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Abstract We prove sharp a priori estimates for second-order quasi-linear elliptic operators
in divergence form with a first-order term. Such estimates are the first step of a standard
procedure which allows to prove existence results for Dirichlet problems related to these
operators.
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1 Introduction

Let � be a bounded open set of RN , N ≥ 2. We consider the model problem
{−�pu = G(x,∇u) in �,

u = 0 on ∂�
(1.1)

where �pu = div (|∇u|p−2∇u) denotes the p-laplacian operator, 1 < p < N , and G(x, ξ)

is a function which, for p − 1 < q ≤ p, satisfies the growth condition

|G(x, ξ)| ≤ β|ξ |q + f (x) (1.2)

with β a positive constant and f a summable function.
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Our aim was to study problems in the form (1.1) when the exponent q in (1.2) varies in the
given interval, and we are mainly interested to find sharp conditions on f which guarantee
the existence of a solution.

Problems like (1.1) have been extensively studied in the last years, and before describing
the main results of the paper, we discuss briefly some of the known results. Firstly, we
comment on the range given on q . In the case 0 ≤ q ≤ p − 1, the main questions appear
to be solved (see, for instance, [4,12,13] and the references therein). On the other hand, the
case q > p requires a different approach, and it appears to be not completely understood
(see, for instance, [19] and the references therein).

So, we will confine ourselves to the case p − 1 < q ≤ p. The first results in the literature
concern the limit case q = p, and they are mainly devoted to find bounded solutions to prob-
lem (1.1). In this context, it has been pointed out that if suitable sign conditions onG aremade,
then the existence of a bounded weak solution can be proved when f ∈ Lr (�), r > N/p
(see, for instance, [18] and the references therein). On the other hand, if no sign conditions are
assumed, then a smallness hypothesis on f is required in order to have a bounded solution
to problem (1.1) (see, for instance, [27,36,40,41]). We remark that the qualitative results
described above can be immediately stated for the full range p − 1 < q ≤ p because if
inequality (1.2) holds true, then a similar one with q substituted by p holds true. So, many
papers have investigated the case p − 1 < q ≤ p, without sign conditions, looking for sharp
conditions to be put on f in order to get existence for problem (1.1). Such conditions have
involved both summability and smallness assumptions on f .

A first result in this direction is contained in [28], where the existence of a solution which
is not necessarily bounded has been investigated, in the case q = p. It is proven that there
exists a constant C(β, N , p) such that, if f ∈ L N/p(�), with

‖ f ‖L N/p < C(β, N , p), (1.3)

then a weak solution u to problem (1.1) exists such that exp( β
p−1 |u|) − 1 ∈ W 1,p

0 (�). It is
also shown that the constant C(β, N , p) is sharp, in the sense that if (1.3) is not satisfied,
then a problem in the form (1.1) can be exhibited such that it does not have a solution which
satisfies the condition exp( β

p−1 |u|)−1 ∈ W 1,p
0 (�). Similar results in the case p−1 < q ≤ p

have been proved in [14,15,20,21,25,26,29,32]. In particular, in [29], an existence result for
problem (1.1) is given under a sharp smallness condition on the norm of f in L∞(�), while
in [32] the existence of a solution u such that a suitable power of it belongs to W 1,p

0 (�) is

proved under a smallness condition on the norm of f in Lγ (�), with γ = max{1, N (q−p+1)
q }.

Finally, in [30] (see also [15]), it is considered the case q = p and f belonging to the
Marcinkiewicz space M N/p(�). Again, the existence of a solution u to problem (1.1) such
that exp( β

p−1 |u|) − 1 ∈ W 1,p
0 (�) is proven under a sharp smallness condition on the norm

of f in Mγ (�).
Our aim was to consider the general case p −1 < q ≤ p, looking for sharp hypotheses to

be put on the function f in (1.2) in order to have a solution to problem (1.1). More precisely,
we consider a problem in the form{−div (A(x, u,∇u)) = H(x, u,∇u) in �,

u = 0 on ∂�
(1.4)

where

A : (x, s, z) ∈ � × R × R
N −→ A(x, s, z) ∈ R

N

H : (x, s, z) ∈ � × R × R
N −→ H(x, s, z) ∈ R

123



Sharp a priori estimates 1171

are Carathéodory functions which satisfy the ellipticity condition

A(x, s, z) · z ≥ |z|p , (1.5)

the monotonicity condition

(A(x, s, z) − A(x, s, z′)) · (z − z′) > 0 , z 
= z′ (1.6)

and the growth conditions

|A(x, s, z)| ≤ a0|z|p−1 + a1|s|p−1 + a2 , a0, a1, a2 > 0 , (1.7)

H(x, s, z) sign (s) ≤ β|z|q + f (x) , β > 0, (1.8)

with 1 < p < N , p−1 < q ≤ p, for a.e. x ∈ R
N , for every s ∈ R, and for every z, z′ ∈ R

N .
In order to describe the type of result one can prove, we have to consider three different cases

(a) p − 1 < q <
N (p−1)

N−1 ;

(b) N (p−1)
N−1 < q ≤ p;

(c) q = N (p−1)
N−1 .

In case (a) we assume that f ∈ L1(�), and we obtain results similar to those given in
[32], the main difference being the sharpness on the smallness condition we assume on the
norm of f . We refer the reader to Sect. 5 for the precise statements in this case.

Here, we illustrate in more details only the case (b), and we refer the reader to Sect. 5 for
the precise statements in the limit case (c) which has been partially treated in [32] and for
which the introduction of suitable Lorentz–Zygmund spaces is necessary.

Consider problem (1.4) under assumptions (1.5)–(1.8), with N (p−1)
N−1 < q < p (for the

case q = p a similar result holds true) and f ∈ Mγ (�), γ = N (q−p+1)
q . Suppose

‖ f ‖Mγ <
γ

N

(
Nω

1/N
N

γ ′

) N
γ (

p − 1

βq

) N (p−1)
γ q

,

whereωN denotes the measure of the unit ball inRN . Then, a solution to problem (1.4) exists
such that

‖u‖
M

qγ
p−q

≤ X
1

p−1
0

(Nω
1/N
N )

p
p−1

qγ

p − q
,

where X0 ≥ 0 is the smallest nonnegative solution to the equation
β

(Nω
1/N
N )

q
p−1

X
q

p−1 − X

γ ′ + ‖ f ‖Mγ = 0.

Let us comment on the notion of solution we use.We will prove that there exists a solution
to problem (1.4) which is limit of approximations ([22,24]). This means that a solution to
problem (1.4) is a measurable function u such that:

1. Tk(u) ∈ W 1,p
0 (�), for every k > 0, where Tk(s) = min{|s|, k}sign(s) denotes the usual

truncation function;
2. u is a solution in the sense of distribution to problem (1.4), i.e.,∫

�

A(x, u,∇u) · ∇φ dx =
∫
�

H(x, u,∇u)φ dx ,

for every φ ∈ C∞
0 (�);
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3. u is the a.e. limit of a sequence {un}n∈N ⊂ W 1,p
0 (�) ∩ L∞(�) of weak solutions to the

approximated problem{−div (A(x, un,∇un)) = Tn(H(x, un,∇un)) in �,

un = 0 on ∂�.
(1.9)

Observe that, since the right-hand side in the Eq. (1.9) is bounded, in view of (1.5)–
(1.7), a classical result (see [37,39]) implies the existence of a bounded weak solution
to problem (1.9).

In order to prove the existence of a solution to problem (1.4), we use a standard strategy
(see, for instance, [9,23] and Sect. 5 below). Firstly, one proves that any bounded weak
solution to problem (1.9) satisfies suitable a priori estimates. Making use of such estimates
one can prove that, up to subsequence, {un}n∈N converges to a measurable function u, in such
a way that it is possible to pass to the limit in the weak formulation of (1.9), yielding that u
satisfies (1.4) in the sense of distribution.

We recall that equivalent notions of solution are the renormalized solution ([23,38]) and
the entropy solution ([9]).

The method we use in order to obtain the described result is based on the fact that, using
also symmetrization techniques (see, for instance, [47,48]), it is possible to obtain sharp a
priori estimates for bounded solutions to approximated problems in the form (1.9). These
estimates are obtained under sharp smallness assumption on f given above. The use of the
estimates on the approximate solution and on its gradient allows us to pass to the limit as
described above.

The paper is organized as follows. In Sect. 2, some preliminary results on rearrangements
and the definition of some Lorentz–Zygmund spaces are recalled. In Sect. 3, some model
radial problems satisfying assumptions (1.5)–(1.8) are considered. Such examples shed light
on the sharpness of the existence results obtained in the paper, as regards both the smallness
assumption on f and the estimate on the norm of the solution. In Sect. 4, we prove the main
pointwise estimates for bounded solutions to approximated problems, and in Sect. 5, we
prove the existence results. Both Sects. 4 and 5 are split in subsections where the different
cases (a), (b), (c), described above, are considered.
Part of these results have been announced in [5] and [43].

