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Abstract In this paper, we investigate several characterizations of k-potent elements in rings
in purely algebraic terms and considerably simplify proofs of already existing characteriza-
tions. A special attention is dedicated to tripotent elements of rings.
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1 Introduction

Let R be an associative ring with unit 1 and zero 0. The set of all invertible elements of R
will be denoted by R−1.

An element a ∈ R is called k-potent, k ∈ N, if ak = a. For k = 2, an element a satisfying
a2 = a is idempotent (or projector).

Let a ∈ R. Then, a is group invertible if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a;
a# is called a group inverse of a, and it is uniquely determined by these equations [1]. Recall
that a# exists if and only if a ∈ a2R ∩ Ra2 if and only if aR = a2R and Ra = Ra2 [15].
We use R# to denote the set of all group invertible elements of R.

An involution a �→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.
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1158 D. Mosić

An element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R satisfying
a = a∗ is Hermitian (or self-adjoint). An element a ∈ R is orthogonal projector if a2 =
a = a∗. If a ∈ R satisfies a2 = a∗, then a is generalized projection. An element a ∈ R
satisfying a = a∗ = a3 is extended orthogonal projector. So, a is an extended orthogonal
projector if and only if a is Hermitian and tripotent.

We say that a† is the Moore–Penrose inverse (or MP-inverse) of a, if the following hold
[17]:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

There is at most one a† such that above conditions hold. The set of all Moore–Penrose
invertible elements of R will be denoted by R†.

Theorem 1.1 [5,11] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;
(b) (a∗)† = (a†)∗;
(c) (a∗a)† = a†(a†)∗;
(d) (aa∗)† = (a†)∗a†;
(f) a∗ = a†aa∗ = a∗aa†;
(g) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;
(h) (a∗)† = a(a∗a)† = (aa∗)†a.

An element a of a ring R with involution is said to be EP if a ∈ R# ∩ R† and a# = a†.
Recall that an element a ∈ R is EP if and only if a ∈ R† and aa† = a†a. The following
result is proved in [8].

Theorem 1.2 An element a ∈ R is EP if and only if a is group invertible and a#a is self-
adjoint.

An element a ∈ R† satisfying a2 = a† is hypergeneralized projection. An element a ∈ R
satisfying aa∗a = a is called a partial isometry. We have that a ∈ R is a partial isometry if
and only if a ∈ R† and a∗ = a†.

An element a ∈ R is: left *-cancellable if a∗ax = a∗ay implies ax = ay; it is right
*-cancellable if xaa∗ = yaa∗ implies xa = ya, and it is *-cancellable if it is both left
and right *-cancellable. We observe that a is left *-cancellable if and only if a∗ is right *-
cancellable. In C∗-algebras, all elements are *-cancellable. A ring R is called *-reducing if
every element ofR is *-cancellable. This is equivalent to the implication a∗a = 0 ⇒ a = 0
for all a ∈ R.

Using [13, Theorem 2.4] and Remark after [13, Theorem 2.4], we can formulate the
following result.

Theorem 1.3 Let R be a ring with involution, let a, b, ab ∈ R† and let (1 − a†a)b be left
*-cancellable. Then the following conditions are equivalent:

(a) (ab)† = b†a†;
(b) a∗abb† = bb†a∗a and bb∗a†a = a†abb∗.

Recall that a ring R with involution has the Gelfand–Naimark property (GN-property) if
1 + x∗x ∈ R−1 for all x ∈ R. It is known that any C∗-algebra has the Gelfand–Naimark
property.
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Many authors have presented various results about k-potent matrices in recent years [7,
9,10]. The study on k-potent matrices, particularly idempotents and tripotents, essentially
originated from their possible applications in statistics [18,19].

Baksalary and Trenkler [3] gave a systematic investigation of k-potent complex matrices,
with a particular attention paid to tripotent matrices, using the representation of complex
matrices provided in [6]. Inspired by [3], in this paper, we use a different approach, exploiting
the structure of rings and rings with involution to study k-potent elements. We give some
characterizations, and the proofs are based on ring theory only. The paper is organized as
follows. In Sect. 2, we give characterizations of tripotent elements and extended orthogonal
projectors in rings. In Sect. 3, we study k-potent elements, EP elements, and partial isometries
in rings.

