bounded function with
respect to both x and s, and such that as(x, 0) ≡ 0; then, if we define

I (v,w) = 1

2

∫

Ω

a(x, |w|)|∇v|2 + 1

2

∫

Ω

b(x)|∇w|2 −
∫

Ω

f v −
∫

Ω

gw,

for every v and w in H1
0 (Ω) such that

∫

Ω

a(x, |w|)|∇v|2 < +∞,

and I (v,w) = +∞ if the above integral is not finite, it is easy to see, using the assumptions
on a and b that I is both coercive and weakly lower semicontinuous on H1

0 (Ω) × H1
0 (Ω).

This implies that there exists a minimum (u, z) of I . Standard techniques of calculus of
variations (together with the assumptions on a, b, f and g) imply that u and z belong to
L∞(Ω) and that are weak solutions of the boundary value problem

⎧
⎪⎨

⎪⎩

−div(a(x, |z|)∇u) = f, in Ω;
−div(b(x)∇z) + 1

2as(x, |z|)sgn(z)|∇u|2 = g, in Ω;
u = 0 = z, in ∂Ω,

(1.3)

i.e., of a problem of type (1.1) with h(x, s) = 1
2as(x, |s|) sgn(s). Note that the function

s �→ as(x, |s|) sgn(s) is continuous at the origin thanks to the assumption as(x, 0) = 0.
Thus, our interest in the study of the (general and nonvariational) system (1.1) is motivated

by (1.3), more specifically, a system with an equation having a lower-order term, which has
quadratic dependencewith respect to the gradient and satisfies a “sign assumption” [see (1.2),
or (2.2) below]. The study of nonvariational systems will allow us to weaken the summability
assumptions on the data f and g; we will see that, depending on whether a is bounded from
above or not, wewill have existence of solutions for L1(Ω) data f and g, or for data belonging
to smaller Lebesgue spaces.

Even if our system is “natural” and motivated by the study of the very simple functional
I , there seems to be no existence result in the literature for this kind of problems. General
results on quasilinear elliptic systems, in contexts not applicable in the present case, can be
found for example in [2,9–11].

The plan of the paper is as follows: in the next section, we will study existence of solutions
for (1.1) under a boundedness assumption on a [see (2.1)], whichwill allow us to prove results
for L1(Ω) data f and g. The case of a unbounded from above is dealt with in Sect. 3: after
some existence results for bounded solutions z (which will yield that a(x, z) is bounded
from above, thus giving results comparable to those of Sect. 2), we will study two particular
cases (see Theorems 3.4 and 3.5), where the presence of a suitably growing, with respect to
a, lower-order term h(x, s) will help in proving existence of solutions. In Sect. 4, we will
prove how the presence of a quadratic (with respect to the gradient) lower-order term in the
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Natural growth terms 1735

second equation will “break” the maximum principle: if the datum of the first equation is an
actual L1(Ω) function f , the solution z of the second equation has to be zero on the set of
“explosion” of f , even if the datum g is strictly positive in Ω . The case of measure data,
yielding nonexistence of solutions, will be studied in the final Sect. 5.

2 The case of a bounded

In this section, we will study system (1.1) if the function a(x, s) which appears in the first
equation is bounded: that is, instead of (1.2), we assume that

α ≤ a(x, s) ≤ β, α ≤ b(x) ≤ β, (2.1)

for almost every x in Ω , for every s in R, with 0 < α ≤ β in R
+.

Let h : Ω × R → R be a Carathéodory function such that h(x, s) is increasing with
respect to s and that

h(x, s) s ≥ 0, sup
|s|≤t

|h(·, s)| = ht (·) ∈ L∞(Ω), (2.2)

for almost every x in Ω , for every s and t in R.
Under these assumptions, we will prove an existence result for problem (1.1). We begin

with the case of bounded data f and g.

Proposition 2.1 Assume that (2.1) and (2.2) hold, and let f and g be in Lm(Ω), withm > N
2 .

Then, there exists a solution (u, z) in H1
0 (Ω) × H1

0 (Ω) of system (1.1). Furthermore, both
u and z belong to L∞(Ω).

Sketch of the proof We will prove the result using Schauder’s fixed-point theorem. To this
aim, fix z0 ∈ L2(Ω) and let u in H1

0 (Ω) be the unique solution of the first equation; let then
z in H1

0 (Ω) be the unique solution (see [6]) of the second equation:
⎧
⎪⎨

⎪⎩

−div(a(x, z0)∇u) = f, in Ω;

−div(b(x)∇z) + h(x, z)|∇u|2 = g, in Ω;

u = 0 = z, on ∂Ω .

Therefore, if we define S(z0) = z, then S maps L2(Ω) into itself. It is standard to prove that
the ball BR of radius R in L2(Ω) is invariant for S, where

R =
‖g‖

L2∗ (Ω)

α S ,

S is the Sobolev constant, and 2∗ = 2N
N+2 .

Moreover, by Rellich-Kondrachov theorem, S(BR) is compact in L2(Ω).
To prove that S is continuous, we begin with the observation that if zn converges to z0 in

L2(Ω), then, defining un as the solution of

un ∈ H1
0 (Ω) : −div(a(x, zn)∇un) = f,

we have that un is strongly convergent in H1
0 (Ω) to a function u, which is the unique solution

of

u ∈ H1
0 (Ω) : −div(a(x, z0)∇u) = f.
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1736 L. Boccardo et al.

