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Abstract Let L be a homogeneous sublaplacian on a 2-step stratified Lie group G of topo-
logical dimension d and homogeneous dimension Q. By a theorem due to Christ and to
Mauceri and Meda, an operator of the form F(L) is bounded on L p for 1 < p < ∞ if F sat-
isfies a scale-invariant smoothness condition of order s > Q/2. Under suitable assumptions
on G and L , here we show that a smoothness condition of order s > d/2 is sufficient. This
extends to a larger class of 2-step groups the results for the Heisenberg and related groups
by Müller and Stein and by Hebisch and for the free group N3,2 by Müller and the author.
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1 Introduction

Let L be a homogeneous sublaplacian on a stratified Lie groupG of homogeneous dimension
Q. Since L is a positive self-adjoint operator on L2(G), a functional calculus for L is defined
via the spectral theoremand, for all Borel functions F : R → C, the operator F(L) is bounded
on L2(G) whenever the “spectral multiplier” F is bounded. As for the L p-boundedness for
p �= 2 of F(L), a sufficient condition in terms of smoothness properties of the multiplier F
is given by a theorem of Mihlin–Hörmander type due to Christ [4] and Mauceri and Meda
[20]: the operator F(L) is of weak type (1, 1) and bounded on L p(G) for all p ∈ ]1,∞[
whenever

‖F‖MWs
2

:= sup
t>0

‖F(t ·) η‖Ws
2

< ∞
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1136 A. Martini

for some s > Q/2, where Ws
2 (R) is the L2 Sobolev space of fractional order s, and

η ∈ C∞
c (]0,∞[) is a nontrivial auxiliary function.

A natural question that arises is whether the smoothness condition s > Q/2 is sharp.
This is clearly true when G is abelian, so Q coincides with the topological dimension d of
G, and L is essentially the Laplace operator on R

d . Take, however, the smallest nonabelian
example of a stratified group, that is, the Heisenberg group H1, which is defined by endowing
R × R × R with the group law

(x, y, u) · (x ′, y′, u′) = (
x + x ′, y + y′, u + u′ + (

xy′ − x ′y
)
/2

)
(1)

and with the automorphic dilations

δt (x, y, u) = (
t x, t y, t2u

)
. (2)

H1 is a 2-step stratified group, and the homogeneous dimension of H1 is 4. Nevertheless, a
result byMüller and Stein [23] and Hebisch [12] shows that, for a homogeneous sublaplacian
on H1, the smoothness condition on the multiplier can be pushed down to s > d/2, where
d = 3 is the topological dimension of H1 (in [23], it is also proved that the condition
s > d/2 is sharp). Such an improvement of the Christ–Mauceri–Meda theorem holds not
only for H1, but for the larger class of Métivier groups (and for direct products of Métivier
and abelian groups), and also for differential operators other than sublaplacians (see, e.g.,
[13,17]);moreover, as shown subsequently byCowling and Sikora [5] (see also [6]), the sharp
result on H1 can be obtained by transplantation from an analogous result for a distinguished
sublaplacian on the (nonstratified) group SU2 (which in turn improves, in the case of SU2, an
extension of the Christ–Mauceri–Meda theorem to spaces of homogeneous type [1,7,11]).
However, it is still an open question whether, for a general stratified Lie group (or even for
a general 2-step stratified group), the homogeneous dimension in the smoothness condition
can be replaced by the topological dimension.

The aim of this paper is to extend the class of the 2-step stratified groups and sublaplacians
for which the smoothness condition in the multiplier theorem can be pushed down to half the
topological dimension.

Take for instance the Heisenberg–Reiter group Hd1,d2 (cf. [27]), defined by endowing
R
d2×d1 ×R

d1 ×R
d2 with the group law (1) and the automorphic dilations (2); here, however,

R
d2×d1 is the set of the real d2×d1 matrices, and the products xy′, x ′y in (1) are interpreted in

the sense of matrix multiplication. Hd1,d2 is a 2-step stratified group of homogeneous dimen-
sion Q = d1d2+d1+2d2 and topological dimension d = d1d2+d1+d2. Despite the formal
similarity with H1, the group Hd1,d2 does not fall into the class of Métivier groups, unless
d2 = 1 (in fact, Hd1,1 is the (2d1 +1)-dimensional Heisenberg group Hd1 ). Nevertheless, the
technique presented here allows one to handle the case d2 > 1 too.

Namely, let X1,1, . . . , Xd2,d1 , Y1, . . . , Yd1 ,U1, . . . ,Ud2 be the left-invariant vector fields
on Hd1,d2 extending the standard basis of R

d2×d1 × R
d1 × R

d2 at the identity, and define the
homogeneous sublaplacian L by

L = −
d1∑

j=1

d2∑

k=1

X2
k, j −

d1∑

j=1

Y 2
j .

Then, a particular instance of our main result reads as follows.

Theorem 1 Suppose that a function F : R → C satisfies

‖F‖MWs
2

< ∞
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Heisenberg–Reiter and related groups 1137

for some s > d/2. Then, the operator F(L) is of weak type (1, 1) and bounded on L p(Hd1,d2)

for all p ∈ ]1,∞[.

To the best of our knowledge, this result is new, at least in the case d2 > d1. In fact, in the
case d2 ≤ d1, the extension described in [17] of the technique of [12,13] would give the same
result. However, the technique presented here is different, and yields the result irrespective
of the parameters d1, d2.

The left quotient of Hd1,d2 by the subgroupR
d2×d1 ×{0}×{0} gives a homogeneous space

diffeomorphic to R
d1 ×R

d2 , and the sublaplacian L corresponds in the quotient to a Grushin
operator. In recent joint works with Sikora [18] andMüller [14], we proved for these Grushin
operators onRd1 ×R

d2 a sharp spectral multiplier theorem ofMihlin–Hörmander type, where
the smoothness requirement is again half the topological dimension of the ambient space.

The proofs in [14,18] rely heavily on properties of the eigenfunction expansions for the
Hermite operators. Since a homogeneous sublaplacian on a 2-step stratified group reduces
to a Hermite operator in almost all irreducible unitary representations of the group, it is
conceivable that an adaptation of the methods of [14,18] may give an improvement to the
multiplier theorem for 2-step stratified groups, even outside of the Métivier setting. A first
result in this direction is shown in [19], where the free 2-step nilpotent Lie group N3,2 on three
generators is considered, and properties of Laguerre polynomials are exploited (somehow in
the spirit of [21,23,24]). The argument presented here refines and extends the one in [19].

Theorem 1 above is just a particular case of the result presented here, and we refer the
reader to the next section for a precise statement. We remark that the analog of Theorem 1
holds on Hd1,d2 when the sublaplacian L has the more general form

L = −
d1∑

j=1

d2∑

k,k′=0

a j
k,k′ Xk, j Xk′, j (3)

where X0, j = Y j and (a j
k,k′)k,k′=0,...,d2 is a positive-definite symmetric matrix for all

j ∈ {1, . . . , d1}. Other groups can be considered too, e.g., the complexification of a
Heisenberg–Reiter group, or the quotient of the direct product of H1,3 and N3,2 given by
identifying the respective centers.

2 The general setting

Let G be a connected, simply connected nilpotent Lie group of step 2. Recall that, via
exponential coordinates, G may be identified with its Lie algebra g, that is, the tangent space
of G at the identity. In turn, g may be identified with the Lie algebra of left-invariant vector
fields on G. We refer to [9] for the basic definitions and further details.

Let g be decomposed as v ⊕ z, where z is the center of g, and let 〈·, ·〉 be an inner product
on v. The sublaplacian L associated with the inner product is defined by L = −∑

j X
2
j ,

where {X j } j is any orthonormal basis of v. Note that, vice versa, by the Poincaré–Birkhoff–
Witt theorem, any second-order operator L of the form −∑

j X
2
j for some basis {X j } j of g

modulo z determines uniquely a linear complement v = span{X j } j of z and an inner product
on v such that {X j } j is orthonormal.

