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Abstract We prove an extension of the renowned Itô’s theorem on groups having two class
sizes in three different directions at the same time: normal subgroups, p′-elements and prime-
power order elements. Let N be a normal subgroup of a finite group G and let p be a fixed
prime. Suppose that |xG | = 1 or m for every q-element of N and for every prime q �= p.
Then, N has nilpotent p-complements.
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1 Introduction

A classic problem in Group Theory is the study of the influence of the conjugacy class
sizes on the structure of finite groups. However, studying such properties only from partial
information, provided by certain class sizes, can be a more complex problem. Several results
have recently shown how the class sizes of certain subsets of elements, such as those lying in
a normal subgroup, or the p′-elements for some prime p, or the prime-power order elements,
continue to exert a strong control on the normal structure, the p-structure or even the whole

A. Beltrán (B)
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain
e-mail: abeltran@mat.uji.es

M. J. Felipe
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia,
46022 Valencia, Spain
e-mail: mfelipe@mat.upv.es

C. Shao
School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong, China
e-mail: shaoguozi@163.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-014-0432-4&domain=pdf


1528 A. Beltrán et al.

structure of the group. We must note that some results are quite elementary when all class
sizes are considered, whereas the corresponding results which are obtained just from the
subsets cited above may need deeper results or even the classification of the finite simple
groups (CFSG).

Regarding class sizes of elements of a normal subgroup N , the main theorem of [2]
establishes the nilpotency of N when it has exactly two G-class sizes. The nilpotency of N
also holds when restricting to prime-power order elements [4]. On the other hand, when only
p′-elements are considered, the nilpotency of the p-complements of a group or a normal
subgroup is also preserved (see [1,3,6]). Our research goes further with a generalization
in three different directions. Precisely, we only consider the p′-part of the class sizes of
prime-power order p′-elements which are non-central in N .

Theorem Let N be a normal subgroup of a finite group G and p a fixed prime. Suppose
that |xG |p′ = m for every q-element in N \ Z(N ) and for every prime q �= p. Then N has
nilpotent p-complements.

In particular, the hypotheses of the Theorem imply that if all G-class sizes of the q-
elements (q �= p) of the normal subgroups N are either 1 or a fixed number m, then N has
normal p-complements. From this result, we can recover all the main theorems that we have
referenced above as particular cases.

The techniques employed in the mentioned papers are different among them. However,
our approach appeals in a novel way to the prime graph of a finite group and its independence
numbers in order to analyze certain class size properties of non-abelian simple groups and
thus, to achieve the solvability of N within a more general context. On the other hand, we
remark that a “dual” problem of our theorem for conjugacy classes in the whole group has
been considered by Casolo et al. [7]. They prove that when all non-trivial class sizes have
the same p-part, then the group is solvable and has normal p-complement, and so, obtain
a partial analog for conjugacy classes of the well-known Thompson’s theorem on character
degrees.

All groups are supposed to be finite. If G is a group, then π(G) denotes the set of prime
divisors of |G|, and similarly, if n is an integer, π(n) will denote the set of prime divisors of
n. If p is a prime number, we use the notation n p for the p-part of n.

2 Preliminaries

Before taking up the problem, we present here some useful results which will be used in the
sequel. First, we prove the following lemma.

Lemma 2.1 Let G be a finite group and p, q two fixed primes. If |xG | is a {p, q}-number
for every prime-power order p′-element of G, then G is not a non-abelian simple group.

Proof Suppose thatG is such a group. Let Q ∈ Sylq(G) and 1 �= x ∈ Z(Q). Then q does not
divide |xG | and hence |xG | is a p-power, so G cannot be non-abelian simple by Burnside’s
Theorem (see 15.2 of [8]). ��

A repeatedly used result is Thompson’s P × Q-Lemma.

Lemma 2.2 Let P × Q be the direct product of a p-group P and a p′-group Q. Suppose
that P × Q acts on a p-group G such that CG(P) ≤ CG(Q). Then Q acts trivially on G.
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Proof For instance, see 8.2.8 of [10]. ��

In order to prove the solvability of N in the main theorem, we will also need the following
result which uses coprime action.

Theorem 2.3 Let G be a group and N a non-solvable normal subgroup of G. If m divides
|xG |p′ for every q-element x ∈ N \ Z(N ) with q �= p, then m divides the order of Z(N ).

Proof First, we claim that we can assume π(N ) \ {p} = π(N/Z(N )) \ {p}. If this does not
happen, then N can be factorized as a direct product N = N1 × Q, with Q a central Sylow
q-subgroup of N , q �= p, and N1 normal in G. Then, if x ∈ N1 \ Z(N1), it follows that
x ∈ N \ Z(N ) and since N1 is neither solvable, we can apply induction to get that m divides
|Z(N1)|, which clearly divides |Z(N )|, so the theorem is proved.

