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Abstract It is known that submanifolds in Kaehler manifolds have many kinds of connec-
tions. Among them, we consider two connections, that is, Levi-Civita and Tanaka–Webster
connections for real hypersurfaces in complex two-plane Grassmannians G2(C

m+2). When
they are equal to each other, we give some characterizations in G2(C

m+2).

Keywords Real hypersurfaces, Complex two-plane Grassmannians,
Hopf hypersurface, D⊥-invariant hypersurface, Levi-Civita connection, Generalized
Tanaka–Webster connection

Mathematics Subject Classification (2010) Primary: 53C40; Secondary: 53C15

1 Introduction

The study of real hypersurfaces in complex two-plane Grassmannians G2(C
m+2) was ini-

tiated by Berndt and Suh [1]. Let us denote by G2(C
m+2) the set of all complex two-

dimensional linear subspaces inCm+2. This set can be identifiedwith the homogeneous space
SU (m+2)/S(U (2)×U (m)). From this, we know that G2(C

m+2) becomes the unique com-
pact, irreducible, Riemannian manifold being equipped with both a Kaehler structure J and
a quaternionic Kaehler structure J not containing J . In other words, G2(C

m+2) is the unique
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compact, irreducible, Kaehler, quaternionic Kaehler manifold which is not a hyper-Kaehler
manifold [1,2].

For real hypersurfaces M in G2(C
m+2), we have the following two natural geometric

conditions: the 1-dimensional distribution [ξ ] = Span{ξ} and the 3-dimensional distribution
D⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape operator A ofM . Here the almost contact
structure vector field ξ defined by ξ = −J N is said to be aReeb vector field, where N denotes
a local unit normal vector field of M in G2(C

m+2). The almost contact 3-structure vector
fields ξ1, ξ2, ξ3 spanning the 3-dimensional distribution D⊥ of M in G2(C

m+2) are defined
by ξν = −JνN (ν = 1, 2, 3), where Jν denotes a canonical local basis of the quaternionic
Kaehler structure J such that TxM = D ⊕ D⊥, x ∈ M .

By using these two invariant conditions and the result in Alekseevskii [3], Berndt and Suh
[1] proved the following:

Theorem A Let M be a connected real hypersurface in G2(C
m+2), m ≥ 3. Then both [ξ ]

and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn

in G2(C
m+2).

The Reeb vector field ξ is said to beHopf if it is invariant under the shape operator A. The
1-dimensional foliation of M by the integral curves of the Reeb vector field ξ is said to be a
Hopf foliation of M . We say that M is a Hopf hypersurface in G2(C

m+2) if and only if the
Hopf foliation of M is totally geodesic. By the almost contact metric structure (φ, ξ, η, g)
and the formula ∇X ξ = φAX for any X ∈ T M in Sect. 2, it can be easily checked that M is
Hopf if and only if the Reeb vector field ξ is Hopf. We will give a brief review of (φ, ξ, η, g)
on M in Sect. 2.

On the other hand, when the distributionD⊥ of a hypersurfaceM inG2(C
m+2) is invariant

under the shape operator, we say that M is a D⊥-invariant hypersurface. Moreover, we say
that the Reeb flow on M in G2(C

m+2) is isometric, when the Reeb vector field ξ on M is
Killing. This means that the metric tensor g is invariant under the Reeb flow of ξ on M .

In [4], Berndt and Suh gave some equivalent conditions of isometric Reeb flow. They gave
a characterization of real hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow
on M as follows:

Theorem B Let M be a connected orientable real hypersurface in G2(C
m+2), m ≥ 3. Then

the Reeb flow on M is isometric if and only if M is an open part of a tube around a totally
geodesic G2(C

m+1) in G2(C
m+2).