Let z∗ be the dual of z and, for all η ∈ z∗, define Jη as the linear endomorphism of v such
that η([z, z′]) = 〈Jηz, z′〉 for all z, z′ ∈ v. Clearly, Jη is skewadjoint with respect to the inner
product; hence, J 2η is self-adjoint and negative semidefinite, with even rank, for all η ∈ z∗.
Set moreover ż = z∗\{0}.
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1138 A. Martini

Assumption (A) There exist integers r1, . . . , rd1 > 0 and an orthogonal decomposition
v = v1 ⊕ · · · ⊕ vd1 such that, if P1, . . . , Pd1 are the corresponding orthogonal projections,
then JηPj = Pj Jη and J 2η Pj has rank 2r j and a unique nonzero eigenvalue for all η ∈ ż

and all j ∈ {1, . . . , d1}.
Note that from Assumption (A) it follows that Jη �= 0 for all η ∈ ż. Therefore [v, v] = z,

that is, the decomposition g = v ⊕ z is a stratification of g, and the sublaplacian L is
hypoelliptic.

In fact, Jη has constant rank 2(r1 + · · · + rk) for all η ∈ ż. If Jη is invertible for all η ∈ ż,
then G is a Métivier group, and if in particular J 2η = −|η|2idv for some inner product norm
| · | on z∗, then G is an H-type group. The main novelty of our Assumption (A) is that it
allows Jη to have a nonzero kernel when η ∈ ż, although the dimension of the kernel must
be constant.

The fact that Jη has constant rank for η ∈ ż depends only on the algebraic structure of
G. What depends on the inner product, that is, on the sublaplacian L , are the values and
multiplicities of the eigenvalues of the Jη. The above Assumption (A) asks for a sort of
simultaneous diagonalizability of the Jη.

Under our Assumption (A) on the group G and the sublaplacian L , we are able to prove
the following multiplier theorem.

Theorem 2 Suppose that a function F : R → C satisfies

‖F‖MWs
2

< ∞
for some s > (dimG)/2. Then, the operator F(L) is of weak type (1, 1) and bounded on
L p(G) for all p ∈ ]1,∞[.

The previously mentioned Heisenberg–Reiter groups Hd1,d2 satisfy Assumption (A),
where the inner product is determined by the sublaplacian (3), and the orthogonal decompo-
sition of the first layer is given by the natural isomorphism R

d2×d1 × R
d1 ∼= (Rd2 × R)d1 .

Other examples are the free 2-step nilpotent Lie group N3,2 on 3 generators, considered in
[19], and its complexification NC

3,2. Moreover, if G1 and G2 satisfy Assumption (A), and
their centers have the same dimension, then the quotient of G1 × G2 given by any linear
identification of the centers satisfy Assumption (A). Note that the direct product G1 × G2

itself does not satisfy Assumption (A), but an adaptation of the argument presented here
allows one to consider that case too. We postpone to the end of this paper a more detailed
discussion of these remarks.

From now on, unless otherwise specified, we assume that G and L are a 2-step stratified
group and a homogeneous sublaplacian on G satisfying Assumption (A). Since L is a left-
invariant operator, so is any operator of the form F(L). Let KF(L) denote the convolution
kernel of F(L). As shown, e.g., by [17, Theorem 4.6], the previous theorem is a consequence
of the following estimate.

Proposition 3 For all s > (dimG)/2, there exists a weight ws : G → [1,∞[ such that
w−1
s ∈ L2(G) and, for all compact sets K ⊆ R and for all functions F : R → C with

supp F ⊆ K,

‖ws KF(L) ‖2 ≤ CK ,s‖F‖Ws
2
; (4)

in particular,

‖KF(L) ‖1 ≤ CK ,s‖F‖Ws
2
. (5)

The rest of the paper, except for the last section, is devoted to the proof of this estimate.
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Heisenberg–Reiter and related groups 1139

3 The joint functional calculus

Let d2 = dim z, and let U1, . . . ,Ud2 be any basis of the center z. Let moreover the “partial
sublaplacian” L j be defined as L j = −∑

l X
2
j,l , where {X j,l}l is any orthonormal basis

of v j , for all j ∈ {1, . . . , d1}; in particular L = L1 + · · · + Ld1 . Then, the left-invariant
differential operators

L1, . . . , Ld1 ,−iU1, . . . ,−iUd2 (6)

are essentially self-adjoint and commute strongly; hence, they admit a joint functional cal-
culus (see, e.g., [16]). Therefore, if L and U denote the “vectors of operators” (L1, . . . , Ld1)

and (−iU1, . . . ,−iUd2), and if we identify z∗ with R
d2 via the dual basis of U1, . . . ,Un ,

then, for all bounded Borel functions H : Rd1 ×z∗ → C, the operator H(L, U) is defined and
bounded on L2(G). Moreover, H(L, U) is left-invariant, and we can express its convolution
kernel KH(L,U) in terms of Laguerre functions.

Namely, for all n, k ∈ N, let

L(k)
n (t) = t−ket

n!
(
d

dt

)n (
tk+ne−t

)

be the n-th Laguerre polynomial of type k, and define

L(k)
n (t) = (−1)ne−t L(k)

n (2t).

Note that, by Assumption (A), for all η ∈ ż and j ∈ {1, . . . , d1},

J 2η Pj = −
(
bη
j

)2
Pη
j

for some orthogonal projection Pη
j of rank 2r j and some bη

j > 0. Set moreover

P̄η
j = Pj − Pη

j .

Modulo reordering the v j in the decomposition of v, we may suppose that there exists
d̃1 ∈ {0, . . . , d1} such that dim v j > 2r j if j ≤ d̃1, and dim v j = 2r j if j > d̃1. In
particular, P̄η

j = 0 and Pη
j = Pj for all j > d̃1 and η ∈ ż. We will also use the abbreviations

r = (r1, . . . , rd1), R
r = R

r1 × · · · × R
rd1 , Nr = N

r1 × · · · × N
rd1 , |r | = r1 + · · · + rd1 .

Moreover 〈·, ·〉 will also denote the duality pairing z∗ × z → R.

Proposition 4 Let H : Rd1 × z∗ → C be in the Schwartz class, and set

m (n, μ, η) = H
(
(2n1 + r1)b

η
1 + μ1, . . . ,

(
2nd̃1 + rd̃1

)
bη

d̃1
+ μd̃1

,

(
2nd̃1+1 + rd̃1+1

)
bη

d̃1+1
, . . . ,

(
2nd1 + rd1

)
bη
d1

, η
)

(7)

for all n ∈ N
d1 , μ ∈ R

d̃1 , η ∈ ż. Then, for all (z, u) ∈ G,

KH(L,U)(z, u) = 2|r |

(2π)dimG

∫

ż

∫

v

∑

n∈Nd1

m
(
n,

(
|P̄η

1 ξ |2, . . . , |P̄η

d̃1
ξ |2

)
, η

)

×
⎡

⎣
d1∏

j=1

L(r j−1)
n j

(
|Pη

j ξ |2/bη
j

)
⎤

⎦ ei〈ξ,z〉 ei〈η,u〉 dξ dη. (8)

123



1140 A. Martini

Proof For all η ∈ ż and j ∈ {1, . . . , d1}, let Eη
j,1, Ē

η
j,1, . . . , E

η
j,r j

, Ēη
j,r j

be an orthonormal

basis of the range of Pη
j such that

JηE
η
j,l = bη

j Ē
η
j,l , Jη Ē

η
j,l = −bη

j E
η
j,l , for l = 1, . . . , r j .

Hence, for all z ∈ v, η ∈ ż, and j ∈ {1, . . . , d1}, we can write

Pη
j z =

r j∑

l=1

(
zηj,l E

η
j + z̄ηj,l Ē

η
j,l

)

for some uniquely determined zηj,l , z̄
η
j,l ∈ R; set then zηj = (zηj,1, . . . , z

η
j,r j

), z̄ηj =
(z̄ηj,1, . . . , z̄

η
j,r j

), and moreover zη = (zη1, . . . , z
η
d1

) and z̄η = (z̄η1, . . . , z̄
η
d1

).