Now we prove that π(m) ⊆ π(N ). Suppose that r ∈ π(m) \ π(N ). Take R ∈ Sylr (G)

and assume that there exists a q-element x ∈ CN (R) \ Z(N ) with q �= p. Therefore, r is not
divisor of |xG | and thus |xG | = 1. This implies that x ∈ Z(G) and in particular x ∈ Z(N ),
a contradiction. So we get CN (R) = P × L , where P is a Sylow p-subgroup of CN (R) and
L ≤ Z(N ). In particular, CN (R) is nilpotent. As R acts coprimely on N , by Theorem B of
[5], we conclude that N is solvable, a contradiction.

Let Q ∈ Sylq(G) with q ∈ π(m). For every x ∈ (Q ∩ N ) \ Z(N ), there exists y ∈
G such that CQy (x) ∈ Sylq(CG(x)). Moreover, there is z ∈ CG(x) such that CQ(x) ≤
(CQy (x))z = CQyz (x). Hence, mq divides |xG |q = |Qyz : CQyz (x)| which divides |xQ |.
Note that Nq : =Q ∩ N ∈ Sylq(N ) and Nq � Q. Therefore, from the class equation in Q,
we obtain |Nq | = |Nq ∩ Z(N )| +mql for some positive integer l. As q ∈ π(N ), we deduce
q divides |Nq ∩ Z(N )|. We can reformulate the above equation as

∣
∣
∣
∣

Nq

Nq ∩ Z(N )

∣
∣
∣
∣
= 1 + mqt

|Nq ∩ Z(N )| .

Since the first member of the equation is a non-trivial q-power by the first paragraph, we
conclude that mq divides |Nq ∩ Z(N )|, and so, it divides |Z(N )| for every prime q ∈ π(m).
Thus, m divides |Z(N )|. ��

3 Proof

Proof of Theorem We showfirst that N is solvable andwe argue byminimal counterexample.
Let N be a counterexample of minimal order. By Burnside’s paqb theorem, we may assume
that |π(N )| ≥ 3. Let N/K be a chief factor of G. If x ∈ K \ Z(K ) is a q-element, with
q �= p, then x ∈ N \ Z(N ) and |xG |p′ = m. By minimality, we have that K is solvable.

Step 1. We may assume that Op(N ) = 1.
Otherwise, let G : =G/Op(N ) and x ∈ N \ Z(N ) a p′-element of prime-power order.

Then, x ∈ N \ Z(N ) and certainly x can be assumed to be a q-element for some prime
q �= p. We show that CG(x) = CG(x). Let Q ∈ Sylq(CG(x)) and let y ∈ CG(x). Then
[x, y] ∈ Op(N ), so we can write x y = xa ∈ CG(x)Op(N ) with a ∈ Op(N ). As x y is a
q-element, there exists t ∈ Op(N )CG(x) such that x yt ∈ Q. Hence, [x, yt] = x−1x yt ∈ Q.
On the other hand, [x, yt] = [x, t][x, y]t . Since t ∈ Op(N )CG(x), we may write t = t ′u
with t ′ ∈ Op(N ) and u ∈ CG(x). Then, [x, t] = [x, t ′u] = [x, t ′]u and thus, [x, yt] =
[x, t ′]u[x, y]t . As [x, t ′]u and [x, y]t lie in Op(N ), we get that [x, yt] ∈ Op(N ). Therefore,
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[x, yt] ∈ Op(N ) ∩ Q = 1. This means that yt ∈ CG(x), so yt ′ ∈ CG(x). This implies that
y ∈ CG(x), and we conclude that CG(x) = CG(x), as wanted. Now, as

|xG | = |G : CG(x)| = |G : CG(x)Op(N )| = |xG | |Op(N ) ∩ CG(x)|
|Op(G)|

we obtain |xG |p′ = |xG |p′ for every p′-element of prime-power order x ∈ N \ Z(N ). By
minimal counterexample, we deduce that N/Op(N ) is solvable and so is N , a contradiction.