2 Preliminary results

We begin by recalling some properties of rearrangements. If u is a measurable function
defined in � and

μ (t) = |{x ∈ � : |u (x)| ≥ t}| , t ≥ 0

is its distribution function, then

u∗ (s) = sup {t ≥ 0 : μ (t) > s} , s ∈ (0, |�|) ,

is the decreasing rearrangement of u and u∗ (s) = u∗ (|�| − s) is the increasing rearrange-
ment of u.

If ωN is the measure of the unit ball of RN and �
 is the ball of RN centered at the origin
with the same measure as �,

u
 (x) = u∗(ωN |x |N ) , u
 (x) = u∗(ωN |x |N ) , x ∈ �
 ,
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Sharp a priori estimates 1173

denote the spherically decreasing and increasing rearrangements of u, respectively. We recall
the well-known Hardy-Littlewood inequality ([34])∫

�


u
 (x) v
 (x) dx ≤
∫
�

|u (x) v (x)| dx ≤
∫

�


u
 (x) v
 (x) dx . (2.1)

For any q ∈ (0,+∞), the Lorentz space Lq,r (�) is the collection of all measurable
funtions u such that ‖u‖q,r is finite, where we use the notation

‖u‖Lq,r =
⎛
⎝

+∞∫
0

[
u∗(s) s1/q]r ds

s

⎞
⎠

1/r

if r ∈]0,∞[,
‖u‖Lq,∞ = sup

s>0
u∗(s) s1/q = sup

t>0
t μ(t)1/q (2.2)

if r = ∞.
These spaces give in some sense a refinement of the usual Lebesgue spaces. Indeed,

Lq,q(�) = Lq(�) and Lq,∞(�) = Mq(�) is the Marcinkiewicz space Lq -weak. The
following embeddings hold true (see [35,45])

Lq,r1(�) ⊂ Lq,r2(�), (2.3)

if r1 < r2, and

Lq1,r (�) ⊂ Lq(�) , (2.4)

if q < q1.
We finally recall some Zygmund spaces which will be used in what follows (see [10]).

The Zygmund space L(log L)N−1 consists of all measurable functions u such that

|�|∫
0

u∗(s) logN−1
(M

s

)
ds < +∞ ,

for a constantM > |�|, while L1,∞(log L)N denotes the Lorentz–Zygmund space which is
the collection of the measurable functions u for which

sup
0<s<|�|

s logN
(M

s

)
u∗(s) < +∞ ,

for some constant M > |�|.
We explicitly recall that both these spaces are included in L1(�) and both of them contain

the Marcinkiewicz space Mt (�) with t > 1. On the other hand, these spaces are not subset
one of the other; examples of functions belonging to one and not to the other could be
exhibited.

3 Some remarks in the radial case

In this section, we consider radial solutions to some problems in a ball which, as we will see,
are in some sense extremal cases as regards the existence of solutions. We start with the case
p − 1 < q <

N (p−1)
N−1 , and we consider the following Dirichlet problem
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1174 A. Alvino et al.

{−�pv = β|∇v|q + K δ0 in BR

v = 0 on ∂ BR ,
(3.1)

where β and K are positive constants, δ0 is the Dirac mass centered at the origin, and BR is
the ball centered at the origin with radius R.

A direct computation proves that if

κ > κ0 ≡ β(q − p + 1)

N (p − 1) − q(N − 1)
(3.2)

with

κ =
(

NωN

K

) q−p+1
p−1

R− N (p−1)−q(N−1)
p−1 (3.3)

the radial function

φκ(x) = R
q−p

q−p+1

1∫
|x |
R

1

t
N−1
p−1

(
κ − κ0t

N (p−1)−q(N−1)
p−1

) 1
q−p+1

dt. (3.4)

is a renormalized solution to (3.1) (see, e.g., [23]). In other words, combining (3.2) and (3.3),
we can say that the function φκ in (3.4) is a renormalized solution to (3.1) under the smallness
assumption on the datum K

K < K1 ≡ NωN

(
N (p − 1) − q(N − 1)

β(q − p + 1)

) p−1
q−p+1

R− N (p−1)−q(N−1)
q−p+1 . (3.5)

The smallness assumption (3.5) is sharp in the sense that for every K ′ > K1, it is possible
to find a problem in the form{−�pv = β|∇v|q + f in BR

v = 0 on ∂ BR ,
(3.6)

where f is a bounded function with ‖ f ‖L1 = K ′ for which no bounded weak solution exists,
as shown by the following example.

Example 3.1 For the sake of simplicity we consider the case N = 3, p = 2, q = 5/4, β =
1, R = 1, but the calculation could be carried on in a similar way for all the values of
the parameters under the required conditions. It is immediate to observe that the condition
p − 1 < q <

N (p−1)
N−1 is satisfied and that K1 = 64π in the smallness condition (3.5). For

n ∈ N, we put

fn(x) =

⎧⎪⎨
⎪⎩
0

1

n
< |x | ≤ 1

96 n6|x |3
(1 − n3/2|x |2)5 0 ≤ |x | ≤ 1

n
.

(3.7)

The function fn is bounded and a direct computation gives

‖ fn‖L1 = 16π(4 − n−1/2)

(1 − n−1/2)4
. (3.8)

Then

‖ fn‖L1 > 64π, lim
n→+∞ ‖ fn‖L1 = 64π. (3.9)

123



Sharp a priori estimates 1175

On the other hand, using the results contained in [29, Sect. 3], it follows that a nonnegative
bounded weak solution to problem{

−�v = |∇v|5/4 + fn in B1

v = 0 on ∂ B1 ,
(3.10)

exists if and only if the problem
{

−�5z = fn

44
(z + 1)4 in B1

z = 0 on ∂ B1 ,
(3.11)

admits a nonnegative weak solution. We observe also that the nonlinear eigenvalue problem
{

−�5w = λ
fn

44
|w|3w in B1

w = 0 on ∂ B1 ,
(3.12)

admits the first eigenvalue λ1 = 1 with eigenfunction

w(x) =

⎧⎪⎨
⎪⎩
1 − |x |1/2 1

n
< |x | ≤ 1

(1 − n3/2|x |2)1/4(1 − n−1/2)3/4 0 ≤ |x | ≤ 1

n
,

and using Theorem 2.4 in [2] it is possible to show that problem (3.11) does not have a weak
solution. This implies that also problem (3.10) cannot have a weak solution.

When N (p−1)
N−1 < q ≤ p we consider the problem

{
−�pv = β|∇v|q + f in BR

v = 0 on ∂ BR ,
(3.13)

where

f (x) = K

ω
1
γ

N |x | N
γ

(3.14)

with γ = N (q − p + 1)/q and K ≥ 0. Looking for solutions to (3.13), it is not difficult to
see that the radial solutions v = v(|x |) are such that

v′(r) = −
⎛
⎝ X

Nω
1
γ

N

⎞
⎠

1
p−1

1

r
N

qγ

, (3.15)

where X is a nonnegative constant which satisfies the following equation

β

(Nω
1/N
N )

q
p−1

X
q

p−1 − X

γ ′ + ‖ f ‖Mγ = 0. (3.16)

The above equation admits at least one nonnegative solution if and only if ‖ f ‖Mγ satisfies
the following smallness assumption

‖ f ‖Mγ ≤ K2 ≡ γ

N

(
Nω

1/N
N

γ ′

) N
γ (

p − 1

βq

) N (p−1)
γ q

. (3.17)
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1176 A. Alvino et al.

In conclusion, using (3.15) it is possible to verify that, if

ψ(x) =

⎧⎪⎨
⎪⎩

q − p + 1

p − q
(|x |− p−q

q−p+1 − R− p−q
q−p+1 ) if N (p−1)

N−1 < q < p

log
( R

|x |
)

if q = p,

(3.18)

the function

v(x) =
⎛
⎝ X

Nω
1
γ

N

⎞
⎠

1
p−1

ψ(x) , (3.19)

is a weak solution to problem (3.13) under the condition (3.17).
The smallness assumption (3.17) is sharp in the sense that for every ε > 0, it is possible

to find a problem in the form (3.6) where f is a bounded function with ‖ f ‖Mγ = K ′ > K2

and K ′ − K2 < ε, for which no bounded weak solution exists, as shown by the following
example.