For all η ∈ ż and all ρ ∈ ker Jη, an irreducible unitary representation πη,ρ of G on L2(Rr )

is defined by

πη,ρ(z, u)φ(v) = ei〈η,u〉ei〈ρ,P̄ηz〉ei
∑d1

j=1 b
η
j 〈v j+zηj /2,z̄

η
j 〉φ(zη + v)

for all (z, u) ∈ G, v ∈ R
r , φ ∈ L2(Rr ), where P̄η = P̄η

1 + · · · + P̄η

d̃1
is the orthogonal

projection onto ker Jη. Following, e.g., [2, §2], one can see that these representations are
sufficient to write the Plancherel formula for the group Fourier transform of G, and the
corresponding Fourier inversion formula:

f (z, u) = (2π)|r |−dimG
∫

ż

∫

ker Jη

tr(πη,ρ(z, u) πη,ρ( f ))
d1∏

j=1

(
bη
j

)r j
dρ dη (9)

for all f : G → C in the Schwartz class and all (z, u) ∈ G, where πη,ρ( f ) =∫
G f (g) πη,ρ(g−1) dg.
Fix η ∈ ż and ρ ∈ ker Jη. The operators (6) are represented in πη,ρ as

dπη,ρ(L j ) = −Δ2
v j

+
(
bη
j

)2 |v j |2 + |Pjρ|2, dπη,ρ(−iUk) = ηk, (10)

for all j ∈ {1, . . . , d1} and k ∈ {1, . . . , d2}, where v j ∈ R
r j denotes the j-th component of

v ∈ R
r , andΔv j denotes the corresponding partial Laplacian. Let h	 denote the 	-th Hermite

function, that is,

h	(t) = (−1)	(	! 2	
√

π)−1/2et
2/2

(
d

dt

)	

e−t2 ,

and, for all ω ∈ N
r , define h̃η,ω : Rr → R by

h̃η,ω = h̃η,ω,1 ⊗ · · · ⊗ h̃η,ω,d1 , h̃η,ω, j (v j ) =
(
bη
j

)r j /4
r j∏

l=1

hω j,l

((
bη
j

)1/2
v j,l

)
,

for all j ∈ {1, . . . , d1}, where ω j,l and v j,l denote the l-th components of ω j ∈ N
r j and

v j ∈ R
r j . Then, {h̃η,ω}ω∈Nr is a complete orthonormal system for L2(Rr ), made of joint

eigenfunctions of the operators (10). In fact,

dπη,ρ(L j )h̃η,ω =
((
2|ω j | + r j

)
bη
j + |Pjρ|2

)
h̃η,ω,

dπη,ρ(−iUk)h̃η,ω = ηk h̃η,ω, (11)
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Heisenberg–Reiter and related groups 1141

where |ω j | = ω j,1 + · · · + ω j,r j ; it should be observed that Pjρ = 0 if j > d̃1.
Since H : Rd1 × z∗ → C is in the Schwartz class, KH(L,U) : G → C is in the Schwartz

class too (see [3, Theorem 5.2] or [15, §4.2]). Moreover,

πη,ρ

(KH(L,U)

)
h̃η,ω = m

((|ω1|, . . . , |ωd1 |
)
,
(
|P1ρ|2, . . . , |Pd̃1ρ|2

)
, η

)
h̃η,ω

by (11) and [22, Proposition 1.1]; hence, if ϕη,ρ,ω(z, u) = 〈πη,ρ(z, u)h̃η,ω, h̃η,ω〉 is the
corresponding diagonal matrix coefficient of πη,ρ , then

〈πη,ρ(z, u) πη,ρ

(KH(L,U)

)
h̃η,ω, h̃η,ω〉 = m

(
(|ω j |) j≤d1 ,

(|Pjρ|2) j≤d̃1
, η

)
ϕη,ρ,ω(z, u).

Therefore, (9) gives that

KH(L,U)(z, u)

= (2π)|r |−dimG
∫

ż

∫

ker Jη

∑

n∈Nd1

m
(
n,

(|Pjρ|2) j≤d̃1
, η

)
ψη,ρ,n(z, u)

d1∏

j=1

(
bη
j

)r j
dρ dη,

(12)

where

ψη,ρ,n(z, u) =
∑

ω∈Nr

|ω1|=n1,...,|ωd1 |=nd1

ϕη,ρ,ω(z, u).

On the other hand,

ϕη,ρ,ω(z, u) = ei〈η,u〉ei〈ρ,P̄ηz〉
d1∏

j=1

r j∏

l=1

[(
bη
j

)1/2

×
∫

R

eib
η
j s z̄

η
j,l hω j,l

((
bη
j

)1/2
(s + zηj,l/2)

)
hω j,l

((
bη
j

)1/2
(s − zηj,l/2)

)
ds

]
.

The last integral is essentially the Fourier–Wigner transform of a pair of Hermite func-
tions, whose bidimensional Fourier transform is a Fourier–Wigner transform too [10, formula
(1.90)]. The parity properties of the Hermite functions then yield

ϕη,ρ,ω(z, u) = ei〈η,u〉ei〈ρ,P̄ηz〉
d1∏

j=1

j∏

l=1

[
(−1)ω j,l

π bη
j

∫

R×R

eiθ1z
η
j,l eiθ2 z̄

η
j,l

×
∫

R

e
it

(
2θ1/

(
bη
j

)1/2)

hω j,l

(
t + θ2/

(
bη
j

)1/2)
hω j,l

(
t − θ2/

(
bη
j

)1/2)
dt dθ1 dθ2

]
.

Since the Fourier–Wigner transform of a pair of Hermite functions can be expressed in terms
of Laguerre polynomials (see [10, Theorem 1.104] or [26, Theorem 1.3.4]), we obtain that

ϕη,ρ,ω(z, u) = ei〈η,u〉ei〈ρ,P̄ηz〉

π |r |

∫

Rr×Rr

ei〈ζ1,zη〉ei〈ζ2,z̄η〉

×
d1∏

j=1

[(
bη
j

)−r j
r j∏

l=1

L(0)
ω j,l

((
ζ 2
1, j,l + ζ 2

2, j,l

)
/bη

j

)]
dζ1 dζ2

123



1142 A. Martini

Consequently, for all n ∈ N
d1 ,

ψη,ρ,n(z, u) = ei〈η,u〉ei〈ρ,P̄ηz〉

π |r |

∫

Rr×Rr

ei〈ζ1,zη〉ei〈ζ2,z̄η〉

×
d1∏

j=1

[(
bη
j

)−r j L(r j−1)
n j

((|ζ1, j |2 + |ζ2, j |2
)
/bη

j

)]
dζ1 dζ2 (13)

[9, §10.12, formula (41)]. The conclusion then follows by plugging (13) into (12) and per-
forming a change of variable by rotation in the inner integrals. ��

4 A weighted Plancherel estimate

Proposition 4 expresses the convolution kernel KH(L,U) as the inverse Fourier transform
of a function of the multiplier H . Due to the properties of the Fourier transform, it is not
unreasonable to think that multiplying the kernel by a polynomial weight might correspond to
taking derivatives of themultiplier. As amatter of fact, the presence of the Laguerre expansion
leads us to consider both “discrete” and “continuous” derivatives of the reparametrization
m : Nd1 × R

d̃1 × ż → C of the multiplier H given by (7).
For convenience, set L(k)

n = 0 for all n < 0. From the properties of Laguerre polynomials
(see, e.g., [9, §10.12]), one can easily derive the following identities.