Therefore, the sequence {|∇un |2} is strongly convergent in L1(Ω) to |∇u|2. This fact, and
the stability result of [6] (or [7]), proves that the sequence z̃n = S(zn) of solutions of

z̃n ∈ H1
0 (Ω) : −div(b(x)∇ z̃n) + h(x, z̃n)|∇un |2 = g,

converges in L2(Ω) to the unique solution of

z̃ ∈ H1
0 (Ω) : −div(b(x)∇ z̃) + h(x, z̃)|∇u|2 = g.

Thus, S(zn) converges in L2(Ω) to S(z0), and so S is continuous. By Schauder’s theorem,
there exists a fixed-point z of S, and so a solution (u, z) of system (1.1). The fact that both u
and z belong to L∞(Ω) then follows by standard elliptic results (see [13]). �


We study now to the more general case of L1(Ω) data f and g. In what follows, we will
use the functions Tk(s) = max(−k,min(s, k)), and Gk(s) = s−Tk(s), for s in R and k ≥ 0.

Theorem 2.2 Assume that (2.1) and (2.2) hold, and let f and g be L1(Ω) functions. Then,
there exists a distributional solution (u, z) of system (1.1), with both u and z belonging to
W 1,q

0 (Ω), for every q < N
N−1 . Moreover, h(x, z)|∇u|2 ∈ L1(Ω).

Proof Let { fn} and {gn} be sequences of L∞(Ω) functions, which converge in L1(Ω) to f
and g, respectively, and are such that

| fn | ≤ | f |, |gn | ≤ |g|, (2.3)

almost everywhere in Ω [take for example fn = Tn( f ) and gn = Tn(g)]. By the result of
Theorem 2.1, there exist (un, zn) weak solutions of

{
un ∈ H1

0 (Ω) : −div(a(x, zn)∇un) = fn,

zn ∈ H1
0 (Ω) : −div(b(x)∇zn) + h(x, zn)|∇un |2 = gn,

(2.4)

with both un and zn belonging to L∞(Ω).
We begin with some a priori estimates on the sequences {un}, {zn}.
Taking Tk(un) as test function in the first equation of (2.4), and using (2.1) and the first

of (2.3), we easily obtain (see [1])

‖Tk(un)‖2
H1
0 (Ω)

≤ k
‖ f ‖

1

α
. (2.5)

Starting from (2.5), and reasoning as in [3], we have that
∫

Ω

|∇un |q ≤ Cq , ∀q <
N

N − 1
, (2.6)

where Cq is a positive constant, which tends to infinity as q tends to N
N−1 . Choosing

T1(Gk(un)) as test function in the first equation of (2.4), and using again (2.1) and the
first of (2.3), we get

α

∫

{k≤|un |<k+1}
|∇un |2 ≤

∫

{|un |≥k}
| f |, (2.7)

while the choice of Tk(zn) as test function in the second equation of (2.4) yields [using (2.1)
and the second of (2.3)]

‖Tk(zn)‖2
H1
0 (Ω)

≤ k
‖g‖

1

α
. (2.8)
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As before, from (2.8), it follows that
∫

Ω

|∇zn |q ≤ Cq , ∀q <
N

N − 1
, (2.9)

while the choice of T1(Gk(zn)) as test function in the second equation of (2.4) yields (using
again (2.1), the second of (2.3) and (2.2))

α

∫

{k≤|zn |<k+1}
|∇zn |2 ≤

∫

{|zn |≥k}
|g|, (2.10)

and ∫

{|zn |≥k+1}
|h(x, zn)||∇un |2 ≤

∫

{|zn |≥k}
|g|. (2.11)

Thanks to these a priori estimates, we have that (up to subsequences still denoted by
un and zn) un and zn converge to some functions u and z weakly in W 1,q

0 (Ω), for every
q < N

N−1 strongly in L1(Ω), and almost everywhere. These convergences (together with the
boundedness of a(x, s)) are enough to pass to the limit in the first equation, thus proving that
u and z are such that

∫

Ω

a(x, z)∇u · ∇ϕ =
∫

Ω

f ϕ, ∀ϕ ∈ C1
c (Ω). (2.12)

Therefore, we only have to pass to the limit in the weak formulation of the second equation,
i.e., ∫

Ω

b(x)∇zn · ∇ϕ +
∫

Ω

h(x, zn)|∇un |2ϕ =
∫

Ω

gnϕ, (2.13)

for every ϕ in C1
c (Ω).

In order to do that, the convergences proved so far (and the assumption on gn) allow to
pass to the limit in the first and the third integral, while to pass to the limit in the second
integral we need to prove that

h(x, zn)|∇un |2 → h(x, z)|∇u|2, strongly in L1(Ω). (2.14)

In order to prove (2.14), we begin by following the technique of [12] to prove that

Tk(un) → Tk(u) strongly in H1
0 (Ω). (2.15)

As in [12], we choose in the first equation the test function

w = T2k(un − Th(un) + Tk(un) − Tk(u)),

where h > k > 0. Thanks to the assumptions on fn , we have

lim
h→+∞ lim

n→+∞

∫

Ω

fn T2k(un − Th(un) + Tk(un) − Tk(u)) = 0,

so that

lim
h→+∞ lim

n→+∞

∫

Ω

a(x, zn)∇un · ∇T2k(un − Th(un) + Tk(un) − Tk(u)) = 0.
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Splitting the integral on the sets where |un | ≥ k and |un | < k, and using that a(x, zn) ≥ α >

0, we obtain (as in [12])
∫

Ω

a(x, zn)∇un · ∇T2k(un − Th(un) + Tk(un) − Tk(u))

≥
∫

Ω

a(x, zn)∇Tk(un) · ∇(Tk(un) − Tk(u))

−
∫

{|un |≥k}
|a(x, zn)||∇T4k+h(un)||∇Tk(u)|.