2 Characterizations of tripotent elements

In this section, we investigate tripotent elements and extended orthogonal projectors in a ring
and a ring with involution. Notice that the set of orthogonal projectors is a proper subset of
the set of extended orthogonal projectors.

First,wegive the relation between idempotent and tripotent elements in a ring, generalizing
[3, Theorem 3.2] for complex matrices without using the rank of matrix.

Theorem 2.1 Let a ∈ R and 2, 3 ∈ R−1. Then a is idempotent if and only if a is tripotent
and any if the following conditions is satisfied:

(i) 1 − a is tripotent;
(ii) 1 + a ∈ R−1.

Proof The hypothesis a2 = a gives a3 = a and (1 − a)3 = (1 − a), i.e., (i) holds. Also, by
a2 = a, we have

(1 + a)(2 − a) = 2 − a + 2a − a = 2

and (2 − a)(1 + a) = 2. Since 2 ∈ R−1, we conclude that 1 + a ∈ R−1. So, part (ii) is
satisfied.

Suppose that a3 = a and 1 − a is tripotent. From

1 − a = (1 − a)3 = 1 − 4a + 3a2,

we get 3a = 3a2. Hence, a2 = a.
If a3 = a and 1 + a ∈ R−1, using

(1 + a)a2 = a2 + a = (1 + a)a,

we obtain a2 = a. �	
Adding the condition a is EP element in Theorem 2.1, we can prove the next corollary in

the same way as [3, Corollary 3.3] for matrices.

Corollary 2.1 Let a ∈ R and 2, 3 ∈ R−1. Then a is an orthogonal projector if and only if
a is tripotent, EP and any if the following conditions is satisfied:

(i) 1 − a is tripotent;
(ii) 1 + a ∈ R−1.
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Proof Observe that every Hermitian element is EP. Also, every idempotent and EP element
is an orthogonal projector. Indeed, aa† = a†a implies a = aa†a = a†a2 = a†a, i.e., a is an
orthogonal projector. This result follows from Theorem 2.1. �	

The following result is well known for matrices [2, Theorem 1], and it is equally true in
rings with involution:

Lemma 2.1 Let a ∈ R. Then a is an orthogonal projector if and only if a is idempotent and
either generalized or hypergeneralized projector.

Proof Obviously,a is an orthogonal projector if and only ifa is an idempotent and generalized
projector.

If a is an orthogonal projector, then aa2a = a2 = a and a2aa2 = a2. Also, aa2 = a2a =
a∗a is self-adjoint, and so, we conclude that a ∈ R† and a2 = a†.

Let a be an idempotent and hypergeneralized projector. Then, a2 = a = a†. Since aa† is
self-adjoint and a = a2 = aa†, we have a = a∗. �	

If we replace the idempotency condition in Lemma 2.1 with tripotency, we get the next
generalization of [3, Theorem 3.5] in rings with involution.

Theorem 2.2 Let a ∈ R. Then a is an orthogonal projector if and only if a is tripotent and
either generalized or hypergeneralized projector.

Proof Suppose that a is an orthogonal projector. Now, a3 = a2a = aa = a. By Lemma 2.1,
we deduce that a is generalized and hypergeneralized projector.

Let a be tripotent and generalized projector. Hence, a3 = a and a2 = a∗ which imply
a = a2a = a∗a. The element a∗a is self-adjoint and so a = a∗, i.e. a is orthogonal projector.

If a is tripotent and hypergeneralized projector, the equalities a3 = a and a2 = a† give
a = a2a = a†a is self-adjoint. Thus, a = a∗ and a = aa†a = aa = a2. �	

Observe that an element a of a ring R is tripotent if and only if a ∈ R# and a# = a.
This result was shown in [4, Theorem 8] for matrices and modified in [3, Theorem 3.7]. We
extend [3, Theorem 3.7] for complex matrices to elements in rings.

Theorem 2.3 Let a ∈ R. Then the following statements are equivalent:

(i) a is tripotent;
(ii) a ∈ R# and a2 is idempotent;
(iii) a ∈ R# and aa# = a2;
(iv) a ∈ R# and 1

2 (aa# − a) is idempotent;
(v) a ∈ R# and 1

2 (aa# + a) is idempotent.