Step 2. F(N ) = Z(N ) = K .
Suppose that Z(N )r < Or (N ) for some r ∈ π(N ) with r �= p. Let x ∈ N \ Z(N ) be

an s-element and R ∈ Sylr (CG(x)), where s ∈ π(N ) \ {p, r}. Let us consider the action of
R × 〈x〉 on Or (N ) and we claim that COr (N )(R) ⊆ COr (N )(x). For every v ∈ COr (N )(R)

we have: if v ∈ Z(N ), then v ∈ COr (N )(x); if v /∈ Z(N ), then 〈R, v〉 ⊆ CG(v). Since
|vG |p′ = |xG |p′ , it follows that |R| = |〈R, v〉| and thus v ∈ R. This shows that v ∈ CG(x)
and then COr (N )(R) ⊆ COr (N )(x) as claimed. By applying Lemma 2.2, it follows that x ∈
CN (Or (N )). So we conclude that |N/CN (Or (N ))| is a {p, r}-number and N/CN (Or (N ))

is solvable. Now, let M : =CN (Or (N )). For every t-element u ∈ M \Z(M), with t �= p, we
trivially have u ∈ N \ Z(N ), and by hypothesis we also have |uG |p′ = m. Moreover, notice
that M < N , whence M is solvable by minimality of N . This forces N to be solvable too, a
contradiction.

By using Step 1, we have just proved that F(N ) = Z(N ). On the other hand, it is easy
to see that F(N ) = F(K ). Then, we have K ≤ CK (F(K )) ≤ F(K ), which implies that
K = Z(N ).

Step 3. N/Z(N ) is simple.
Since N is non-solvable and N/Z(N ) is a chief factor of G, we have N/Z(N ) =

L1/Z(N ) × · · · × Lt/Z(N ), where Li/Z(N ) are isomorphic non-abelian simple groups.
We prove that t = 1. Otherwise, let L = L1 and observe that since L/Z(N ) is simple, then
L/Z(N ) = L ′Z(N )/Z(N ) ∼= L ′/Z(L ′). We consider NG(L ′). For every prime-power order
p′-element x ∈ L ′ \ Z(L ′), we see that CG(x) ⊆ NG(L ′). In fact, if v ∈ CG(x) \ NG(L ′),
then x = xv ∈ L ′ ∩ L ′v ⊆ L ∩ Lv ⊆ Z(N ), a contradiction. This yields to

|xG | = |G : CG(x)| = |G : NG(L ′)||NG(L ′) : CNG (L ′)(x)|.
If n = |G : NG(L ′)|, we deduce that |xNG (L ′)|p′ = m/n p′ . This means that every prime-
power p′-element in L ′ \ Z(L ′) satisfies that the p′-part of its class size in NG(L ′) is equal
to m/n p′ . Since L ′ < N , by minimal counterexample, we obtain that L ′ is solvable, a
contradiction. Hence, t = 1, as desired, that is, N/Z(N ) is a simple group.

Step 4. N is solvable.
Notice that N is perfect by minimality, so by Step 3, N is a quasi-simple group. Conse-

quently, |Z(N )| divides the order of the Schur multiplier of S : =N/Z(N ). By Theorem 2.3,
we know that m divides |Z(N )|, so m divides the order of the Schur multiplier M(S). The
rest of the proof consists in showing that this condition yields to a contradiction for every
non-abelian simple group.

By Lemma 2.1, we know that |M(S)| cannot be a prime-power (including 1). Accordingly,
S can only belong to the following list (see Section 5.1 of [9]):

(i) A1(32), A2(22), 2A3(3), 2A5(2), 2E6(2), B3(3), A7, M22, Fi22 or Suz.
From Tables 2, 3 and 4 of [12], we know that the independence number t (S) ≥ 3 for
every simple group S in the above list. This means that, for each S, there are at least
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three distinct primes in π(S)which are independent (i.e., are not pairwise connected) in
the prime graph of S. In particular, there exist two different primes p1, p2 ∈ π(S) \ {p}
which are not connected between them. Now, let x = xZ(N ) be a p1-element of S,
such that x ∈ N is a p1-element too. As S has no elements whose order is divisible by
p1 p2, we have that |S|p2 divides |x S |. Note that |x S | divides |xN | and that |xN | divides
|xG |. It follows that |S|p2 divides m, so we conclude that |S|p2 divides |M(S)|. Now,
for each one of the listed groups, we clearly get a contradiction just by computing |S|
and |M(S)|.

(ii) An−1(q) for (n, q) �= (2, 4), (2, 9), (3, 2), (3, 4) or (4, 2).
In all these cases, |M(S)| = (n, q − 1). If n ≤ 5, then (n, q − 1) is trivially a prime-
power, and we are finished by Lemma 2.1. So, for the remainder of this case we will
assume n ≥ 6. Again by Table 4 of [12], we know that the r -independence number
t (r, S) is greater than or equal to 3, where r is the characteristic of the underlying finite
field, that is, q = r t for some t ≥ 1. We recall the reader that t (r, S) is the maximal
number of vertices of the independent sets in the prime graph of S containing the prime
r . Nevertheless, the unequality t (r, S) ≥ 3 holds except for the cases (n, q) = (6, 2)
and (7, 2), but both can be easily ruled out (for instance, by using GAP [11]). Therefore,
we can assume that there exist two primes p1, p2 ∈ π(S) which are not connected to
r in the prime graph of S. Since one of them is necessarily distinct from p, say p1,
we deduce that |S|r divides the class size of every p1-element x of S (and |S|p2 too).
As a result, |S|r divides |xG |. If r �= p, then |S|r would divide (n, r t − 1), which is a
contradiction. Thus, r = p and m = |xG |p′ must divide |M(S)| = (n, q − 1), so in
particular, m divides q − 1. This is not possible, just take into account that

|An−1(q)| = |PSL(n, q)| = (qn − 1) . . . (qn − qn−1)

