Spectral multipliers on Heisenberg-Reiter and related groups

Alessio Martini

Received: 19 November 2013 / Accepted: 19 February 2014 / Published online: 7 March 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

Let L be a homogeneous sublaplacian on a 2-step stratified Lie group G of topological dimension d and homogeneous dimension Q. By a theorem due to Christ and to Mauceri and Meda, an operator of the form $F(L)$ is bounded on L^{p} for $1<p<\infty$ if F satisfies a scale-invariant smoothness condition of order $s>Q / 2$. Under suitable assumptions on G and L, here we show that a smoothness condition of order $s>d / 2$ is sufficient. This extends to a larger class of 2-step groups the results for the Heisenberg and related groups by Müller and Stein and by Hebisch and for the free group $N_{3,2}$ by Müller and the author.

Keywords Nilpotent Lie groups • Heisenberg-Reiter groups • Spectral multipliers • Sublaplacians • Mihlin-Hörmander multipliers • Singular integral operators

Mathematics Subject Classification (2000) 43A22 • 42B15

1 Introduction

Let L be a homogeneous sublaplacian on a stratified Lie group G of homogeneous dimension Q. Since L is a positive self-adjoint operator on $L^{2}(G)$, a functional calculus for L is defined via the spectral theorem and, for all Borel functions $F: \mathbb{R} \rightarrow \mathbb{C}$, the operator $F(L)$ is bounded on $L^{2}(G)$ whenever the "spectral multiplier" F is bounded. As for the L^{p}-boundedness for $p \neq 2$ of $F(L)$, a sufficient condition in terms of smoothness properties of the multiplier F is given by a theorem of Mihlin-Hörmander type due to Christ [4] and Mauceri and Meda [20]: the operator $F(L)$ is of weak type $(1,1)$ and bounded on $L^{p}(G)$ for all $\left.p \in\right] 1, \infty[$ whenever

$$
\|F\|_{M W_{2}^{s}}:=\sup _{t>0}\|F(t \cdot) \eta\|_{W_{2}^{s}}<\infty
$$

[^0]for some $s>Q / 2$, where $W_{2}^{s}(\mathbb{R})$ is the L^{2} Sobolev space of fractional order s, and $\eta \in C_{c}^{\infty}(] 0, \infty[)$ is a nontrivial auxiliary function.

A natural question that arises is whether the smoothness condition $s>Q / 2$ is sharp. This is clearly true when G is abelian, so Q coincides with the topological dimension d of G, and L is essentially the Laplace operator on \mathbb{R}^{d}. Take, however, the smallest nonabelian example of a stratified group, that is, the Heisenberg group H_{1}, which is defined by endowing $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ with the group law

$$
\begin{equation*}
(x, y, u) \cdot\left(x^{\prime}, y^{\prime}, u^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, u+u^{\prime}+\left(x y^{\prime}-x^{\prime} y\right) / 2\right) \tag{1}
\end{equation*}
$$

and with the automorphic dilations

$$
\begin{equation*}
\delta_{t}(x, y, u)=\left(t x, t y, t^{2} u\right) . \tag{2}
\end{equation*}
$$

H_{1} is a 2-step stratified group, and the homogeneous dimension of H_{1} is 4. Nevertheless, a result by Müller and Stein [23] and Hebisch [12] shows that, for a homogeneous sublaplacian on H_{1}, the smoothness condition on the multiplier can be pushed down to $s>d / 2$, where $d=3$ is the topological dimension of H_{1} (in [23], it is also proved that the condition $s>d / 2$ is sharp). Such an improvement of the Christ-Mauceri-Meda theorem holds not only for H_{1}, but for the larger class of Métivier groups (and for direct products of Métivier and abelian groups), and also for differential operators other than sublaplacians (see, e.g., [13, 17]); moreover, as shown subsequently by Cowling and Sikora [5] (see also [6]), the sharp result on H_{1} can be obtained by transplantation from an analogous result for a distinguished sublaplacian on the (nonstratified) group SU_{2} (which in turn improves, in the case of SU_{2}, an extension of the Christ-Mauceri-Meda theorem to spaces of homogeneous type [1,7,11]). However, it is still an open question whether, for a general stratified Lie group (or even for a general 2-step stratified group), the homogeneous dimension in the smoothness condition can be replaced by the topological dimension.

The aim of this paper is to extend the class of the 2-step stratified groups and sublaplacians for which the smoothness condition in the multiplier theorem can be pushed down to half the topological dimension.

Take for instance the Heisenberg-Reiter group $\mathrm{H}_{d_{1}, d_{2}}$ (cf. [27]), defined by endowing $\mathbb{R}^{d_{2} \times d_{1}} \times \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ with the group law (1) and the automorphic dilations (2); here, however, $\mathbb{R}^{d_{2} \times d_{1}}$ is the set of the real $d_{2} \times d_{1}$ matrices, and the products $x y^{\prime}, x^{\prime} y$ in (1) are interpreted in the sense of matrix multiplication. $\mathrm{H}_{d_{1}, d_{2}}$ is a 2-step stratified group of homogeneous dimension $Q=d_{1} d_{2}+d_{1}+2 d_{2}$ and topological dimension $d=d_{1} d_{2}+d_{1}+d_{2}$. Despite the formal similarity with H_{1}, the group $\mathrm{H}_{d_{1}, d_{2}}$ does not fall into the class of Métivier groups, unless $d_{2}=1$ (in fact, $\mathrm{H}_{d_{1}, 1}$ is the $\left(2 d_{1}+1\right)$-dimensional Heisenberg group $\mathrm{H}_{d_{1}}$). Nevertheless, the technique presented here allows one to handle the case $d_{2}>1$ too.

Namely, let $X_{1,1}, \ldots, X_{d_{2}, d_{1}}, Y_{1}, \ldots, Y_{d_{1}}, U_{1}, \ldots, U_{d_{2}}$ be the left-invariant vector fields on $\mathrm{H}_{d_{1}, d_{2}}$ extending the standard basis of $\mathbb{R}^{d_{2} \times d_{1}} \times \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ at the identity, and define the homogeneous sublaplacian L by

$$
L=-\sum_{j=1}^{d_{1}} \sum_{k=1}^{d_{2}} X_{k, j}^{2}-\sum_{j=1}^{d_{1}} Y_{j}^{2}
$$

Then, a particular instance of our main result reads as follows.
Theorem 1 Suppose that a function $F: \mathbb{R} \rightarrow \mathbb{C}$ satisfies

$$
\|F\|_{M W_{2}^{s}}<\infty
$$

for some $s>d / 2$. Then, the operator $F(L)$ is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathrm{H}_{d_{1}, d_{2}}\right)$ for all $p \in] 1, \infty[$.

To the best of our knowledge, this result is new, at least in the case $d_{2}>d_{1}$. In fact, in the case $d_{2} \leq d_{1}$, the extension described in [17] of the technique of [12,13] would give the same result. However, the technique presented here is different, and yields the result irrespective of the parameters d_{1}, d_{2}.

The left quotient of $\mathrm{H}_{d_{1}, d_{2}}$ by the subgroup $\mathbb{R}^{d_{2} \times d_{1}} \times\{0\} \times\{0\}$ gives a homogeneous space diffeomorphic to $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$, and the sublaplacian L corresponds in the quotient to a Grushin operator. In recent joint works with Sikora [18] and Müller [14], we proved for these Grushin operators on $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ a sharp spectral multiplier theorem of Mihlin-Hörmander type, where the smoothness requirement is again half the topological dimension of the ambient space.

The proofs in $[14,18]$ rely heavily on properties of the eigenfunction expansions for the Hermite operators. Since a homogeneous sublaplacian on a 2 -step stratified group reduces to a Hermite operator in almost all irreducible unitary representations of the group, it is conceivable that an adaptation of the methods of $[14,18]$ may give an improvement to the multiplier theorem for 2 -step stratified groups, even outside of the Métivier setting. A first result in this direction is shown in [19], where the free 2 -step nilpotent Lie group $N_{3,2}$ on three generators is considered, and properties of Laguerre polynomials are exploited (somehow in the spirit of $[21,23,24])$. The argument presented here refines and extends the one in [19].

Theorem 1 above is just a particular case of the result presented here, and we refer the reader to the next section for a precise statement. We remark that the analog of Theorem 1 holds on $\mathrm{H}_{d_{1}, d_{2}}$ when the sublaplacian L has the more general form

$$
\begin{equation*}
L=-\sum_{j=1}^{d_{1}} \sum_{k, k^{\prime}=0}^{d_{2}} a_{k, k^{\prime}}^{j} X_{k, j} X_{k^{\prime}, j} \tag{3}
\end{equation*}
$$

where $X_{0, j}=Y_{j}$ and $\left(a_{k, k^{\prime}}^{j}\right)_{k, k^{\prime}=0, \ldots, d_{2}}$ is a positive-definite symmetric matrix for all $j \in\left\{1, \ldots, d_{1}\right\}$. Other groups can be considered too, e.g., the complexification of a Heisenberg-Reiter group, or the quotient of the direct product of $\mathrm{H}_{1,3}$ and $N_{3,2}$ given by identifying the respective centers.

2 The general setting

Let G be a connected, simply connected nilpotent Lie group of step 2. Recall that, via exponential coordinates, G may be identified with its Lie algebra \mathfrak{g}, that is, the tangent space of G at the identity. In turn, \mathfrak{g} may be identified with the Lie algebra of left-invariant vector fields on G. We refer to [9] for the basic definitions and further details.

Let \mathfrak{g} be decomposed as $\mathfrak{v} \oplus \mathfrak{z}$, where \mathfrak{z} is the center of \mathfrak{g}, and let $\langle\cdot, \cdot\rangle$ be an inner product on \mathfrak{v}. The sublaplacian L associated with the inner product is defined by $L=-\sum_{j} X_{j}^{2}$, where $\left\{X_{j}\right\}_{j}$ is any orthonormal basis of \mathfrak{v}. Note that, vice versa, by the Poincaré-BirkhoffWitt theorem, any second-order operator L of the form $-\sum_{j} X_{j}^{2}$ for some basis $\left\{X_{j}\right\}_{j}$ of \mathfrak{g} modulo \mathfrak{z} determines uniquely a linear complement $\mathfrak{v}=\operatorname{span}\left\{X_{j}\right\}_{j}$ of \mathfrak{z} and an inner product on \mathfrak{v} such that $\left\{X_{j}\right\}_{j}$ is orthonormal.

Let \mathfrak{z}^{*} be the dual of \mathfrak{z} and, for all $\eta \in \mathfrak{z}^{*}$, define J_{η} as the linear endomorphism of \mathfrak{v} such that $\eta\left(\left[z, z^{\prime}\right]\right)=\left\langle J_{\eta} z, z^{\prime}\right\rangle$ for all $z, z^{\prime} \in \mathfrak{v}$. Clearly, J_{η} is skewadjoint with respect to the inner product; hence, J_{η}^{2} is self-adjoint and negative semidefinite, with even rank, for all $\eta \in \mathfrak{z}^{*}$. Set moreover $\dot{\mathfrak{z}}=\mathfrak{z}^{*} \backslash\{0\}$.

Assumption (A) There exist integers $r_{1}, \ldots, r_{d_{1}}>0$ and an orthogonal decomposition $\mathfrak{v}=\mathfrak{v}_{1} \oplus \cdots \oplus \mathfrak{v}_{d_{1}}$ such that, if $P_{1}, \ldots, P_{d_{1}}$ are the corresponding orthogonal projections, then $J_{\eta} P_{j}=P_{j} J_{\eta}$ and $J_{\eta}^{2} P_{j}$ has rank $2 r_{j}$ and a unique nonzero eigenvalue for all $\eta \in \dot{\mathfrak{z}}$ and all $j \in\left\{1, \ldots, d_{1}\right\}$.

Note that from Assumption (A) it follows that $J_{\eta} \neq 0$ for all $\eta \in \dot{\mathfrak{z}}$. Therefore $[\mathfrak{v}, \mathfrak{v}]=\mathfrak{z}$, that is, the decomposition $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{z}$ is a stratification of \mathfrak{g}, and the sublaplacian L is hypoelliptic.

In fact, J_{η} has constant rank $2\left(r_{1}+\cdots+r_{k}\right)$ for all $\eta \in \dot{\mathfrak{z}}$. If J_{η} is invertible for all $\eta \in \dot{\mathfrak{z}}$, then G is a Métivier group, and if in particular $J_{\eta}^{2}=-|\eta|^{2} \mathrm{id}_{\mathfrak{v}}$ for some inner product norm $|\cdot|$ on \mathfrak{z}^{*}, then G is an H-type group. The main novelty of our Assumption (A) is that it allows J_{η} to have a nonzero kernel when $\eta \in \dot{\mathfrak{z}}$, although the dimension of the kernel must be constant.

The fact that J_{η} has constant rank for $\eta \in \dot{\mathfrak{z}}$ depends only on the algebraic structure of G. What depends on the inner product, that is, on the sublaplacian L, are the values and multiplicities of the eigenvalues of the J_{η}. The above Assumption (A) asks for a sort of simultaneous diagonalizability of the J_{η}.

Under our Assumption (A) on the group G and the sublaplacian L, we are able to prove the following multiplier theorem.

Theorem 2 Suppose that a function $F: \mathbb{R} \rightarrow \mathbb{C}$ satisfies

$$
\|F\|_{M W_{2}^{s}}<\infty
$$

for some $s>(\operatorname{dim} G) / 2$. Then, the operator $F(L)$ is of weak type $(1,1)$ and bounded on $L^{p}(G)$ for all $\left.p \in\right] 1, \infty[$.