Lemma 5 For all k, n,m ∈ N and t ∈ R,

L(k)
n (t) = L(k+1)

n−1 (t) + L(k+1)
n (t), (14)

d

dt
L(k)
n (t) = L(k+1)

n−1 (t) − L(k+1)
n (t), (15)

∞∫

0

L(k)
n (t)L(k)

m (t) tk dt =
⎧
⎨

⎩

(n+k)!
2k+1n! if n = m,

0 otherwise.
(16)

Let e1, . . . , ed1 denote the standard basis ofR
d1 .We introduce some operators on functions

f : Nd1 × R
d̃1 × ż → C:

τ j f (n, μ, η) = f (n + e j , μ, η),

δ j f (n, μ, η) = f (n + e j , μ, η) − f (n, μ, η),

∂μl f (n, μ, η) = ∂

∂μl
f (n, μ, η),

∂ηk f (n, μ, η) = ∂

∂ηk
f (n, μ, η)

for all j ∈ {1, . . . , d1}, l ∈ {1, . . . , d̃1}, k ∈ {1, . . . , d2}.
For all h ∈ N and all multiindices α ∈ N

h , we denote by |α| the length α1 + · · · + αh of
α. Inequalities between multiindices, such as α ≤ α′, shall be interpreted componentwise.
Set moreover (α)+ = ((α1)+, . . . , (αh)+), where (	)+ = max{	, 0}.
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A functionΨ : ż×v→Cwill be calledmultihomogeneous if there exist h0, h1, . . . , hd1 ∈R

such that

Ψ

(
λ0η,

d1∑

j=1

λ j Pjξ

)
= λ

h0
0 λ

h1
1 . . . λ

hd1
d1

Ψ (η, ξ)

for allη ∈ ż, ξ ∈ v, λ0, λ1, . . . , λd1 ∈ ]0,∞[; the homogeneity degreesh0, h1, . . . , hd1 ofΨ
will also be denoted as degz Ψ, degv1 Ψ, . . . , degvd1 Ψ . Note that, if Ψ is multihomogeneous
and continuous, then degv j

Ψ ≥ 0 for all j ∈ {1, . . . , d1}.

Proposition 6 Let H : Rd1 × z∗ → C be smooth and compactly supported in R
d1 × ż, and

let m(n, μ, η) be defined by (7). For all α ∈ N
d2 ,

uα KH(L,U)(z, u) =
∑

ι∈Iα

∫

ż

∫

v

∑

n∈Nd1

∂γ ι

η ∂θι

μ δβι

m

(
n,

(
|P̄η

j ξ |2
)

j≤d̃1
, η

)

×Ψι(η, ξ)

[ d1∏

j=1

L(r j−1+βι
j )

n j

(
|Pη

j ξ |2/bη
j

)]
ei〈ξ,z〉 ei〈η,u〉 dξ dη,

for almost all (z, u) ∈ G, where Iα is a finite set and, for all ι ∈ Iα ,

– γ ι ∈ N
d2 , θ ι ∈ N

d̃1 , βι ∈ N
d1 , γ ι ≤ α,

– Ψι = Ψι,0Ψι,1 . . . Ψι,d1 , where Ψι, j : ż × v → C is smooth and multihomogeneous for all
j ∈ {0, . . . , d1},

– degz Ψι = |γ ι| − |α| − |βι| and degv j
Ψι = 2βι

j + 2θι
j for all j ∈ {1, . . . , d1},

– for all j ∈ {1, . . . , d1}, Ψι, j (η, ξ) is a product of factors of the form |Pη
j ξ |2 or ∂ηk |Pη

j ξ |2
for k ∈ {1, . . . , d2},

– |γ ι| + |θι| + |βι| + ∑d1
j=1(β

ι
j − (degv j

Ψι, j )/2)+ ≤ |α|.
Proof ByProposition 4 and the properties of the Fourier transform,we are reduced to proving
that, for all α ∈ N

d2 , η ∈ ż, ξ ∈ v,

(
∂

∂η

)α ∑

n∈Nd1

m

(
n,

(
|P̄η

j ξ |2
)

j≤d̃1
, η

) d1∏

j=1

L(r j−1)
n j

(
|Pη

j ξ |2/bη
j

)

=
∑

ι∈Iα

∑

n∈Nd1

∂γ ι

η ∂θι

μ δβι

m

(
n,

(
|P̄η

j ξ |2
)

j≤d̃1
, η

)
Ψι(η, ξ)

d1∏

j=1

L(r j−1+βι
j )

n j

(
|Pη

j ξ |2/bη
j

)
,

where Iα, γ ι, θ ι, βι, Ψι are as in the above statement.
This is easily proved by induction on |α|. For |α| = 0, it is trivially verified. For the

inductive step, one applies Leibniz’ rule and exploits the following observations:

– when a derivative ∂ηk hits a Laguerre function, by the identity (15) and summation by
parts, the type of the Laguerre function is increased by 1, as well as the corresponding
component of βι;

– for all j ∈ {1, . . . , d1}, bη
j =

√
tr(−J 2η Pj )/(2r j ) is a smooth function of η ∈ ż, homoge-

neous of degree 1;
– for all j ∈ {1, . . . , d1}, Pη

j = −J 2η Pj/(b
η
j )
2 is a smooth function of η ∈ ż, homogeneous

of degree 0, and in fact it is constant if j > d̃1;
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1144 A. Martini

– for all j ∈ {1, . . . , d̃1}, |Pη
j ξ |2 = 〈Pη

j Pjξ, Pjξ 〉 is a smooth bihomogeneous function of
(η, Pjξ) ∈ ż × v j of bidegree (0, 2), and moreover

|P̄η
j ξ |2 = |Pjξ |2 − |Pη

j ξ |2, ∂ηk |P̄η
j ξ |2 = −∂ηk |Pη

j ξ |2,
∂ηk

(
|Pη

j ξ |2/bη
j

)
= |Pη

j ξ |2∂ηk

(
1/bη

j

)
+

(
∂ηk |Pη

j ξ |2
)

/bη
j

for all k ∈ {1, . . . , d2}.
The conclusion follows. ��

Note that, for all j ∈ {1, . . . , d1}, μ∈ R
d̃1 , η ∈ ż, the quantities τ j f (·, μ, η), δ j f (·, μ, η)

depend only on f (·, μ, η); in other words, τ j and δ j can be considered as operators on
functions Nd1 → C.

The following lemma exploits the orthogonality properties (16) of the Laguerre functions,
together with (14), and shows that a mismatch between the type of the Laguerre function and
the exponent of the weight attached to the measure may be turned in some cases into discrete
differentiation.

Lemma 7 For all h, k ∈ N
d1 and all compactly supported f : Nd1 → C,

∫

]0,∞[d1

∣∣∣
∑

n∈Nd1

f (n)

d1∏

j=1

L(k j )
n j (t j )

∣∣∣
2
th dt

≤ Ch,k

∑

n∈Nd1

|δ(k−h)+ f (n)|2
d1∏

j=1

(1 + n j )
h j+2(k j−h j )+ .

Proof Via an inductive argument, we may reduce to the case d1 = 1.
Note that, if f is compactly supported, then τ l f is null for all sufficiently large l ∈ N.

Hence, the operator 1 + τ , when restricted to the set of compactly supported functions, is
invertible, with inverse given by

(1 + τ)−1 f =
∑

l∈N
(−1)lτ l f.

Then by (14), we deduce that, for all k ∈ N,
∑

n∈N
f (n)L(k)

n (t) =
∑

n∈N
(1 + τ) f (n)L(k+1)

n (t),

∑

n∈N
f (n)L(k+1)

n (t) =
∑

n∈N
(1 + τ)−1 f (n)L(k)

n (t),

and consequently, for all h, k ∈ N,
∑

n∈N
f (n)L(k)

n (t) =
∑

n∈N
(1 + τ)h−k f (n)L(h)

n (t)

Thus, the orthogonality properties (16) of the Laguerre functions give us that

∞∫

0

∣∣∣
∑

n∈N
f (n)L(k)

n (t)
∣∣∣
2
th dt ≤ Ch,k

∑

n∈N
|(1 + τ)h−k f (n)|2 〈n〉h,

where 〈n〉 = 1 + n.
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In the case h ≥ k, (1 + τ)h−k is given by the finite sum

(1 + τ)h−k =
h−k∑

	=0

(
h − k

	

)
τ 	,

and the conclusion follows immediately by the triangular inequality.
In the case h < k, instead, since δ = τ − 1, from the identity 1 − τ 2 = (1 − τ)(1 + τ),

we deduce that

(1 + τ)h−k = (−δ)k−h(1 − τ 2)h−k = (−1)k−h
∑

	≥0

(
	 + k − h − 1

	

)
δk−hτ 2	,

hence

∑

n∈N
|(1 + τ)h−k f (n)|2 〈n〉h =

∑

n∈N

∣
∣
∣
∣
∑

	≥0

(
	 + k − h − 1

	

)
δk−h f (n + 2	)

∣
∣
∣
∣

2

〈n〉h

≤ Ch,k

∑

n∈N

∣
∣
∣
∣
∑

	≥n

〈	〉k−h−1δk−h f (	)

∣
∣
∣
∣

2

〈n〉h

≤ Ch,k

∑

n∈N
〈n〉−1/2

∑

	≥n

|〈	〉k−h−1/4δk−h f (	)|2 〈n〉h

≤ Ch,k

∑

	∈N
〈	〉2k−2h−1/2|δk−h f (	)|2

	∑

n=0

〈n〉h−1/2

≤ Ch,k

∑

	∈N
〈	〉2k−h |δk−h f (	)|2,

by the Cauchy–Schwarz inequality, and we are done. ��
Let | · | denote any Euclidean norm on z∗. The previous lemma, together with Plancherel’s

formula for the Fourier transform, yields the following L2-estimate.