Proof (i) ⇒ (iii): If a3 = a, then we conclude that a ∈ R# and a# = a. Hence, a2 = aa#.
(iii) ⇒ (ii): By (a2)2 = (aa#)2 = aa# = a2, a2 is idempotent.
(ii) ⇒ (i): Since a2 is idempotent, we have a4 = a2. Multiplying this equality by a# from

the left side, we get a3 = a.

(iv) ⇔ (iii): Notice that 1
2 (aa# − a) = [ 1

2 (aa# − a)
]2

is equivalent to 2aa# − 2a =
aa# − 2a + a2, i.e. aa# = a2.

(v) ⇔ (iii): This part follows in the same way as (iv) ⇔ (iii). �	
In a ring with involution, we prove the following result. If we omit the condition 1+a∗a ∈

R−1 of the next theorem, we can show that [(i) ⇔ (iii)] ⇒ (ii).
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Theorem 2.4 Let a ∈ R be tripotent and 1 + a∗a ∈ R−1. Then the following conditions
are equivalent:

(i) a is Hermitian;
(ii) a is normal;
(iii) a is EP and a partial isometry.

Proof (i) ⇒ (ii): Obvious.
(ii)⇒ (iii): If a is normal, by [11, Lemma 1.3], we conclude that a is EP. Now, by Theorem

2.3, we have that a2 = aa# = aa† is Hermitian. Since 1 + a∗a ∈ R−1 and

(1 + a∗a)(a∗a − a2) = a∗a − a2 + (a∗)2a2 − a∗a = −a2 + a4 = 0,

we get a∗a − a2 = 0, i.e. a∗a = a2. Thus, aa∗a = a3 = a, that is, a is a partial isometry.
(iii) ⇒ (i): Let a be tripotent, EP, and a partial isometry. Then, a = a# = a† = a∗. �	
Notice that Theorem 2.4 holds in C∗-algebras and rings with involution having the GN-

property without the assumption 1+a∗a ∈ R−1 which is then automatically satisfied. Hence,
[3, Theorem 3.6] can be obtained as a particular case of Theorem 2.4.

Some equivalent conditions for an element of a ring to be tripotent are presented in the
following theorem, generalizing [3, Theorem 3.8] for complex matrices. It is interesting to
compare this result with the analogous result for idempotents.

Theorem 2.5 Let a ∈ R. Then the following conditions are equivalent:

(i) a is tripotent;
(ii) aR ⊕ (1 − a2)R = R;
(iii) aR ⊆ (1 − a2)◦;
(iv) a2x = x for all x ∈ aR.

Proof (i) ⇒ (ii): Let a3 = a and x ∈ R. Then

x = a2x + (1 − a2)x ∈ a2R + (1 − a2)R ⊆ aR + (1 − a2)R.

Suppose that y ∈ aR∩(1−a2)R. There exist u, v ∈ R such that y = au = (1−a2)v. Now,
ay = a(1 − a2)v = 0 implying y = au = a3u = a2y = 0. Thus, aR ∩ (1 − a2)R = {0}
and the statement (ii) holds.

(ii)⇒ (iii): If x ∈ aR, by aR∩(1−a2)R = {0}, we have (1−a2)x = 0. So, x ∈ (1−a2)◦.
(iii) ⇒ (iv): Obviously.
(iv) ⇔ (i): For x = a ∈ aR in (iv), we obtain a3 = a. �	
In the following theorem, we study necessary and sufficient conditions for an element of

a ring with involution to be tripotent and EP. This result is known for matrices [3, Theorem
3.9], but we present a new proof based on ring theory only.

Theorem 2.6 Let a ∈ R. Then the following statements are equivalent:

(i) a is tripotent and EP;
(ii) a ∈ R† and a† = a;
(iii) a is tripotent and a2 is Hermitian;
(iv) a ∈ R† and a2 = aa†;
(v) a ∈ R† and a† = a2a†;
(vi) a ∈ R† and a(a∗)2 = a;
(vii) a ∈ R† and (a∗)2a = a;
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(viii) a ∈ R# and a2 is an orthogonal projector;
(ix) a ∈ R# ∩ R† and a#aa† = a;
(x) a ∈ R# ∩ R† and a# = a2a†;
(xi) a ∈ R† and a2 = a†a.