The previously mentioned Heisenberg-Reiter groups $\mathrm{H}_{d_{1}, d_{2}}$ satisfy Assumption (A), where the inner product is determined by the sublaplacian (3), and the orthogonal decomposition of the first layer is given by the natural isomorphism $\mathbb{R}^{d_{2} \times d_{1}} \times \mathbb{R}^{d_{1}} \cong\left(\mathbb{R}^{d_{2}} \times \mathbb{R}\right)^{d_{1}}$. Other examples are the free 2 -step nilpotent Lie group $N_{3,2}$ on 3 generators, considered in [19], and its complexification $N_{3,2}^{\mathbb{C}}$. Moreover, if G_{1} and G_{2} satisfy Assumption (A), and their centers have the same dimension, then the quotient of $G_{1} \times G_{2}$ given by any linear identification of the centers satisfy Assumption (A). Note that the direct product $G_{1} \times G_{2}$ itself does not satisfy Assumption (A), but an adaptation of the argument presented here allows one to consider that case too. We postpone to the end of this paper a more detailed discussion of these remarks.

From now on, unless otherwise specified, we assume that G and L are a 2-step stratified group and a homogeneous sublaplacian on G satisfying Assumption (A). Since L is a leftinvariant operator, so is any operator of the form $F(L)$. Let $\mathcal{K}_{F(L)}$ denote the convolution kernel of $F(L)$. As shown, e.g., by [17, Theorem 4.6], the previous theorem is a consequence of the following estimate.

Proposition 3 For all $s>(\operatorname{dim} G) / 2$, there exists a weight $w_{s}: G \rightarrow[1, \infty[$ such that $w_{s}^{-1} \in L^{2}(G)$ and, for all compact sets $K \subseteq \mathbb{R}$ and for all functions $F: \mathbb{R} \rightarrow \mathbb{C}$ with $\operatorname{supp} F \subseteq K$,

$$
\begin{equation*}
\left\|w_{s} \mathcal{K}_{F(L)}\right\|_{2} \leq C_{K, s}\|F\|_{W_{2}^{s}} \tag{4}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
\left\|\mathcal{K}_{F(L)}\right\|_{1} \leq C_{K, s}\|F\|_{W_{2}^{s}} \tag{5}
\end{equation*}
$$

The rest of the paper, except for the last section, is devoted to the proof of this estimate.

3 The joint functional calculus

Let $d_{2}=\operatorname{dim}_{\mathfrak{z}}$, and let $U_{1}, \ldots, U_{d_{2}}$ be any basis of the center \mathfrak{z}. Let moreover the "partial sublaplacian" L_{j} be defined as $L_{j}=-\sum_{l} X_{j, l}^{2}$, where $\left\{X_{j, l}\right\}_{l}$ is any orthonormal basis of \mathfrak{v}_{j}, for all $j \in\left\{1, \ldots, d_{1}\right\}$; in particular $L=L_{1}+\cdots+L_{d_{1}}$. Then, the left-invariant differential operators

$$
\begin{equation*}
L_{1}, \ldots, L_{d_{1}},-i U_{1}, \ldots,-i U_{d_{2}} \tag{6}
\end{equation*}
$$

are essentially self-adjoint and commute strongly; hence, they admit a joint functional calculus (see, e.g., [16]). Therefore, if \mathbf{L} and \mathbf{U} denote the "vectors of operators" $\left(L_{1}, \ldots, L_{d_{1}}\right)$ and $\left(-i U_{1}, \ldots,-i U_{d_{2}}\right)$, and if we identify \mathfrak{z}^{*} with $\mathbb{R}^{d_{2}}$ via the dual basis of U_{1}, \ldots, U_{n}, then, for all bounded Borel functions $H: \mathbb{R}^{d_{1}} \times \mathfrak{z}^{*} \rightarrow \mathbb{C}$, the operator $H(\mathbf{L}, \mathbf{U})$ is defined and bounded on $L^{2}(G)$. Moreover, $H(\mathbf{L}, \mathbf{U})$ is left-invariant, and we can express its convolution kernel $\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}$ in terms of Laguerre functions.

Namely, for all $n, k \in \mathbb{N}$, let

$$
L_{n}^{(k)}(t)=\frac{t^{-k} e^{t}}{n!}\left(\frac{d}{d t}\right)^{n}\left(t^{k+n} e^{-t}\right)
$$

be the n-th Laguerre polynomial of type k, and define

$$
\mathcal{L}_{n}^{(k)}(t)=(-1)^{n} e^{-t} L_{n}^{(k)}(2 t)
$$

Note that, by Assumption (A), for all $\eta \in \dot{\mathfrak{z}}$ and $j \in\left\{1, \ldots, d_{1}\right\}$,

$$
J_{\eta}^{2} P_{j}=-\left(b_{j}^{\eta}\right)^{2} P_{j}^{\eta}
$$

for some orthogonal projection P_{j}^{η} of rank $2 r_{j}$ and some $b_{j}^{\eta}>0$. Set moreover

$$
\bar{P}_{j}^{\eta}=P_{j}-P_{j}^{\eta} .
$$

Modulo reordering the \mathfrak{v}_{j} in the decomposition of \mathfrak{v}, we may suppose that there exists $\tilde{d}_{1} \in\left\{0, \ldots, d_{1}\right\}$ such that $\operatorname{dim} \mathfrak{v}_{j}>2 r_{j}$ if $j \leq \tilde{d}_{1}$, and $\operatorname{dim} \mathfrak{v}_{j}=2 r_{j}$ if $j>\tilde{d}_{1}$. In particular, $\bar{P}_{j}^{\eta}=0$ and $P_{j}^{\eta}=P_{j}$ for all $j>\tilde{d}_{1}$ and $\eta \in \dot{\mathfrak{z}}$. We will also use the abbreviations $r=\left(r_{1}, \ldots, r_{d_{1}}\right), \mathbb{R}^{r}=\mathbb{R}^{r_{1}} \times \cdots \times \mathbb{R}^{r_{d_{1}}}, \mathbb{N}^{r}=\mathbb{N}^{r_{1}} \times \cdots \times \mathbb{N}^{r_{d_{1}}},|r|=r_{1}+\cdots+r_{d_{1}}$. Moreover $\langle\cdot, \cdot\rangle$ will also denote the duality pairing $\mathfrak{z}^{*} \times \mathfrak{z} \rightarrow \mathbb{R}$.

Proposition 4 Let $H: \mathbb{R}^{d_{1}} \times \mathfrak{z}^{*} \rightarrow \mathbb{C}$ be in the Schwartz class, and set

$$
\begin{align*}
m(n, \mu, \eta)= & H\left(\left(2 n_{1}+r_{1}\right) b_{1}^{\eta}+\mu_{1}, \ldots,\left(2 n_{\tilde{d}_{1}}+r_{\tilde{d}_{1}}\right) b_{\tilde{d}_{1}}^{\eta}+\mu_{\tilde{d}_{1}}\right. \\
& \left.\left(2 n_{\tilde{d}_{1}+1}+r_{\tilde{d}_{1}+1}\right) b_{\tilde{d}_{1}+1}^{\eta}, \ldots,\left(2 n_{d_{1}}+r_{d_{1}}\right) b_{d_{1}}^{\eta}, \eta\right) \tag{7}
\end{align*}
$$

for all $n \in \mathbb{N}^{d_{1}}, \mu \in \mathbb{R}^{\tilde{d_{1}}}, \eta \in \dot{\mathfrak{j}}$. Then, for all $(z, u) \in G$,

$$
\begin{align*}
\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}(z, u)= & \frac{2^{|r|}}{(2 \pi)^{\operatorname{dim} G}} \iint_{\dot{\mathfrak{z}}} \sum_{\mathfrak{v}} m\left(n,\left(\left|\bar{P}_{1}^{\eta} \xi\right|^{2}, \ldots,\left|\overline{\mathbb{N}}_{\tilde{d}_{1}}^{\eta} \xi\right|^{2}\right), \eta\right) \\
& \times\left[\prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1\right)}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right)\right] e^{i\langle\xi, z\rangle} e^{i\langle\eta, u\rangle} d \xi d \eta . \tag{8}
\end{align*}
$$

Proof For all $\eta \in \dot{\mathfrak{z}}$ and $j \in\left\{1, \ldots, d_{1}\right\}$, let $E_{j, 1}^{\eta}, \bar{E}_{j, 1}^{\eta}, \ldots, E_{j, r_{j}}^{\eta}, \bar{E}_{j, r_{j}}^{\eta}$ be an orthonormal basis of the range of P_{j}^{η} such that

$$
J_{\eta} E_{j, l}^{\eta}=b_{j}^{\eta} \bar{E}_{j, l}^{\eta}, \quad J_{\eta} \bar{E}_{j, l}^{\eta}=-b_{j}^{\eta} E_{j, l}^{\eta}, \quad \text { for } l=1, \ldots, r_{j}
$$

Hence, for all $z \in \mathfrak{v}, \eta \in \dot{\mathfrak{z}}$, and $j \in\left\{1, \ldots, d_{1}\right\}$, we can write

$$
P_{j}^{\eta} z=\sum_{l=1}^{r_{j}}\left(z_{j, l}^{\eta} E_{j}^{\eta}+\bar{z}_{j, l}^{\eta} \bar{E}_{j, l}^{\eta}\right)
$$

for some uniquely determined $z_{j, l}^{\eta}, \bar{z}_{j, l}^{\eta} \in \mathbb{R}$; set then $z_{j}^{\eta}=\left(z_{j, 1}^{\eta}, \ldots, z_{j, r_{j}}^{\eta}\right), \bar{z}_{j}^{\eta}=$ $\left(\bar{z}_{j, 1}^{\eta}, \ldots, \bar{z}_{j, r_{j}}^{\eta}\right)$, and moreover $z^{\eta}=\left(z_{1}^{\eta}, \ldots, z_{d_{1}}^{\eta}\right)$ and $\bar{z}^{\eta}=\left(\bar{z}_{1}^{\eta}, \ldots, \bar{z}_{d_{1}}^{\eta}\right)$.

For all $\eta \in \dot{\mathfrak{z}}$ and all $\rho \in \operatorname{ker} J_{\eta}$, an irreducible unitary representation $\pi_{\eta, \rho}$ of G on $L^{2}\left(\mathbb{R}^{r}\right)$ is defined by

$$
\pi_{\eta, \rho}(z, u) \phi(v)=e^{i\langle\eta, u\rangle} e^{i\left\langle\rho, \bar{P}^{\eta} z\right\rangle} e^{i \sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle v_{j}+z_{j}^{\eta} / 2, z_{j}^{\eta}\right\rangle} \phi\left(z^{\eta}+v\right)
$$

for all $(z, u) \in G, v \in \mathbb{R}^{r}, \phi \in L^{2}\left(\mathbb{R}^{r}\right)$, where $\bar{P}^{\eta}=\bar{P}_{1}^{\eta}+\cdots+\bar{P}_{\tilde{d}_{1}}^{\eta}$ is the orthogonal projection onto ker J_{η}. Following, e.g., [2, §2], one can see that these representations are sufficient to write the Plancherel formula for the group Fourier transform of G, and the corresponding Fourier inversion formula:

$$
\begin{equation*}
f(z, u)=(2 \pi)^{|r|-\operatorname{dim} G} \int_{\dot{j} \operatorname{ker} J_{\eta}} \int_{\operatorname{kr}} \operatorname{tr}\left(\pi_{\eta, \rho}(z, u) \pi_{\eta, \rho}(f)\right) \prod_{j=1}^{d_{1}}\left(b_{j}^{\eta}\right)^{r_{j}} d \rho d \eta \tag{9}
\end{equation*}
$$

for all $f: G \rightarrow \mathbb{C}$ in the Schwartz class and all $(z, u) \in G$, where $\pi_{\eta, \rho}(f)=$ $\int_{G} f(g) \pi_{\eta, \rho}\left(g^{-1}\right) d g$.