Proposition 8 Under the hypotheses of Proposition 6, for all α ∈ N
d2 ,

∫

G

|uα KH(L,U)(z, u)|2 dz du ≤ Cα

∑

ι∈ Ĩα

∫

ż

∫

[0,∞[d̃1

∑

n∈Nd1

|∂γ ι

η ∂θι

μ δβι

m(n, μ, η)|2

×|η|2|γ ι|−2|α|−2|βι|+|aι|+d1 (1 + n1)
aι
1 . . . (1 + nd1)

aι
d1 dσι(μ) dη, (17)

where Ĩα is a finite set and, for all ι ∈ Ĩα ,

– γ ι ∈ N
d2 , θ ι ∈ N

d̃1 , aι, βι ∈ N
d1 ,

– γ ι ≤ α, |γ ι| + |θι| + |βι| ≤ |α|,
– σι is a regular Borel measure on [0,∞[d̃1 .

Proof Note that, for all j ∈ {1, . . . , d1},
∂ηk

(
|Pη

j ξ |2
)

= 2
〈(

∂ηk P
η
j

)
Pjξ, Pη

j ξ
〉
≤ C |η|−1|Pη

j ξ ||Pjξ |;
consequently, if Ψι, Ψι, j , γ

ι, θ ι, βι are as in the statement of Proposition 6, then

|Ψι, j (η, ξ)|2 ≤ Cι|η|2 degz Ψι, j |Pη
j ξ |degv j

Ψι, j |Pjξ |degv j
Ψι, j
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1146 A. Martini

for all j ∈ {1, . . . , d1}, hence

|Ψι(η, ξ)|2 ≤ Cι|η|2 degz Ψι

d1∏

j=1

|Pη
j ξ |degv j

Ψι, j |Pjξ |2 degv j
Ψι,0+degv j

Ψι, j

≤ Cι|η|2|γ ι|−2|α|−2|βι|
d1∏

j=1

2θι
j+2βι

j∑

h j=(degv j
Ψι, j )/2

|Pη
j ξ |2h j |P̄η

j ξ |4θι
j+4βι

j−2h j ,

and moreover, for all h ∈ N
d1 , if h j ≥ (degv j

Ψι, j )/2 for all j ∈ {1, . . . , d1}, then

|γ ι| + |θι| + |βι| +
d̃1∑

j=1

(
βι
j − h j

)

+ ≤ |α|.

By Proposition 6, Plancherel’s formula and the triangular inequality, we then obtain that
the left-hand side of (17) is majorized by a finite sum of terms of the form

∫

ż

∫

v

∣∣
∣∣
∑

n∈Nd1

∂γ
η ∂θ

μδβm

(
n,

(
|P̄η

j ξ |2
)

j≤d̃1
, η

) d1∏

j=1

L(r j−1+β j )
n j

(
|Pη

j ξ |2/bη
j

)∣∣
∣∣

2

×|η|2|γ |−2|α|−2|β|
d1∏

j=1

|Pη
j ξ |2h j

d̃1∏

j=1

|P̄η
j ξ |2k j dξ dη, (18)

where γ ∈ N
d2 , θ, k ∈ N

d̃1 , β, h ∈ N
d1 and |γ | + |θ | + |β + (β − h)+| ≤ |α|. Simple

changes of variables (rotation, polar coordinates and rescaling) allow one to rewrite (18) as
a constant times

∫

ż

∫

]0,∞[d̃1

∫

]0,∞[d1

∣∣∣∣
∑

n∈Nd1

∂γ
η ∂θ

μδβm(n, μ, η)

d1∏

j=1

L(r j−1+β j )
n j (t j )

∣∣∣∣

2 d1∏

j=1

t
r j−1+h j
j dt

×|η|2|γ |−2|α|−2|β|
d1∏

j=1

(
bη
j

)h j+r j
d̃1∏

j=1

μ
k j+(dim v j−2r j )/2
j

dμ

μ1 · · · μd̃1

dη.

By exploiting the fact that the bη
j are smooth functions of η ∈ ż, homogeneous of degree 1

(see the proof of Proposition 6), and applying Lemma 7 to the inner integral, the last quantity
is majorized by

C
∫

ż

∫

]0,∞[d̃1

∑

n∈Nd1

|∂γ
η ∂θ

μδβ+(β−h)+m(n, μ, η)|2
d1∏

j=1

(1 + n j )
r j−1+h j+2(β j−h j )+

×|η|2|γ |−2|α|−2|β|+|h|+|r |
d̃1∏

j=1

μ
k j+(dim v j−2r j )/2
j

dμ

μ1 . . . μd̃1

dη,

and since the exponents k j + (dim v j − 2r j )/2 are strictly positive, while

−2|β| + |h| + |r | = −2|β + (β − h)+| +
d1∑

j=1

(
r j − 1 + h j + 2(β j − h j )+

) + d1
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and |γ | + |θ | + |β + (β − h)+| ≤ |α|, the conclusion follows by suitably renaming the
multiindices. ��

5 From discrete to continuous

Via the fundamental theorem of integral calculus, finite differences can be estimated by
continuous derivatives. The next lemma is a multivariate analog of [19, Lemma 6], and we
omit the proof (see also [18, Lemma 7]).

Lemma 9 Let f : Nd1 → C have a smooth extension f̃ : [0,∞[d1 → C, and let β ∈ N
d1 .

Then,

δβ f (n) =
∫

Jβ

∂β f̃ (n + s) dνβ(s)

for all n ∈ N, where Jβ = ∏d1
j=1

[
0, β j

]
, and νβ is a Borel probability measure on Jβ . In

particular,

|δβ f (n)|2 ≤
∫

Jβ

|∂β f̃ (n + s)|2 dνβ(s)

for all n ∈ N
d1 .

We give now a simplified version of the right-hand side of (17), in the case we restrict to
the functional calculus of L alone. In order to avoid issues of divergent series, it is, however,
convenient at first to truncate the multiplier along the spectrum of U.

Lemma 10 Let χ ∈ C∞
c (R) be supported in [1/2, 2] , K ⊆ R be compact and M ∈ ]0,∞[.

If F : R → C is smooth and supported in K , and FM : R × z∗ → C is given by

FM (λ, η) = F(λ) χ(|η|/M),

then, for all r ∈ [0,∞[,
∫

G

||u|r KFM (L ,U)(z, u)|2 dz du ≤ CK ,χ,r M
d2−2r‖F‖2Wr

2
.