Proof (i) ⇒ (ii): If a3 = a and a is EP, then a ∈ R# ∩ R† and a = a# = a†.
(ii) ⇒ (iii): From a† = a, we get a = aa†a = a3 and a2 = aa† is Hermitian.
(iii) ⇒ (vi) ∧ (vii): Since a3 = a and a2 = (a2)∗ = (a∗)2, observe that a(a∗)2 = aa2 =

a3 = a and (a∗)2a = a3 = a. Also, we have a ∈ R† and a† = a. Thus, the statements (vi)
and (vii) are satisfied.

(vii) ⇒ (iv): The equality (a∗)2a = a gives aa† = (a∗)2aa† = (a∗)2. Hence, a2 =
[(a∗)2]∗ = (aa†)∗ = aa†.

(iv) ⇒ (i): By a2 = aa†, we obtain a3 = aa†a = a and a2 is Hermitian which imply
a ∈ R# and a# = a = a†.

(vi) ⇒ (xi) ⇒ (i): Similarly as (vii) ⇒ (iv) ⇒ (i).
(v) ⇒ (xi): Using a† = a2a†, we get a†a = a2a†a = a2.
(xi) ⇒ (v): Multiplying a2 = a†a by a† from the right side, we obtain a2a† = a†.
(viii) ⇒ (iii): Notice that a ∈ R# and a2 = a4 = (a2)∗ implies a = a2a# = a4a# = a3

and a2 = (a2)∗.
(iii)⇒ (viii): The hypothesisa is tripotent givesa ∈ R# anda2 = a4. Becausea2 = (a2)∗,

we deduce that (viii) holds.
(ix) ⇒ (viii): Let a ∈ R# ∩ R† and a#aa† = a. Then

a2 = aa#aa† = aa†

which yields that a2 is an orthogonal projector.
(i) ⇒ (ix) ∧ (x): Assume that a ∈ R# ∩ R†, a3 = a and a† = a#. Therefore, a = a#,

a = aaa# = a#aa† and a = a2a# = a2a†.
(x) ⇒ (i): Applying a# = a2a†, we obtain a = aa#a = aa2a†a = a3. Also, aa# =

a3a† = aa† is self-adjoint which implies that a# = a†. �	
As a consequence of Theorem 2.6, we get the next result.

Corollary 2.2 Let a ∈ R. Then a is an extended orthogonal projector if and only if

(i) a is Hermitian and any of the conditions in Theorem 2.6 is satisfied;
(ii) a is a partial isometry and any of the conditions in Theorem 2.6 is satisfied;
(iii) a ∈ R# and a = a† = a∗ = a# = a#aa†.

Proof By definition, a is an extended orthogonal projector if and only if a = a∗ = a3. The
corollary follows from Theorem 2.6. �	

Some characterizations of extended orthogonal projectors are given in the next results,
extending [3, Theorem 3.11, Theorem 3.12, and Theorem 3.13] to more general settings.

Theorem 2.7 Let a ∈ R. Then a is an extended orthogonal projector if and only if a is a
partial isometry, EP and either 1

2 (aa† − a) or 1
2 (aa† + a) is idempotent.

Proof If a is EP, then, from aa† = a†a, we conclude that 1
2 (aa† − a) or 1

2 (aa† + a) is
idempotent if and only if a2 = aa†. Now, the result follows from Theorem 2.6(iv) and
Corollary 2.2. �	

As in a C∗-algebra, for b, c ∈ R, we define the relation

b ≤ c ⇔ ∃d ∈ R : b − c = dd∗.
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Characterizations of k-potent elements in rings 1163

This relation is antisymmetric in any C∗-algebra, but in a ring with involution this is not true.
We say that an element a ∈ R is a contraction if and only if 0 ≤ 1 − aa∗.
Theorem 2.8 Let R be a ring on which the relation “≤” is antisymmetric and let a be an
element of R. Then a is an extended orthogonal projector if and only if a is tripotent, EP and
a contraction.