Since the last integral tends to zero as n tends to infinity (here, we use the boundedness of
a(x, s) with respect to s), we have adding and subtracting the term

∫

Ω

a(x, zn)∇Tk(u) · ∇(Tk(un) − Tk(u)),

which tends to zero as n tends to infinity,

0 ≤ lim
n→+∞

∫

Ω

a(x, zn)|∇(Tk(un) − Tk(u)|2 ≤ 0,

which then implies (2.15). Hence, up to subsequences still denoted by un ,

∇un → ∇u almost everywhere in Ω.

Therefore,
h(x, zn)|∇un |2 → h(x, z)|∇u|2, almost everywhere in Ω. (2.16)

We now define, for k ≥ 0, j ≥ 0, and ε > 0, the functions ψk(s) = |T1(Gk(s))| and

Hj,ε(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s/ε 0 ≤ s ≤ ε,

1 ε < s ≤ j,

−s + j + 1 j < s ≤ j + 1,

0 s > j + 1,

−Hj,ε(−s) s < 0,

−j − 1 −j −ε

j +1jε

1

−1

Hj,ε(s)

and choose Hj,ε(zn)ψk(un) as test function in the second equation. We obtain

∫

Ω

b(x)|∇zn |2ψk(un)H
′
j,ε(zn) +

∫

Ω

b(x)∇zn∇unψ
′
k(un)Hj,ε(zn)

+
∫

Ω

h(x, zn)|∇un |2Hj,ε(zn)ψk(un) =
∫

Ω

gnHj,ε(zn)ψk(un).
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Thus, using the definition of Hj,ε, and dropping nonnegative terms [thanks to (2.2)],

1

ε

∫

{|zn |<ε}
b(x)|∇zn |2ψk(un) −

∫

{ j≤|zn |< j+1}
b(x)|∇zn |2ψk(un)

+
∫

Ω

b(x)∇zn∇unψ
′
k(un)Hj,ε(zn) +

∫

{
ε≤|zn |< j
|un |>k+1

} |h(x, zn)||∇un |2

≤
∫

{|un |>k}
|gn |

Dropping the first term, which is positive, and letting ε tend to zero, we obtain [using (2.1)
and the second of (2.3)]

∫

{ |zn |< j
|un |>k+1

} |h(x, zn)||∇un |2 ≤
∫

{|un |>k}
|g|

+β

∫

{ j≤|zn |< j+1}
|∇zn |2 + β

∫

{ |zn |< j+1
k<|un |≤k+1

} |∇zn ||∇un|.

Now, fix δ > 0, and let j∗ be such that

∫

{ j∗≤|zn |< j∗+1}
|∇zn |2 ≤

∫

{|zn |≥ j∗}
|g| ≤

∫

{|zn |≥ j∗−1}
|g| ≤ δ. (2.17)

Such a choice of j∗ is possible thanks to (2.10), to the strong convergence of zn in L1(Ω)

and to the absolute continuity of the integral. Thus,

∫

{ |zn |< j∗
|un |>k+1

} |h(x, zn)||∇un |2

≤
∫

{|un |>k}
|g| + βδ + β

∫

{k<|un |≤k+1}
|∇Tj∗+1(zn)||∇un |,

which implies [using (2.8) and (2.7)]

∫

{ |zn |< j∗
|un |>k+1

} |h(x, zn)||∇un |2

≤
∫

{|un |>k}
|g| + βδ + β

[‖g‖
1

α
( j∗ + 1)

] 1
2
[ ∫

{|un |>k}
| f |

] 1
2

. (2.18)

Let now k∗ be such that

[‖g‖
1

α
( j∗ + 1)

] 1
2
[ ∫

{|un |>k∗}
| f |

] 1
2

< δ, and
∫

{|un |>k∗}
|g| < δ ;

such a choice is possible thanks to the strong convergence of un in L1(Ω) and to the absolute
continuity of the integral. Therefore,

∫

{ |zn |< j∗
|un |>k∗+1

} |h(x, zn)||∇un |2 ≤ (2β + 1)δ. (2.19)
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1740 L. Boccardo et al.

Now, we use Vitali Theorem. For every measurable E ⊂ Ω , we have, using (2.11), (2.17)
and (2.19),

∫

E
|h(x, zn)||∇un |2

≤
∫

{|zn |> j∗}
|h(x, zn)||∇un |2 +

∫

E∩{|zn |≤ j∗}
|h(x, zn)||∇un |2

≤
∫

{|zn |> j∗−1}
|g| +

∫

{ |zn |≤ j∗
|un |>k∗+1

} |h(x, zn)||∇un |2

+
∫

E∩
{ |zn |≤ j∗

|un |≤k∗+1

} |h(x, zn)||∇un |2

≤ (2β + 2)δ + ‖h j∗‖
L∞(Ω)

∫

E
|∇Tk∗+1(un)|2.