In the proof of ourMain Theorems, we will use that the Reeb flow on M is isometric if and
only if the shape operator A commutes with the structure tensor field φ, that is, Aφ = φA.
Related to this commuting property, recently, the authors gave many characterizations of
model spaces of Type (A) in G2(C

m+2) mentioned in Theorems A and B (see [5,6]).
On the other hand, Suh [7] gave a characterization of real hypersurfaces of Type (B) in

G2(C
m+2) in terms of the contact hypersurface. Moreover, as another characterization of

one of Type (B) in G2(C
m+2) related to the Reeb vector field ξ Lee and Suh [8] obtained

the following:

Theorem C Let M be a connected orientable Hopf hypersurface in G2(C
m+2), m ≥ 3. Then

the Reeb vector field ξ belongs to the distribution D if and only if M is locally congruent to
an open part of a tube around a totally geodesic HPn in G2(C

m+2), where m = 2n.
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Levi-Civita and generalized Tanaka–Webster covariant derivatives 921

Usually, any submanifold in Kaehler manifolds has many kinds of connections. Among
them, we consider two connections, namely, Levi-Civita and Tanaka–Webster connections
for real hypersurfaces M in G2(C

m+2). In fact, G2(C
m+2) is a Riemannian symmetric space

with Riemannian metric and Levi-Civita connection. Using the induced connection from the
Levi-Civita connection, many geometers gave some characterizations for real hypersurfaces
inG2(C

m+2) related to the covariant derivative∇ of the shape operator onM ([9,10], etc). For
real hypersurfaces in a Kaehler manifold, we consider a new affine connection ̂∇(k) different
from the Levi-Civita connection ∇, namely, the generalized Tanaka–Webster connection (in
short, the g-Tanaka–Webster connection). It becomes a generalization of the well-known
connection defined by Tanno [11]. Besides, it coincides with Tanaka–Webster connection if
a real hypersurface in Kaehler manifolds satisfies φA+ Aφ = 2kφ for a nonzero real number
k. The Tanaka–Webster connection is defined as the canonical affine connection on a non-
degenerate, pseudo-Hermitian CR-manifold [12–14]. Using the generalized Tanaka–Webster
connection, ̂∇(k) defined in such a way that

̂∇(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (*)

for any X , Y tangent to M , where∇ denotes the Levi-Civita connection on M , A is the shape
operator on M and k is a nonzero real number, the authors studied some characterizations of
real hypersurfaces in G2(C

m+2) ([15,16], etc). The latter part of the generalized Tanaka–
Webster connection g(φAX, Y )ξ − η(Y )φAX − kη(X)φY is denoted by FXY . Here the
operator FX is a kind of (1,1)-type tensor and said to be the Tanaka–Webster operator.

On the other hand, there are many results for the classification problem of real hypersur-
faces in G2(C

m+2) related to the structure Jacobi operator and Ricci tensor, for example,
[17–24] and so on. Recently, Pérez and Suh [25] investigated the Levi-Civita and g-Tanaka–
Webster covariant derivatives for the shape operator or the structure Jacobi operator of real
hypersurfaces in complex projective space CPm . In particular, the authors [25] gave the
result about the shape operator as follows:

Theorem D There exist no real hypersurfaces M in CPm, m ≥ 2 such that ∇A = ̂∇(k)A.

Motivated by Theorem D, in this paper, we study a real hypersurface M in G2(C
m+2)

whoseLevi-Civita covariant derivative coincideswith generalizedTanaka–Webster derivative
for the shape operator of M , that is,

(∇X A) Y =
(

̂∇(k)
X A

)

Y (C-1)

for arbitrary tangent vector fields X and Y on M .
The condition (C-1) has a geometric meaning such that the shape operator A commutes

with the Tanaka–Webster operator FX , that is, A · FX = FX · A. This meaning gives any
eigenspaces of the shape operator A are invariant by the Tanaka–Webster operator FX .

Fromsuch apoint of view, inSect. 3,weprove that a real hypersurface inKaehlermanifolds
satisfying (C-1) must be Hopf. Then from this result, we assert the following:

Theorem 1 There does not exist any real hypersurface in complex two-planeGrassmannians
G2(C

m+2), m ≥ 3, satisfying (C-1).