Proof Suppose that a = a∗ = a3. So, a is tripotent, and, by Corollary 2.2, a is EP. Since

1 − aa∗ = 1 − a2 = (1 − a2)2 = (1 − aa∗)2 = (1 − aa∗)(1 − aa∗)∗,

we deduce that 0 ≤ 1 − aa∗, i.e., a is a contraction.
On the other hand, if a is tripotent, EP and a contraction, then a ∈ R†, a = a3, a†a = aa†

and there exists b ∈ R such that 1 − aa∗ = bb∗. Using Theorem 1.1,

a†(a†)∗ − a†a = a†(a†)∗ − a∗(a†)∗ = a†(1 − aa∗)(a†)∗ = a†b(a†b)∗,

which gives a†(a†)∗ ≥ a†a and

aa† − aa∗ = a(a†(a†)∗ − a†a)a∗ = aa†b(a†b)∗a∗ = aa†b(aa†b)∗,

that is, aa† ≥ aa∗. By Theorem 2.6, a = a†. Then a†(a†)∗ ≥ a†a implies aa∗ ≥ a†a. Since
a†a = aa† and the relation “≤” is antisymmetric, from aa∗ ≥ a†a and aa† ≥ aa∗, we have
aa† = aa∗. Therefore, a∗ = a†aa∗ = a†aa† = a† = a, and so a is an extended orthogonal
projector. �	
Theorem 2.9 Let a, b ∈ R be tripotent. If ab = ba, then ab is tripotent. If a and b are Her-
mitian (i.e. are extended orthogonal projectors), then ab is an extended orthogonal projector
if and only if ab = ba.

Proof Assume that a3 = a, b3 = b and ab = ba. Then (ab)3 = a3b3 = ab.
Now, let a3 = a = a∗ and b3 = b = b∗. If (ab)3 = ab = (ab)∗, notice that ab =

(ab)∗ = b∗a∗ = ba. Conversely, when ab = ba, we get ab = b∗a∗ = (ab)∗, and by the
first part of this proof, (ab)3 = ab. �	

If a and b are extended orthogonal projectors in a ring with involution, we will now
characterize the elements for which (ab)† = b†a†. This equality does not hold in general.

Theorem 2.10 Let a, b ∈ R be extended orthogonal projectors, assume ab ∈ R† and
suppose (1 − a†a)b left *-cancellable. Then the following statements are equivalent:

(i) (ab)† = b†a†;
(ii) a2b2 is Hermitian;
(iii) (a2b2)2 = b2a2.

Proof Since a3 = a = a∗ and b3 = b = b∗, we get that a, b ∈ R†, a† = a and b† = b.
(i) ⇔ (ii): By Theorem 1.3,

(ab)† = b†a† ⇔ a∗abb† = bb†a∗a and bb∗a†a = a†abb∗

⇔ a2b2 = b2a2

⇔ a2b2 = (b2)∗(a2)∗

⇔ a2b2 = (a2b2)∗

⇔ a2b2 is Hermitian.

(ii) ⇒ (iii): If a2b2 is Hermitian, then a2b2 = b2a2, which yields

(a2b2)2 = a2(b2a2)b2 = a2a2b2b2 = a4b4 = a2b2 = b2a2.
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(iii) ⇒ (ii): Applying the involution to the hypothesis b2a2 = a2b2a2b2, we obtain
a2b2 = b2a2b2a2. Therefore,

a2b2 = (b2a2)b2a2 = a2b2a2b2b2a2 = (a2b2a2b2)a2

= b2a2a2 = b2a2,

that is, a2b2 is Hermitian. �	
Notice that Theorem 2.10 holds in C∗-algebras and *-reducing rings without the hypoth-

esis that (1−a†a)b is left *-cancellable, since this hypothesis is then automatically satisfied.
So, [3, Theorem 3.14] can be obtained as a special case of our result.

Let a, b ∈ R. Define

a ≤∗ b ⇔ a∗a = a∗b and aa∗ = ba∗.

Theorem 2.11 Let a, b ∈ R be extended orthogonal projectors and let a2 − ab be right
*-cancellable. Then the following conditions are equivalent:

(i) a ≤∗ b;
(ii) aba = a and bab = a;
(iii) aba = a and a2 ≤∗ b2.

Proof (i) ⇒ (ii): Since a ≤∗ b, we have that a2 = ab = ba, which yields a = a3 = aba
and bab = ba2 = a3 = a.