Fix $\eta \in \dot{\mathfrak{z}}$ and $\rho \in \operatorname{ker} J_{\eta}$. The operators (6) are represented in $\pi_{\eta, \rho}$ as

$$
\begin{equation*}
d \pi_{\eta, \rho}\left(L_{j}\right)=-\Delta_{v_{j}}^{2}+\left(b_{j}^{\eta}\right)^{2}\left|v_{j}\right|^{2}+\left|P_{j} \rho\right|^{2}, \quad d \pi_{\eta, \rho}\left(-i U_{k}\right)=\eta_{k}, \tag{10}
\end{equation*}
$$

for all $j \in\left\{1, \ldots, d_{1}\right\}$ and $k \in\left\{1, \ldots, d_{2}\right\}$, where $v_{j} \in \mathbb{R}^{r_{j}}$ denotes the j-th component of $v \in \mathbb{R}^{r}$, and $\Delta_{v_{j}}$ denotes the corresponding partial Laplacian. Let h_{ℓ} denote the ℓ-th Hermite function, that is,

$$
h_{\ell}(t)=(-1)^{\ell}\left(\ell!2^{\ell} \sqrt{\pi}\right)^{-1 / 2} e^{t^{2} / 2}\left(\frac{d}{d t}\right)^{\ell} e^{-t^{2}}
$$

and, for all $\omega \in \mathbb{N}^{r}$, define $\tilde{h}_{\eta, \omega}: \mathbb{R}^{r} \rightarrow \mathbb{R}$ by

$$
\tilde{h}_{\eta, \omega}=\tilde{h}_{\eta, \omega, 1} \otimes \cdots \otimes \tilde{h}_{\eta, \omega, d_{1}}, \quad \tilde{h}_{\eta, \omega, j}\left(v_{j}\right)=\left(b_{j}^{\eta}\right)^{r_{j} / 4} \prod_{l=1}^{r_{j}} h_{\omega_{j, l}}\left(\left(b_{j}^{\eta}\right)^{1 / 2} v_{j, l}\right),
$$

for all $j \in\left\{1, \ldots, d_{1}\right\}$, where $\omega_{j, l}$ and $v_{j, l}$ denote the l-th components of $\omega_{j} \in \mathbb{N}^{r}{ }_{j}$ and $v_{j} \in \mathbb{R}^{r_{j}}$. Then, $\left\{\tilde{h}_{\eta, \omega}\right\}_{\omega \in \mathbb{N}^{r}}$ is a complete orthonormal system for $L^{2}\left(\mathbb{R}^{r}\right)$, made of joint eigenfunctions of the operators (10). In fact,

$$
\begin{align*}
d \pi_{\eta, \rho}\left(L_{j}\right) \tilde{h}_{\eta, \omega} & =\left(\left(2\left|\omega_{j}\right|+r_{j}\right) b_{j}^{\eta}+\left|P_{j} \rho\right|^{2}\right) \tilde{h}_{\eta, \omega}, \\
d \pi_{\eta, \rho}\left(-i U_{k}\right) \tilde{h}_{\eta, \omega} & =\eta_{k} \tilde{h}_{\eta, \omega}, \tag{11}
\end{align*}
$$

where $\left|\omega_{j}\right|=\omega_{j, 1}+\cdots+\omega_{j, r_{j}}$; it should be observed that $P_{j} \rho=0$ if $j>\tilde{d}_{1}$.
Since $H: \mathbb{R}^{d_{1}} \times \mathfrak{z}^{*} \rightarrow \mathbb{C}$ is in the Schwartz class, $\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}: G \rightarrow \mathbb{C}$ is in the Schwartz class too (see [3, Theorem 5.2] or [15, §4.2]). Moreover,

$$
\pi_{\eta, \rho}\left(\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}\right) \tilde{h}_{\eta, \omega}=m\left(\left(\left|\omega_{1}\right|, \ldots,\left|\omega_{d_{1}}\right|\right),\left(\left|P_{1} \rho\right|^{2}, \ldots,\left|P_{\tilde{d}_{1}} \rho\right|^{2}\right), \eta\right) \tilde{h}_{\eta, \omega}
$$

by (11) and [22, Proposition 1.1]; hence, if $\varphi_{\eta, \rho, \omega}(z, u)=\left\langle\pi_{\eta, \rho}(z, u) \tilde{h}_{\eta, \omega}, \tilde{h}_{\eta, \omega}\right\rangle$ is the corresponding diagonal matrix coefficient of $\pi_{\eta, \rho}$, then

$$
\left\langle\pi_{\eta, \rho}(z, u) \pi_{\eta, \rho}\left(\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}\right) \tilde{h}_{\eta, \omega}, \tilde{h}_{\eta, \omega}\right\rangle=m\left(\left(\left|\omega_{j}\right|\right)_{j \leq d_{1}},\left(\left|P_{j} \rho\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \varphi_{\eta, \rho, \omega}(z, u) .
$$

Therefore, (9) gives that

$$
\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}(z, u)
$$

$$
\begin{equation*}
=(2 \pi)^{|r|-\operatorname{dim} G} \int_{\dot{\mathfrak{z}}} \int_{\operatorname{ker} J_{\eta}} \sum_{n \in \mathbb{N}^{d_{1}}} m\left(n,\left(\left|P_{j} \rho\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \psi_{\eta, \rho, n}(z, u) \prod_{j=1}^{d_{1}}\left(b_{j}^{\eta}\right)^{r_{j}} d \rho d \eta, \tag{12}
\end{equation*}
$$

where

$$
\psi_{\eta, \rho, n}(z, u)=\sum_{\substack{\omega \in \mathbb{N}^{r} \\\left|\omega_{1}\right|=n_{1}, \ldots,\left|\omega_{d_{1}}\right|=n_{d_{1}}}} \varphi_{\eta, \rho, \omega}(z, u)
$$

On the other hand,

$$
\begin{aligned}
\varphi_{\eta, \rho, \omega}(z, u)= & e^{i\langle\eta, u\rangle} e^{i\left\langle\rho, \bar{P}^{\eta} z\right\rangle} \prod_{j=1}^{d_{1}} \prod_{l=1}^{r_{j}}\left[\left(b_{j}^{\eta}\right)^{1 / 2}\right. \\
& \left.\times \int_{\mathbb{R}} e^{i b_{j}^{\eta} s \bar{z}_{j, l}^{\eta}} h_{\omega_{j, l}}\left(\left(b_{j}^{\eta}\right)^{1 / 2}\left(s+z_{j, l}^{\eta} / 2\right)\right) h_{\omega_{j, l}}\left(\left(b_{j}^{\eta}\right)^{1 / 2}\left(s-z_{j, l}^{\eta} / 2\right)\right) d s\right] .
\end{aligned}
$$

The last integral is essentially the Fourier-Wigner transform of a pair of Hermite functions, whose bidimensional Fourier transform is a Fourier-Wigner transform too [10, formula (1.90)]. The parity properties of the Hermite functions then yield

$$
\begin{aligned}
& \varphi_{\eta, \rho, \omega}(z, u)=e^{i\langle\eta, u\rangle} e^{i\left\langle\rho, \bar{P}^{\eta} z\right\rangle} \prod_{j=1}^{d_{1}} \prod_{l=1}^{j}\left[\frac{(-1)^{\omega_{j, l}}}{\pi b_{j}^{\eta}} \int_{\mathbb{R} \times \mathbb{R}} e^{i \theta_{1} z_{j, l}^{\eta}} e^{i \theta_{2} z_{j, l}^{\eta}}\right. \\
& \left.\quad \times \int_{\mathbb{R}} e^{i t\left(2 \theta_{1} /\left(b_{j}^{\eta}\right)^{1 / 2}\right)} h_{\omega_{j, l}}\left(t+\theta_{2} /\left(b_{j}^{\eta}\right)^{1 / 2}\right) h_{\omega_{j, l}}\left(t-\theta_{2} /\left(b_{j}^{\eta}\right)^{1 / 2}\right) d t d \theta_{1} d \theta_{2}\right] .
\end{aligned}
$$

Since the Fourier-Wigner transform of a pair of Hermite functions can be expressed in terms of Laguerre polynomials (see [10, Theorem 1.104] or [26, Theorem 1.3.4]), we obtain that

$$
\begin{aligned}
\varphi_{\eta, \rho, \omega}(z, u)= & \frac{e^{i\langle\eta, u\rangle} e^{i\left\langle\rho, \bar{P}^{\eta} z\right\rangle}}{\pi^{|r|}} \int_{\mathbb{R}^{r} \times \mathbb{R}^{r}} e^{i\left\langle\zeta_{1}, z^{\eta}\right\rangle} e^{i\left\langle\zeta_{2}, \bar{z}^{\eta}\right\rangle} \\
& \times \prod_{j=1}^{d_{1}}\left[\left(b_{j}^{\eta}\right)^{-r_{j}} \prod_{l=1}^{r_{j}} \mathcal{L}_{\omega_{j, l}}^{(0)}\left(\left(\zeta_{1, j, l}^{2}+\zeta_{2, j, l}^{2}\right) / b_{j}^{\eta}\right)\right] d \zeta_{1} d \zeta_{2}
\end{aligned}
$$

Consequently, for all $n \in \mathbb{N}^{d_{1}}$,

$$
\begin{align*}
\psi_{\eta, \rho, n}(z, u)= & \frac{e^{i\langle\eta, u\rangle} e^{i\left\langle\rho, \bar{P}^{\eta} z\right\rangle}}{\pi \pi^{|r|}} \int_{\mathbb{R}^{r} \times \mathbb{R}^{r}} e^{i\left\langle\zeta_{1}, z^{\eta}\right\rangle} e^{i\left\langle\zeta_{2}, z^{\eta}\right\rangle} \\
& \times \prod_{j=1}^{d_{1}}\left[\left(b_{j}^{\eta}\right)^{-r_{j}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1\right)}\left(\left(\left|\zeta_{1, j}\right|^{2}+\left|\zeta_{2, j}\right|^{2}\right) / b_{j}^{\eta}\right)\right] d \zeta_{1} d \zeta_{2} \tag{13}
\end{align*}
$$

[9, §10.12, formula (41)]. The conclusion then follows by plugging (13) into (12) and performing a change of variable by rotation in the inner integrals.

4 A weighted Plancherel estimate

Proposition 4 expresses the convolution kernel $\mathcal{K}_{H(\mathbf{L}, \mathbf{U})}$ as the inverse Fourier transform of a function of the multiplier H. Due to the properties of the Fourier transform, it is not unreasonable to think that multiplying the kernel by a polynomial weight might correspond to taking derivatives of the multiplier. As a matter of fact, the presence of the Laguerre expansion leads us to consider both "discrete" and "continuous" derivatives of the reparametrization $m: \mathbb{N}^{d_{1}} \times \mathbb{R}^{\tilde{d}_{1}} \times \dot{\mathfrak{z}} \rightarrow \mathbb{C}$ of the multiplier H given by (7).

For convenience, set $\mathcal{L}_{n}^{(k)}=0$ for all $n<0$. From the properties of Laguerre polynomials (see, e.g., [9, §10.12]), one can easily derive the following identities.

Lemma 5 For all $k, n, m \in \mathbb{N}$ and $t \in \mathbb{R}$,

$$
\begin{align*}
\mathcal{L}_{n}^{(k)}(t) & =\mathcal{L}_{n-1}^{(k+1)}(t)+\mathcal{L}_{n}^{(k+1)}(t), \tag{14}\\
\frac{d}{d t} \mathcal{L}_{n}^{(k)}(t) & =\mathcal{L}_{n-1}^{(k+1)}(t)-\mathcal{L}_{n}^{(k+1)}(t), \tag{15}\\
\int_{0}^{\infty} \mathcal{L}_{n}^{(k)}(t) \mathcal{L}_{m}^{(k)}(t) t^{k} d t & = \begin{cases}\frac{(n+k)!}{2^{k+1} n!} & \text { if } n=m, \\
0 & \text { otherwise. }\end{cases} \tag{16}
\end{align*}
$$

Let $e_{1}, \ldots, e_{d_{1}}$ denote the standard basis of $\mathbb{R}^{d_{1}}$. We introduce some operators on functions $f: \mathbb{N}^{d_{1}} \times \mathbb{R}^{\tilde{d}_{1}} \times \dot{\mathfrak{z}} \rightarrow \mathbb{C}:$

$$
\begin{aligned}
\tau_{j} f(n, \mu, \eta) & =f\left(n+e_{j}, \mu, \eta\right) \\
\delta_{j} f(n, \mu, \eta) & =f\left(n+e_{j}, \mu, \eta\right)-f(n, \mu, \eta), \\
\partial_{\mu_{l}} f(n, \mu, \eta) & =\frac{\partial}{\partial \mu_{l}} f(n, \mu, \eta), \\
\partial_{\eta_{k}} f(n, \mu, \eta) & =\frac{\partial}{\partial \eta_{k}} f(n, \mu, \eta)
\end{aligned}
$$

for all $j \in\left\{1, \ldots, d_{1}\right\}, l \in\left\{1, \ldots, \tilde{d}_{1}\right\}, k \in\left\{1, \ldots, d_{2}\right\}$.
For all $h \in \mathbb{N}$ and all multiindices $\alpha \in \mathbb{N}^{h}$, we denote by $|\alpha|$ the length $\alpha_{1}+\cdots+\alpha_{h}$ of α. Inequalities between multiindices, such as $\alpha \leq \alpha^{\prime}$, shall be interpreted componentwise. Set moreover $(\alpha)_{+}=\left(\left(\alpha_{1}\right)_{+}, \ldots,\left(\alpha_{h}\right)_{+}\right)$, where $(\ell)_{+}=\max \{\ell, 0\}$.

A function $\Psi: \dot{\mathfrak{j}} \times \mathfrak{v} \rightarrow \mathbb{C}$ will be called multihomogeneous if there exist $h_{0}, h_{1}, \ldots, h_{d_{1}} \in \mathbb{R}$ such that

$$
\Psi\left(\lambda_{0} \eta, \sum_{j=1}^{d_{1}} \lambda_{j} P_{j} \xi\right)=\lambda_{0}^{h_{0}} \lambda_{1}^{h_{1}} \ldots \lambda_{d_{1}}^{h_{d_{1}}} \Psi(\eta, \xi)
$$

for all $\left.\eta \in \dot{\mathfrak{z}}, \xi \in \mathfrak{v}, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{d_{1}} \in\right] 0, \infty\left[\right.$; the homogeneity degrees $h_{0}, h_{1}, \ldots, h_{d_{1}}$ of Ψ will also be denoted as $\operatorname{deg}_{\mathfrak{z}} \Psi, \operatorname{deg}_{\mathfrak{v}_{1}} \Psi, \ldots, \operatorname{deg}_{\mathfrak{v}_{d_{1}}} \Psi$. Note that, if Ψ is multihomogeneous and continuous, then $\operatorname{deg}_{\mathfrak{v}_{j}} \Psi \geq 0$ for all $j \in\left\{1, \ldots, d_{1}\right\}$.