First, if we restrict X = ξ in (C-1), then the following condition (C-2) along the Reeb
vector field ξ becomes a generalized condition weaker than the condition (C-1). This also
has a geometric meaning that any eigenspaces of the shape operator A are invariant by the
restricted Tanaka–Webster operator Fξ in the direction of the Reeb vector field ξ . Thus, we
assert the following:
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922 I. Jeong et al.

Theorem 2 Let M be aHopf hypersurface in complex two-planeGrassmannians G2(C
m+2),

m ≥ 3. If M satisfies
(∇ξ A

)

Y =
(

̂∇(k)
ξ A

)

Y (C-2)

for any tangent vector field Y on M, then M is locally congruent to a tube of radius r over
a totally geodesic G2(C

m+1) in G2(C
m+2).

As a second, let us consider a distributionD⊥ spanned by {ξ1, ξ2, ξ3}. Accordingly, if we
consider the condition (C-1) to the distribution D⊥, the derivatives of the shape operator A
of M along the distribution D⊥ becomes a condition more weaker than (C-1). Obviously,
this has a geometric meaning that any eigenspaces of the shape operator A are invariant by
the restricted Tanaka–Webster operator Fξν , ν = 1, 2, 3, along the distributionD⊥. Then we
have the following:

Theorem 3 There does not exist a Hopf hypersurface in G2(C
m+2), m ≥ 3, satisfying

(∇ξν A
)

Y =
(

̂∇(k)
ξν

A
)

Y, ν = 1, 2, 3 (C-3)

for any tangent vector field Y on M.

Finally, we consider a distribution D which is an orthogonal complement of D⊥ in T M .
Then by restricting the condition (C-1) to the distribution D, we get the following condi-
tion (C-4), which becomes another condition more weaker than (C-1). Using this geometric
notion, we get:

Theorem 4 There does not exist a Hopf hypersurface in G2(C
m+2), m ≥ 3, with

(∇X A) Y =
(

̂∇(k)
X A

)

Y (C-4)

for all vector fields X ∈ D and Y on M.

In this paper,we refer to [1,2,4,26] forRiemannian geometric structures ofG2(C
m+2), and

[11,13–16,27] for generalized Tanaka–Webster connection of real hypersurfaces in Kaehler
manifolds.

2 Key Lemmas

Let M be a real hypersurface in Kaehler manifolds (M̃, g̃). The induced Riemannian metric
on M is denoted by g. In addition, ∇̃ and ∇ denote the Levi-Civita connections of M̃ and
M , respectively. Let N be a local unit normal vector field of M and A the shape operator of
M with respect to N .

From the Kaehler structure J of M̃ , we have a tensor field φ of type (1,1) on M , given by

g(φX, Y ) = g̃(J X, Y )

for all tangent vector fields X of M . Moreover, we obtain the unit tangent vector field ξ and
the 1-form η of M defined by

ξ = −J N and η(X) = g(X, ξ) = g̃(J X, N ),

respectively. It implies that φ2X = −X + η(X)ξ , η(ξ) = 1, φξ = 0 and

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇X ξ = φAX,
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Levi-Civita and generalized Tanaka–Webster covariant derivatives 923

together with Gauss and Weingarten formulas. Thus, the Kaehler structure J of M̃ induces
an almost contact metric structure (φ, ξ, η, g) on M .

Now let us assume that a real hypersurface M in M̃ satisfies

(∇X A) Y =
(

̂∇(k)
X A

)

Y (C-1)

for all tangent vector fields X and Y on M .
From the definition of the g-Tanaka–Webster connection (*), we have

(̂∇(k)
X A)Y = ̂∇(k)

X (AY ) − A(̂∇(k)
X Y )

= (∇X A)Y + g(φAX, AY )ξ − η(AY )φAX − kη(X)φAY

−g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY.