Example 3.2 For the sake of simplicity we consider the case β = 1, R = 1, with p, q and
N satisfying N (p−1)

N−1 < q ≤ p, but the calculation could be carried on in a similar way
for all the values of the parameters under the required conditions. In the present case, if
γ = N (q − p + 1)/q , we have

K2 ≡ γ

N

(
Nω

1/N
N

γ ′

) N
γ (

p − 1

q

) N (p−1)
γ q

in the smallness condition (3.17).
For n ∈ N, we put

fn(x) = K ′

ω
1
γ

N

gn(x), with gn(x) = min{|x |− N
γ , n}, (3.20)

where K ′ > K2. The function fn is bounded and a direct computation gives

‖ fn‖Mγ = K ′. (3.21)

On the other hand, using the results contained in [29, Sect. 3], it follows that a nonnegative
bounded weak solution to problem

{
−�pv = |∇v|q + fn in B1

v = 0 on ∂ B1,
(3.22)

exists if and only if the problem
⎧⎪⎨
⎪⎩

−�m z =
(

q − p + 1

p − 1

) p−1
q−p+1 K ′

ω
1/γ
N

gn(z + 1)m−1 in B1

z = 0 on ∂ B1 ,

(3.23)

wherem = q
q−p+1 , admits a nonnegativeweak solution.We observe that the given conditions

on q imply p ≤ m < N .
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Sharp a priori estimates 1177

Let us consider the following nonlinear eigenvalue problem{
−�mw = λ gn |w|m−2w in B1

w = 0 on ∂ B1.
(3.24)

Using, for example, Theorem 2.4 in [31], the first eigenvalue λ1(n) for problem (3.24) is
such that λ1(n) is strictly decreasing with respect to n and

lim
n→+∞ λ1(n) =

(
(N − 1)q − N (p − 1)

q

) q
q−p+1

. (3.25)

This means that for every n we can choose

K ′ = λ1(n)

(
p − 1

q − p + 1

) p−1
q−p+1

ω
1/γ
N

and using Theorem 2.4 in [2] it is possible to show that problem (3.23) does not have a
weak solution. This implies that also problem (3.22) cannot have a weak solution. We finally
observe that, in view of the monotonicity of λ1(n), K ′ > K2 and, in view of (3.25), K ′ can
be arbitrarily close to K2.

When N (p−1)
N−1 < q ≤ p we also observe that under the smallness assumption (3.17)

satisfied as a strict inequality, that is, ‖ f ‖Mγ < K2, problem (3.13) admits two distributional
solutions in the form (3.19). Indeed, in such a case, Eq. (3.16) admits two nonnegative
solutions 0 ≤ X0 < X1 and the functions

v(i)(x) =
⎛
⎝ Xi

Nω
1
γ

N

⎞
⎠

1
p−1

ψ(x) i = 0, 1 , (3.26)

are distributional solutions to problem (3.13).
A difference between v(0) and v(1) can be explained as follows. A classical procedure to

find a solution to problem (3.13) consists in building an approximate problemwith the source
term which is a truncation fn of f in (3.14) for which a bounded weak solution vn exists.
Such a sequence of solutions converges to v(0) and not to v(1). This phenomenon is made
explicit in the following example.

Example 3.3 We consider problem (3.13) in the case N = 3, p = q = 2, β = 1, R =
1, K > 0. In the present case γ = 3/2 and

K2 =
(π

6

) 2
3

in the smallness condition (3.17). Furthermore, ‖ f ‖M3/2 = K , condition ‖ f ‖M3/2 < K2

becomes

K <
(π

6

) 2
3

, (3.27)

and Xi = (4
√
3π)2/3yi , i = 0, 1, where y0 = 1−√

1−4c
2 , y1 = 1+√

1−4c
2 and c = K

( 3
4π

) 2
3 .

For n ∈ N, we put

fn(x) = K

(
3

4π

) 2
3

min{|x |−2, n2}, (3.28)
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1178 A. Alvino et al.

where K satisfies (3.27). The function fn is bounded and a direct computation gives

‖ fn‖M3/2 = K . (3.29)

On the other hand, using the results contained in [29, Sect. 3], a direct computation proves
that the only radial bounded weak solution to problem

{−�vn = |∇vn |2 + fn in B1

vn = 0 on ∂ B1 ,
(3.30)

is given by

vn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

(
sin(n

√
c|x |)

|x |
)

+ Mn 0 ≤ |x | ≤ 1

n

log

(
An

|x |y0
+ 1 − An

|x |y1

)
1

n
< |x | ≤ 1 ,

(3.31)

where

An =
√

c − y0 tan
√

c√
c − y0 tan

√
c − n−√

1−4c(
√

c − y1 tan
√

c)

and

Mn = log

( √
1 − 4c

ny1 cos
√

c(
√

c − y0 tan
√

c − n−√
1−4c(

√
c − y1 tan

√
c))

)
.

It is immediate to observe that 0 ≤ vn(x) ≤ v(0)(x) and vn converges to v(0) with

v(0)(x) = y0 log

(
1

|x |
)

.

It is clear that also the second solution v(1)(x) = y1 log
(

1
|x |
)
can be approximated by

a sequence of bounded weak solutions to problems in the form (3.30), but the norm of
the approximated source term will not be smaller than K2. Indeed, if c̄ is the solution of√

c̄ = y0 tan
√

c̄ in the interval (0, π2/4), the function

v̄n(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
log

(
sin(n

√
c̄|x |)

ny0 |x | sin√
c̄

)
0 ≤ |x | ≤ 1

n

log

(
1

|x |y1

)
1

n
< |x | ≤ 1,

(3.32)

is the bounded weak solution to problem (3.30) where the source term fn is replaced by

f̄n(x) =

⎧⎪⎪⎨
⎪⎪⎩

c̄ n2 0 ≤ |x | ≤ 1

n(
3

4π

) 2
3 K

|x |2
1

n
< |x | ≤ 1.

(3.33)

Using the definition of c̄ and recalling that y0 < 1/2, it is immediate to observe that c̄ > 1/4
and then
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‖ f̄n‖M3/2 = c̄

(
4π

3

) 2
3

>
(π

6

) 2
3 = K2.

We conclude this section observing that in the limit case q = N (p−1)
N−1 one could consider

problems in the form (3.13) when f belongs to spaces like L1,∞(log L)N or L(log L)N−1.
Also, in such cases, one can exhibit solutions which are obtained as limit of bounded solu-
tions to approximate problems under sharp smallness assumptions on the source terms. The
sharpness of the smallness assumptions could be established via examples similar to those
discussed above.

4 Pointwise estimates

One of the main aims of symmetrization approach to the study of properties of solutions to
differential problems is to give comparison results for such solutions in terms of the solution
to a “symmetrized problem” which is in the same form as the original one. Several papers
have addressed the question of giving comparison results for solutions to problem in the form
(1.4) in terms of the following one{

−�pv = β|∇v|q + f 
 in�


v = 0 su ∂�
.
(4.1)

Results in this direction can be found, for example, in [29], where bounded solutions to
problem (1.4) are considered, and in [40], where a weak solution to (1.4) is estimated in
terms of the maximal solution to (4.1), when it exists (i.e., for certain values of q).

In the present section, we obtain pointwise comparison results in terms of a symmetrized
problem where the source term is in general not equidistribuited with the source term f
which appears in (1.4). However, the estimates we obtain allow us to give sharp conditions
on f in order to state existence results for problem (1.4).

Let us recall the following result (see [29, Lemma 4.1]).

Lemma 4.1 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

p − 1 < q ≤ p.

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�). We have,

a.e. in (0, |�|), that

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) [(−u∗)′(s)]

≤
⎡
⎣

s∫
0

f ∗(σ ) exp

⎛
⎝ β

(Nω
1/N
N )q−p

s∫
σ

[(−u∗)′(r)]q−p+1

r
(p−q)(N−1)

N

dr

⎞
⎠ dσ

⎤
⎦

1
p−1

. (4.2)

Depending on the value of q , the proof of comparison results will follow different lines,
so we distinguish three cases in separate subsections.

4.1 The case p − 1 < q <
N (p−1)

N−1

We prove a comparison result which states that a solution to problem (1.4) can be compared
with a solution to a symmetrized problem whose datum is not a rearrangement of the datum
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1180 A. Alvino et al.

f , but a measure, i.e., we compare a solution to problem (1.4) with the solution to problem
(3.1) when BR coincides with the ball �
 and K is the norm of f in L1(�).

The following result holds.

Theorem 4.1 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

p − 1 < q <
N (p − 1)

N − 1
. (4.3)

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�). If the

norm of f in L1(�) is sufficiently small, that is,

‖ f ‖L1 < K1 , (4.4)

where

K1 = NωN

(
ωN

|�|
) N (p−1)−q(N−1)

N (q−p+1)
(

N (p − 1) − q(N − 1)

β(q − p + 1)

) p−1
q−p+1

, (4.5)

then

u∗(s) ≤ z1(s), s ∈ [0, |�|], (4.6)

where

z1(s) = ‖ f ‖
1

p−1

L1

(Nω
1/N
N )

p
p−1

|�|∫
s

σ
− p(N−1)

N (p−1)

⎡
⎣1 −

(‖ f ‖L1

K1

) q−p+1
p−1

(
σ

|�|
)1− q(N−1)

N (p−1)

⎤
⎦

1
q−p+1

dσ. (4.7)

Remark 4.1 We explicitly observe that the function z1(s) defined in (4.7) is the decreasing
rearrangement of the function φκ defined in (3.4) with K = ‖ f ‖L1 and that the value of K1

given in (4.5) coincides with the value given in (3.5) when R is the radius of the ball �
. The
considerations made in Sect. 3 and in Example 3.1 show that the smallness assumption (4.4)
is sharp.