Recalling (2.15), it is possible to choose meas(E) small enough so that

‖h j∗‖
L∞(Ω)

∫

E
|∇Tk∗+1(un)|2 ≤ δ,

uniformly with respect to n. Therefore, we have proved that the sequence {h(x, zn)|∇un |2}
is equiintegrable. This fact, together with the almost everywhere convergence (2.16), proves
(2.14). �


3 The case of a unbounded

In this section, we are going to deal with system (1.1) under the assumption that the function
a(x, s), which “links” the two equations, may be unbounded with respect to s. In this case,
we have to make slight changes in the proof of Theorem 2.1 also if both f and g are such
that the solutions are bounded.

Proposition 3.1 Assume that (1.2) and (2.2) hold, and let f and g be in Lm(Ω), withm > N
2 .

Then, there exists a solution (u, z) in H1
0 (Ω) × H1

0 (Ω) of the system (1.1). Furthermore,
both u and z belong to L∞(Ω).

Proof Let k ≥ 0 be an integer; since a(x, Tk(s)) satisfies (2.1), by Proposition 2.1, there
exists a solution (uk, zk) of the system

{
uk ∈ H1

0 (Ω) : −div(a(x, Tk(zk))∇uk) = f,

zk ∈ H1
0 (Ω) : −div(b(x)∇zk) + h(x, zk)|∇uk |2 = g.

Since g belongs to Lm(Ω), with m > N
2 , standard elliptic results, and assumption (2.2),

imply that there exists a constant M , independent on k, such that

‖zk‖
L∞(Ω)

≤ M.

Thus, taking k > M , we have that Tk(zk) = zk so that (u, z) = (uk, zk) is a solution of (1.1)
as desired. �


Now, we turn to the case of less regular data; for example, we would like to take (as in
Theorem 2.2) both f and g in L1(Ω). However, the fact that a may be unbounded with
respect to s, even if it allows to prove (2.5)–(2.7) (where only the ellipticity constant α is
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used), prevents us to apply the technique of [12] to prove the strong convergence of truncates
(2.15), an essential tool to pass to the limit in the “quadratic” lower-order term of the second
equation.

Nonetheless, if wemake stronger assumptions on the data, we can easily recover existence
results, as is in the next theorem.

Theorem 3.2 Assume that (1.2) and (2.2) hold, and let f be an L1(Ω) function and let
g be a function in Lm(Ω), with m > N

2 . Then, there exists a distributional solution (u, z)

of system (1.1), with u belonging to W 1,q
0 (Ω), for every q < N

N−1 , and z belonging to

H1
0 (Ω) ∩ L∞(Ω).

Proof Wefollow the lines of the proof ofTheorem2.2, approximating f and gwith sequences
of L∞(Ω) functions such that (2.3) holds, and considering the solutions (un, zn), given by
Theorem 3.1, of the system

⎧
⎪⎨

⎪⎩

−div(a(x, zn)∇un) = fn, in Ω;

−div(b(x)∇zn) + h(x, zn)|∇un |2 = gn, in Ω;

un = 0 = zn, on ∂Ω .

Taking Gk(zn) as test function in the second equation, and dropping the nonnegative second
term, we obtain [using (2.1)]

α

∫

Ω

|∇Gk(zn)|2 ≤
∫

Ω

gn Gk(zn).

Starting from this inequality, one can prove (see [13]) that the sequence {zn} is bounded in
L∞(Ω) and, taking k = 0, that it is bounded in H1

0 (Ω). Thus, the term a(x, zn) in the first
equation is bounded in L∞(Ω); this fact allows to prove the strong convergence of Tk(un)
in H1

0 (Ω) with the same technique of [12] and to conclude the proof as in Theorem 2.2. �

The result of the previous theorem is however rather unsatisfactory: The unboundedness

of a is “invisible” due to the boundedness of z; rather than dealing with the general case, we
are going to prove an existence result in a particular case, which will not be variational, to
show how the lower-order term in the second equation may be helpful. Before stating and
proving the theorem, we need a technical lemma.

Lemma 3.3 Let σn be a sequence of nonnegative functions in L∞(Ω), almost everywhere
convergent to some function σ , and let ρn be a sequence of functions, which is weakly
convergent in (L2(Ω))N to some function ρ. If the sequence σn |ρn |2 is bounded in L1(Ω),
then σ |ρ|2 belongs to L1(Ω) and

∫

Ω

σ |ρ|2 ≤ lim inf
n→+∞

∫

Ω

σn |ρn |2. (3.1)

Proof We begin by proving that, for every k ≥ 0,
∫

Ω

Tk(σ )|ρ|2 ≤ lim inf
n→+∞

∫

Ω

Tk(σn)|ρn |2. (3.2)

Indeed, starting from
∫

Ω

Tk(σn)|ρn − ρ|2 ≥ 0,

123



1742 L. Boccardo et al.

we have

2
∫

Ω

Tk(σn)ρn · ρ −
∫

Ω

Tk(σn)|ρ|2 ≤
∫

Ω

Tk(σn)|ρn |2.