Proposition 6 Let $H: \mathbb{R}^{d_{1}} \times \mathfrak{z}^{*} \rightarrow \mathbb{C}$ be smooth and compactly supported in $\mathbb{R}^{d_{1}} \times \dot{\mathfrak{z}}$, and let $m(n, \mu, \eta)$ be defined by (7). For all $\alpha \in \mathbb{N}^{d_{2}}$,

$$
\begin{aligned}
u^{\alpha} \mathcal{K}_{H(\mathbf{L}, \mathbf{U})}(z, u)= & \sum_{i \in I_{\alpha}} \int_{\dot{\mathfrak{z}}} \int_{\mathfrak{v}} \sum_{n \in \mathbb{N}^{d_{1}}} \partial_{\eta}^{\gamma^{\prime}} \partial_{\mu}^{\theta^{l}} \delta^{\beta^{l}}{ }_{m}\left(n,\left(\left|\bar{P}_{j}^{\eta} \xi\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \\
& \times \Psi_{\iota}(\eta, \xi)\left[\prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1+\beta_{j}^{l}\right)}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right)\right] e^{i\langle\xi, z\rangle} e^{i\langle\eta, u\rangle} d \xi d \eta
\end{aligned}
$$

for almost all $(z, u) \in G$, where I_{α} is a finite set and, for all $\iota \in I_{\alpha}$,
$-\gamma^{l} \in \mathbb{N}^{d_{2}}, \theta^{l} \in \mathbb{N}^{\tilde{d}_{1}}, \beta^{l} \in \mathbb{N}^{d_{1}}, \gamma^{l} \leq \alpha$,

- $\Psi_{\iota}=\Psi_{\iota, 0} \Psi_{\iota, 1} \ldots \Psi_{\iota, d_{1}}$, where $\Psi_{\iota, j}: \dot{\mathfrak{z}} \times \mathfrak{v} \rightarrow \mathbb{C}$ is smooth and multihomogeneous for all $j \in\left\{0, \ldots, d_{1}\right\}$,
$-\operatorname{deg}_{\mathfrak{z}} \Psi_{\imath}=\left|\gamma^{\iota}\right|-|\alpha|-\left|\beta^{\imath}\right|$ and $\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\imath}=2 \beta_{j}^{\iota}+2 \theta_{j}^{\iota}$ for all $j \in\left\{1, \ldots, d_{1}\right\}$,
- for all $j \in\left\{1, \ldots, d_{1}\right\}, \Psi_{\iota, j}(\eta, \xi)$ is a product of factors of the form $\left|P_{j}^{\eta} \xi\right|^{2}$ or $\partial_{\eta_{k}}\left|P_{j}^{\eta} \xi\right|^{2}$ for $k \in\left\{1, \ldots, d_{2}\right\}$,
$-\left|\gamma^{\iota}\right|+\left|\theta^{\iota}\right|+\left|\beta^{\iota}\right|+\sum_{j=1}^{d_{1}}\left(\beta_{j}^{\iota}-\left(\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}\right) / 2\right)_{+} \leq|\alpha|$.
Proof By Proposition 4 and the properties of the Fourier transform, we are reduced to proving that, for all $\alpha \in \mathbb{N}^{d_{2}}, \eta \in \dot{\mathfrak{z}}, \xi \in \mathfrak{v}$,

$$
\begin{aligned}
& \left(\frac{\partial}{\partial \eta}\right)^{\alpha} \sum_{n \in \mathbb{N}^{d_{1}}} m\left(n,\left(\left|\bar{P}_{j}^{\eta} \xi\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1\right)}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right) \\
& =\sum_{l \in I_{\alpha}} \sum_{n \in \mathbb{N}^{d_{1}}} \partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{\theta^{l}} \delta^{\beta^{\iota}} m\left(n,\left(\left|\bar{P}_{j}^{\eta} \xi\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \Psi_{\iota}(\eta, \xi) \prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1+\beta_{j}^{l}\right)}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right),
\end{aligned}
$$

where $I_{\alpha}, \gamma^{\iota}, \theta^{\iota}, \beta^{\iota}, \Psi_{\iota}$ are as in the above statement.
This is easily proved by induction on $|\alpha|$. For $|\alpha|=0$, it is trivially verified. For the inductive step, one applies Leibniz' rule and exploits the following observations:

- when a derivative $\partial_{\eta_{k}}$ hits a Laguerre function, by the identity (15) and summation by parts, the type of the Laguerre function is increased by 1, as well as the corresponding component of β^{ι};
- for all $j \in\left\{1, \ldots, d_{1}\right\}, b_{j}^{\eta}=\sqrt{\operatorname{tr}\left(-J_{\eta}^{2} P_{j}\right) /\left(2 r_{j}\right)}$ is a smooth function of $\eta \in \dot{\mathfrak{z}}$, homogeneous of degree 1 ;
- for all $j \in\left\{1, \ldots, d_{1}\right\}, P_{j}^{\eta}=-J_{\eta}^{2} P_{j} /\left(b_{j}^{\eta}\right)^{2}$ is a smooth function of $\eta \in \dot{\mathfrak{z}}$, homogeneous of degree 0 , and in fact it is constant if $j>\tilde{d}_{1}$;
- for all $j \in\left\{1, \ldots, \tilde{d}_{1}\right\},\left|P_{j}^{\eta} \xi\right|^{2}=\left\langle P_{j}^{\eta} P_{j} \xi, P_{j} \xi\right\rangle$ is a smooth bihomogeneous function of $\left(\eta, P_{j} \xi\right) \in \dot{\mathfrak{z}} \times \mathfrak{v}_{j}$ of bidegree (0,2), and moreover

$$
\begin{aligned}
& \left|\bar{P}_{j}^{\eta} \xi\right|^{2}=\left|P_{j} \xi\right|^{2}-\left|P_{j}^{\eta} \xi\right|^{2}, \quad \partial_{\eta_{k}}\left|\bar{P}_{j}^{\eta} \xi\right|^{2}=-\partial_{\eta_{k}}\left|P_{j}^{\eta} \xi\right|^{2}, \\
& \partial_{\eta_{k}}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right)=\left|P_{j}^{\eta} \xi\right|^{2} \partial_{\eta_{k}}\left(1 / b_{j}^{\eta}\right)+\left(\partial_{\eta_{k}}\left|P_{j}^{\eta} \xi\right|^{2}\right) / b_{j}^{\eta}
\end{aligned}
$$

for all $k \in\left\{1, \ldots, d_{2}\right\}$.
The conclusion follows.
Note that, for all $j \in\left\{1, \ldots, d_{1}\right\}, \mu \in \mathbb{R}^{\tilde{d}_{1}}, \eta \in \dot{\mathfrak{z}}$, the quantities $\tau_{j} f(\cdot, \mu, \eta), \delta_{j} f(\cdot, \mu, \eta)$ depend only on $f(\cdot, \mu, \eta)$; in other words, τ_{j} and δ_{j} can be considered as operators on functions $\mathbb{N}^{d_{1}} \rightarrow \mathbb{C}$.

The following lemma exploits the orthogonality properties (16) of the Laguerre functions, together with (14), and shows that a mismatch between the type of the Laguerre function and the exponent of the weight attached to the measure may be turned in some cases into discrete differentiation.

Lemma 7 For all $h, k \in \mathbb{N}^{d_{1}}$ and all compactly supported $f: \mathbb{N}^{d_{1}} \rightarrow \mathbb{C}$,

$$
\begin{aligned}
& \quad \int_{] 0, \infty\left[^{d_{1}}\right.}\left|\sum_{n \in \mathbb{N}^{d_{1}}} f(n) \prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(k_{j}\right)}\left(t_{j}\right)\right|^{2} t^{h} d t \\
& \leq C_{h, k} \sum_{n \in \mathbb{N}^{d_{1}}}\left|\delta^{(k-h)_{+}} f(n)\right|^{2} \prod_{j=1}^{d_{1}}\left(1+n_{j}\right)^{h_{j}+2\left(k_{j}-h_{j}\right)_{+}} .
\end{aligned}
$$

Proof Via an inductive argument, we may reduce to the case $d_{1}=1$.
Note that, if f is compactly supported, then $\tau^{l} f$ is null for all sufficiently large $l \in \mathbb{N}$. Hence, the operator $1+\tau$, when restricted to the set of compactly supported functions, is invertible, with inverse given by

$$
(1+\tau)^{-1} f=\sum_{l \in \mathbb{N}}(-1)^{l} \tau^{l} f .
$$

Then by (14), we deduce that, for all $k \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} f(n) \mathcal{L}_{n}^{(k)}(t) & =\sum_{n \in \mathbb{N}}(1+\tau) f(n) \mathcal{L}_{n}^{(k+1)}(t), \\
\sum_{n \in \mathbb{N}} f(n) \mathcal{L}_{n}^{(k+1)}(t) & =\sum_{n \in \mathbb{N}}(1+\tau)^{-1} f(n) \mathcal{L}_{n}^{(k)}(t),
\end{aligned}
$$

and consequently, for all $h, k \in \mathbb{N}$,

$$
\sum_{n \in \mathbb{N}} f(n) \mathcal{L}_{n}^{(k)}(t)=\sum_{n \in \mathbb{N}}(1+\tau)^{h-k} f(n) \mathcal{L}_{n}^{(h)}(t)
$$

Thus, the orthogonality properties (16) of the Laguerre functions give us that

$$
\int_{0}^{\infty}\left|\sum_{n \in \mathbb{N}} f(n) \mathcal{L}_{n}^{(k)}(t)\right|^{2} t^{h} d t \leq C_{h, k} \sum_{n \in \mathbb{N}}\left|(1+\tau)^{h-k} f(n)\right|^{2}\langle n\rangle^{h},
$$

where $\langle n\rangle=1+n$.

In the case $h \geq k,(1+\tau)^{h-k}$ is given by the finite sum

$$
(1+\tau)^{h-k}=\sum_{\ell=0}^{h-k}\binom{h-k}{\ell} \tau^{\ell}
$$

and the conclusion follows immediately by the triangular inequality.
In the case $h<k$, instead, since $\delta=\tau-1$, from the identity $1-\tau^{2}=(1-\tau)(1+\tau)$, we deduce that

$$
(1+\tau)^{h-k}=(-\delta)^{k-h}\left(1-\tau^{2}\right)^{h-k}=(-1)^{k-h} \sum_{\ell \geq 0}\binom{\ell+k-h-1}{\ell} \delta^{k-h} \tau^{2 \ell}
$$

hence

$$
\begin{aligned}
\sum_{n \in \mathbb{N}}\left|(1+\tau)^{h-k} f(n)\right|^{2}\langle n\rangle^{h} & =\sum_{n \in \mathbb{N}}\left|\sum_{\ell \geq 0}\binom{\ell+k-h-1}{\ell} \delta^{k-h} f(n+2 \ell)\right|^{2}\langle n\rangle^{h} \\
& \leq C_{h, k} \sum_{n \in \mathbb{N}}\left|\sum_{\ell \geq n}\langle\ell\rangle^{k-h-1} \delta^{k-h} f(\ell)\right|^{2}\langle n\rangle^{h} \\
& \leq C_{h, k} \sum_{n \in \mathbb{N}}\langle n\rangle^{-1 / 2} \sum_{\ell \geq n}\left|\langle\ell\rangle^{k-h-1 / 4} \delta^{k-h} f(\ell)\right|^{2}\langle n\rangle^{h} \\
& \leq C_{h, k} \sum_{\ell \in \mathbb{N}}\langle\ell\rangle^{2 k-2 h-1 / 2}\left|\delta^{k-h} f(\ell)\right|^{2} \sum_{n=0}^{\ell}\langle n\rangle^{h-1 / 2} \\
& \leq C_{h, k} \sum_{\ell \in \mathbb{N}}\langle\ell\rangle^{2 k-h}\left|\delta^{k-h} f(\ell)\right|^{2},
\end{aligned}
$$

by the Cauchy-Schwarz inequality, and we are done.
Let $|\cdot|$ denote any Euclidean norm on \mathfrak{z}^{*}. The previous lemma, together with Plancherel's formula for the Fourier transform, yields the following L^{2}-estimate.