Proof of Theorem 4.1 We can use Lemma 4.1. If we put

U (s) =
s∫

0

f ∗(σ ) exp

⎛
⎝ β

(Nω
1/N
N )q−p

s∫
σ

[(−u∗)′(r)]q−p+1

r
(p−q)(N−1)

N

dr

⎞
⎠ dσ , (4.8)

inequality (4.2) becomes

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) [(−u∗)′(s)] ≤ (U (s))

1
p−1 , a.e. s ∈ (0, |�|). (4.9)

We observe that the integral which appears as argument of the exponential function in (4.8)
is finite. Indeed, since u ∈ W 1,p

0 (�), the gradient of u belongs to Lq(�), then, by Hölder
and Pólya-Szëgo inequalities, we get
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|�|∫
0

[(−u∗)′(r)]q−p+1

r
(p−q)(N−1)

N

dr = 1

N q−p+1ω
N−p+q

N
N

∫

�


|∇u
|q−p+1

|x |N−1 dx

≤ 1

N q−p+1ω
N−p+q

N
N

⎛
⎝∫

�

|∇u|qdx

⎞
⎠

q−p+1
q

⎛
⎜⎝
∫

�


|x |− q(N−1)
p−1 dx

⎞
⎟⎠

p−1
q

where the last term is finite being q(N−1)
p−1 < N .

Moreover, we have:

U ′(s) = f ∗(s) + β

(Nω
1/N
N )q−p

[(−u∗)′(s)]q−p+1

s
(p−q)(N−1)

N

U (s), a.e. s ∈ (0, |�|),

and then, applying again (4.2), the function U (s) satisfies

⎧⎪⎨
⎪⎩

U ′(s) ≤ f ∗(s) + β

(Nω
1/N
N )

q
p−1

U
q

p−1

s
q(N−1)
N (p−1)

, a.e. s ∈ (0, |�|),
U (0) = 0.

(4.10)

On the other hand, a direct computation gives

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) [(−z1)

′(s)] = (W (s))
1

p−1 , s ∈ (0, |�|), (4.11)

where

W (s) = ‖ f ‖L1⎡
⎣1 −

(‖ f ‖L1

K1

) q−p+1
p−1

(
s

|�|
)1− q(N−1)

N (p−1)

⎤
⎦

p−1
q−p+1

is the solution to problem

⎧⎪⎨
⎪⎩

W ′(s) = β

(Nω
1/N
N )

q
p−1

W
q

p−1

s
q(N−1)
N (p−1)

, s ∈ (0, |�|),

W (0) = ‖ f ‖L1 .

(4.12)

The following inequality holds true

U (s) ≤ W (s), s ∈ [0, |�|]. (4.13)

If ‖ f ‖L1 = 0 there is nothing to prove. If ‖ f ‖L1 > 0 we argue by contradiction. Since
W (0) > U (0) = 0, if (4.13) does not hold, there exists a value s̄, with 0 < s̄ < |�|, such
that U (s̄) = W (s̄) and U (s) < W (s) for 0 ≤ s < s̄. It would follow
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U (s̄) ≤
s̄∫

0

f ∗(σ )dσ + β

(Nω
1/N
N )

q
p−1

s̄∫
0

U
q

p−1

σ
q(N−1)
N (p−1)

dσ

< ‖ f ‖L1 + β

(Nω
1/N
N )

q
p−1

s̄∫
0

W
q

p−1

σ
q(N−1)
N (p−1)

dσ = W (s̄)

and we have a contradiction. Thus, (4.13) holds true.
From (4.9), (4.11), and (4.13) we get

(−u∗)′(s) ≤ (−z1)
′(s), a.e. s ∈ (0, |�|) ,

and the proof is complete. ��
Remark 4.2 It is natural to ask if the decreasing rearrangement of a weak solution to problem
(1.4) can be related to the solution v to problem (4.1). To this aim,we observe that the function

V (s) =
s∫

0

f ∗(σ ) exp

⎛
⎝β(Nω

1/N
N )q−p

s∫
σ

[(−v∗)′(r)]q−p+1

r
(p−q)(N−1)

N

dr

⎞
⎠ dσ , (4.14)

solves problem ⎧⎪⎨
⎪⎩

V ′(s) = f ∗(s) + β

(Nω
1/N
N )

q
p−1

V
q

p−1

s
q(N−1)
N (p−1)

in (0, |�|)
V (0) = 0.

(4.15)

This fact allows us to apply the comparison result given in [40]. Thus, under the assumptions
of Theorem 4.1, we have

u∗(s) ≤ v∗(s) s ∈ (0, |�|).
Furthermore, as in the proof of Theorem 4.1, we can prove

V (s) ≤ W (s) , s ∈ (0, |�|) ,

which leads to the following inequality

v∗(s) ≤ z∗
1(s) , s ∈ (0, |�|).

Remark 4.3 As already observed in [40], the initial value problem (4.15) has an explicit
solution also when we choose

f ∗(s) = c
q

p−1 s− q(N−1)
N (p−1) ,

with a suitable nonnegative constant c, so that f ∈ M
N (p−1)
q(N−1) (�). We put

F(t) =
t∫

0

dτ

1 + βτ
q

p−1

and

T (β) =
∞∫
0

dτ

1 + βτ
q

p−1
,
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where T (β) is finite in view of the hypotheses on β and q > p − 1. Then, if |�| satisfies the
condition

c
q−p+1

p−1

Nω
1/N
N

N (p − 1)

[q − N (q − p + 1)] |�|1− q(N−1)
N (p−1) < T (β), (4.16)

the solution to (4.15) is

V (s) = cNω
1/N
N F−1

⎛
⎝ c

q−p+1
p−1

Nω
1/N
N

N (p − 1)

[q − N (q − p + 1)] s1−
q(N−1)
N (p−1)

⎞
⎠ .

The condition (4.16) can be read as a smallness assumption on the norm of f in M
N (p−1)
q(N−1) (�).

4.2 The case N (p−1)
N−1 < q ≤ p

In this case too, it is possible to obtain an estimate similar to (4.6) by proving a comparison
result which states that a solution to problem (1.4) can be compared with the solution to a
problem in the form (3.13) whose datum is not in general a rearrangement of the datum of
problem (1.4), and the constant K has a suitable value which depends on the datum of (1.4).

Theorem 4.2 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

N (p − 1)

N − 1
< q ≤ p. (4.17)

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�). If the

norm of f in Mγ (�), with γ = N (q−p+1)
q , is sufficiently small, that is,

‖ f ‖Mγ < K2 , (4.18)

with

K2 = γ

N

(
Nω

1/N
N

γ ′

) N
γ (

p − 1

βq

) N (p−1)
γ q

, (4.19)

then

u∗(s) ≤ z2(s), (4.20)

where, denoted by X0 ≥ 0 the smallest nonnegative solution to the equation

β

(Nω
1/N
N )

q
p−1

X
q

p−1 − X

γ ′ + ‖ f ‖Mγ = 0, (4.21)

we have put

z2(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
1

p−1
0

(Nω
1/N
N )

p
p−1

qγ

p − q
(s− p−q

qγ − |�|− p−q
qγ ) if N (p−1)

N−1 < q < p

X
1

p−1
0

(Nω
1/N
N )

p
p−1

log
( |�|

s

)
if q = p.

(4.22)
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Remark 4.4 We explicitly observe that the function z2(s) defined in (4.22) is the decreasing
rearrangement of the function v(0) defined in (3.26) and that the value of K2 given in (4.19)
coincideswith the value given in (3.17)when R is the radius of the ball�
. The considerations
made in Sect. 3 and in Examples 3.2, 3.3, show that the smallness assumption (4.18) is sharp.

Proof of Theorem 4.2 As in the proof of Theorem 4.1 we can use Lemma 4.1. DefiningU (s)
as in (4.8) we get again (4.9), that is,

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) [(−u∗)′(s)] ≤ (U (s))

1
p−1 , a.e. s ∈ (0, |�|), (4.23)

and the function U (s) satisfies

⎧⎪⎨
⎪⎩

U ′(s) ≤ ‖ f ‖Mγ

s1/γ
+ β

(Nω
1/N
N )

q
p−1

U
q

p−1

s
q(N−1)
N (p−1)

a.e. s ∈ (0, |�|)
U (0) = 0.