Therefore, the condition (C-1) can be written as

g(φAX, AY )ξ − η(AY )φAX − kη(X)φAY

−g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY = 0 (2.1)

for all tangent vector fields X and Y on M .
In a situation like this, we prove

Lemma 2.1 Let M be a real hypersurface in a Kaehler manifold M̃ with the condition (C-1).
Then M becomes a Hopf hypersurface.

Proof The purpose of this lemma is to show that the structure vector field ξ is principal. In
order to prove this, let us suppose that there is a point where the Reeb vector field ξ is not
principal. Then there exists a neighborhood U of this point, on which we can define a unit
vector field U orthogonal to ξ in such a way that

βU = Aξ − g(Aξ, ξ)ξ = Aξ − αξ

where β denotes the length of vector filed Aξ − αξ and β(x) �= 0 for any point x in U.
Hereafter, unless otherwise stated, let us continue our discussion on this neighborhood U.

Taking X = Y = ξ in (2.1), we get β(α + k)φU = βAφU . Since β �= 0, it follows that

AφU = (α + k)φU. (2.2)

Moreover, putting X = Y = U in (2.1), we have −βφAU = 0. It implies that

AU = βξ, (2.3)

together with β �= 0 and φ2AU = −AU + η(AU )ξ = −AU + βξ .
Replacing Y by U in (2.1), we have

− βφAX − g(φAX,U )Aξ + kη(X)AφU = 0 (2.4)

for any tangent vector field X on M . Substituting X = ξ in the above equation, we get
( − β2 + k(α + k)

)

φU = 0

together with φAξ = βφU and (2.2). Taking the inner product with φU , it turns to

α + k = β2

k
(2.5)

because k is nonzero real number from the definition of g-Tanaka–Webster connection on
real hypersurfaces in Kaehler manifolds.
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On the other hand, putting X = φU in (2.4), we get

2β(α + k)U + α(α + k)ξ = 0 (2.6)

from (2.2) and φ2U = −U . Taking the inner product with ξ , we obtain α(α + k) = 0. By

(2.5), this equation is written as αβ2

k = 0. Since k �= 0 and β �= 0, we have α = 0. Moreover,
taking the inner product of (2.6) with U , we have β(α + k) = 0. It follows that β = 0,
together with α = 0 and k �= 0, which gives a contradiction. This is, the set U should be
empty. Thus, there does not exist such an open neighborhood U in M , which means that the
structure vector field ξ is principle. Hence, M must be Hopf under our assumption.

By means of Lemma 2.1, the condition (C-1) implies

g(φAX, AY )ξ − αη(Y )φAX − kη(X)φAY

−αg(φAX, Y )ξ + η(Y )AφAX + kη(X)AφY = 0 (2.7)

for all tangent vector fields X and Y on M . Moreover, putting Y = ξ in the above equation,
we obtain AφAX = αφAX for any tangent vector field X on M . From this, the Eq. (2.7) is
reduced to

kη(X)(Aφ − φA)Y = 0

for all tangent vector fields X and Y on M . By the definition of generalized Tanaka–Webster
connection for real hypersurfaces in a Kaehler manifold, it follows that

η(X)(Aφ − φA)Y = 0

for all tangent vector fields X and Y on M .
Summing up above discussions, we assert the following

Lemma 2.2 Let M be a real hypersurface in a Kaehler manifold M̃ with the condition (C-1).
Then we have

AφAX = αφAX, (2.8)

η(X)(Aφ − φA)Y = 0 (2.9)

for all tangent vector fields X, Y on M.

3 Proof of Theorem 1

From now on, we will prove Theorem 1 in the introduction by using the above two Lemmas
which are induced from our condition (C-1).