Proposition 8 Under the hypotheses of Proposition 6, for all $\alpha \in \mathbb{N}^{d_{2}}$,

$$
\begin{align*}
& \int_{G}\left|u^{\alpha} \mathcal{K}_{H(\mathbf{L}, \mathbf{U})}(z, u)\right|^{2} d z d u \leq C_{\alpha} \sum_{l \in \tilde{I}_{\alpha}} \int_{\dot{\mathfrak{z}}} \int_{\left[0, \infty\left[\tilde{j}^{\tilde{1}_{1}}\right.\right.} \sum_{n \in \mathbb{N}^{d_{1}}}\left|\partial_{\eta}^{\gamma^{\prime}} \partial_{\mu}^{\theta^{\iota}} \delta^{\beta^{l}} m(n, \mu, \eta)\right|^{2} \\
& \quad \times|\eta|^{2\left|\gamma^{l}\right|-2|\alpha|-2\left|\beta^{l}\right|+\left|a^{l}\right|+d_{1}}\left(1+n_{1}\right)^{a_{1}^{l}} \ldots\left(1+n_{d_{1}}\right)^{a_{d_{1}}} d \sigma_{\iota}(\mu) d \eta, \tag{17}
\end{align*}
$$

where \tilde{I}_{α} is a finite set and, for all $\iota \in \tilde{I}_{\alpha}$,
$-\gamma^{l} \in \mathbb{N}^{d_{2}}, \theta^{l} \in \mathbb{N}^{\tilde{d}_{1}}, a^{l}, \beta^{l} \in \mathbb{N}^{d_{1}}$,
$-\gamma^{l} \leq \alpha,\left|\gamma^{\iota}\right|+\left|\theta^{\iota}\right|+\left|\beta^{\iota}\right| \leq|\alpha|$,
$-\sigma_{\iota}$ is a regular Borel measure on $\left[0, \infty\left[^{\tilde{d}_{1}}\right.\right.$.
Proof Note that, for all $j \in\left\{1, \ldots, d_{1}\right\}$,

$$
\partial_{\eta_{k}}\left(\left|P_{j}^{\eta} \xi\right|^{2}\right)=2\left\langle\left(\partial_{\eta_{k}} P_{j}^{\eta}\right) P_{j} \xi, P_{j}^{\eta} \xi\right\rangle \leq C|\eta|^{-1}\left|P_{j}^{\eta} \xi\right|\left|P_{j} \xi\right| ;
$$

consequently, if $\Psi_{\iota}, \Psi_{\iota, j}, \gamma^{l}, \theta^{\iota}, \beta^{l}$ are as in the statement of Proposition 6, then

$$
\left|\Psi_{\iota, j}(\eta, \xi)\right|^{2} \leq C_{l}|\eta|^{2 \operatorname{deg}_{3} \Psi_{\iota, j}}\left|P_{j}^{\eta} \xi\right|^{\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}}\left|P_{j} \xi\right|^{\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}}
$$

for all $j \in\left\{1, \ldots, d_{1}\right\}$, hence

$$
\begin{aligned}
\left|\Psi_{\iota}(\eta, \xi)\right|^{2} & \leq C_{\iota}|\eta|^{2 \operatorname{deg}_{z_{3}} \Psi_{l}} \prod_{j=1}^{d_{1}}\left|P_{j}^{\eta} \xi\right|^{\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}}\left|P_{j} \xi\right|^{2 \operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{l, 0}+\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}} \\
& \leq C_{\iota}|\eta|^{2\left|\gamma^{\iota}\right|-2|\alpha|-2\left|\beta^{\iota}\right|} \prod_{j=1}^{d_{1}} \sum_{h_{j}=\left(\operatorname{deg}_{\mathfrak{v}_{j}}\right.}^{2 \theta_{l, j}+2 \beta_{j}^{\iota}}\left|P_{j}^{\eta} \xi\right|^{2 h_{j}}\left|\bar{P}_{j}^{\eta} \xi\right|^{4 \theta_{j}^{l}+4 \beta_{j}^{\iota}-2 h_{j}},
\end{aligned}
$$

and moreover, for all $h \in \mathbb{N}^{d_{1}}$, if $h_{j} \geq\left(\operatorname{deg}_{\mathfrak{v}_{j}} \Psi_{\iota, j}\right) / 2$ for all $j \in\left\{1, \ldots, d_{1}\right\}$, then

$$
\left|\gamma^{\iota}\right|+\left|\theta^{\iota}\right|+\left|\beta^{\iota}\right|+\sum_{j=1}^{\tilde{d}_{1}}\left(\beta_{j}^{\iota}-h_{j}\right)_{+} \leq|\alpha| .
$$

By Proposition 6, Plancherel's formula and the triangular inequality, we then obtain that the left-hand side of (17) is majorized by a finite sum of terms of the form

$$
\begin{align*}
& \int_{\dot{\mathfrak{z}}} \int_{\mathfrak{v}}\left|\sum_{n \in \mathbb{N}^{d_{1}}} \partial_{\eta}^{\gamma} \partial_{\mu}^{\theta} \delta^{\beta} m\left(n,\left(\left|\bar{P}_{j}^{\eta} \xi\right|^{2}\right)_{j \leq \tilde{d}_{1}}, \eta\right) \prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1+\beta_{j}\right)}\left(\left|P_{j}^{\eta} \xi\right|^{2} / b_{j}^{\eta}\right)\right|^{2} \\
& \quad \times|\eta|^{2|\gamma|-2|\alpha|-2|\beta|} \prod_{j=1}^{d_{1}}\left|P_{j}^{\eta} \xi\right|^{2 h_{j}} \prod_{j=1}^{\tilde{d}_{1}}\left|\bar{P}_{j}^{\eta} \xi\right|^{2 k_{j}} d \xi d \eta, \tag{18}
\end{align*}
$$

where $\gamma \in \mathbb{N}^{d_{2}}, \theta, k \in \mathbb{N}^{\tilde{d}_{1}}, \beta, h \in \mathbb{N}^{d_{1}}$ and $|\gamma|+|\theta|+\left|\beta+(\beta-h)_{+}\right| \leq|\alpha|$. Simple changes of variables (rotation, polar coordinates and rescaling) allow one to rewrite (18) as a constant times

$$
\begin{aligned}
& \int_{\dot{\mathfrak{z}}} \int_{] 0, \infty\left[^{\tilde{d}_{1}}\right] 0, \infty\left[\left[^{d_{1}}\right.\right.}\left|\sum_{n \in \mathbb{N}^{d_{1}}} \partial_{\eta}^{\gamma} \partial_{\mu}^{\theta} \delta^{\beta} m(n, \mu, \eta) \prod_{j=1}^{d_{1}} \mathcal{L}_{n_{j}}^{\left(r_{j}-1+\beta_{j}\right)}\left(t_{j}\right)\right|^{2} \prod_{j=1}^{d_{1}} t_{j}^{r_{j}-1+h_{j}} d t \\
& \times|\eta|^{2|\gamma|-2|\alpha|-2|\beta|} \prod_{j=1}^{d_{1}}\left(b_{j}^{\eta}\right)^{h_{j}+r_{j}} \prod_{j=1}^{\tilde{d}_{1}} \mu_{j}^{k_{j}+\left(\operatorname{dim} \mathfrak{v}_{j}-2 r_{j}\right) / 2} \frac{d \mu}{\mu_{1} \cdots \mu_{\tilde{d}_{1}}} d \eta .
\end{aligned}
$$

By exploiting the fact that the b_{j}^{η} are smooth functions of $\eta \in \dot{\mathfrak{z}}$, homogeneous of degree 1 (see the proof of Proposition 6), and applying Lemma 7 to the inner integral, the last quantity is majorized by

$$
\begin{aligned}
& C \int_{\dot{\mathfrak{z}}} \int_{j 0, \propto\left[\tilde{d}^{\tilde{d}_{1}}\right.} \sum_{n \in \mathbb{N}^{d_{1}}}\left|\partial_{\eta}^{\gamma} \partial_{\mu}^{\theta} \delta^{\beta+(\beta-h)_{+}} m(n, \mu, \eta)\right|^{2} \prod_{j=1}^{d_{1}}\left(1+n_{j}\right)^{r_{j}-1+h_{j}+2\left(\beta_{j}-h_{j}\right)_{+}} \\
& \quad \times|\eta|^{2|\gamma|-2|\alpha|-2|\beta|+|h|+|r|} \prod_{j=1}^{\tilde{d}_{1}} \mu_{j}^{k_{j}+\left(\operatorname{dim} \mathfrak{v}_{j}-2 r_{j}\right) / 2} \frac{d \mu}{\mu_{1} \ldots \mu_{d_{1}}} d \eta,
\end{aligned}
$$

and since the exponents $k_{j}+\left(\operatorname{dim} \mathfrak{v}_{j}-2 r_{j}\right) / 2$ are strictly positive, while

$$
-2|\beta|+|h|+|r|=-2\left|\beta+(\beta-h)_{+}\right|+\sum_{j=1}^{d_{1}}\left(r_{j}-1+h_{j}+2\left(\beta_{j}-h_{j}\right)_{+}\right)+d_{1}
$$

and $|\gamma|+|\theta|+\left|\beta+(\beta-h)_{+}\right| \leq|\alpha|$, the conclusion follows by suitably renaming the multiindices.

5 From discrete to continuous

Via the fundamental theorem of integral calculus, finite differences can be estimated by continuous derivatives. The next lemma is a multivariate analog of [19, Lemma 6], and we omit the proof (see also [18, Lemma 7]).

Lemma 9 Let $f: \mathbb{N}^{d_{1}} \rightarrow \mathbb{C}$ have a smooth extension $\tilde{f}:\left[0, \infty\left[{ }^{d_{1}} \rightarrow \mathbb{C}\right.\right.$, and let $\beta \in \mathbb{N}^{d_{1}}$. Then,

$$
\delta^{\beta} f(n)=\int_{J_{\beta}} \partial^{\beta} \tilde{f}(n+s) d \nu_{\beta}(s)
$$

for all $n \in \mathbb{N}$, where $J_{\beta}=\prod_{j=1}^{d_{1}}\left[0, \beta_{j}\right]$, and v_{β} is a Borel probability measure on J_{β}. In particular,

$$
\left|\delta^{\beta} f(n)\right|^{2} \leq \int_{J_{\beta}}\left|\partial^{\beta} \tilde{f}(n+s)\right|^{2} d v_{\beta}(s)
$$

for all $n \in \mathbb{N}^{d_{1}}$.
We give now a simplified version of the right-hand side of (17), in the case we restrict to the functional calculus of L alone. In order to avoid issues of divergent series, it is, however, convenient at first to truncate the multiplier along the spectrum of \mathbf{U}.

Lemma 10 Let $\chi \in C_{c}^{\infty}(\mathbb{R})$ be supported in $[1 / 2,2], K \subseteq \mathbb{R}$ be compact and $\left.M \in\right] 0, \infty[$. If $F: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and supported in K, and $F_{M}: \mathbb{R} \times \mathfrak{z}^{*} \rightarrow \mathbb{C}$ is given by

$$
F_{M}(\lambda, \eta)=F(\lambda) \chi(|\eta| / M),
$$

then, for all $r \in[0, \infty[$,

$$
\int_{G}\left\|\left.\left.u\right|^{r} \mathcal{K}_{F_{M}(L, \mathbf{U})}(z, u)\right|^{2} d z d u \leq C_{K, \chi, r} M^{d_{2}-2 r}\right\| F \|_{W_{2}^{r}}^{2} .
$$

Proof We may restrict to the case $r \in \mathbb{N}$, the other cases being recovered a posteriori by interpolation. Hence, we need to prove that

$$
\begin{equation*}
\int_{G}\left|u^{\alpha} \mathcal{K}_{F_{M}(L, \mathbf{U})}(z, u)\right|^{2} d z d u \leq C_{K, \chi, \alpha} M^{d_{2}-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2} \tag{19}
\end{equation*}
$$

for all $\alpha \in \mathbb{N}^{d_{1}}$. On the other hand, if m is defined by

$$
\begin{equation*}
m(n, \mu, \eta)=F\left(\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j}+|\mu|_{\Sigma}\right) \chi(|\eta| / M) \tag{20}
\end{equation*}
$$

where $\langle\ell\rangle_{j}=2 \ell+r_{j}$ and $|\mu|_{\Sigma}=\sum_{j=1}^{\tilde{d}_{1}} \mu_{j}$, then the left-hand side of (19) is majorized by the right-hand side of (17), and we are reduced to proving that

$$
\begin{align*}
& \sum_{n \in \mathbb{N}^{d_{1}}} \int_{\dot{\mathfrak{z}}} \int_{\left[0,\left.\infty\right|^{d_{1}}\right.}\left|\partial_{\eta}^{\gamma^{l}} \partial_{\mu}^{\theta^{l}} \delta^{\beta^{l}} m(n, \mu, \eta)\right|^{2}|\eta|^{2\left|\gamma^{l}\right|-2|\alpha|-2\left|\beta^{l}\right|+\left|a^{l}\right|+d_{1}} \\
& \times\left(1+n_{1}\right)^{a_{1}^{l}} \ldots\left(1+n_{d_{1}}\right)^{a_{d_{1}}^{l}} d \sigma_{l}(\mu) d \eta \leq C_{K, \chi, \alpha} M^{d_{2}-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2} \tag{21}
\end{align*}
$$

for all $\iota \in \tilde{I}_{\alpha}$, where $\tilde{I}_{\alpha}, \gamma^{\iota}, \theta^{\iota}, \beta^{\iota}, a^{\iota}, \sigma_{\iota}$ are as in Proposition 8.
Note that the right-hand side of (20) makes sense for all $n \in \mathbb{R}^{d_{1}}$ and defines a smooth extension of m, which we still denote by m by a slight abuse of notation. Hence, by Lemma 9 ,

$$
\begin{equation*}
\left|\partial_{\eta}^{\gamma_{l}} \partial_{\mu}^{\theta^{l}} \delta^{\beta^{l}} m(n, \mu, \eta)\right|^{2} \leq \int_{J_{l}}\left|\partial_{\eta}^{\gamma^{l}} \partial_{\mu}^{\theta^{l}} \partial_{n}^{\beta^{l}} m(n+s, \mu, \eta)\right|^{2} d v_{l}(s), \tag{22}
\end{equation*}
$$

where $J_{\iota}=\prod_{j=1}^{d_{1}}\left[0, \beta_{j}^{\iota}\right]$ and v_{ι} is a suitable probability measure on J_{ι}. Moreover, the measure σ_{ι} in (21) is finite on compacta, and the right-hand side of (22) vanishes when $|\mu|_{\Sigma}>\max K$, because supp $F \subseteq K$. Consequently, (21) will be proved if we show that

$$
\begin{align*}
& \sum_{n \in \mathbb{N}^{d_{1}}} \int_{\dot{\mathfrak{j}}}\left|\partial_{\eta}^{\gamma^{l}} \partial_{\mu}^{\theta^{l}} \partial_{n}^{\beta^{\iota}} m(n+s, \mu, \eta)\right|^{2}|\eta|^{2\left|\gamma^{l}\right|-2|\alpha|-2\left|\beta^{l}\right|+\left|a^{l}\right|+d_{1}} \\
& \quad \times\left(1+n_{1}\right)^{a_{1}^{l}} \ldots\left(1+n_{d_{1}}\right)^{a_{d_{1}}^{l}} d \eta \leq C_{K, \chi, \alpha} M^{d_{2}-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2} \tag{23}
\end{align*}
$$

for all $s \in J_{l}$ and $\mu \in[0, \max K]^{\tilde{d}_{1}}$, uniformly in s and μ.
As observed in the proof of Proposition 6, the b_{j}^{η} are positive, smooth functions of $\eta \in \dot{\mathfrak{z}}$, homogeneous of degree 1 ; therefore, for all $n \in \mathbb{N}^{d_{1}}, j \in\left\{1, \ldots, d_{1}\right\}, \eta \in \dot{\mathfrak{z}}$, $s \in\left[0, \infty\left[^{d_{1}}, \mu \in\left[0, \infty\left[^{\tilde{d}_{1}}\right.\right.\right.\right.$,

$$
\begin{equation*}
|\eta|\left(1+n_{j}\right) \sim b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j} \leq \sum_{l=1}^{d_{1}} b_{l}^{\eta}\left\langle n_{l}+s_{l}\right\rangle_{l}+|\mu|_{\Sigma}, \tag{24}
\end{equation*}
$$

and the last quantity is bounded by the constant max K whenever $(n+s, \mu, \eta) \in \operatorname{supp} m$, because supp $F \subseteq K$. Hence, the factors $|\eta|\left(1+n_{j}\right)$ in the left-hand side of (23) can be discarded, that is, we are reduced to proving (23) in the case $a^{l}=0$.