(4.24)

We now put W (s) = X0s1/γ
′
. Observe that by (4.17) 1 < γ < +∞ and 1 < γ ′ < +∞. We

want to show that

U (s) ≤ W (s), s ∈ (0, |�|). (4.25)

If ‖ f ‖Mγ = 0, there is nothing to prove because X0 = 0 and then U (s) = W (s) = 0. So,
we suppose that ‖ f ‖Mγ > 0. Let us observe that W (s) solves the problem

⎧⎪⎨
⎪⎩

W ′(s) = ‖ f ‖Mγ

s1/γ
+ β

(Nω
1/N
N )

q
p−1

W
q

p−1

s
q(N−1)
N (p−1)

in (0, |�|)
W (0) = 0.

(4.26)

On the other hand, it holds

lim
s→0+

U (s)

W (s)
= 0. (4.27)

Indeed, using the definition of U (s) and the boundedness of u and f , we have

U (s)=
s∫

0

f ∗(σ ) exp

⎛
⎝β(Nω

1/N
N )q−p

s∫
σ

[(−u∗)′(r)]q−p+1

r
(p−q)(N−1)

N

dr

⎞
⎠ dσ

≤ s ‖ f ‖L∞ exp
(
β(Nω

1/N
N )q−p‖u‖q−p+1

L∞ (N |�| 1
N )p−q

)

and, by definition of W , (4.27) follows. This means that for a certain δ > 0 we have

U (s) < W (s), 0 < s < δ. (4.28)

Now, in order to prove (4.25), we can argue by contradiction. In view of (4.28), if (4.25)
does not hold, there exists a value s̄, with 0 < s̄ < |�|, such that U (s̄) = W (s̄) and
U (s) < W (s) for 0 < s < s̄. Taking in mind that W (s) solves (4.26), it follows
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U (s̄)≤
s̄∫

0

‖ f ‖Mγ

σ 1/γ dσ + β

(Nω
1/N
N )

q
p−1

s̄∫
0

U
q

p−1

σ
q(N−1)
N (p−1)

dσ

<

s̄∫
0

‖ f ‖Mγ

σ 1/γ dσ + β

(Nω
1/N
N )

q
p−1

s̄∫
0

W
q

p−1

σ
q(N−1)
N (p−1)

dσ = W (s̄)

and we have a contradiction. Thus, (4.25) holds true.
From (4.23) and (4.25), we then get

(−u∗)′(s) ≤ X
1

p−1
0

(Nω
1/N
N )

p
p−1 s1+

p−q
qγ

a.e. s ∈ (0, |�|),

and (4.20) follows. ��
4.3 The limit case q = N (p−1)

N−1

In this case, we prove two pointwise estimates for solutions to problem (1.4) depending on
different assumptions on the summability of f . We begin with the following result.

Theorem 4.3 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

q = N (p − 1)

N − 1
. (4.29)

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�) and such

that for some constants M > |�| and C f ≥ 0 we have

f ∗(s) ≤ C f

s logN (M/s)
s ∈ (0, |�|). (4.30)

If

C f < K3 (4.31)

with

K3 = ωN (N − 1)2N−1

βN−1 ,

then

u∗(s) ≤ Y
1

p−1
0

(Nω
1/N
N )

p
p−1

|�|∫
s

1

σ
p(N−1)
N (p−1) log

N−1
p−1 (M/σ)

dσ, s ∈ (0, |�|), (4.32)

where Y0 ≥ 0 is the smallest nonnegative solution to the equation

β

(Nω
1/N
N )

N
N−1

Y
N

N−1 − (N − 1)Y + C f = 0. (4.33)

Remark 4.5 Let us observe that the assumption (4.30) means that the datum f belongs to
the Lorentz–Zygmund space L1,∞(log L)N whose definition is given Sect. 2.
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Proof of Theorem 4.3 As in the proof of Theorem 4.1 we can use Lemma 4.1. DefiningU (s)
as in (4.8) we get again (4.9), that is,

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) [(−u∗)′(s)] ≤ (U (s))

1
p−1 , a.e. s ∈ (0, |�|), (4.34)

and the function U (s) satisfies⎧⎪⎨
⎪⎩

U ′(s) ≤ C f

s logN (M/s)
+ β

(Nω
1/N
N )

N
N−1

U
N

N−1

s
a.e. s ∈ (0, |�|)

U (0) = 0.

(4.35)

We now put W (s) = Y0 log1−N (M/s). We want to show that

U (s) ≤ W (s), s ∈ (0, |�|). (4.36)

If C f = 0, there is nothing to prove because Y0 = 0 and then U (s) = W (s) = 0. So, we
suppose that C f > 0. Let us observe that W (s) solves the problem

⎧⎪⎨
⎪⎩

W ′(s) = C f

s logN (M/s)
+ β

(Nω
1/N
N )

N
N−1

W
N

N−1

s
a.e. s ∈ (0, |�|)

W (0) = 0.

(4.37)

On the other hand, using the definition of U (s) and the boundedness of u and f , as in the
previous proof, we get

lim
s→0+

U (s)

W (s)
= 0. (4.38)

This means that for a certain δ > 0 we have

U (s) < W (s), 0 < s < δ. (4.39)

Now, in order to prove (4.36), we can argue by contradiction. In view of (4.39), if (4.36)
does not hold, there exists a value s̄, with 0 < s̄ < |�|, such that U (s̄) = W (s̄) and
U (s) < W (s) for 0 < s < s̄. Taking in mind that W (s) solves (4.37), it follows

U (s̄) ≤
s̄∫

0

C f

σ logN (M/σ)
dσ + β

(Nω
1/N
N )

N
N−1

s̄∫
0

U
N

N−1

σ
dσ

<

s̄∫
0

C f

σ logN (M/σ)
dσ + β

(Nω
1/N
N )

N
N−1

s̄∫
0

W
N

N−1

σ
dσ = W (s̄)

and we have a contradiction. Thus, (4.36) holds true.
From (4.34) and (4.36), we then get

(−u∗)′(s) ≤ Y
1

p−1
0

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) log

N−1
p−1 (M/s)

a.e. s ∈ (0, |�|) ,

and (4.32) follows. ��
Now, we prove our second pointwise estimate.
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Theorem 4.4 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and (4.29). Let
u ∈ W 1,p

0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�) and such that
for a constant M > |�|, it holds

|�|∫
0

f ∗(s) logN−1(M/s) ds < K4 , (4.40)

with

K4 = ωN (N − 1)N−1N N

βN−1 .

Then

u∗(s) ≤ K
1

p−1
4

(Nω
1/N
N )

p
p−1

|�|∫
s

1

σ
p(N−1)
N (p−1) log

N−1
p−1 (M/σ)

dσ, s ∈ (0, |�|). (4.41)

Remark 4.6 Observe that Z = K4 is the positive solution to the equation

β

(Nω
1/N
N )

N
N−1

Z
N

N−1 − (N − 1)Z = 0.

Remark 4.7 Let us observe that the assumption (4.40) means that the datum f belongs to
the Zygmund space L(log L)N−1 whose definition is given in Sect. 2.

Remark 4.8 Smallness condition (4.40) is sharp in the following sense. For the sake of
simplicity we will refer to the case p = 2. Denoting by R� the radius of �
, for every fixed
R > R� the function

u R(|x |) = (N − 1)N−1

R�∫
|x |

dt

t N−1
[
log

( R
t

)]N−1 (4.42)

satisfies the following homogeneous equation in �
 − {0}
− �u − |∇u| N

N−1 = 0. (4.43)

Now, for ε > 0, define the functions

u R,ε(|x |) =
⎧⎨
⎩

u R(|x |) if |x | > ε

aε(ε
2 − |x |2) + u R(ε) if |x | ≤ ε

with

aε = (N − 1)N−1

2εN logN−1
( R

ε

) .
Such functions satisfy the homogeneous Dirichlet problem in �
 for the equation

−�u − |∇u| N
N−1 = fε
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with

fε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |x | > ε

N (N − 1)N−1

εN logN−1
( R

ε

) − (N − 1)N |x | N
N−1

ε
N2

N−1 logN
( R

ε

) if r ≤ ε.

It is easy to verify that

lim
ε→0

∫

�


fε(|x |) logN−1
(

R

|x |
)

dx = NωN (N − 1)N−1.

This means that the data weakly converge in a weighted L1 space to a kind of Dirac mass.
Actually, the function (4.42) is solution in �
 to an equation which, in contrast to (4.43), is
not homogeneus, but it has a datum that is concentrated as a measure in the origin.

Proof of Theorem 4.4 As in the previous proofs, we can use Lemma 4.1. Defining U (s) as
in (4.8) we get again (4.34) and the function U (s) satisfies⎧⎪⎨

⎪⎩
U ′(s) ≤ f ∗(s) + β

(Nω
1/N
N )

N
N−1

U
N

N−1

s
a.e. s ∈ (0, |�|)

U (0) = 0.

Now, we put Ũ (s) = U (s) logN−1(M/s), and we observe that Ũ (s) satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ũ ′(s) ≤ f ∗(s) logN−1
(M

s

)
+ β

(Nω
1/N
N )

N
N−1

Ũ
N

N−1

s log

(M
s

) − (N − 1)
Ũ

s log

(M
s

)

Ũ (0) = 0.