Proof We may restrict to the case r ∈ N, the other cases being recovered a posteriori by
interpolation. Hence, we need to prove that

∫

G

|uα KFM (L ,U)(z, u)|2 dz du ≤ CK ,χ,α Md2−2|α|‖F‖2
W |α|

2
(19)

for all α ∈ N
d1 . On the other hand, if m is defined by

m(n, μ, η) = F

( d1∑

j=1

bη
j 〈n j 〉 j + |μ|Σ

)
χ(|η|/M), (20)
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where 〈	〉 j = 2	 + r j and |μ|Σ = ∑d̃1
j=1 μ j , then the left-hand side of (19) is majorized by

the right-hand side of (17), and we are reduced to proving that

∑

n∈Nd1

∫

ż

∫

[0,∞[d̃1

|∂γ ι

η ∂θι

μ δβι

m(n, μ, η)|2 |η|2|γ ι|−2|α|−2|βι|+|aι|+d1

×(1 + n1)
aι
1 . . . (1 + nd1)

aι
d1 dσι(μ) dη ≤ CK ,χ,α Md2−2|α|‖F‖2

W |α|
2

(21)

for all ι ∈ Ĩα , where Ĩα, γ ι, θ ι, βι, aι, σι are as in Proposition 8.
Note that the right-hand side of (20) makes sense for all n ∈ R

d1 and defines a smooth
extension ofm, which we still denote bym by a slight abuse of notation. Hence, by Lemma 9,

|∂γι
η ∂θι

μ δβι

m(n, μ, η)|2 ≤
∫

Jι

|∂γ ι

η ∂θι

μ ∂βι

n m(n + s, μ, η)|2 dνι(s), (22)

where Jι = ∏d1
j=1

[
0, βι

j

]
and νι is a suitable probability measure on Jι. Moreover, the

measure σι in (21) is finite on compacta, and the right-hand side of (22) vanishes when
|μ|Σ > max K , because supp F ⊆ K . Consequently, (21) will be proved if we show that

∑

n∈Nd1

∫

ż

|∂γ ι

η ∂θι

μ ∂βι

n m(n + s, μ, η)|2 |η|2|γ ι|−2|α|−2|βι|+|aι|+d1

×(1 + n1)
aι
1 . . . (1 + nd1)

aι
d1 dη ≤ CK ,χ,α Md2−2|α|‖F‖2

W |α|
2

(23)

for all s ∈ Jι and μ ∈ [0,max K ]d̃1 , uniformly in s and μ.
As observed in the proof of Proposition 6, the bη

j are positive, smooth functions of

η ∈ ż, homogeneous of degree 1; therefore, for all n ∈ N
d1 , j ∈ {1, . . . , d1}, η ∈ ż,

s ∈ [0,∞[d1 , μ ∈ [0,∞[d̃1 ,

|η|(1 + n j ) ∼ bη
j 〈n j 〉 j ≤

d1∑

l=1

bη
l 〈nl + sl〉l + |μ|Σ, (24)

and the last quantity is bounded by the constant max K whenever (n + s, μ, η) ∈ suppm,
because supp F ⊆ K . Hence, the factors |η|(1 + n j ) in the left-hand side of (23) can be
discarded, that is, we are reduced to proving (23) in the case aι = 0.

From (20), it follows immediately that

∂θι

μ ∂βι

n m(n, μ, η) = F (|θι|+|βι|)
( d1∑

j=1

bη
j 〈n j 〉 j + |μ|Σ

)
χ(|η|/M)

d1∏

j=1

(2bη
j )

βι
j

and then it is easily proved inductively that

∂γ ι

η ∂θι

μ ∂βι

n m(n, μ, η) =
∑

υ∈Nd1
|υ|≤|γ ι|

|γ ι|−|υ|∑

q=0

F (|θι|+|βι|+|υ|)
( d1∑

j=1

bη
j 〈n j 〉 j + |μ|Σ

)

×Ψι,υ,q(η) M−q χ(q)(|η|/M)

d1∏

j=1

〈n j 〉υ j
j
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where Ψι,υ,q : ż → R is smooth and homogeneous of degree |βι| + |υ| + q − |γ ι|. By
exploiting again (24) and the fact that supp F ⊆ K , we can majorize the factors 〈n j 〉 j in the
right-hand side by |η|−1 ∼ M−1 and obtain that

|∂γ ι

η ∂θι

μ ∂βι

n m(n, μ, η)|2 ≤ CK ,χ,αM
2|βι|−2|γ ι|χ̃ (|η|/M)

×
|γ ι|∑

v=0

∣
∣
∣
∣F

(|βι|+|θι|+v)

( d1∑

j=1

bη
j 〈n j 〉 j + |μ|Σ

)∣∣
∣
∣

2

,

where χ̃ is the characteristic function of [1/2, 2]. Hence, the left-hand side of (23), when
aι = 0, is majorized by

CK ,χ,αM
d1−2|α|

×
|γ ι|∑

v=0

∫

ż

∑

n∈Nd1

∣
∣
∣
∣F

(|βι|+|θι|+v)

( d1∑

j=1

bη
j 〈n j + s j 〉 j + |μ|Σ

)∣∣
∣
∣

2

χ̃ (|η|/M) dη.

Let S denote the unit sphere in z∗. By passing to polar coordinates and exploiting the homo-
geneity of the bη

j , the integral in the above formula is majorized by

C
∫

S

∞∫

0

∑

n∈Nd1

∣∣∣∣F
(|βι|+|θι|+v)

(
ρ

d1∑

j=1

bω
j 〈n j + s j 〉 j + |μ|Σ

)∣∣∣∣

2

χ̃(ρ/M)ρd2 dρ

ρ
dω

≤ CMd2

∞∫

0

|F (|βι|+|θι|+v)(ρ + |μ|Σ)|2
∫

S

∑

n∈Nd1

χ̃(ρ/(M〈n〉ω,s)) dω
dρ

ρ
(25)

where 〈n〉ω,s = ∑d1
j=1 b

ω
j 〈n j + s j 〉 j ∼ 1 + |n| uniformly in ω ∈ S and s ∈ Jι. Since

χ̃ (ρ/(M〈n〉ω,s)) vanishes unless 〈n〉ω,s ∼ ρ/M , the sum in the right-hand side of (25)
has at most Cι(ρ/M)d1 nonvanishing summands, and the integral on S is majorized by
Cι(ρ/M)d1 . In conclusion, the left-hand side of (23) is majorized by

CK ,χ,αM
d2−2|α|

|γ ι|∑

v=0

∞∫

0

|F (|βι|+|θι|+v)(ρ + |μ|Σ)|2 ρd1−1 dρ

≤ CK ,χ,αM
d2−2|α|‖F‖2

W |α|
2

,

because d1 ≥ 1, supp F ⊆ K and |βι| + |θι| + |γ ι| ≤ |α|, and we are done. ��
Proposition 11 Let F : R → C be smooth and such that supp F ⊆ K for some compact set
K ⊆ R. For all r ∈ [0, d2/2[,

∫

G

∣∣(1 + |u|)r KF(L)(z, u)
∣∣2 dz du ≤ CK ,r‖F‖2Wr

2
.

Proof Take χ ∈ C∞
c (]0,∞[) such that suppχ ⊆ [1/2, 2] and

∑
k∈Z χ(2−k t) = 1 for all

t ∈ ]0,∞[. If FM is defined for all M ∈ ]0,∞[ as in Lemma 10, then KFM (L ,U) is given by
the right-hand side of (8), where m is defined by (20), and moreover,

d1∑

j=1

bη
j 〈n j 〉 j + |μ|Σ ≥ C−1|η|
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for allη ∈ ż, μ ∈ [0,∞[d̃1 andn ∈ N
d1 , therefore FM (L , U) = 0wheneverM > 2C max K .

Hence, if kK ∈ Z is sufficiently large so that 2kK > 2C max K , then

F(L) =
∑

k∈Z, k≤kK

F2k (L , U)

(with convergence in the strong sense). Consequently, an estimate forKF(L) can be obtained,
via Minkowski’s inequality, by summing the corresponding estimates for KF2k

(L , U) given

by Lemma 10. If r < d/2, then the series
∑

k≤kK (2k)d2/2−r converges, thus
∫

G

∣
∣|u|r KF(L)(z, u)

∣
∣2 dz du ≤ CK ,r‖F‖2Wr

2
.

The conclusion follows by combining the last inequality with the corresponding one for
r = 0. ��

Let | · |δ be a δt -homogeneous norm on G; take, e.g., |(z, u)|δ = |z|+ |u|1/2. Interpolation
then allows us to improve the standard weighted estimate for a homogeneous sublaplacian
on a stratified group.