In fact, since M is a real hypersurface in G2(C
m+2) with the property (C-1), M becomes

a Hopf hypersurface (Lemma 2.1). From this, we have

η(X)(Aφ − φA)Y = 0, (3.1)

because k is a nonzero constant (Lemma 2.2).
Putting X = ξ in (3.1), it follows that Aφ − φA = 0. On the other hand, Berndt and

Suh [4] gave a characterization of real hypersurfaces of Type (A) in G2(C
m+2) when the

shape operator A of M commutes with the structure tensor φ of M . By virtue of this result,
we assert that if M is a real hypersurface in G2(C

m+2) satisfying (C-1), then M is locally
congruent to an open part of a tube around a totally geodesic G2(C

m+1) in G2(C
m+2).
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Levi-Civita and generalized Tanaka–Webster covariant derivatives 925

Let us check that whether the model space MA of Type (A) satisfies the condition (C-1).
In order to do this, let us assume that the shape operator A of MA satisfies the condition
(C-1). According to Proposition 3 given in [1], the Eq. (2.8) implies

β(β − α) = 0 (3.2)

if X = ξ2. But it does not hold, because β(β − α) = 2 where α = √
8 cot(2

√
2r) and

β = √
2 cot(

√
2r), r ∈ (0, π/2

√
2 ). It completes the proof of Theorem 1. 	


4 Proofs of Theorems 2 and 3

In this section, we investigate Hopf hypersurfaces in G2(C
m+2) satisfying the property

(C-2) and (C-3) which are weaker than (C-1), respectively. On the other hand, G2(C
m+2) is

equipped with both a Kaehler and a quaternionic Kaehler structure. By applying these two
structures to the normal vector field N of M in G2(C

m+2), we get 1- and 3-dimensional
distributions on M . For the sake of convenience, we denote [ξ ] = Span{ξ} or D⊥ =
Span{ξ1, ξ2, ξ3}, respectively. For these two distributions, we define a new distribution F

given by F = [ξ ] ∪ D⊥. If we restrict X ∈ F in (C-1), then it becomes a new weaker
condition for (C-1). Accordingly, we also consider this case.

First, we assume that M is a Hopf hypersurface in G2(C
m+2) satisfying

(∇ξ A)Y = (̂∇(k)
ξ A)Y (C-2)

for any vector field Y ∈ T M .
Under our assumptions, this condition means that the structure tensor field φ commutes

with the shape operator A of M . In fact, putting X = ξ in (2.1), it follows that for any tangent
vector field Y on M

φAY − AφY = 0,

because M is Hopf and k is a nonzero real number. By Theorem B, we assert our Theorem 2
in the introduction. 	


Next, we observe the following condition of covariant derivatives with respect to the Levi-
Civita and g-Tanaka–Webster connections for shape operator A on Hopf hypersurfaces M in
G2(C

m+2) given by

(∇ξν A)Y = (̂∇(k)
ξν

A)Y, ν = 1, 2, 3 (C-3)

for any tangent vector field Y on M .
According to (2.1), the condition (C-3) is equal to

g(φAξν, AY )ξ − αη(Y )φAξν − kη(ξν)φAY

−αg(φAξν, Y )ξ + η(Y )AφAξν + kη(ξν)AφY = 0 (4.1)

where Y is any tangent vector field on M and ν = 1, 2, 3.
Putting Y = ξ in (4.1), we have that

AφAξν = αφAξν, ν = 1, 2, 3. (4.2)

From this, (4.1) can be written as

η(ξν)(Aφ − φA)Y = 0

for any vector field Y ∈ T M and ν = 1, 2, 3.
By virtue of this equation, we have the following two cases:
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926 I. Jeong et al.

• Case 1 η(ξν) = 0, ν = 1, 2, 3 and
• Case 2 Aφ = φA.

First, we consider the case η(ξν) = 0 for any ν = 1, 2, 3. It means that the Reeb vector
field ξ belongs to the distribution D. By Theorem C, it implies that M is of Type (B) in
Theorem A given in the introduction.