(ii) ⇒ (i): Using the equalities aba = a and bab = a, we obtain a2 = a(bab)ab =
a3b = ab and a2 = (a2)∗ = (ab)∗ = ba. Hence, a ≤∗ b.

(i) ⇒ (iii): From a2 = ab = ba, we get a2 = a4 = abab = a2b2 = b2a2 which implies
that a2 ≤∗ b2. We can prove that a = aba as in part (i) ⇒ (ii).

(iii) ⇒ (i): The assumptions aba = a and a2 = a2b2 = b2a2 give

a = a3 = ab2 = b2a

and

a2 = ab2a = a2ba = aba2.

Now, we have

(a2 − ab)(a2 − ab)∗ = (a2 − ab)(a2 − ba)

= a4 − a2ba − aba2 + ab2a

= 0.

Because the element a2 − ab is right *-cancellable, we conclude that a2 − ab = 0, that is
a2 = ab. Applying the involution to this equality, it follows a2 = ba. Thus, a ≤∗ b. �	

3 Further results

In the beginning of this section, we characterize the normal and (k + 1)-potent elements in
rings with involution.

Theorem 3.1 Let a ∈ R and let k ∈ N, k > 2. Suppose that x = 1 + aa∗ + a2(a∗)2 +
· · ·+ak−1(a∗)k−1 ∈ R−1 and y = a2(a∗)2 +· · ·+ak−1(a∗)k−1 ∈ R−1. Then the following
conditions are equivalent:
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Characterizations of k-potent elements in rings 1165

(i) a is normal and (k + 1)-potent;
(ii) a is a partial isometry and (k + 1)-potent;
(iii) a is a partial isometry and ak = aa∗;
(iv) a ∈ R#, a is a partial isometry and ak−1 = a#;
(v) a ∈ R#, a∗ = a# and ak−1 = a#;
(vi) ak−1 = a∗.

Proof (i) ⇒ (ii): If a is normal and (k + 1)-potent, then a ∈ R# ∩R† and a† = a# = ak−1.
Hence, ak = aa† is self-adjoint. From

x(a − a2a∗) = a − a2a∗ + a2a∗ − a3(a∗)2 + · · ·
+ak−1(a∗)k−2 − (a∗)k−1 + (a∗)k−1 − a

= 0

and x ∈ R−1, we deduce that a − a2a∗ = 0. This implies that a = aa∗a.
(ii)⇒ (iii)∧ (v)∧ (vi): Assume that a is a partial isometry and (k +1)-potent. The second

condition imply a ∈ R#, ak−1 = a#, (a∗)k+1 = a∗ and

y((a∗)kak − ak) = a2(a∗)2ak − a2(a∗)2ak + · · ·
+ak−1(a∗)k−1ak − ak−1(a∗)k−1ak

= 0.

Since y ∈ R−1, we obtain (a∗)kak − ak = 0 which gives that ak = (a∗)kak is self-adjoint.
Therefore, aa# = aak−1 = ak is self-adjoint and, by Theorem 1.2, a is EP. Now, because a
is a partial isometry, a ∈ R†, ak−1 = a# = a† = a∗ and ak = aa∗.

(iii) ⇒ (ii): Using that a is a partial isometry and ak = aa∗, we have ak+1 = aa∗a = a.
(ii) ⇔ (iv): This is clear.
(vi)⇒ (iii)∧ (i): The condition ak−1 = a∗ gives a∗a = ak = aa∗. Thus, ak is self-adjoint

and a is normal, which imply that a is EP. From

y(a − a2a∗) = a2(a∗)2ak − a2(a∗)2ak + · · ·
+ak−1(a∗)k−1ak − ak−1(a∗)k−1ak

= 0,

we get a = aa∗a and ak+1 = aa∗a = a.
(v) ⇒ (iii): Let a ∈ R#, a∗ = a# and ak−1 = a#. Then aa∗a = aa#a = a and

ak = aa# = aa∗. �	
Observe that, without the assumptions x, y ∈ R−1, Theorem 3.1 is true for complex

matrices [3, Theorem 4.2] and for Hilbert space operators. This can be proved using the
corresponding decomposition of the operator. Also, we can see that the condition x ∈ R−1

is satisfied in both these cases using the mentioned decompositions.
We prove the next characterization of EP and (k + 1)-potent elements of rings with invo-

lution, generalizing [3, Theorem 4.3], where the result was verified using the corresponding
matrix representation.