(4.44)

We claim that

Ũ (s) ≤ K4. (4.45)

Indeed, since Ũ (0) = 0 < K4, there exists a δ > 0 such that

Ũ (s) < K4, for 0 < s < δ. (4.46)

In order to prove (4.45), we can argue by contradiction. Since (4.46) holds true, if (4.45)
does not hold, there exists a value s̄ with 0 < s̄ < |�| such Ũ (s̄) = K4 and Ũ (s) < K4, for
0 < s < s̄. Therefore, since the function

�(Z) = β

(Nω
1/N
N )

N
N−1

Z
N

N−1 − (N − 1)Z

is convex in [0, K4] and �(0) = �(K4) = 0, for 0 < ε < s̄, we have

Ũ (s̄) − Ũ (ε) ≤
s̄∫

ε

f ∗(s) logN−1(M/s) ds +
s̄∫

ε

�(Ũ (s))

s log(M/s)
ds

<

s̄∫
ε

f ∗(s) logN−1(M/s) ds.
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Letting ε go to zero and recalling assumption (4.40), we have Ũ (s̄) < K4, that is a contra-
diction. Thus, (4.45) is proved.

From definition of Ũ (s), we deduce that

U (s) ≤ K4

logN−1(M/s)

and by (4.34) we obtain

(−u∗)′(s) ≤ K
1

p−1
4

(Nω
1/N
N )

p
p−1 s

p(N−1)
N (p−1) log

N−1
p−1 (M/s)

a.e. s ∈ (0, |�|).

This implies (4.41). ��

5 A priori estimates and existence results

In this section, we prove a priori estimates and we deduce existence results for solutions to
problem (1.4).

As in the previous section, depending on the value of q , the proofs will follow different
lines, so we distinguish three cases in separate subsections.

5.1 The case p − 1 < q <
N (p−1)

N−1

The first result is already proved in [32]; here, we give a different proof.

Theorem 5.1 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and (4.3). Let
u ∈ W 1,p

0 (�) ∩ L∞(�) be a weak solution to problem (1.4) with f ∈ L∞(�). If the norm
of f in L1(�) satisfies (4.4), then

‖u‖
M

N (p−1)
N−p

≤ C , (5.1)

‖∇u‖
M

N (p−1)
N−1

≤ C , (5.2)

where C is a positive constant which depends only on p, q, N , |�|, β and ‖ f ‖L1 .

Proof We observe that it is possible to apply Theorem 4.1 and, taking into account (4.6) and
(4.7), we have

u∗(s) ≤ ‖ f ‖
1

p−1

L1

(Nω
1/N
N )

p
p−1

1⎡
⎣1 −

(‖ f ‖L1

K1

) q−p+1
p−1

⎤
⎦

1
q−p+1

N (p − 1)

N − p

1

s
N−p

N (p−1)

, (5.3)

and (5.1) immediately follows.
Let us now prove (5.2). Denoting by μ(t) the distribution function of u, we define the

function

ϕ(x) = sign (u(x))

|u(x)|∫
0

νs(μ(t)) dt,
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where

νs(r) =
⎧⎨
⎩

rα, if 0 ≤ r ≤ s,

sα, if r > s,

with s ∈ [0, |�|] and α > 0 such that

N − p

N (p − 1)
< α <

p − q

q
. (5.4)

Let us observe that the above condition on α can be imposed because of the assumption
q <

N (p−1)
N−1 and that ϕ ∈ W 1,p

0 (�) ∩ L∞(�). In particular, the norm of ϕ in L∞(�) can be
estimated making use of (5.3) and (5.4)

‖ϕ‖L∞ =
+∞∫
0

νs(μ(t)) dt = α

s∫
0

rα−1u∗(r) dr ≤ c sα− N−p
N (p−1) . (5.5)

Here and in what follows, c denotes a positive constant, which can change line by line and
depends only on the data. The same notation will be used also in the next proofs.

Using ϕ(x) as test function in (1.4) and assumptions (1.5)–(1.8), we have∫
�

νs (μ(|u(x)|)) |∇u|p dx ≤ β

∫
�

|∇u|q |ϕ| dx +
∫
�

| f ||ϕ| dx . (5.6)

From Hölder and Young inequalities we get

∫
�

|∇u|q |ϕ| dx ≤
⎛
⎝∫

�

νs(μ(|u(x)|))|∇u|p dx

⎞
⎠

q
p
⎛
⎝∫

�

|ϕ| p
p−q

[νs(μ(|u(x)|))] q
p−q

dx

⎞
⎠

1− q
p

≤
(
1 − q

p

)∫
�

νs(μ(|u(x)|))|∇u|p dx + c

(
sα+1− N−p

N (p−1)
p

p−q + sα

)1− q
p

(5.7)

where we have used the fact that, as a consequence of (5.3), it holds

∫
�

|ϕ| p
p−q

[νs(μ(|u(x)|))] q
p−q

dx ≤ c (sα+1− N−p
N (p−1)

p
p−q + sα).

On the other hand, taking into account (5.5) and using Hardy inequality, it results∫
�

| f ||ϕ| dx ≤ c sα− N−p
N (p−1) ‖ f ‖L1 . (5.8)

Collecting (5.6), (5.7), (5.8), and using (4.3), we get∫
�

νs (μ(|u(x)|)) |∇u|p dx ≤ c sα− N−p
N (p−1) . (5.9)

Proceeding as in [3], we put

D(s) = |∇u|∗(s), s ∈]0, |�|[,

123



Sharp a priori estimates 1191

andwe estimate frombelow the integral on the left-hand side of (5.9) usingHardy–Littlewood
inequality. Observing that νs is an increasing function, we obtain

∫
�

νs (μ(|u(x)|)) |∇u|p dx ≥
|�|∫
0

νs(r)D p(r) dr

≥
s∫

0

νs(r)D p(r) dr = D p(s)
sα+1

α + 1
.

The use of (5.9) immediately gives (5.2). ��

The previous a priori estimates allow to prove existence results for problem (1.4).

Theorem 5.2 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and (4.3).
If f ∈ L1(�) and it satisfies (4.4), then there exists at least a solution u to the problem
(1.4) obtained as a limit of approximations which satisfies (5.1) and (5.2).

The proof of the above result uses arguments similar to those contained, for example, in
[9,23]. The novelty of Theorem 5.2 relies on the sharpness of the smallness assumption (4.4)
on f . Here, we only sketch the scheme of the proof, and some missing details can be found
in [32].

Consider a weak solution un ∈ W 1,p
0 (�) ∩ L∞(�) to the approximated problem

{−div (A(x, un,∇un)) = Tn(H(x, un,∇un)) in �,

un = 0 on ∂�
(5.10)

whose existence is assured by a classical result (see [37,39]). By a priori estimates, we can
prove that, up to subsequence, {un}n∈N converges a.e. to a finite measurable function u such
that Tk(u) ∈ W 1,p

0 (�) for every k > 0. This implies (see [9], Lemma 2.1) the existence of a
measurable function v, the approximated gradient of u, such that

∇Tk(u) = vχ|u|≤k, a.e. in �.

We denote v = ∇u. Observe that v could be not in
(
L1

loc

)N
, but, if it is a summable vector

function, it coincides with the distributional gradient of u. Moreover, proceeding as in [9],
we can prove that

∇un → ∇u a.e. in �.

Finally, since un satisfies the equality

∫
�

A(x, un,∇un) · ∇φ dx =
∫
�

Tn(H(x, un,∇un))φ dx , (5.11)

for every φ ∈ C∞
0 (�), Vitali’s Theorem allows to pass to the limit in (5.11), and this yields

that u satisfies (1.4) in the sense of distribution. Such a solution is known as solution obtained
as a limit of approximations ([24]).
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5.2 The case N (p−1)
N−1 ≤ q < p − 1 + p

N

We begin this section by proving a priori estimates.

Theorem 5.3 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

N (p − 1)

N − 1
< q < p − 1 + p

N
. (5.12)

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to the problem (1.4) with f ∈ L∞(�). If the

norm of f in Mγ (�), with γ = N (q−p+1)
q , satisfies (4.18), then

‖u‖
M

γ q
p−q

≤ C , (5.13)

‖∇u‖Lt,p ≤ C , (5.14)

for every t < N (q − p + 1), where C is a positive constant which depends only on
p, q, N , |�|, β and by ‖ f ‖Mγ .

Proof The estimate (5.13) is consequence of (4.20) since it gives

u∗(s) ≤ X
1

p−1
0

(Nω
1/N
N )

p
p−1

qγ

p − q
s− p−q

qγ .

Now, we prove (5.14). Consider the function

ψ(x) = sign(u(x))

|u(x)|∫
0

[μ(t)]α dt, (5.15)

with

0 <
p

N (q − p + 1)
− 1 < α <

p − q

N (q − p + 1)
.

Let us explicitly observe that the choise of α is possible since q >
N (p−1)

N−1 .