On the other hand, due to Berndt and Suh’s classification [1], all the principal curvatures
on a model space of Type (B) are given as follows: α = −2 tan(2r), β = 2 cot(2r), γ = 0,
λ = cot(r) and μ = − tan(r) for some r ∈ (0, π/4). Since γ = 0, we get

(

̂∇(k)
ξν

A
)

ξ − (∇ξν A)ξ = AφAξν − αφAξν

= −αβφξν

for ν = 1, 2, 3. In fact, since α = −2 tan(2r), β = 2 cot(2r) for some r ∈ (0, π/4), the
constant αβ must be nonzero. It means that the model space of Type (B) does not satisfy our
condition (C-3).

Next we consider the remain case that the structure tensor φ commutes with the shape
operator A of M . By virtue of Theorem B, we see that M must be a real hypersurface of
Type (A) in G2(C

m+2).
From now on, let us check the converse problem, that is, whether a model space MA of

Type (A) satisfies the condition (C-3) or not. In fact, we suppose that MA has the condition
(C-3), that is, MA satisfies (4.2). For ν = 2, it becomes β(β − α) = 0. In the proof of
Theorem 1, we get β(β − α) = 2, because α = √

8 cot(2
√
2r) and β = √

2 cot
√
2r where

r ∈ (0, π/2
√
2). Hence, we assert that MA does not satisfy the condition (C-3).

Summing up these subcases, we give a complete proof of Theorem 3. 	

As mentioned above, the distribution F is defined by F = [ξ ] ∪ D⊥. From the structure

of F and the proofs of Theorems 2 and 3, we naturally obtain

Corollary 4.1 There does not exist a Hopf hypersurface in complex two-plane Grassman-
nians G2(C

m+2), m ≥ 3, with

(∇X A) Y =
(

̂∇(k)
X A

)

Y

for any X ∈ F and Y ∈ T M.

5 Proof of Theorem 4

In this section, we observe the condition

(∇X A) Y =
(

̂∇(k)
X A

)

Y (C-4)

for all tangent vector fields X ∈ D and Y ∈ T M . Putting Y = ξ in (2.1) and using the
assumption that M is Hopf, we obtain

AφAX = αφAX (5.1)

for any tangent vector field X ∈ D. Thus, the condition (C-4) is equal to

η(X)(Aφ − φA)Y = 0 (5.2)

for any X ∈ D and Y ∈ T M . From this, we have the following two cases:

• Case 1 Aφ = φA and
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Levi-Civita and generalized Tanaka–Webster covariant derivatives 927

• Case 2 η(X) = 0 for any X ∈ D.

For the first case Aφ = φA, we know that M becomes a model space of Type (A) by
Theorem B in the introduction.

Now let us consider the remaining case η(X) = 0 for any X ∈ D. It means that the
Reeb vector field ξ belongs to the distribution D⊥. Thus, without loss of generality we may
put ξ = ξ1. Under these assumptions, we now prove that M becomes to be a D⊥-invariant
hypersurface, that is, g(AD,D⊥) = 0.

Since M is Hopf, we have the following formula given by Berndt and Suh [4]:

2AφAX = αAφX + αφAX + 2φX + 2
3

∑

ν=1

{

ην(X)φξν + ην(φX)ξν

+ην(ξ)φνX − 2η(X)ην(ξ)φξν − 2ην(φX)ην(ξ)ξ
}

for any tangent vector field X on M . It can be written as

2AφAX = αAφX + αφAX + 2φX + 2φ1X (5.3)

for any X ∈ D and ξ = ξ1. Substituting (5.1) into (5.3), we get

α(Aφ − φA)X = −2(φX + φ1X) (5.4)

for any X ∈ D.
Let {e1, e2, · · · , e4m−4, e4m−3 = ξ, e4m−2 = ξ2, e4m−1 = ξ3} be an orthonormal basis

for TxM , x ∈ M . Then for any tangent vector field Y on M it follows that

α(Aφ − φA)Y =
4m−1
∑

i=1

g(α(Aφ − φA)Y, ei )ei

=
4m−4
∑

i=1

g(α(Aφ − φA)Y, ei )ei +
3

∑

ν=1

g(α(Aφ − φA)Y, ξν)ξν

=
4m−4
∑

i=1

g(α(Aφ − φA)ei , Y )ei +
3

∑

ν=1

g(α(Aφ − φA)Y, ξν)ξν .