From (20), it follows immediately that

$$
\partial_{\mu}^{\theta^{\iota}} \partial_{n}^{\beta^{\iota}} m(n, \mu, \eta)=F^{\left(\left|\theta^{\iota}\right|+\left|\beta^{\iota}\right|\right)}\left(\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j}+|\mu|_{\Sigma}\right) \chi(|\eta| / M) \prod_{j=1}^{d_{1}}\left(2 b_{j}^{\eta}\right)^{\beta_{j}^{\iota}}
$$

and then it is easily proved inductively that

$$
\begin{aligned}
\partial_{\eta}^{\gamma^{l}} \partial_{\mu}^{\theta^{l}} \partial_{n}^{\beta^{l}} m(n, \mu, \eta)= & \sum_{\substack{v \in \mathbb{N}^{d_{1}} \\
|v| \leq\left|\gamma^{\iota}\right|}} \sum_{q=0}^{\left|\gamma^{l}\right|-|v|} F^{\left(\theta^{l}\left|+\left|\beta^{l}\right|+|v|\right)\right.}\left(\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j}+|\mu| \Sigma\right) \\
& \times \Psi_{\iota, v, q}(\eta) M^{-q} \chi^{(q)}(|\eta| / M) \prod_{j=1}^{d_{1}}\left\langle n_{j}\right\rangle_{j}^{v_{j}}
\end{aligned}
$$

where $\Psi_{\iota, v, q}: \dot{\mathfrak{z}} \rightarrow \mathbb{R}$ is smooth and homogeneous of degree $\left|\beta^{l}\right|+|v|+q-\left|\gamma^{l}\right|$. By exploiting again (24) and the fact that supp $F \subseteq K$, we can majorize the factors $\left\langle n_{j}\right\rangle_{j}$ in the right-hand side by $|\eta|^{-1} \sim M^{-1}$ and obtain that

$$
\begin{aligned}
& \left|\partial_{\eta}^{\gamma^{\iota}} \partial_{\mu}^{\theta^{\iota}} \partial_{n}^{\beta^{\iota}} m(n, \mu, \eta)\right|^{2} \leq C_{K, \chi, \alpha} M^{2\left|\beta^{\iota}\right|-2\left|\gamma^{\iota}\right|} \tilde{\chi}(|\eta| / M) \\
& \quad \times \sum_{v=0}^{\left|\gamma^{\iota}\right|}\left|F^{\left(\left|\beta^{\iota}\right|+\left|\theta^{\iota}\right|+v\right)}\left(\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j}+|\mu|_{\Sigma}\right)\right|^{2},
\end{aligned}
$$

where $\tilde{\chi}$ is the characteristic function of $[1 / 2,2]$. Hence, the left-hand side of (23), when $a^{l}=0$, is majorized by

$$
\begin{aligned}
& C_{K, \chi, \alpha} M^{d_{1}-2|\alpha|} \\
& \quad \times \sum_{v=0}^{\left|\gamma^{\prime}\right|} \int_{\dot{\mathfrak{z}}} \sum_{n \in \mathbb{N}^{d_{1}}}\left|F^{\left(\left|\beta^{\iota}\right|+\left|\theta^{\iota}\right|+v\right)}\left(\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}+s_{j}\right\rangle_{j}+|\mu| \Sigma\right)\right|^{2} \tilde{\chi}(|\eta| / M) d \eta .
\end{aligned}
$$

Let S denote the unit sphere in \mathfrak{z}^{*}. By passing to polar coordinates and exploiting the homogeneity of the b_{j}^{η}, the integral in the above formula is majorized by

$$
\begin{align*}
& C \int_{S} \int_{0}^{\infty} \sum_{n \in \mathbb{N}^{d_{1}}}\left|F^{\left(\left|\beta^{l}\right|+\left|\theta^{l}\right|+v\right)}\left(\rho \sum_{j=1}^{d_{1}} b_{j}^{\omega}\left\langle n_{j}+s_{j}\right\rangle_{j}+|\mu|_{\Sigma}\right)\right|^{2} \tilde{\chi}(\rho / M) \rho^{d_{2}} \frac{d \rho}{\rho} d \omega \\
& \quad \leq C M^{d_{2}} \int_{0}^{\infty}\left|F^{\left(\left|\beta^{\iota}\right|+\left|\theta^{l}\right|+v\right)}(\rho+|\mu| \Sigma)\right|^{2} \int_{S} \sum_{n \in \mathbb{N}^{d_{1}}} \tilde{\chi}\left(\rho /\left(M\langle n\rangle_{\omega, s}\right)\right) d \omega \frac{d \rho}{\rho} \tag{25}
\end{align*}
$$

where $\langle n\rangle_{\omega, s}=\sum_{j=1}^{d_{1}} b_{j}^{\omega}\left\langle n_{j}+s_{j}\right\rangle_{j} \sim 1+|n|$ uniformly in $\omega \in S$ and $s \in J_{l}$. Since $\tilde{\chi}\left(\rho /\left(M\langle n\rangle_{\omega, s}\right)\right)$ vanishes unless $\langle n\rangle_{\omega, s} \sim \rho / M$, the sum in the right-hand side of (25) has at most $C_{\iota}(\rho / M)^{d_{1}}$ nonvanishing summands, and the integral on S is majorized by $C_{l}(\rho / M)^{d_{1}}$. In conclusion, the left-hand side of (23) is majorized by

$$
\begin{aligned}
& C_{K, \chi, \alpha} M^{d_{2}-2|\alpha|} \sum_{v=0}^{\left|\gamma^{\iota}\right|} \int_{0}^{\infty}\left|F^{\left(\left|\beta^{\iota}\right|+\left|\theta^{\iota}\right|+v\right)}(\rho+|\mu| \Sigma)\right|^{2} \rho^{d_{1}-1} d \rho \\
& \quad \leq C_{K, \chi, \alpha} M^{d_{2}-2|\alpha|}\|F\|_{W_{2}^{|\alpha|}}^{2},
\end{aligned}
$$

because $d_{1} \geq 1$, supp $F \subseteq K$ and $\left|\beta^{\iota}\right|+\left|\theta^{\iota}\right|+\left|\gamma^{l}\right| \leq|\alpha|$, and we are done.
Proposition 11 Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be smooth and such that $\operatorname{supp} F \subseteq K$ for some compact set $K \subseteq \mathbb{R}$. For all $r \in\left[0, d_{2} / 2[\right.$,

$$
\int_{G}\left|(1+|u|)^{r} \mathcal{K}_{F(L)}(z, u)\right|^{2} d z d u \leq C_{K, r}\|F\|_{W_{2}^{r}}^{2}
$$

Proof Take $\chi \in C_{c}^{\infty}(] 0, \infty[)$ such that supp $\chi \subseteq[1 / 2,2]$ and $\sum_{k \in \mathbb{Z}} \chi\left(2^{-k} t\right)=1$ for all $t \in] 0, \infty\left[\right.$. If F_{M} is defined for all $\left.M \in\right] 0, \infty\left[\right.$ as in Lemma 10 , then $\mathcal{K}_{F_{M}(L, \mathbf{U})}$ is given by the right-hand side of (8), where m is defined by (20), and moreover,

$$
\sum_{j=1}^{d_{1}} b_{j}^{\eta}\left\langle n_{j}\right\rangle_{j}+|\mu|_{\Sigma} \geq C^{-1}|\eta|
$$

for all $\eta \in \dot{\mathfrak{z}}, \mu \in\left[0, \infty\left[^{\tilde{d}_{1}}\right.\right.$ and $n \in \mathbb{N}^{d_{1}}$, therefore $F_{M}(L, \mathbf{U})=0$ whenever $M>2 C$ max K. Hence, if $k_{K} \in \mathbb{Z}$ is sufficiently large so that $2^{k_{K}}>2 C$ max K, then

$$
F(L)=\sum_{k \in \mathbb{Z}, k \leq k_{K}} F_{2^{k}}(L, \mathbf{U})
$$

(with convergence in the strong sense). Consequently, an estimate for $\mathcal{K}_{F(L)}$ can be obtained, via Minkowski's inequality, by summing the corresponding estimates for $\mathcal{K}_{F_{2^{k}}}(L, \mathbf{U})$ given by Lemma 10. If $r<d / 2$, then the series $\sum_{k \leq k_{K}}\left(2^{k}\right)^{d_{2} / 2-r}$ converges, thus

$$
\left.\left.\int_{G}| | u\right|^{r} \mathcal{K}_{F(L)}(z, u)\right|^{2} d z d u \leq C_{K, r}\|F\|_{W_{2}^{r}}^{2}
$$

The conclusion follows by combining the last inequality with the corresponding one for $r=0$.

Let $|\cdot|_{\delta}$ be a δ_{t}-homogeneous norm on G; take, e.g., $|(z, u)|_{\delta}=|z|+|u|^{1 / 2}$. Interpolation then allows us to improve the standard weighted estimate for a homogeneous sublaplacian on a stratified group.

Proposition 12 Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be smooth and such that $\operatorname{supp} F \subseteq K$ for some compact set $K \subseteq \mathbb{R}$. For all $r \in\left[0, d_{2} / 2[, \alpha \geq 0\right.$ and $\beta>\alpha+r$,

$$
\begin{equation*}
\int_{G}\left|\left(1+|(z, u)|_{\delta}\right)^{\alpha}(1+|u|)^{r} \mathcal{K}_{F(L)}(z, u)\right|^{2} d z d u \leq C_{K, \alpha, \beta, r}\|F\|_{W_{2}^{\beta}}^{2} \tag{26}
\end{equation*}
$$

Proof Note that $1+|u| \leq C(1+|(z, u)| \delta)^{2}$. Hence, in the case $\alpha \geq 0, \beta>\alpha+2 r$, the inequality (26) follows by the mentioned standard estimate (see [21, Lemma 1.2] or [17, Theorem 2.7]). On the other hand, if $\alpha=0$ and $\beta \geq r$, then (26) is given by Proposition 11. The full range of α and β is then obtained by interpolation.

We can finally prove the crucial estimate.
Proof of Proposition 3 Take $r \in](\operatorname{dim} G) / 2+d_{2} / 2-s, d_{2} / 2[$. Then,

$$
s-r>(\operatorname{dim} G) / 2+d_{2} / 2-2 r=(\operatorname{dim} \mathfrak{v}) / 2+d_{2}-2 r,
$$

hence we can find $\alpha_{1}>(\operatorname{dim} \mathfrak{v}) / 2$ and $\alpha_{2}>d_{2}-2 r$ such that $s-r>\alpha_{1}+\alpha_{2}$. Set $w_{s}(z, u)=\left(1+|(z, u)|_{\delta}\right)^{\alpha}(1+|u|)^{r}$. The L^{2}-estimate (4) then follows from Proposition 12. On the other hand, for all $(z, u) \in G$,

$$
w_{s}^{-2}(z, u) \leq C_{s}(1+|z|)^{-2 \alpha_{1}}(1+|u|)^{-\alpha_{2}-2 r},
$$

and the right-hand side is integrable over $G \cong \mathfrak{v} \times \mathfrak{z}$ since $2 \alpha_{1}>\operatorname{dim} \mathfrak{v}$ and $\alpha_{2}+2 r>$ $d_{2}=\operatorname{dim} \mathfrak{z}$. Therefore, $w_{s}^{-1} \in L^{2}(G)$, and the L^{1}-estimate (5) follows from (4) and Hölder's inequality.

6 Remarks on the validity of the assumption and direct products

In this section, we do no longer suppose that G and L are a 2 -step stratified Lie group and a sublaplacian satisfying Assumption (A).

As observed in Sect. 2, a necessary condition for the validity of Assumption (A) is that the skewadjoint endomorphism J_{η} of the first layer \mathfrak{v} has constant rank for η ranging in $\dot{\mathfrak{z}}=\mathfrak{z}^{*} \backslash\{0\}$. Here, we show that this condition is also sufficient when the rank is minimal.

Proposition 13 Let G be a 2-step nilpotent Lie group, with Lie algebra $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{z}$, and let $\langle\cdot, \cdot\rangle$ be an inner product on \mathfrak{v}. Suppose that the skewadjoint endomorphism J_{η} of \mathfrak{v} has rank 2 for all $\eta \in \dot{\mathfrak{j}}$. Then, G satisfies Assumption (A) with the sublaplacian L associated to the given inner product, and also with any other sublaplacian associated to an inner product on a complement of \mathfrak{z}.

