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Abstract Let B ⊂ R
N , N ≥ 3, be the unit ball. We study the global bifurcation diagram of

the solutions of

⎧
⎪⎨

⎪⎩

�u + λ f (u) = 0 in B,

u = 0 on ∂B,

u > 0 in B,

where f (u) = eu + g(u) and g(u) is a lower order term. The solution set is a curve C
parametrized by the L∞-norm of the solution. We show that this problem has the singular
solution (λ∗, u∗) and that the curve C has infinitely many turning points around λ∗ if 3 ≤
N ≤ 9. We show that under a certain condition on g, the curve C has no turning point if
N ≥ 10. We also study the Morse index of u∗.

Keywords Bifurcation diagram · Exponential growth · Intersection number ·
Elliptic Dirichlet problem · Singular solution
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1 Introduction and main results

Let B be a unit ball in R
N , N ≥ 3. In this paper, we are interested in the global bifurcation

diagram of the semilinear elliptic equation with exponential growth
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932 Y. Miyamoto

⎧
⎪⎨

⎪⎩

�u + λ f (u) = 0 in B,

u = 0 on ∂B,

u > 0 in B,

(1.1)

where
f (u) = eu + g(u), (1.2)

g(u) is a lower order term, and λ is a nonnegative constant. The precise assumptions on g are
given in (f1) and (f2) below. The positive solution of (1.1) is radial, because of the symmetry
result of Gidas et al. [9]. The problem (1.1) can be reduced to the following ODE:

⎧
⎪⎨

⎪⎩

urr + N−1
r ur + λ f (u) = 0, 0 < r < 1,

u(r) > 0, 0 ≤ r < 1,

u(1) = 0.

(1.3)

We see in Sect. 3 that the set of the solutions can be parametrized by the L∞-norm of the
solution. Let u be a solution of (1.3) and let γ := u(0) = ‖u‖∞. Then λ becomes a graph of
γ , i.e., λ(γ ). We assume f (0) > 0. Then the set of the positive solutions of (1.3) is a curve
{(λ(γ ), u(r, γ ))}, which we call the branch, such that it emanates from (λ, γ ) = (0, 0).

We recall known results of the case f (u) = eu . If 3 ≤ N ≤ 9, then the branch has
infinitely many turning points around λ∗

N := 2(N − 2), (1.3) has infinitely many solutions
for λ = λ∗

N , and it blows up at λ
∗
N . We call this property of the branch Type I. This property

for N = 3 was found by Gel’fand [8]. If N ≥ 10, then the branch consists only of the
minimal solutions in 0 < λ < λ∗

N and it blows up at λ∗
N . We call this property Type II. When

N ≥ 3, the singular solution u∗
N := −2 log r exists for λ = λ∗

N . Schematic pictures of these
bifurcation diagrams can be found in Fig. 1 of [13]. The case where N ≥ 4 was studied by
Joseph and Lundgren [14]. See the introduction of [13] for a survey of the case f (u) = eu .
When f (u) = eu , there is a special change of variables such that (1.3) can be transformed
into the autonomous system of differential equations of the first order. These results were
proved by phase plane analysis. However, we cannot expect to find such a change of variables
for a general nonlinearity. Our purpose is to show that for a rather general nonlinearity with
exponential growth, the branch of the positive solutions of (1.3) is of Type I (resp. Type II)
if 3 ≤ N ≤ 9 (resp. N ≥ 10).

We state assumptions of f :

f ∈ C1([0,∞)) and f (u) > 0 in [0,∞), (f1)

f (u) = eu + g(u), where there are constants u0 > 0, δ > 0,C0 > 0
such that |g(u)| ≤ C0e(1−δ)u (u > u0) and |g′(u)| ≤ C0e(1−δ)u (u > u0).

(f2)

The first main result of the paper is the following:

Theorem A Assume that (f1) and (f2) hold. Then (1.3) has a one-parameter family of regular
solutions, C := {(λ(γ ), u(r, γ ))}γ>0, such that the following hold:

(i) C contains all regular solutions of (1.3),
(ii) λ(γ ) ∈ C1(0,∞), limγ↓0 λ(γ ) = 0, and λ(γ ) > 0 (0 < γ < ∞),
(iii) there isλ∗ > 0, which is given inProposition1below, such thatλ(γ ) → λ∗ (γ → +∞),
(iv) If 3 ≤ N ≤ 9, then λ(γ ) oscillates around λ∗ as γ → +∞. Therefore, the branch C is

of Type I. In particular, (1.3) has infinitely many solutions for λ = λ∗.
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Classification of bifurcation diagrams 933

In the proof of Theorem A, a singular solution plays an important role. We mention the
existence of the singular solution of (1.3).

Proposition 1 Assume that (f1) and (f2) hold. Then (1.3) has a singular solution (λ∗, u∗)
such that

u∗(r) = −2 log r − log λ∗ + κ + O(r2δ) (r → 0), (1.4)

where κ := log λ∗
N , δ is the constant in (f2), and λ∗ is the same value as in Theorem A (iii).

Moreover, u∗ ∈ H1(B).