(q − 1)(n, q − 1)

is divisible by (q − 1)2 whenever n ≥ 4. In particular, ((q − 1)2)p2 divides |S|p2 .
However, we know by the above comments that |S|p2 dividesm, andm divides (q −1),
which is a contradiction.

(iii) 2An−1(q) for (n, q) �= (4, 2), (4, 3) or (6, 2).
We can argue similarly as in ii). For these groups, we have |M(S)| = (n, q + 1). If
n ≤ 5 then |M(S)| obviously is a prime-power and again we are finished. If n ≥ 6, we
only have to take into account that t (r, S) = 3, where r is characteristic of the field,
and that |2An−1(q)| is always divisible by (q + 1)2 when n ≥ 4. Both facts lead to a
contradiction as above and this implies that N is solvable.

Step 5. N is p-nilpotent.
We argue by induction on |N |. Let N/K be a chief factor of G, and since N is solvable,

N/K is a q-group for some prime q . Let x ∈ K \Z(K ) be a prime-power order p′-element, so
x ∈ N \ Z(N ) and |xG |p′ = m. By induction, we have that K has nilpotent p-complements.
Notice that if q = p then the theorem is already proved, so we will assume in the sequel that
q �= p.

Let H be a p-complement of N , so that H ∩ K is a nilpotent p-complement of K . Now,
if Q is a Sylow q-subgroup of H (and also of N ), we have N = K Q and, by Dedekind’s
modular law, H = (H ∩ K )Q. In particular, H is nilpotent if and only if Q is normal in H ,
or equivalently, if and only if for every r ∈ π(H), r �= q , Q centralizes the (unique) Sylow
r -subgroup, say Hr , of H . This is equivalent to prove that q does not divide |N : CN (Hr )|,
and this is what we are proving next.
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Let x ∈ Q \ Z(N ) and let R be a Sylow r -subgroup of CG(x). Since RN is solvable and
R × 〈x〉 is a p′-subgroup of it, there exists a p-complement, say H1, of N R which contains
R × 〈x〉. As H1 ∩ N is a p-complement of N , for some t ∈ N , we have Ht = H1 ∩ N � H1

and moreover, since Ht
r is characteristic in Ht , it follows that Ht

r is normal in H1. As a
consequence, R×〈x〉 acts on Ht

r . Now, from the hypotheses, it is easy to see that CHt
r
(R) ⊆

CHt
r
(〈x〉). By applying Lemma 2.2, we have x ∈ CN (Ht

r ), and hence Q ⊆ ∪t∈NCN (Ht
r ).

From N = K Q, we deduce that

N = ∪t∈N KCN (Ht
r ) = ∪t∈N (KCN (Hr ))

t ,

which implies that N = KCN (Hr ). Finally, observe that

|N : CN (Hr )| = |K : CK (Hr )|
is a q ′-number as the nilpotent group K ∩ H contains a Sylow q-subgroup of K , which
centralizes its r -complement Hr . This finishes the proof. ��

Remark The hypotheses of the Theorem do not imply that the p-complements of N need
to be the direct product of a q-group times an abelian group, even the p-complements of N
may have all its Sylow subgroups non-abelian. For instance, let

L = 〈

x, y|x3 = y3 = 1, [x, y]3 = 1, [x, [x, y]] = [y, [x, y]] = 1
〉

be the extra special group of order 33 and exponent 3. If z = [x, y], then Z(L) = 〈z〉. Let 〈a〉
be the automorphism of L defined by xa = x2 and ya = y2. The set of fixed points of a on
L is exactly Z(L). On the other hand, let us consider an automorphism α of order 3 acting
non-trivially on the quaternion group Q of order 8. Observe that α exactly fixes the elements
in Z(Q). We form the group G : =Q〈α〉 × L〈a〉 and take the normal subgroup N = Q × L .
For any choice of p ∈ {2, 3}, the G-class size of every p′-element of prime-power order of
N \ Z(N ) is exactly 1 or 6, while no Sylow subgroup of N is abelian. This example also
shows that m in the Theorem need not be a prime-power as it happens in Itô’s theorem (see
33.6 of [8]).
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