Since, by the assumptions on σn and ρ, Tk(σn)ρ converges to Tk(σ )ρ strongly in (L2(Ω))N

by Lebesgue theorem, and Tk(σn)|ρ|2 converges to Tk(σ )|ρ|2 strongly in L1(Ω) (again by
Lebesgue theorem), the left-hand side passes to the limit, and (3.2) is proved. But now, since
σn is nonnegative,

∫

Ω

Tk(σ )|ρ|2 ≤ lim inf
n→+∞

∫

Ω

Tk(σn)|ρn |2 ≤ lim inf
n→+∞

∫

Ω

σn |ρn |2 ≤ C,

and (3.1) then follows letting k tend to infinity and using the monotone convergence theorem.

Theorem 3.4 Let p > 0 be a real number, and let a : Ω → R be a measurable function
such that

0 < α ≤ a(x) ≤ β, almost everywhere inΩ.

Let f be a function in L2∗(Ω), where 2∗ = 2N
N+2 , and let g be a function in L1(Ω). Then,

there exists a solution (u, z) of the system say
⎧
⎪⎨

⎪⎩

−div([a(x) + |z|p]∇u) = f in Ω,

−div(b(x)∇z) + z|z|2p−1 |∇u|2 = g inΩ,

u = 0 = z on ∂Ω,

with u in H1
0 (Ω) and z in W 1,q

0 (Ω), for every q < N
N−1 .

Proof As before, we begin by approximating the system: let fn and gn be sequences of
L∞(Ω) functions converging to f and g in L2∗(Ω) and L1(Ω), respectively, and such that
(2.3) holds, and let (un, zn) be a solution of

⎧
⎪⎨

⎪⎩

−div([a(x) + |zn |p]∇un) = fn in Ω,

−div(b(x)∇zn) + zn |zn |2p−1|∇un |2 = gn in Ω,

un = 0 = zn on ∂Ω,

(3.3)

which exists by Theorem 3.2. Choosing un as test function in the first equation, we obtain

α

∫

Ω

|∇un |2 ≤
∫

Ω

[a(x) + |zn |p]|∇un |2 ≤
∫

Ω

fnun ≤ ‖ fn‖
L2∗ (Ω)

‖un‖
L2∗ (Ω)

.

Starting from this inequality, and using Sobolev embedding, we have that un is bounded
in H1

0 (Ω). Hence, up to subsequences still denoted by un , it converges weakly in H1
0 (Ω),

strongly in L2(Ω) and almost everywhere to some function u in H1
0 (Ω).

Using, as in the proof of Theorem 2.2, the fact that the lower-order term of the second
equation has the same sign of zn , we have that both (2.9) and (2.11) hold true. In particular,
(2.11) becomes ∫

{|zn |≥k+1}
|zn |2p|∇un |2 ≤

∫

{|zn |≥k}
|g|. (3.4)

The boundedness of zn inW
1,q
0 (Ω), for every q < N

N−1 , implies that, up to subsequences still

denoted by the same name, zn converges weakly in W 1,q
0 (Ω), for every q < N

N−1 , strongly
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in L1(Ω) and almost everywhere in Ω , to some function z which belongs to W 1,q
0 (Ω), for

every q < N
N−1 .

If we take k = 0 in (3.4), we obtain
∫

{|zn |≥1}
|zn |2p|∇un |2 ≤

∫

Ω

|gn | ≤ C.

Since un is bounded in H1
0 (Ω), from this inequality we obtain

∫

Ω

|zn |2p|∇un |2 ≤
∫

{|zn |≤1}
|∇un |2 +

∫

{|zn |≥1}
|zn |2p|∇un |2 ≤ C. (3.5)

Applying Lemma 3.3 with σn = |zn |2p and ρn = ∇un , we have, from (3.5),
∫

Ω

|z|2p|∇u|2 ≤ lim inf
n→+∞

∫

Ω

|zn |2p|∇un |2 ≤ C,

so that |z|2p|∇u|2 belongs to L1(Ω).
Now, we prove that |zn |p∇un weakly converges to |z|p∇u in (L2(Ω))N . If� is a function

in (L2(Ω))N , then
∫

Ω

|zn |p∇un · � =
∫

{|zn |≤k}
|zn |p∇un · � +

∫

{|zn |≥k}
|zn |p∇un · �

=
∫

{|z|≤k}
|z|p∇u · � + εn +

∫

{|zn |≥k}
|zn |p∇un · �,

where εn is a quantity which tends to zero as n tends to infinity. On the other hand,
∫

Ω

|z|p∇u · � =
∫

{|zn |≤k}
|z|p∇u · � +

∫

{|zn |≥k}
|z|p∇u · �

=
∫

{|z|≤k}
|z|p∇u · � + εn +

∫

{|zn |≥k}
|z|p∇u · �.

Therefore,
∣
∣
∣
∣

∫

Ω

[|zn |p∇un − |z|p∇u] · ψ

∣
∣
∣
∣ ≤

∫

{|zn |≥k}
|zn |p|∇un ||�|

+
∫

{|zn |≥k}
|z|p|∇u||�| + 2εn .