Let moreover $G_{\mathbb{C}}$ be the complexification of G, considered as a real 2 -step group, with Lie algebra $\mathfrak{g}_{\mathbb{C}}=\mathfrak{v}_{\mathbb{C}} \oplus_{\mathfrak{Z}} \mathbb{C}$, and let $\mathfrak{v}_{\mathbb{C}}$ be endowed with the real inner product induced by the inner product on \mathfrak{v}. Then, $G_{\mathbb{C}}$, with the sublaplacian associated to the given inner product, satisfies Assumption (A).

Proof From the normal form for skewadjoint endomorphisms, it follows immediately that, if J_{η} has rank 2, then J_{η}^{2} has exactly one nonzero eigenvalue, and Assumption (A) is trivially verified. Moreover, if \mathfrak{v} is identified with $\mathfrak{g} / \mathfrak{z}$, then $\operatorname{ker} J_{\eta}$ corresponds to the subspace

$$
N_{\eta}=\left\{x+\mathfrak{z}: x \in \mathfrak{g} \text { and } \eta\left(\left[x, x^{\prime}\right]\right)=0 \text { for all } x^{\prime} \in \mathfrak{g}\right\}
$$

of $\mathfrak{g} / \mathfrak{z}$; hence, the rank condition on J_{η} can be rephrased by saying that N_{η} has codimension 2 for all $\eta \in \dot{\mathfrak{z}}$, and this condition does not depend on the sublaplacian L chosen on G.

Let $R\left(J_{\eta}\right)$ denote the range of J_{η}. We show now that, for all $\eta, \eta^{\prime} \in \dot{\mathfrak{z}}$, the intersection $R\left(J_{\eta}\right) \cap R\left(J_{\eta^{\prime}}\right)$ is nontrivial. If it were trivial, since $J_{\eta+\eta^{\prime}}=J_{\eta}+J_{\eta}^{\prime}$, we would have $\operatorname{ker} J_{\eta+\eta^{\prime}}=\operatorname{ker} J_{\eta} \cap \operatorname{ker} J_{\eta^{\prime}}$, hence

$$
R\left(J_{\eta+\eta^{\prime}}\right)=\left(\operatorname{ker} J_{\eta+\eta^{\prime}}\right)^{\perp}=R\left(J_{\eta}\right) \oplus R\left(J_{\eta^{\prime}}\right),
$$

thus $J_{\eta+\eta^{\prime}}$ would have rank 4, contradiction.
Consider now the complexification $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \oplus i \mathfrak{g}$. Via the linear identifications $\mathfrak{g}_{\mathbb{C}}=$ $\mathfrak{g} \times \mathfrak{g}, \mathfrak{z}_{\mathbb{C}}^{*}=\mathfrak{z}^{*} \times \mathfrak{z}^{*}, \mathfrak{v}_{\mathbb{C}}=\mathfrak{v} \times \mathfrak{v}$, the skewsymmetric endomorphism \tilde{J}_{η} of the first layer $\mathfrak{v}_{\mathbb{C}}$ corresponding to the element $\eta=\left(\eta_{R}, \eta_{I}\right) \in \mathfrak{z}_{\mathbb{C}}^{*}$ is given by

$$
\begin{equation*}
\tilde{J}_{\eta}\left(x_{R}, x_{I}\right)=\left(J_{\eta_{R}} x_{R}+J_{\eta_{I}} x_{I}, J_{\eta_{I}} x_{R}-J_{\eta_{R}} x_{I}\right) . \tag{27}
\end{equation*}
$$

Take now $\eta=\left(\eta_{R}, \eta_{I}\right) \in \dot{\mathfrak{z}} \mathbb{C}$; we want to show that \tilde{J}_{η}^{2} has rank 4 and a unique nonzero eigenvalue. We distinguish several cases.

If $\eta_{I}=0$, then $\tilde{J}_{\eta}=J_{\eta_{R}} \times\left(-J_{\eta_{R}}\right)$, hence $\tilde{J}_{\eta}^{2}=J_{\eta_{R}}^{2} \times J_{\eta_{R}}^{2}$ satisfies the condition. The same argument gives the conclusion in the case $\eta_{R}=0$.

If both $\eta_{R}, \eta_{I} \in \dot{\mathfrak{z}}$, then $R\left(J_{\eta_{R}}\right) \cap R\left(J_{\eta_{I}}\right) \neq 0$, hence $\operatorname{dim}\left(R\left(J_{\eta_{R}}\right) \cap R\left(J_{\eta_{I}}\right)\right)$ is either 2 or 1. In the first case, $R\left(J_{\eta_{R}}\right)=R\left(J_{\eta_{I}}\right)$, so $J_{\eta_{R}}$ and $J_{\eta_{I}}$ commute and (27) implies that

$$
\tilde{J}_{\eta}^{2}=\left(J_{\eta_{R}}^{2}+J_{\eta_{I}}^{2}\right) \times\left(J_{\eta_{R}}^{2}+J_{\eta_{I}}^{2}\right) ;
$$

since $J_{\eta_{R}}^{2}$ and $J_{\eta_{I}}^{2}$ are negative multiples of the same orthogonal projection, the conclusion follows.

Suppose now that $R\left(J_{\eta_{R}}\right) \cap R\left(J_{\eta_{I}}\right)=\mathbb{R} x$ for some unit vector $x \in \mathfrak{v}$, and set $y_{R}=$ $J_{\eta_{R}} x, y_{I}=J_{\eta_{I}} x, b_{R}=\left|y_{R}\right|, b_{I}=\left|y_{I}\right|$; in particular, $J_{\eta_{R}}^{2} x=-b_{R}^{2} x$ and $J_{\eta_{I}}^{2} x=-b_{I}^{2} x$. Since $J_{\eta_{R}}$ and $J_{\eta_{I}}$ are skewadjoint and of rank 2, necessarily $J_{\eta_{R}} x, J_{\eta_{I}} x \in x^{\perp}$ and $J_{\eta_{R}}\left(x^{\perp}\right)=$ $J_{\eta_{I}}\left(x^{\perp}\right)=\mathbb{R} x$, therefore $J_{\eta_{R}} J_{\eta_{I}} x$ and $J_{\eta_{I}} J_{\eta_{R}} x$ are both multiples of x; on the other hand,

$$
\left\langle J_{\eta_{R}} J_{\eta_{I}} x, x\right\rangle=-\left\langle J_{\eta_{I}} x, J_{\eta_{R}} x\right\rangle=\left\langle x, J_{\eta_{I}} J_{\eta_{R}} x\right\rangle,
$$

hence $J_{\eta_{R}} J_{\eta_{I}} x=J_{\eta_{I}} J_{\eta_{R}} x$. This identity, together with (27), allows us easily to show that

$$
\begin{aligned}
& \tilde{J}_{\eta}(x, 0)=\left(y_{R}, y_{I}\right), \quad \tilde{J}_{\eta}\left(y_{R}, y_{I}\right)=-\left(b_{R}^{2}+b_{I}^{2}\right)(x, 0), \\
& \tilde{J}_{\eta}(0, x)=\left(y_{I},-y_{R}\right), \quad \tilde{J}_{\eta}\left(y_{I},-y_{R}\right)=-\left(b_{R}^{2}+b_{I}^{2}\right)(0, x) .
\end{aligned}
$$

Note that $b_{R}^{2}+b_{I}^{2}$ is the squared norm of both $\left(y_{R}, y_{I}\right)$ and $\left(y_{I},-y_{R}\right)$. Hence, we would be done if we knew that $R\left(\tilde{J}_{\mu}\right)$ coincides with the linear span W of $(x, 0),(0, x),\left(y_{R}, y_{I}\right),\left(y_{I},-y_{R}\right)$.

In fact, we just need to show that $R\left(\tilde{J}_{\eta}\right)$ is contained in W, or equivalently, that W^{\perp} is contained in ker \tilde{J}_{η}. On the other hand, if $v=\left(v_{R}, v_{I}\right) \in W^{\perp}$, then $v_{R}, v_{I} \in x^{\perp}$ and moreover

$$
\left\langle v_{R}, y_{R}\right\rangle+\left\langle v_{I}, y_{I}\right\rangle=0, \quad\left\langle v_{R}, y_{I}\right\rangle-\left\langle v_{I}, y_{R}\right\rangle=0,
$$

hence $J_{\eta_{R}} v_{R}, J_{\eta_{R}} v_{I}, J_{\eta_{I}} v_{R}, J_{\eta_{I}} v_{I} \in \mathbb{R} x$, and

$$
\begin{aligned}
\left\langle J_{\eta_{R}} v_{R}, x\right\rangle & =-\left\langle v_{R}, y_{R}\right\rangle=\left\langle v_{I}, y_{I}\right\rangle=-\left\langle J_{\eta_{I}} v_{I}, x\right\rangle, \\
\left\langle J_{\eta_{I}} v_{R}, x\right\rangle & =-\left\langle v_{R}, y_{I}\right\rangle=-\left\langle v_{I}, y_{R}\right\rangle=\left\langle J_{\eta_{R}} v_{I}, x\right\rangle,
\end{aligned}
$$

therefore $J_{\eta_{R}} v_{R}=-J_{\eta_{I}} v_{I}$ and $J_{\eta_{I}} v_{R}=J_{\eta_{R}} v_{I}$, from which it follows immediately that $\tilde{J}_{\eta}\left(v_{R}, v_{I}\right)=0$.

The next proposition shows how groups and sublaplacians satisfying Assumption (A) may be "glued together", so to give a higher-dimensional group and a sublaplacian that satisfy Assumption (A) too.

Proposition 14 Suppose that, for $j=1,2$, the sublaplacian L_{j} on the 2 -step stratified Lie group G_{j} satisfies Assumption (A). Suppose further that the centers of G_{1} and G_{2} have the same dimension. Let G be the quotient of $G_{1} \times G_{2}$ given by any linear identification of the respective centers, and let $L=L_{1}^{\sharp}+L_{2}^{\sharp}$, where L_{j}^{\sharp} is the pushforward of L_{j} to G. Then, the sublaplacian L on the group G satisfies Assumption (A).

Proof Let \mathfrak{g}_{j} be the Lie algebra of G_{j}, and let \mathfrak{v}_{j} and $\langle\cdot, \cdot\rangle_{j}$ be the linear complement of the center $\mathfrak{z} j$ and the inner product on \mathfrak{v}_{j} determined by the sublaplacian L_{j}; denote moreover by $J_{j, \eta}$ the skewadjoint endomorphism of \mathfrak{v}_{j} determined by $\eta \in \mathfrak{z}_{j}^{*}$.

The linear identification of the centers of G_{1} and G_{2} corresponds to a linear isomorphism $\phi: \mathfrak{z}_{1} \rightarrow \mathfrak{z}_{2}$, and the Lie algebra \mathfrak{g} of the quotient G can be identified with $\mathfrak{v}_{1} \times \mathfrak{v}_{2} \times \mathfrak{z}_{2}$, with Lie bracket

$$
\left[\left(v_{1}, v_{2}, z\right),\left(v_{1}^{\prime}, v_{2}^{\prime}, z^{\prime}\right)\right]=\left(0,0, \phi\left(\left[v_{1}, v_{1}^{\prime}\right]\right)+\left[v_{2}, v_{2}^{\prime}\right]\right)
$$

Then, the sublaplacian L on G corresponds to the inner product $\langle\cdot, \cdot\rangle$ on $\mathfrak{v}_{1} \times \mathfrak{v}_{2}$ defined by

$$
\left\langle\left(v_{1}, v_{2}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right\rangle=\left\langle v_{1}, v_{1}^{\prime}\right\rangle_{1}+\left\langle v_{2}, v_{2}^{\prime}\right\rangle_{2} .
$$

In particular, if $\phi^{*}: \mathfrak{z}_{2}^{*} \rightarrow \mathfrak{z}_{1}^{*}$ denotes the adjoint map of $\phi: \mathfrak{z}_{1} \rightarrow \mathfrak{z}_{2}$, then it is easily checked that the skewadjoint endomorphism of the first layer $\mathfrak{v}_{1} \times \mathfrak{v}_{2}$ of \mathfrak{g} corresponding to an element η of the dual \mathfrak{z}_{2}^{*} of the center of \mathfrak{g} is given by $J_{\eta}=J_{1, \phi^{*} \eta} \times J_{2, \eta}$. Hence, the orthogonal decomposition of $\mathfrak{v}_{1} \times \mathfrak{v}_{2}$ giving the "simultaneous diagonalization" of the J_{η} for all $\eta \in \dot{\mathfrak{j}}_{2}$ (in the sense of Sect. 2) is simply obtained by juxtaposing the corresponding orthogonal decompositions of \mathfrak{v}_{1} and \mathfrak{v}_{2}.

Note that the direct product $G_{1} \times G_{2}$ itself need not satisfy Assumption (A), even if the factors G_{1} and G_{2} do. However, a functional-analytic argument, as in [24, §4], can be used to deal with that case.

The key step in our proof of Theorem 2 is the weighted L^{2}-estimate (4) of Proposition 3. Let us now turn the conclusion of Proposition 3 into an assumption on a homogeneous sublaplacian L on a stratified group G.