Since u ∈ W 1,p
0 (�)∩ L∞(�), ψ ∈ W 1,p

0 (�)∩ L∞(�), and therefore, it is a test function
for problem (1.4). By assumptions (1.5) and (1.8), we get∫

�

|∇u|p[μ(u(x))]α dx ≤ β

∫
�

|∇u|q |ψ | dx +
∫
�

| f ψ | dx . (5.16)

We begin by evaluating the first integral on the right-hand side. By Hölder inequality, we get

∫
�

|∇u|q |ψ(x)| dx ≤
⎛
⎝∫

�

|∇u|p[μ(|u(x)|)]α dx

⎞
⎠

q
p
⎛
⎝∫

�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

dx

⎞
⎠

1− q
p

.

(5.17)

By co-area formula and classical properties of rearrangements, we deduce

∫
�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

dx ≤
|�|∫
0

⎛
⎜⎝

u∗(s)∫
0

[μ(t)]α dt

⎞
⎟⎠

p
p−q

1

s
αq

p−q
ds. (5.18)
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On the other hand, by (5.13), since α <
p−q

N (q−p+1) , it results

u∗(s)∫
0

[μ(t)]α dt ≤ c sα− p−q
N (q−p+1) . (5.19)

Therefore, by (5.18), since α >
p

N (q−p+1) − 1, we deduce

∫
�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

dx ≤ c

|�|∫
0

sα− p
N (q−p+1) ds ≤ c (5.20)

and, finally, by (5.17),

∫
�

|∇u|q |ψ | dx ≤ c

⎛
⎝∫

�

|∇u|p[μ(|u(x)|)]α dx

⎞
⎠

q
p

. (5.21)

Now, we evaluate the integral ∫
�

| f ψ | dx .

By co-area formula, integrating by parts and using again (5.19), we get

∫
�

| f ψ(x)| dx ≤
|�|∫
0

1

s
q

N (q−p+1)

⎛
⎜⎝

u∗(s)∫
0

[μ(t)]α dt

⎞
⎟⎠ ds ≤ c. (5.22)

By (5.16), (5.21), and (5.22), since q < p, we deduce the following estimate∫
�

|∇u|p[μ(|u(x)|)]α dx ≤ c.

Therefore, by Hardy inequality, the conclusion follows. ��
Now, we prove a priori estimates in the limit case q = N (p−1)

N−1 .

Theorem 5.4 Let us assume that (1.5)–(1.8) hold true with 1 < p < N and (4.29). Let
u ∈ W 1,p

0 (�) ∩ L∞(�) be a weak solution to the problem (1.4) with f ∈ L∞(�). If f
satisfies either (4.30) and (4.31), or (4.40), then u satisfies (4.32) or (4.41), respectively, and

|�|∫
0

(|∇u|∗(s))q logτ (M/s) ds ≤ C , (5.23)

for every 0 < τ < N − 1, where M is a positive constant larger then |�|, C is a positive
constant which depends only on p, q, N , |�|, β and f .

Proof By Theorems 4.3 and 4.4 we have just to prove (5.23). Let us begin by assuming
(4.40). Consider the function

ψ(x) = sign(u(x))

|u(x)|∫
0

[μ(t)]α logδ
( M

μ(t)

)
, dt, (5.24)
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with

α = N − p

N (p − 1)
,

N − 1

p − 1
− 1 < δ <

p(N − 1)

p − 1
− 1. (5.25)

Since u ∈ W 1,p
0 (�) ∩ L∞(�), ψ ∈ W 1,p

0 (�) ∩ L∞(�), and therefore, it is a test function
for problem (1.4). By assumptions (1.5) and (1.8) we get∫

�

|∇u|p[μ(|u(x)|)]α logδ
( M

μ(|u(x)|)
)

dx ≤ β

∫
�

|∇u|q |ψ | dx +
∫
�

| f ψ | dx .

(5.26)

We begin by evaluating the first integral on the right-hand side. By Hölder inequality, we get

∫
�

|∇u|q |ψ(x)| dx ≤
⎛
⎝∫

�

|∇u|p[μ(|u(x)|)]α logδ
( M

μ(|u(x)|)
)

dx

⎞
⎠

q
p

×

⎛
⎜⎜⎝
∫
�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

[
log

(
M

μ(|u(x)|)
)] δq

p−q

dx

⎞
⎟⎟⎠

1− q
p

. (5.27)

By co-area formula and classical properties of rearrangements, we deduce

∫
�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

[
log

(
M

μ(|u(x)|)
)] δq

p−q

dx

≤
|�|∫
0

⎛
⎜⎝

u∗(s)∫
0

[μ(t)]α
[
logδ

( M
μ(t)

)]
dt

⎞
⎟⎠

p
p−q

1

s
αq

p−q

[
log

(
M
s

)] δq
p−q

ds. (5.28)

On the other hand, since α = N−p
N (p−1) , and δ > N−1

p−1 − 1, by using (4.41), it results

u∗(s)∫
0

[μ(t)]α
[
log

( M
μ(t)

)]δ

dt ≤ c

log
N−p
p−1 −δ

(M/s)
. (5.29)

Therefore, by (5.28), since δ <
p(N−1)

p−1 − 1, we deduce

∫
�

|ψ(x)| p
p−q

[μ(|u(x)|)] αq
p−q

[
log

(
M

μ(|u(x)|)
)] δq

p−q

dx ≤ c (5.30)

and, finally, by (5.27),

∫
�

|∇u|q |ψ | dx ≤ c

⎛
⎝∫

�

|∇u|p[μ(|u(x)|)]α logδ
( M

μ(|u(x)|)
)

dx

⎞
⎠

q
p

. (5.31)

123



Sharp a priori estimates 1195

Now we evaluate the integral ∫
�

| f ψ | dx . (5.32)

By co-area formula, integrating by parts and using Hardy inequality, since δ <
p(N−1)

p−1 − 1,
we get

∫
�

| f ψ(x)| dx ≤
|�|∫
0

f ∗(s)

⎛
⎜⎝

u∗(s)∫
0

μ(t)α logδ
( M

μ(t)

)
dt

⎞
⎟⎠ ds

≤
|�|∫
0

f ∗(s) 1[
log

(M
s

)] N−p
p−1 −δ

ds ≤ c. (5.33)

By (5.26), (5.31), and (5.33), since q < p, we deduce the following estimate∫
�

|∇u|p[μ(u(x))]α logδ
( M

μ(|u(x)|)
)

dx ≤ c. (5.34)

The fact that the integral in (5.34) is finite for a given M > |�| is equivalent to say that it
is finite for every M > |�|. So, we can suppose that M is large enough, in such a way that
the function tα logδ(M/t) is an increasing function with respect to t . Therefore, by Hardy
inequality, we get

|�|∫
0

[|∇u|∗(s)]p
sα logδ(M/s) ds ≤ c.

Now, by Hölder inequality, we get

|�|∫
0

(|∇u|∗(s))q logτ

(M
s

)
ds ≤

⎛
⎝

|�|∫
0

[|∇u|∗(s)]p
sα logδ

(M
s

)
ds

⎞
⎠

q
p

×

⎛
⎜⎜⎜⎝

|�|∫
0

1

s

[
log

(M
s

)]δ
q

p−q −τ
p

p−q
ds

⎞
⎟⎟⎟⎠

1− q
p

(5.35)

Taking into account (5.25), for every τ ∈ (0, N − 1) we can choose δ in such a way that
δ

q
p−q − τ

p
p−q − 1 > 0, so that the last integral is finite and the conclusion follows.

Assume now that (4.30) and (4.31) hold true. Using (4.32), we can proceed as above,
obtaining (5.31). In order to evaluate (5.32), we can use (4.30), obtaining

∫
�

| f ψ | dx ≤ c

|�|∫
0

1

s

[
log

(M
s

)]p N−1
p−1 −δ

ds ≤ c ,

and the proof continues as in the previous case. ��
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The previous a priori estimates allow to prove existence results for problem (1.4).

Theorem 5.5 Assume (1.5)–(1.8) hold true with 1 < p < N and

N (p − 1)

N − 1
< q < p − 1 + p

N
.

If f ∈ Mγ (�), with γ = N (q−p+1)
q , and it satisfies (4.18), then there exists at least a solution

to the problem (1.4) obtained as a limit of approximations which satisfies (5.13) and (5.14).

Proof As described at the end of Subsect. 5.2, we consider a weak solution un ∈ W 1,p(�)∩
L∞(�) to the approximated problem (5.10). By the a priori estimates obtained in Theo-

rem 5.3, we deduce that |∇un |q is bounded in L
r
q (�), with q < r < t (< N (q − p + 1)).