Using that |zn |p∇un is bounded in (L2(Ω))N , and that |z|p∇u belongs to (L2(Ω))N , we
have

∫

{|zn |≥k}
|zn |p|∇un ||�| ≤

(∫

Ω

|zn |2p|∇un |2
) 1

2
(∫

{|zn |≥k}
|�|2

) 1
2

≤ C

(∫

{|zn |≥k}
|�|2

) 1
2

,

and
∫

{|zn |≥k}
|z|p|∇u||�| ≤

(∫

Ω

|z|2p|∇u|2
) 1

2
(∫

{|zn |≥k}
|�|2

) 1
2

≤ C

(∫

{|zn |≥k}
|�|2

) 1
2

,
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so that since zn is strongly convergent in L1(Ω), for every δ > 0, there exists kδ ≥ 0 such
that

∣
∣
∣
∣

∫

{|zn |≥k}
|zn |p∇un · �

∣
∣
∣
∣ ≤ δ,

∣
∣
∣
∣

∫

{|zn |≥k}
|z|p∇u · �

∣
∣
∣
∣ ≤ δ,

for every n in N. Thus, choosing n ≥ nδ , where nδ is such that εn ≤ δ, we have
∣
∣
∣
∣

∫

Ω

[|zn |p∇un − |z|p∇u] · ψ

∣
∣
∣
∣ ≤ 4δ,

for every n ≥ nδ , which implies the desired weak convergence.
Choosing v in H1

0 (Ω) as test function in the first equation, we obtain
∫

Ω

[a(x) + |zn |p]∇un · ∇v =
∫

Ω

fn v,

and, passing to the limit as n tends to infinity, using the weak convergence just proved,
∫

Ω

[a(x) + |z|p]∇u · ∇v =
∫

Ω

f v,

so that u is a solution of the first equation of the system. If we take v = u, we then have
∫

Ω

[a(x) + |z|p]|∇u|2 =
∫

Ω

f u. (3.6)

On the other hand, choosing un as test function in the first approximate equation, we obtain
∫

Ω

[a(x) + |zn |p]|∇un |2 =
∫

Ω

fn un .

Passing to the limit as n tends to infinity, and using (3.6), and the weak convergence of un to
u in H1

0 (Ω), we get

lim
n→+∞

∫

Ω

[a(x) + |zn |p]|∇un |2 = lim
n→+∞

∫

Ω

fn un

=
∫

Ω

f u =
∫

Ω

[a(x) + |z|p]|∇u|2.

Therefore,

lim
n→+∞

∫

Ω

[a(x) + |zn |p]|∇un |2 =
∫

Ω

[a(x) + |z|p]|∇u|2. (3.7)

Choosing σn = a(x) and ρn = ∇un in Lemma 3.3, or σn = |zn |p and ρn = ∇un in the same
lemma, we have

∫

Ω

a(x)|∇u|2 ≤ lim inf
n→+∞

∫

Ω

a(x)|∇un |2,

and
∫

Ω

|z|p|∇u|2 ≤ lim inf
n→+∞

∫

Ω

|zn |p|∇un |2 ≤ C,

with the latter inequality being due to the fact that
∫

Ω

|zn |p|∇un |2 ≤
∫

{|zn |≤1}
|∇un |2 +

∫

{|zn |≥1}
|zn |2p|∇un |2 ≤ C.
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Define now

An =
∫

Ω

a(x)|∇un |2, A =
∫

Ω

a(x)|∇u|2,

and

Bn =
∫

Ω

|zn |p|∇un |2, B =
∫

Ω

|z|p|∇u|2

From (3.7), it follows that

lim
n→+∞(An + Bn) = A + B,

with

A ≤ lim inf
n→+∞ An, and B ≤ lim inf

n→+∞ Bn .

But then, since An = (An + Bn) − Bn , we have

lim inf
n→+∞ An = A + B − lim sup

n→+∞
Bn,

and so

A + B = lim inf
n→+∞ An + lim sup

n→+∞
Bn ≥ A + lim sup

n→+∞
Bn,

which then implies

lim sup
n→+∞

Bn ≤ B.

Therefore, Bn converges to B, and so An converges to A. Thus,

lim
n→+∞

∫

Ω

a(x)|∇un |2 =
∫

Ω

a(x)|∇u|2,

which then implies that un strongly converges to u in H1
0 (Ω). In particular, and always up

to subsequences, ∇un almost everywhere converges to ∇u.
We can now pass to the limit in the second equation; as in the proof of Theorem 2.2, the

only difficult part is the proof of the strong convergence in L1(Ω) of the lower-order term.
Due to the almost everywhere convergence of zn to z and of ∇un to ∇u, we have

zn |zn |2p−1|∇un |2 → z|z|2p−1|∇u|2, almost everywhere in Ω ,

so that we only have to prove the equiintegrability in order to apply Vitali theorem. If E is a
measurable subset of Ω , we have, recalling (2.11),

∫

E
|zn |2p|∇un |2 ≤ k2p

∫

{|zn |≤k}∩E
|∇un |2 +

∫

{|zn |≥k}
|zn |2p|∇un |2

≤ k2p
∫

E
|∇un |2 +

∫

{|zn |≥k−1}
|gn |.

We now first choose k such that the second term is small (which can be done since gn is
strongly convergent in L1(Ω), as is zn) and then choose meas(E) small enough so that
the first term is small [and this can be done since |∇un | is strongly convergent in L1(Ω)].
Thus, the sequence |zn |2p|∇un |2 is equiintegrable, and so, the lower-order term is strongly
convergent in L1(Ω), as desired. �
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If we want to put ourselves in a “variational” setting, we have to make more restrictive
assumptions on the data and on p.

Theorem 3.5 Let p > 1 be a real number, and let a : Ω → R be a measurable function
such that

0 < α ≤ a(x) ≤ β, almost everywhere in Ω.