Putting Y = ek ∈ D (k = 1, 2, · · · , 4m − 4), this equation can be changed

α(Aφ − φA)ek =
4m−4
∑

i=1

g(α(Aφ − φA)ei , ek)ei +
3

∑

ν=1

g(α(Aφ − φA)ek, ξν)ξν .
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928 I. Jeong et al.

From (5.4), it follows that

−2(φek + φ1ek) = α(Aφ − φA)ek

=
4m−4
∑

i=1

g(α(Aφ − φA)ei , ek)ei +
3

∑

ν=1

g(α(Aφ − φA)ek, ξν)ξν

=
4m−4
∑

i=1

g(−2(φei + φ1ei ), ek)ei +
3

∑

ν=1

g(−2(φek + φ1ek), ξν)ξν

= −2
4m−4
∑

i=1

g(φei , ek)ei − 2
4m−4
∑

i=1

g(φ1ei , ek)ei

= 2
4m−4
∑

i=1

g(φek, ei )ei + 2
4m−4
∑

i=1

g(φ1ek, ei )ei

= 2
4m−4
∑

i=1

g(φek, ei )ei + 2
3

∑

ν=1

g(φek, ξν)ξν

+2
4m−4
∑

i=1

g(φ1ek, ei )ei + 2
3

∑

ν=1

g(φ1ek, ξν)ξν

= 2
4m−1
∑

i=1

g(φek, ei )ei + 2
4m−1
∑

i=1

g(φ1ek, ei )ei

= 2φek + 2φ1ek

where in the fourth and sixth equalities, we have used g(φek, ξν) = g(φ1ek, ξν) = 0 for any
ν (mod 3) and nonzero real number k. Thus, we get

φX = −φ1X (5.5)

for any tangent vector field X ∈ D. Differentiating this equation covariantly in the direction
of Y , we have

g(AX, Y ) = 0

for all tangent vector fields X ∈ D and Y ∈ T M , where we have used the formulas about
the covariant derivative of structure tensors φ and φν (ν = 1, 2, 3). It implies that M must
be a D⊥-invariant hypersurface, if we restrict to Y ∈ D⊥. Accordingly, for this case we can
assert that M is locally congruent to model spaces of Type (A) by virtue of Theorem A in
the introduction.

Summing up these cases, we consequently know that any Hopf hypersurface M in
G2(C

m+2) satisfying the condition (C-4) is of Type (A).
Now it remains only to show that whether a real hypersurface MA of Type (A) satisfies

the condition (C-4) or not. To check this, let us assume that MA has the condition (∇X A)Y =
(̂∇(k)

X A)Y for any X ∈ D and Y ∈ T MA. It is equivalent that

AφAX = αφAX, (5.6)

for X ∈ D as observed in this section.
From the structure of the tangent vector space TxMA for a model space of Type (A) at

any point x on MA, we see that the distributionD is composed with two eigenspaces Tλ and
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Tμ. In addition, since the eigenspace Tλ is given by Tλ = {X | X⊥Hξ, J X = J1X} where
Hξ denotes quaternionic span of ξ , we see that φX ∈ Tλ for any X ∈ Tλ. Using these facts,
the Eq. (5.6) is reformed as

(λ2 − αλ)φX = 0

for any X ∈ Tλ ⊂ D. From this, we get λ2 − αλ = 0.
On the other hand, from Proposition 3 in [1], we know that

λ2 − αλ = 2

where λ = −√
2 tan(

√
2r) and α = 2

√
2 cot(2

√
2r) for some r ∈ (0, π/2

√
2). This makes

a contradiction, and therefore, we have Theorem 4 in the introduction. 	
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