Theorem 3.2 Let a ∈ R and let k ∈ N. Then the following conditions are equivalent:

(i) a is EP and (k + 1)-potent;
(ii) a ∈ R† and ak = aa†.
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Proof (i) ⇒ (ii): Suppose that a ∈ R† ∩ R#, a† = a# and ak+1 = a. Then ak = ak+1a# =
aa†.

(ii) ⇒ (i): If a ∈ R† and ak = aa†, then

ak+1 = aka = aa†a = a.

Note that, for k > 1, ak+1 = a is equivalent to a ∈ R# and a# = ak−1. Therefore,
a#a = ak = aa† is self-adjoint. By Theorem 1.2, we deduce that a is EP.

If k = 1, then a = aa† implies a2 = a. So, a ∈ R# and a# = a. Since aa# = a2 = a =
aa† is self-adjoint, a is EP. �	

In the following theorem, we give two characterizations of the elements in a ring with
involution which are EP and partial isometries and we recover [3, Theorem 4.4].

Theorem 3.3 Let a ∈ R. Then the following conditions are equivalent:

(i) a is EP and a partial isometry;
(ii) a ∈ R# and a = a∗a2;
(iii) a ∈ R# and a = a2a∗.

Proof (i) ⇒ (ii) ∧ (iii): Let a be EP and a partial isometry. By [12, Theorem 2.3], a ∈ R#

and a∗ = a#. Hence, a = a2a# = a2a∗ and a = a#a2 = a∗a2.
(ii) ⇒ (i): If a ∈ R# and a = a∗a2, then aa# = a∗a2a# = a∗a is self-adjoint. Using

Theorem 1.2, we conclude that a is EP. From a = a(a#a) = aa∗a, we have that a is a partial
isometry.

(iii) ⇒ (i): Similar to (ii) ⇒ (i). �	
The next result concerns k-potent elements of a ring and extends [3, Theorem 4.5].

Theorem 3.4 Let a ∈ R and let k ∈ N, k > 1. Then the following conditions are equivalent:

(i) a is k-potent;
(ii) a ∈ R# and ak+1 = a2.

Proof (i) ⇒ (ii): The equality ak = a gives ak+1 = aak = a2,

aR = akR ⊆ a2R ⊆ aR
and

Ra = Rak ⊆ Ra2 ⊆ Ra.

Therefore, aR = a2R and Ra = Ra2, which implies that a ∈ R#.
(ii) ⇒ (i): Assume that a ∈ R# and ak+1 = a2. Then

ak = ak+1a# = a2a# = a.

�	
EP elements of a ring with involution are characterized in the following theorem without

using the corresponding matrix decomposition as in the proof of [3, Theorem 4.7].

Theorem 3.5 Let a ∈ R. Then the following conditions are equivalent:

(i) a is EP;
(ii) a ∈ R# and a2R = a∗R;
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(iii) a ∈ R# and a2 is EP.

Proof (i) ⇒ (ii): By [16, Corollary 3] or [14, Theorem 3.1], a is EP if and only if a ∈ R#

and aR = a∗R. Since a is EP, we also have that a ∈ R#, which yields aR = a2R. So,
a2R = aR = a∗R.

(ii) ⇒ (iii): If a ∈ R# and a2R = a∗R, then aR = a2R = a∗R. Now, from

(a∗)2R ⊆ a∗R = a2R
and

a2R = a∗R = (a#a2)∗R = (a2)∗(a#)∗R ⊆ (a∗)2R,

it follows (a∗)2R = a2R. Because

a2R = a4(a#)2R ⊆ a4R ⊆ a2R
and

Ra2 = R(a#)2a4 ⊆ Ra4 ⊆ Ra2,

we get a2R = a4R and Ra2 = Ra4. Thus a2 ∈ R#. Applying [16, Corollary 3] or [14,
Theorem 3.1] again, we deduce that a2 is EP.

(iii) ⇒ (i): Let a ∈ R# and a2 is EP. Then

aR = a2R = (a∗)2R ⊆ a∗R
and

a∗R = (a#a2)∗R ⊆ (a∗)2R = a2R = aR
imply aR = a∗R. Hence, we conclude that a is EP. �	
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