Let f be a function in L2∗(Ω), where 2∗ = 2N
N+2 , let g be a function in Lr (Ω), with

r ≥ N (p + 2)

N + 2 + 2p
, (3.8)

and let B > 0. Then, there exists a solution (u, z) of the system
⎧
⎪⎨

⎪⎩

−div([a(x) + |z|p]∇u) = f in Ω,

−div(b(x)∇z) + B z|z|p−2 |∇u|2 = g in Ω,

u = 0 = z on ∂Ω,

with u and z in H1
0 (Ω). Moreover, z p|∇u|2 belongs to L1(Ω).

Remark 3.6 We remark that for every choice of p > 1, we have

N (p + 2)

N + 2 + 2p
> 2∗,

so that the datum g always belongs to the dual space of H1
0 (Ω). Furthermore, if p tends to

infinity, then r has to be larger than N
2 (which is the assumption on g in order to have bounded

solutions z).

Remark 3.7 If we choose B = p
2 , the system becomes variational, and the solutions can be

found as minima of the functional

J (v,w) = 1

2

∫

Ω

[a(x) + |w|p]|∇v|2 + 1

2

∫

Ω

b(x)|∇w|2 −
∫

Ω

f v −
∫

Ω

gw.

Proof The proof of the result follows the lines of the argument in Theorem 3.4. We begin
by approximating the system, taking fn and gn sequences of L∞(Ω) functions converging
to f and g in L2∗(Ω) and Lr (Ω), respectively, and such that (2.3) holds. We then consider
a solution (un, zn), which exists by Theorem 3.2, of

⎧
⎪⎨

⎪⎩

−div([a(x) + |zn |p]∇un) = fn in Ω,

−div(b(x)∇zn) + B zn |zn |p−2|∇un |2 = gn in Ω,

un = 0 = zn on ∂Ω.

Since the lower-order term of the second equation has the same sign as the solution, standard
elliptic techniques (see for example [4]) imply that zn is bounded in H1

0 (Ω) (see Remark
3.6) and in Lr∗∗

(Ω). Since the assumption on r implies

1

r
+ p + 1

r∗∗ ≤ 1,
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choosing |zn |p+1T1(Gk(zn)) as test function in the second equation, we obtain, dropping two
nonnegative terms,

B
∫

{|zn |≥k+1}
|zn |2p|∇un |2 ≤

∫

{|zn |≥k}
|gn ||zn |p+1

≤
(∫

{|zn |≥k}
|gn |r

) 1
r ‖zn‖p+1

Lr
∗∗

(Ω)

≤ C

(∫

{|zn |≥k}
|gn |r

) 1
r

,

which is exactly (2.11). From now on, the proof is identical to that of Theorem 3.4, and
therefore, we omit it. �


4 Breaking of the maximum principle

When considering system (1.1), both with a bounded or unbounded, one of the main proper-
ties of the solutions is that (nomatter which assumptions wemake on the data) |h(x, z)||∇u|2
belongs to L1(Ω), as a consequence of the sign assumption on h. However, if the datum f
is in L1(Ω) [or, in general, if it does not belong to H−1(Ω)], u does not belong to H1

0 (Ω),
so that the function |∇u|2 may not belong to L1(Ω). This fact, as we will prove in the next
theorem, implies that the solution z has to be zero insideΩ even if the datum g is nonnegative.
In other words, the maximum principle fails for the second equation of system (1.1).

Theorem 4.1 Let f ≥ 0 be a function in L1(Ω), and let g ≥ 0 belong to L1(Ω). Let a(x, s),
b(x) and h(x, s) be such that (2.1) and (2.2) hold, and let (u, z) be a solution of (1.1) given
by Theorem 2.2. If, for every δ > 0,

inf
Ω×[δ,+∞)

h(x, s) = 
δ > 0,

and if there exists x0 in Ω such that f belongs to L∞(Ω\Br (x0)), and f does not belong to
H−1(Br (x0)) for every r > 0, then

ess infBr (x0)z = 0, ∀r > 0. (4.1)

Proof First of all, observe that both u and z are nonnegative functions. If (4.1) is false, then
there exist R > 0 and δ > 0 such that

ess infBR(x0)z = δ.

Taking Tδ(zn) as test function in the second equation of (2.4), we obtain, dropping a non-
negative term,

∫

Ω

h(x, zn) Tδ(zn)|∇un |2 ≤ δ

∫

Ω

|g|.
Recalling (2.14), and the fact that z ≥ 0, we then have

δ

∫

{z≥δ}
h(x, z)|∇u|2 ≤

∫

Ω

h(x, z) Tδ(z)|∇u|2 ≤ δ

∫

Ω

|g|,

so that
∫

BR(x0)
h(x, z)|∇u|2 =

∫

BR(x0)∩{z≥δ}
h(x, z)|∇u|2 ≤

∫

{z≥δ}
h(x, z)|∇u|2 ≤

∫

Ω

|g|.
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Therefore, recalling the assumption on h, we have


δ

∫

BR(x0)
|∇u|2 ≤

∫

BR(x0)
h(x, z)|∇u|2 ≤

∫

Ω

|g|.

By the result of [5], we also have
∫

Ω\BR(x0)
|∇u|2 ≤ C0‖ f ‖

L∞(Ω\BR(x0))
,

so that u belongs to H1
0 (Ω). This, and the boundedness of a(x, s), implies that f belongs to

H−1(Ω), which is false. �

Note that, as a consequence of this result, if f is an L1(Ω) \ H−1(Ω) function which has

an isolated singularity in x0, then the coupling between the equations of the system forces z
to be zero at x0.