Assumption $\left(\mathrm{B}_{t}\right)$. For all $s>t$, there exist a weight $w_{s}: G \rightarrow[1, \infty[$ such that $w_{s}^{-1} \in L^{2}(G)$ and, for all compact sets $K \subseteq \mathbb{R}$ and all Borel functions $F: \mathbb{R} \rightarrow \mathbb{C}$ with $\operatorname{supp} F \subseteq K$,

$$
\begin{equation*}
\left\|w_{s} \mathcal{K}_{F(L)}\right\|_{L^{2}(G)} \leq C_{K, s}\|F\|_{W_{2}^{s}(\mathbb{R})} . \tag{28}
\end{equation*}
$$

Our Proposition 3 can then be rephrased by saying that Assumption (A) implies Assumption $\left(\mathrm{B}_{t}\right)$ for $t=(\operatorname{dim} G) / 2$. Note, on the other hand, that Assumption $\left(\mathrm{B}_{t}\right)$ makes sense for homogeneous sublaplacians on stratified groups G of step other than 2 . In fact, every homogeneous sublaplacian on a stratified group of homogeneous dimension Q satisfies Assumption $\left(\mathrm{B}_{t}\right)$ for $t=Q / 2$, by [21, Lemma 1.2] (suitably extended so to admit multipliers that do not vanish in a neighborhood of the origin of \mathbb{R}; see, e.g., [24, Lemma 3.1] for the 1-dimensional case, and [17, Theorem 2.7] for the higher-dimensional case).

Differently from Assumption (A), the new Assumption (B_{t}) "behaves well" under direct products.

Proposition 15 For $j=1, \ldots, n$, let L_{j} be a homogeneous sublaplacian on a stratified Lie group G_{j} satisfying Assumption $\left(\mathrm{B}_{t_{j}}\right)$ for some $t_{j}>0$. Let $G=G_{1} \times \cdots \times G_{n}$ and $L=L_{1}^{\sharp}+\cdots+L_{n}^{\sharp}$, where L_{j}^{\sharp} is the pushforward to G of the operator L_{j}. Then, the sublaplacian L on G satisfies Assumption $\left(\mathrm{B}_{t}\right)$, where $t=t_{1}+\cdots+t_{n}$.

Proof Take $s>t$. Then, we can choose s_{1}, \ldots, s_{n} such that $s_{1}>t_{1}, \ldots, s_{n}>t_{n}$ and $s=s_{1}+\cdots+s_{n}$. Let then $w_{j, s_{j}}: G_{j} \rightarrow\left[1, \infty\left[\right.\right.$ be the weight corresponding to s_{j} given by Assumption $\left(\mathrm{B}_{t_{j}}\right)$ on G_{j} and L_{j}, for $j=1, \ldots, n$. In particular, $w_{j, s_{j}}^{-1} \in L^{2}\left(G_{j}\right)$ and, for all $\phi \in C_{c}^{\infty}(\mathbb{R})$, the map $F \mapsto \mathcal{K}_{(\phi F)\left(L_{j}\right)}$ is a bounded linear map of Hilbert spaces $W_{2}^{s_{j}}(\mathbb{R}) \rightarrow L^{2}\left(G_{j}, w_{j, s_{j}}^{2}\left(x_{j}\right) d x_{j}\right)$, where $d x_{j}$ denotes the Haar measure on G_{j}.

The operators $L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}$ are essentially self-adjoint and commute strongly, that is, they admit a joint spectral resolution and a joint functional calculus on $L^{2}(G)$, and moreover, for all bounded Borel functions $F_{1}, \ldots, F_{n}: \mathbb{R} \rightarrow \mathbb{C}$,

$$
\mathcal{K}_{\left(F_{1} \otimes \cdots \otimes F_{n}\right)\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)}=\mathcal{K}_{F_{1}\left(L_{1}\right)} \otimes \cdots \otimes \mathcal{K}_{F_{n}\left(L_{n}\right)}
$$

[16, Corollary 5.5]. Hence, for all $\phi_{1}, \ldots, \phi_{n} \in C_{c}^{\infty}(\mathbb{R})$, if $\phi=\phi_{1} \otimes \cdots \otimes \phi_{n}$, then the map $H \mapsto \mathcal{K}_{(\phi H)\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)}$ is the tensor product of the maps $F_{j} \mapsto \mathcal{K}_{\left(\phi_{j} F_{j}\right)\left(L_{j}\right)}$. Since these maps are bounded $W_{2}^{s_{j}}(\mathbb{R}) \rightarrow L^{2}\left(G_{j}, w_{j, s_{j}}^{2}\left(x_{j}\right) d x_{j}\right)$, the map $H \mapsto \mathcal{K}_{(\phi H)\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)}$ is bounded $S_{2}^{\left(s_{1}, \ldots, s_{n}\right)} W\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(G, w_{s}^{2}(x) d x\right)$, where $S_{2}^{\left(s_{1}, \ldots, s_{n}\right)} W\left(\mathbb{R}^{n}\right)=W_{2}^{s_{1}}(\mathbb{R}) \otimes \cdots \otimes W_{2}^{s_{n}}(\mathbb{R})$ is the L^{2} Sobolev space with dominating mixed smoothness [25] of order $\left(s_{1}, \ldots, s_{n}\right)$, and $w_{s}=w_{1, s_{1}} \otimes \cdots \otimes w_{n, s_{n}}$ is the product weight on G. In particular, for all compact sets $K \subseteq \mathbb{R}$, if we choose the cutoffs $\phi_{j} \in C_{c}^{\infty}(\mathbb{R})$ so that $\left.\phi_{j}\right|_{K}=1$, then we deduce that, for all $H: \mathbb{R}^{n} \rightarrow \mathbb{C}$ with supp $H \subseteq K^{n}$,

$$
\left\|w_{s} \mathcal{K}_{H\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)}\right\|_{L^{2}(G)} \leq C_{K, s}\|H\|_{S_{2}^{\left(s_{1}, \ldots, s_{n}\right)} W\left(\mathbb{R}^{n}\right)}
$$

(cf. [17, Proposition 5.2]). Since

$$
\begin{aligned}
\|f\|_{S_{2}^{\left(s_{1}, \ldots, s_{n}\right)} W\left(\mathbb{R}^{n}\right)}^{2} & \sim \int_{\mathbb{R}^{n}}|\hat{f}(\xi)|^{2}\left(1+\left|\xi_{1}\right|\right)^{2 s_{1}} \cdots\left(1+\left|\xi_{n}\right|\right)^{2 s_{n}} d \xi \\
& \leq \int_{\mathbb{R}^{n}}|\hat{f}(\xi)|^{2}(1+|\xi|)^{2 s_{1}+\cdots+2 s_{n}} d \xi \sim\|f\|_{W_{2}^{s}\left(\mathbb{R}^{n}\right)}^{2},
\end{aligned}
$$

where \hat{f} denotes the Euclidean Fourier transform of f, we see immediately that the estimate

$$
\begin{equation*}
\left\|w_{s} \mathcal{K}_{H\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)}\right\|_{L^{2}(G)} \leq C_{K, s_{1}, \ldots, s_{n}}\|H\|_{W_{2}^{s}\left(\mathbb{R}^{n}\right)} \tag{29}
\end{equation*}
$$

holds true whenever $K \subseteq \mathbb{R}$ is compact and $H: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is supported in K^{n}.
Take now a compact set $K \subseteq \mathbb{R}$ and choose a smooth cutoff $\eta_{K} \in C_{c}^{\infty}(\mathbb{R})$ such that $\left.\eta_{K}\right|_{[0, \max K]}=1$. Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be such that $\operatorname{supp} F \subseteq K$, and define $H: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by

$$
H\left(\lambda_{1}, \ldots, \lambda_{n}\right)=F\left(\lambda_{1}+\cdots+\lambda_{n}\right) \eta_{K}\left(\lambda_{1}\right) \ldots \eta_{K}\left(\lambda_{n}\right)
$$

for all $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$. Then, supp $H \subseteq\left(\operatorname{supp} \eta_{K}\right)^{n}$, and

$$
F\left(\lambda_{1}+\cdots+\lambda_{n}\right)=H\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

for all $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left[0, \infty\left[{ }^{n}\right.\right.$. Since the operators L_{1}, \ldots, L_{n} are nonnegative, the joint spectrum of $L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}$ is contained in $[0, \infty[n$, hence

$$
F(L)=F\left(L_{1}^{\sharp}+\cdots+L_{n}^{\sharp}\right)=H\left(L_{1}^{\sharp}, \ldots, L_{n}^{\sharp}\right)
$$

Consequently, by (29) and the smoothness of the map $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \lambda_{1}+\cdots+\lambda_{n}$, we obtain that

$$
\left\|w_{s} \mathcal{K}_{F(L)}\right\|_{L^{2}(G)} \leq C_{K, s}\|H\|_{W_{2}^{s}\left(\mathbb{R}^{n}\right)} \leq C_{K, s}\|F\|_{W_{2}^{s}(\mathbb{R})}
$$

Since clearly $w_{s}^{-1}=w_{1, s_{1}}^{-1} \otimes \cdots \otimes w_{n, s_{n}}^{-1} \in L^{2}(G)$, we are done.

The previous results, together with the known weighted estimates for abelian [24, Lemma 3.1] and Métivier [12,13,17] groups, then yield the following extension of Theorem 2.

Theorem 16 For $j=1, \ldots, n$, suppose that L_{j} is a homogeneous sublaplacian on a stratified Lie group G_{j}. Suppose further that, for each $j \in\{1, \ldots, n\}$, at least one of the following conditions holds:

- G_{j} and L_{j} satisfy Assumption (A);
- G_{j} is a Métivier group;
- G_{j} is abelian.

Let $G=G_{1} \times \cdots \times G_{n}$ and $L=L_{1}^{\sharp}+\cdots+L_{n}^{\sharp}$, as in Proposition 15. If $F: \mathbb{R} \rightarrow \mathbb{C}$ satisfies

$$
\|F\|_{M W_{2}^{s}}<\infty
$$

for some $s>(\operatorname{dim} G) / 2$, then $F(L)$ is of weak type $(1,1)$ and bounded on $L^{p}(G)$ for all $p \in] 1, \infty[$.

[^1]
References

1. Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Am. Math. Soc. 120(3), 973-979 (1994)
2. Astengo, F., Cowling, M., Di Blasio, B., Sundari, M.: Hardy's uncertainty principle on certain Lie groups. J. Lond. Math. Soc. (2) 62(2), 461-472 (2000)
3. Astengo, F., Di Blasio, B., Ricci, F.: Gelfand pairs on the Heisenberg group and Schwartz functions. J. Funct. Anal. 256(5), 1565-1587 (2009)
4. Christ, M.: L^{p} bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328(1), 73-81 (1991)
5. Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on $\operatorname{SU}(2)$. Math. Z. 238(1), 1-36 (2001)
6. Cowling, M., Klima, O., Sikora, A.: Spectral multipliers for the Kohn sublaplacian on the sphere in \mathbb{C}^{n}. Trans. Am. Math. Soc. 363(2), 611-631 (2011)
7. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443-485 (2002)
8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. Robert E. Krieger Publishing Co., Inc., Melbourne (1981)
9. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)
10. Folland, G.B.: Harmonic Analysis in Phase Space. Ann. Math. Stud. vol. 122. Princeton University Press, Princeton (1989)
11. Hebisch, W.: Functional calculus for slowly decaying kernels (1995). Preprint. Available on the web at http://www.math.uni.wroc.pl/~hebisch/
12. Hebisch, W.: Multiplier theorem on generalized Heisenberg groups. Colloq. Math. 65(2), 231-239 (1993)
13. Hebisch, W., Zienkiewicz, J.: Multiplier theorem on generalized Heisenberg groups. II. Colloq. Math. 69(1), 29-36 (1995)
14. Martini, A., Müller, D.: A sharp multiplier theorem for Grushin operators in arbitrary dimensions (2012). To appear in, Rev. Mat. Iberoam. arXiv:1210.3564
15. Martini, A.: Algebras of differential operators on Lie groups and spectral multipliers. Tesi di perfezionamento (PhD thesis), Scuola Normale Superiore, Pisa (2010). arXiv:1007.1119
16. Martini, A.: Spectral theory for commutative algebras of differential operators on Lie groups. J. Funct. Anal. 260(9), 2767-2814 (2011)
17. Martini, A.: Analysis of joint spectral multipliers on Lie groups of polynomial growth. Ann. Inst. Fourier (Grenoble) 62(4), 1215-1263 (2012)
18. Martini, A., Sikora, A.: Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators. Math. Res. Lett. 19(5), 1075-1088 (2012)
19. Martini, A., Müller, D.: L^{p} spectral multipliers on the free group $N_{3,2}$. Studia Math. 217(1), 41-55 (2013)
20. Mauceri, G., Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6(3-4), 141-154 (1990)
21. De Michele, L., Mauceri, G.: L^{p} multipliers on the Heisenberg group. Mich. Math. J. 26(3), 361-371 (1979)
22. Müller, D.: A restriction theorem for the Heisenberg group. Ann. Math. (2) 131(3), 567-587 (1990)
23. Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. (9) 73(4), 413-440 (1994)
24. Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II. Math. Z. 221(2), 267-291 (1996)
25. Schmeisser, H.J.: Recent developments in the theory of function spaces with dominating mixed smoothness. In: Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, May 30-June 6, 2006, vol. 8, pp. 145-204. Czech Academy of Sciences, Mathematical Institute, Praha (2007)
26. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions, Mathematical Notes, vol. 42. Princeton University Press, Princeton (1993)
27. Torres Lopera, J.F.: The cohomology and geometry of Heisenberg-Reiter nilmanifolds. In: Differential geometry, Peñíscola 1985, Lecture Notes in Math., vol. 1209, pp. 292-301. Springer, Berlin (1986)

[^0]: A. Martini (\boxtimes)

 Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24118 Kiel, Germany
 e-mail: martini@math.uni-kiel.de

[^1]: Acknowledgments I gratefully acknowledge the financial support of the Alexander von Humboldt Foundation. I am deeply grateful to Detlef Müller for stimulating discussions and his continuous encouragement. I am also grateful for the opportunity of visiting the Mathematical Institute of the University of Wrocław in the first bimester of 2011; numerous discussions, particularly with Jacek Dziubański and Waldemar Hebisch, have greatly contributed to my understanding of problems related to spectral multipliers.