Proposition 12 Let F : R → C be smooth and such that supp F ⊆ K for some compact set
K ⊆ R. For all r ∈ [0, d2/2[ , α ≥ 0 and β > α + r ,

∫

G

∣∣(1 + |(z, u)|δ)α (1 + |u|)r KF(L)(z, u)
∣∣2 dz du ≤ CK ,α,β,r‖F‖2

Wβ
2
. (26)

Proof Note that 1 + |u| ≤ C(1 + |(z, u)|δ)2. Hence, in the case α ≥ 0, β > α + 2r , the
inequality (26) follows by the mentioned standard estimate (see [21, Lemma 1.2] or [17,
Theorem 2.7]). On the other hand, if α = 0 and β ≥ r , then (26) is given by Proposition 11.
The full range of α and β is then obtained by interpolation. ��

We can finally prove the crucial estimate.

Proof of Proposition 3 Take r ∈ ](dimG)/2 + d2/2 − s, d2/2[. Then,

s − r > (dimG)/2 + d2/2 − 2r = (dim v)/2 + d2 − 2r,

hence we can find α1 > (dim v)/2 and α2 > d2 − 2r such that s − r > α1 + α2. Set
ws(z, u) = (1+|(z, u)|δ)α (1+|u|)r . The L2-estimate (4) then follows from Proposition 12.
On the other hand, for all (z, u) ∈ G,

w−2
s (z, u) ≤ Cs(1 + |z|)−2α1 (1 + |u|)−α2−2r ,

and the right-hand side is integrable over G ∼= v × z since 2α1 > dim v and α2 + 2r >

d2 = dim z. Therefore,w−1
s ∈ L2(G), and the L1-estimate (5) follows from (4) and Hölder’s

inequality. ��

6 Remarks on the validity of the assumption and direct products

In this section, we do no longer suppose that G and L are a 2-step stratified Lie group and a
sublaplacian satisfying Assumption (A).

As observed in Sect. 2, a necessary condition for the validity of Assumption (A) is that
the skewadjoint endomorphism Jη of the first layer v has constant rank for η ranging in
ż = z∗\{0}. Here, we show that this condition is also sufficient when the rank is minimal.
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Proposition 13 Let G be a 2-step nilpotent Lie group, with Lie algebra g = v ⊕ z, and let
〈·, ·〉 be an inner product on v. Suppose that the skewadjoint endomorphism Jη of v has rank
2 for all η ∈ ż. Then, G satisfies Assumption (A) with the sublaplacian L associated to the
given inner product, and also with any other sublaplacian associated to an inner product on
a complement of z.

Let moreover GC be the complexification of G, considered as a real 2-step group, with
Lie algebra gC = vC ⊕ zC, and let vC be endowed with the real inner product induced by the
inner product on v. Then, GC, with the sublaplacian associated to the given inner product,
satisfies Assumption (A).

Proof From the normal form for skewadjoint endomorphisms, it follows immediately that,
if Jη has rank 2, then J 2η has exactly one nonzero eigenvalue, and Assumption (A) is trivially
verified. Moreover, if v is identified with g/z, then ker Jη corresponds to the subspace

Nη = {
x + z : x ∈ g and η([x, x ′]) = 0 for all x ′ ∈ g

}

of g/z; hence, the rank condition on Jη can be rephrased by saying that Nη has codimension
2 for all η ∈ ż, and this condition does not depend on the sublaplacian L chosen on G.

Let R(Jη) denote the range of Jη. We show now that, for all η, η′ ∈ ż, the intersection
R(Jη) ∩ R(Jη′) is nontrivial. If it were trivial, since Jη+η′ = Jη + J ′

η, we would have
ker Jη+η′ = ker Jη ∩ ker Jη′ , hence

R(Jη+η′) = (ker Jη+η′)⊥ = R(Jη) ⊕ R(Jη′),

thus Jη+η′ would have rank 4, contradiction.
Consider now the complexification gC = g ⊕ ig. Via the linear identifications gC =

g× g, z∗
C

= z∗ × z∗, vC = v× v, the skewsymmetric endomorphism J̃η of the first layer vC
corresponding to the element η = (ηR, ηI ) ∈ z∗

C
is given by

J̃η(xR, xI ) = (
JηR xR + JηI xI , JηI xR − JηR xI

)
. (27)

Take now η = (ηR, ηI ) ∈ żC; we want to show that J̃ 2η has rank 4 and a unique nonzero
eigenvalue. We distinguish several cases.

If ηI = 0, then J̃η = JηR × (−JηR ), hence J̃ 2η = J 2ηR
× J 2ηR

satisfies the condition. The
same argument gives the conclusion in the case ηR = 0.

If both ηR, ηI ∈ ż, then R(JηR ) ∩ R(JηI ) �= 0, hence dim(R(JηR ) ∩ R(JηI )) is either 2
or 1. In the first case, R(JηR ) = R(JηI ), so JηR and JηI commute and (27) implies that

J̃ 2η =
(
J 2ηR

+ J 2ηI

)
×

(
J 2ηR

+ J 2ηI

)
;

since J 2ηR
and J 2ηI

are negative multiples of the same orthogonal projection, the conclusion
follows.

Suppose now that R(JηR ) ∩ R(JηI ) = Rx for some unit vector x ∈ v, and set yR =
JηR x, yI = JηI x, bR = |yR |, bI = |yI |; in particular, J 2ηR

x = −b2Rx and J 2ηI
x = −b2I x .

Since JηR and JηI are skewadjoint and of rank 2, necessarily JηR x, JηI x ∈ x⊥ and JηR (x⊥) =
JηI (x

⊥) = Rx , therefore JηR JηI x and JηI JηR x are both multiples of x ; on the other hand,

〈JηR JηI x, x〉 = −〈JηI x, JηR x〉 = 〈x, JηI JηR x〉,
hence JηR JηI x = JηI JηR x . This identity, together with (27), allows us easily to show that

J̃η(x, 0) = (yR, yI ), J̃η(yR, yI ) = −(b2R + b2I )(x, 0),

J̃η(0, x) = (yI ,−yR), J̃η(yI ,−yR) = −(b2R + b2I )(0, x).
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Note that b2R + b2I is the squared norm of both (yR, yI ) and (yI ,−yR). Hence,
we would be done if we knew that R( J̃μ) coincides with the linear span W of
(x, 0), (0, x), (yR, yI ), (yI ,−yR).

In fact, we just need to show that R( J̃η) is contained in W , or equivalently, that W⊥
is contained in ker J̃η. On the other hand, if v = (vR, vI ) ∈ W⊥, then vR, vI ∈ x⊥ and
moreover

〈vR, yR〉 + 〈vI , yI 〉 = 0, 〈vR, yI 〉 − 〈vI , yR〉 = 0,

hence JηRvR, JηRvI , JηI vR, JηI vI ∈ Rx , and

〈JηRvR, x〉 = −〈vR, yR〉 = 〈vI , yI 〉 = −〈JηI vI , x〉,
〈JηI vR, x〉 = −〈vR, yI 〉 = −〈vI , yR〉 = 〈JηRvI , x〉,

therefore JηRvR = −JηI vI and JηI vR = JηRvI , from which it follows immediately that
J̃η(vR, vI ) = 0. ��

The next proposition shows how groups and sublaplacians satisfyingAssumption (A)may
be “glued together”, so to give a higher-dimensional group and a sublaplacian that satisfy
Assumption (A) too.

Proposition 14 Suppose that, for j = 1, 2, the sublaplacian L j on the 2-step stratified Lie
group G j satisfies Assumption (A). Suppose further that the centers of G1 and G2 have the
same dimension. Let G be the quotient of G1 × G2 given by any linear identification of the
respective centers, and let L = L�

1 + L�
2, where L

�
j is the pushforward of L j to G. Then, the

sublaplacian L on the group G satisfies Assumption (A).

Proof Let g j be the Lie algebra of G j , and let v j and 〈·, ·〉 j be the linear complement of the
center z j and the inner product on v j determined by the sublaplacian L j ; denote moreover
by J j,η the skewadjoint endomorphism of v j determined by η ∈ z∗j .