Therefore, by growth assumption (1.8) on H , we deduce that Tn(H(x, un,∇un) is bounded

in L
r
q (�). Moreover, for every fixed k > 0, Tk(un) can be used as test function in (5.11)

and we get ∫
�

|∇Tk(un)|p dx ≤ k
∫
�

Tn(H(x, un,∇un)) dx . (5.36)

This implies that Tk(un) is bounded in W 1,p
0 (�), for every k > 0. Since the right-hand side

in (5.10) is bounded in L1(�), we can apply a well-known compactness result (see [15,16]),
which implies that a function u exists such that, up to extracting a subsequence,

un → u and ∇un → ∇u a.e. in � (5.37)

with u ∈ M
γ q

p−q (�) and |∇u| ∈ Lt,p(�).
We deduce that A(x, un,∇un) converges pointwise to A(x, u,∇u) and
Tn(H(x, un,∇un)) converges pointwise to H(x, u,∇u). By Vitali’s theorem, we can pass
to the limit in (5.11). This proves that u is a solution obtained as a limit of approximations
to (1.4). ��
Theorem 5.6 Assume (1.5)–(1.8) hold true with 1 < p < N and

q = N (p − 1)

N − 1
.

Suppose that f satisfies one of the following conditions:

(1) f ∈ L1,∞(log L)N and (4.30) and (4.31) hold true;
(2) f ∈ L(log L)N−1 and (4.40) hold true.

Then there exists at least a solution to the problem (1.4) obtained as a limit of approximations
which satisfies (4.32), in case (1) holds, or (4.41), in case (2) holds. Furthermore, such a
solution satisfies (5.23) in both cases.

Proof As described at the end of Subsect. 5.2, we consider a weak solution un ∈ W 1,p(�)∩
L∞(�) to the approximated problem (5.10). By the a priori estimates, we deduce that |∇un |q
is bounded in L(logL)τ , with 0 < τ < N −1, and, therefore, in L1(�). Therefore, by growth
assumption (1.8) on H , we deduce that Tn(H(x, un,∇un) is bounded in L1(�). Indeed, we
have ∫

�

|Tn(H(x,∇un))| dx ≤ β

∫
�

|∇un |q dx ≤ c.
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Moreover, for every fixed k > 0, Tk(un) can be used as test function in (5.11) and we get
∫
�

|∇Tk(un)|p dx ≤ k
∫
�

Tn(H(x, un,∇un)) dx ≤ kC. (5.38)

This implies that Tk(un) is bounded inW 1,p
0 (�). Since the right-hand side in (5.10) is bounded

in L1(�), by a priori estimates we can apply a well-known compactness result (see [15,16]),
which implies that a function u exists such that, up to extracting a subsequence,

un → u and ∇un → ∇u a.e. in �. (5.39)

Moreover, u satisfies (4.32), when (1) holds, or (4.41), when (2) holds; in both cases, |∇u|
satisfies (5.23).
We deduce that A(x, un,∇un) converges pointwise to A(x, u,∇u) and
Tn(H(x, un,∇un)) converges pointwise to H(x, u,∇u). Moreover, these sequences are
equi-integrable. Indeed, since p − 1 < q , by growth condition on H and a priori estimates,∫
E

|Tn(H(x, un, ∇un))| dx ≤
∫
E

|H(x, un, ∇un)| dx

≤ 1

logτ (M/|E |)

|E |∫
0

(|∇un |∗)q logτ (M/s) dx

+ β

logN−1(M/|E |)

|E |∫
0

f ∗(s) logN−1(M/s) ds

≤ C
1

logτ (M/|E |) + 1

logN−1(M/|E |)

|E |∫
0

f ∗(s) logN−1(M/s) ds.

Moreover, we have

‖A(x, un,∇un)‖L p′
(E)

≤ |E |1−(p−1)/q

⎛
⎝∫

E

|∇un |q dx

⎞
⎠

p−1
q

ByVitali’s theorem, we can pass to the limit in (5.10). This proves that u is a solution obtained
as a limit of approximations to (1.4). ��
5.3 The case p − 1 + p

N ≤ q ≤ p

Once again we begin this section by proving a priori estimates.

Theorem 5.7 Let us suppose that (1.5)–(1.8) hold true with 1 < p < N and

p − 1 + p

N
≤ q ≤ p. (5.40)

Let u ∈ W 1,p
0 (�) ∩ L∞(�) be a weak solution to the problem (1.4) with f ∈ L∞(�). If the

norm of f in Mγ (�), with γ = N (q−p+1)
q is small enough, that is it satisfies (4.18), then
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‖∇u‖L p ≤ C , (5.41)

Moreover, if p − 1 + p
N ≤ q < p ,

‖u‖
M

qγ
p−q

≤ C , (5.42)

while, if q = p,

u∗(s) ≤ X
1

p−1
0

(Nω
1/N
N )

p
p−1

log
( |�|

s

)
, s ∈ (0, |�|) , (5.43)

where X0 is the smallest nonnegative solution to the Eq. (4.21). Here C is a positive constant
which depends only on p, q, N , |�|, β and by the norm of the datum f .

Proof In the case q = p we have already proved the pointwise estimate in Theorem 4.2,
while for the gradient estimate (5.41) we refer to [30]. So, we will consider only the case
q < p, and we observe that in view of Theorem 4.2, we have just to prove (5.41). To this
aim consider the function

ϕ(x) = sign(u(x))

|u(x)|∫
0

1

[μ(t)]α dt, (5.44)

with

0 < α < 1 − p

N (q − p + 1)
.

Since u ∈ W 1,p
0 (�) ∩ L∞(�), ϕ ∈ W 1,p

0 (�) ∩ L∞(�), and therefore, it is a test function
for the problem (1.4).

By assumptions (1.5) and (1.8), we get∫
�

|∇u|p

[μ(|u(x)|)]α dx ≤ β

∫
�

|∇u|q |ϕ| dx +
∫
�

| f ϕ| dx . (5.45)

We begin by evaluating the first integral on the right-hand side. By Hölder inequality, we get

∫
�

|∇u|q |ϕ(x)| dx ≤
⎛
⎝∫

�

|∇u|p

[μ(|u(x)|)]α dx

⎞
⎠

q
p
⎛
⎝∫

�

|ϕ(x)| p
p−q [μ(|u(x)|)] αq

p−q dx

⎞
⎠

1− q
p

.

(5.46)

By co-area formula and classical properties of rearrangements, we deduce

∫
�

|ϕ| p
p−q [μ(|u(x)|)] αq

p−q dx ≤
|�|∫
0

u∗(s)
p

p−q s−α ds.

and, by Theorem 4.2, since α < 1 − p
N (q−p+1) ,

|�|∫
0

u∗(s)
p

p−q s−α ds ≤ c

|�|∫
0

s− p
N (q−p−1) −α ds = c.
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By (5.46), we conclude

∫
�

|∇u|q |ϕ| dx ≤ c

⎛
⎝∫

�

|∇u|p

[μ(|u(x)|)]α dx

⎞
⎠

q
p

. (5.47)

Now, we evaluate the integral ∫
�

| f ϕ| dx .

By definition of ϕ, it follows

|ϕ(x)| ≤ |u(x)|
(μ(|u(x)|))α .

Therefore, by Hardy inequality and Theorem 4.2, we deduce

∫
�

| f ϕ| dx ≤
∫
�

| f (x)||u(x)|
(μ(|u(x)|))α dx ≤

|�|∫
0

f ∗(s)u∗(s)
sα

ds

≤ c

|�|∫
0

s− p
N (q−p+1) −α ds = c. (5.48)

Finally, by (5.45), (5.47), and (5.48), we obtain the following estimate∫
�

|∇u|p

[μ(u(x))]α dx ≤ c .

By Hölder inequality, this yields the a priori estimate in W 1,p
0 (�). ��

As in the previous cases, the above a priori estimates allow to prove an existence results
for weak solutions to the problem (1.4). We just state the following result (some details can
be found, for example, in [32] and [28]).

Theorem 5.8 Assume (1.5)–(1.8) hold true with 1 < p < N and (5.40). If f ∈ Mγ (�),
with γ = N (q−p+1)

q , satisfies (4.18), then there exists at least a solution obtained as a limit of

approximations to the problem (1.4). It satisfies either (5.41) and (5.42), if p−1+ p
N ≤ q < p

or (5.41) and (5.43), if q = p.

Remark 5.1 Let us remark that, if p − 1 + p
N < q ≤ p, the solution u given by the above

theorem is a weak solution to problem (1.4), in view of the fact that f is an element of
W −1,p′

(�). In the limit case q = p − 1 + p
N , u is a weak solution to problem (1.4) if we

assume that f belongs to the smaller Lorentz space L
N p

N p−N+p ,p′
(�), which is included in

W −1,p′
(�).

Remark 5.2 We finally remark that uniqueness results for solutions to (1.4) are proved in
[8,46] and [11] when

q ≤ p − 1 + p

N
. (5.49)
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In [11], the uniqueness is proved under the sharp assumptions on the size of the norm of f
decribed above.

The uniqueness when q > p − 1 + p
N is still open; some results are contained in [6] and

[7].
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