5 Measure data

Now, we turn to the case of measure data for system (1.1). In this case, as we will see, we
can prove a negative (i.e., nonexistence) result also in the “simple” case of a(x, s) bounded.

We recall that the main tool in the proof of the existence result of Theorem 2.2 is the
fact that if un and zn are sequences of approximating solutions, we can choose k and j large
enough so that

∫

{|zn |≥ j}
|g| ≤ δ,

∫

{|un |≥k}
| f | ≤ δ,

∫

{|un |≥k}
|g| ≤ δ,

uniformly with respect to n. To achieve that, it is of fundamental importance the fact that
the sequences fn and gn strongly converge in L1(Ω), and not (for example) in the weak∗
topology of measures. And indeed, if fn converges to (for example) a Dirac mass, and if gn
converges to another (different) Dirac mass, there may not be existence of solutions for the
system (1.1), as the following example shows.

Example 5.1 Let Ω = B1(0) be the unit ball of RN , and let us consider the sequences un
and zn of solutions of the system

⎧
⎪⎨

⎪⎩

−�un = fn in Ω,

−�zn + zγn |∇un |2 = gn in Ω,

un = 0 = zn on ∂Ω,

(5.1)

where fn is the sequence of nonnegative L∞(Ω) functions equal to DN nN on B 1
n
(0), and

zero elsewhere, with DN such that fn converges to δ0, the Dirac mass at the origin, and gn is a
sequence of nonnegative L∞(Ω) functions with support contained in B 1

n
(x0) and convergent

to δx0 , the Dirac mass at x0 �= 0; on γ , we suppose that γ > N
N−2 .

It is well known that un converges to u(x) = CN (|x |2−N − 1), the Green function of the
Laplacian relative to the origin; calculating explicitly un , one can see that un ≡ u outside of
B 1

n
(0), so that

|∇un |2 = |∇u|2 = C ′
N |x |2−2N ≥ C ′

N , for
1

n
≤ |x | ≤ 1. (5.2)

123



Natural growth terms 1749

Since from the second equation we have that
∫

Ω

zγn |∇un |2 ≤
∫

Ω

gn ≤ C,

from (5.2), we obtain

C ′
Nk

γ meas({zn ≥ k} ∩ (Ω\B 1
n
(0))) ≤

∫

Ω\B 1
n
(0)

zγn |∇un |2 ≤ C,

and so

meas({zn ≥ k} ∩
(
Ω\B 1

n
(0))

)
≤ C

kγ
. (5.3)

On the other hand, since the support of gn is disjoint from the ball B 1
n
(0) if n ≥ n0, with

n0 large enough, the result of [5] implies that zn is bounded in L∞(B 1
n0

) by a constant k.

Therefore, if k ≥ k, we have

meas({zn ≥ k}) = meas({zn ≥ k} ∩
(

Ω\B 1
n0

(0))

)

≤ C

kγ
.

On the other hand, choosing Tk(zn) as test function in the second equation, and dropping the
positive second term, we have

∫

Ω

|∇Tk(zn)|2 ≤
∫

Ω

gn Tk(zn) ≤ C k.

Reasoning as in [1], the latter two inequalities imply

meas({|∇zn | ≥ λ}) ≤ C

λ
2γ

γ+1

,

so that zn is bounded in W 1,q
0 (Ω) for every q <

2γ
γ+1 . Since γ > N

N−2 , then
2γ

γ+1 > N
N−1 ,

which implies that zn is bounded in W 1,p
0 (Ω) for some p > N

N−1 .

Since the set {x0} has zero p′-capacity (as every point in RN ), for every δ > 0 there exists
a function ψδ in C∞

0 (Ω) (see [8]) such that

0 ≤ ψδ ≤ 1,
∫

Ω

|∇ψδ|p′ ≤ δ,

∫

Ω

gn (1 − ψδ) = 0,

the latter being true for every n large enough.
We choose now Tk(zn) (1 − ψδ) as test function in the second equation, to obtain:

∫

Ω

|∇Tk(zn)|2(1 − ψδ) +
∫

Ω

zγn Tk(zn) (1 − ψδ)|∇un |2

=
∫

Ω

∇zn · ∇ψδ Tk(zn) +
∫

Ω

gn Tk(zn) (1 − ψδ).

Dropping the nonnegative second term, observing that the last term is zero for n large enough,
and passing to the limit as n tends to infinity, we obtain (by weak lower semicontinuity)

∫

Ω

|∇Tk(z)|2(1 − ψδ) ≤
∫

Ω

∇z · ∇ψδ Tk(z).
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Letting δ tends to zero (and recalling that |∇ψδ| tends to zero in L p′
(Ω), while |∇z| belongs

to L p(Ω)), we obtain

0 ≤
∫

Ω

|∇Tk(z)|2 ≤ 0,

which implies that z ≡ 0. However, z ≡ 0 is not a solution of the second equation of (1.1).

Remark 5.2 Remark that the conclusion of the previous example remains true every time
that gn converges to a Dirac mass concentrated in a point x0 �= 0, and the sequence un of
solutions of the first equation is such that |∇un | ≥ C > 0 outside a neighborhood of 0.
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