The linear identification of the centers of G1 and G2 corresponds to a linear isomorphism
φ : z1 → z2, and the Lie algebra g of the quotient G can be identified with v1 × v2 × z2, with
Lie bracket

[
(v1, v2, z), (v

′
1, v

′
2, z

′)
] = (

0, 0, φ
([

v1, v
′
1

]) + [
v2, v

′
2

])
.

Then, the sublaplacian L on G corresponds to the inner product 〈·, ·〉 on v1 × v2 defined by

〈(v1, v2), (v′
1, v

′
2)〉 = 〈v1, v′

1〉1 + 〈v2, v′
2〉2.

In particular, if φ∗ : z∗2 → z∗1 denotes the adjoint map of φ : z1 → z2, then it is easily
checked that the skewadjoint endomorphism of the first layer v1 × v2 of g corresponding to
an element η of the dual z∗2 of the center of g is given by Jη = J1,φ∗η × J2,η. Hence, the
orthogonal decomposition of v1 × v2 giving the “simultaneous diagonalization” of the Jη
for all η ∈ ż2 (in the sense of Sect. 2) is simply obtained by juxtaposing the corresponding
orthogonal decompositions of v1 and v2. ��

Note that the direct product G1 × G2 itself need not satisfy Assumption (A), even if the
factors G1 and G2 do. However, a functional-analytic argument, as in [24, §4], can be used
to deal with that case.

The key step in our proof of Theorem 2 is the weighted L2-estimate (4) of Proposition 3.
Let us now turn the conclusion of Proposition 3 into an assumption on a homogeneous
sublaplacian L on a stratified group G.
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Assumption (Bt ). For all s > t , there exist a weight ws : G → [1,∞[ such that
w−1
s ∈ L2(G) and, for all compact sets K ⊆ R and all Borel functions F : R → C with

supp F ⊆ K ,

‖ws KF(L) ‖L2(G) ≤ CK ,s‖F‖Ws
2 (R). (28)

Our Proposition 3 can then be rephrased by saying that Assumption (A) implies Assump-
tion (Bt ) for t = (dimG)/2. Note, on the other hand, that Assumption (Bt ) makes sense for
homogeneous sublaplacians on stratified groupsG of step other than 2. In fact, every homoge-
neous sublaplacian on a stratified group of homogeneous dimension Q satisfies Assumption
(Bt ) for t = Q/2, by [21, Lemma 1.2] (suitably extended so to admit multipliers that do not
vanish in a neighborhood of the origin of R; see, e.g., [24, Lemma 3.1] for the 1-dimensional
case, and [17, Theorem 2.7] for the higher-dimensional case).

Differently from Assumption (A), the new Assumption (Bt ) “behaves well” under direct
products.

Proposition 15 For j = 1, . . . , n, let L j be a homogeneous sublaplacian on a stratified
Lie group G j satisfying Assumption (Bt j ) for some t j > 0. Let G = G1 × · · · × Gn and

L = L�
1 + · · · + L�

n, where L�
j is the pushforward to G of the operator L j . Then, the

sublaplacian L on G satisfies Assumption (Bt ), where t = t1 + · · · + tn .

Proof Take s > t . Then, we can choose s1, . . . , sn such that s1 > t1, . . . , sn > tn and
s = s1 + · · · + sn . Let then w j,s j : G j → [1,∞[ be the weight corresponding to s j given

by Assumption (Bt j ) on G j and L j , for j = 1, . . . , n. In particular, w−1
j,s j

∈ L2(G j ) and,
for all φ ∈ C∞

c (R), the map F �→ K(φF)(L j ) is a bounded linear map of Hilbert spaces

W
sj
2 (R) → L2(G j , w

2
j,s j

(x j ) dx j ), where dx j denotes the Haar measure on G j .

The operators L�
1, . . . , L

�
n are essentially self-adjoint and commute strongly, that is, they

admit a joint spectral resolution and a joint functional calculus on L2(G), and moreover, for
all bounded Borel functions F1, . . . , Fn : R → C,

K
(F1⊗···⊗Fn)(L

�
1,...,L

�
n)

= KF1(L1) ⊗ · · · ⊗ KFn(Ln)

[16, Corollary 5.5]. Hence, for all φ1, . . . , φn ∈ C∞
c (R), if φ = φ1 ⊗ · · · ⊗ φn , then the map

H �→ K
(φH)(L�

1,...,L
�
n)
is the tensor product of the maps Fj �→ K(φ j Fj )(L j ). Since these maps

are bounded W
sj
2 (R) → L2(G j , w

2
j,s j

(x j ) dx j ), the map H �→ K
(φH)(L�

1,...,L
�
n)
is bounded

S(s1,...,sn)
2 W (Rn) → L2(G, w2

s (x) dx), where S(s1,...,sn)
2 W (Rn) = Ws1

2 (R) ⊗ · · · ⊗ Wsn
2 (R)

is the L2 Sobolev space with dominating mixed smoothness [25] of order (s1, . . . , sn), and
ws = w1,s1 ⊗ · · · ⊗ wn,sn is the product weight on G. In particular, for all compact sets
K ⊆ R, if we choose the cutoffs φ j ∈ C∞

c (R) so that φ j |K = 1, then we deduce that, for all
H : Rn → C with supp H ⊆ Kn ,

‖ws K
H(L�

1,...,L
�
n)

‖L2(G) ≤ CK ,s‖H‖
S

(s1,...,sn )

2 W (Rn)
.

(cf. [17, Proposition 5.2]). Since

‖ f ‖2
S

(s1,...,sn )

2 W (Rn)
∼

∫

Rn

| f̂ (ξ)|2(1 + |ξ1|)2s1 . . . (1 + |ξn |)2sn dξ

≤
∫

Rn

| f̂ (ξ)|2(1 + |ξ |)2s1+···+2sn dξ ∼ ‖ f ‖2Ws
2 (Rn),
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where f̂ denotes the Euclidean Fourier transform of f , we see immediately that the estimate

‖ws K
H(L�

1,...,L
�
n)

‖L2(G) ≤ CK ,s1,...,sn‖H‖Ws
2 (Rn), (29)

holds true whenever K ⊆ R is compact and H : Rn → C is supported in Kn .
Take now a compact set K ⊆ R and choose a smooth cutoff ηK ∈ C∞

c (R) such that
ηK |[0,max K ] = 1. Let F : R → C be such that supp F ⊆ K , and define H : Rn → C by

H(λ1, . . . , λn) = F(λ1 + · · · + λn) ηK (λ1) . . . ηK (λn)

for all (λ1, . . . , λn) ∈ R
n . Then, supp H ⊆ (supp ηK )n , and

F(λ1 + · · · + λn) = H(λ1, . . . , λn)

for all (λ1, . . . , λn) ∈ [0,∞[n . Since the operators L1, . . . , Ln are nonnegative, the joint
spectrum of L�

1, . . . , L
�
n is contained in [0,∞[n , hence

F(L) = F
(
L�
1 + · · · + L�

n

)
= H

(
L�
1, . . . , L

�
n

)
.

Consequently, by (29) and the smoothness of the map (λ1, . . . , λn) �→ λ1 + · · · + λn , we
obtain that

‖ws KF(L) ‖L2(G) ≤ CK ,s‖H‖Ws
2 (Rn) ≤ CK ,s‖F‖Ws

2 (R).

Since clearly w−1
s = w−1

1,s1
⊗ · · · ⊗ w−1

n,sn ∈ L2(G), we are done. ��

The previous results, together with the known weighted estimates for abelian [24,
Lemma 3.1] and Métivier [12,13,17] groups, then yield the following extension of The-
orem 2.

Theorem 16 For j = 1, . . . , n, suppose that L j is a homogeneous sublaplacian on a strati-
fied Lie group G j . Suppose further that, for each j ∈ {1, . . . , n}, at least one of the following
conditions holds:

– G j and L j satisfy Assumption (A);
– G j is a Métivier group;
– G j is abelian.

Let G = G1×· · ·×Gn and L = L�
1+· · ·+ L�

n, as in Proposition 15. If F : R → C satisfies

‖F‖MWs
2

< ∞
for some s > (dimG)/2, then F(L) is of weak type (1, 1) and bounded on L p(G) for all
p ∈ ]1,∞[.
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