Note that if f (u) = eu , then (λ∗, u∗) = (λ∗
N , u∗

N ).
Brezis and Vázques [3] studied (1.3) when

f is a continuous, positive, increasing, and convex function on [0,∞)

such that f (t)/t → ∞ as t → ∞. (1.5)

Under these conditions, there is an external value of λ > 0 such that (1.3) has a minimal
solution. They studied the corresponding extremal solution when it is unbounded, i.e., the
singular solution. Among other things, they have shown that

Proposition 2 (Brezis and Vazquez [3, Theorem 3.1]) Suppose that (1.5) holds. If (λ∗, u∗)
is a singular solution of (1.3), if u∗ ∈ H1(B), and if u∗ is stable in the sense where

∫

B

(|∇φ|2 − λ∗ f ′(u∗)φ2) dx ≥ 0 forall φ ∈ C1
0(B), (1.6)

then (λ∗, u∗) is the extremal solution which indicates that the bifurcation diagram of (1.3) is
of Type II. In particular, the branch does not have a turning point.

Let m(u) denote the Morse index of u in the space of radial functions, i.e., the number of the
negative eigenvalues of the associated eigenvalue problem

⎧
⎪⎨

⎪⎩

�φ + λ f ′(u)φ = −μφ in B,

φ = 0 on ∂B,

φ is radial.

Roughly speaking, Proposition 2 says that if u∗ ∈ H1(B) and if m(u∗) = 0, then the
bifurcation diagram is of Type II.

Next, we assume the following:

f (u) = eu + g(u), g ∈ C1([0,∞)), g(u) > 0 in (0,∞),

−eu < g′(u) ≤ N−10
8 eu in (0,∞), and g′′(u) > −eu in (0,∞),

(f1′)

instead of (f1). Note that (f1) holds if (f1′) holds. The second main result is the following:

Theorem B Assume that N ≥ 10 and that (f1′) and (f2) hold. Then the singular solution
(λ∗, u∗) satisfies (1.6). Therefore, m(u∗) = 0 and the bifurcation diagram of (1.3) is of Type
II.

Because of Theorems A and B, the bifurcation diagram has qualitatively the same property
as the case f (u) = eu if all assumptions of Theorems A and B are satisfied. Several examples
are given in Sect. 9.

The third result is about theMorse index of the singular solution u∗ given in Proposition 1.
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934 Y. Miyamoto

Theorem C Assume that (f1) and (f2) hold. Let (λ∗, u∗) be a singular solution given in
Proposition 1. Then

m(u∗)
{

= ∞ (3 ≤ N ≤ 9),

< ∞ (N ≥ 11).

When N = 10, we need the second term of the asymptotic expansion of the singular solution
in order to calculate the Morse index. Then, we have to impose an additional assumption on
g. We do not pursue the case N = 10 in this paper.

We give an example such that the exact singular solution can be obtained.

Corollary D Let

f (u) := (e
u
2 + 1)3

e
u
2

(

1 + 1

(N − 2)e
u
2

)

. (1.7)

Then (1.3) has the singular solution

(λ∗, u∗) =
(
N − 2

2
,−2 log

r

2 − r

)

(1.8)

and

the branch is of

{
Type I and m(u∗) = ∞ if 3 ≤ N ≤ 9,

Type II and m(u∗) = 0 if N ≥ 10.
(1.9)

Wewill see in Sect. 9 that (f1′) does not hold for N = 10, but all assumptions of Proposition 2
hold. Hence, the bifurcation diagram is of Type II. This example indicates that (f1′) is not a
necessary condition for the bifurcation diagram to be of Type II.

Let us mention technical details. Let 	 ⊂ R
N be a bounded domain. We recall known

results of the Dirichlet problem
⎧
⎪⎨

⎪⎩

�u + λu + u p = 0 in 	,

u > 0 in 	,

u = 0 on ∂	.

(1.10)

The study of this equation was initiated by Brezis and Nirenberg [2]. They studied the critical
case, i.e., p = pS := (N + 2)/(N − 2), N ≥ 3. The study of the problem (1.10) in the
supercritical case p > pS started after this work. Let 	 = B. Since the solution of (1.10) is
radial, (1.10) can be reduced to the ODE

⎧
⎪⎨

⎪⎩

urr + N−1
r ur + λu + u p = 0, 0 < r < 1,

u(r) > 0, 0 ≤ r < 1,

u(1) = 0.

(1.11)

Let u(r, γ ) be the solution of (1.11) such that (u(0, γ ), ur (0, γ )) = (γ, 0). Then the branch
of the positive solutions can be described as {(λ(γ ), u(r, γ ))}. In [16] Merle and Peletier
showed that (1.11) has a singular solution (λ∗, u∗) and that λ(γ ) → λ∗ (γ → ∞) and
u(r, γ ) → u∗(r) (γ → ∞) in C1

loc(B\{O}) ∩ H1(B) ∩ L p+1(B). We also construct a
singular solution of (1.3). Since the proof is similar to that of [16], the proof is shown in
Sect. 10.

We show in Sect. 3 that the branch of the solutions of (1.3) is parametrized by the L∞-
norm, using the implicit function theorem. Moreover, it is shown that there exists a sequence
{(λn, un)}∞n=1 of solutions of (1.3) such that ‖un‖∞ → ∞ (n → ∞).
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Classification of bifurcation diagrams 935

In Sect. 4, we prove the convergence of the regular solution to the singular solution as
‖u‖∞ → ∞. The proof is based on that of [16, Theorem B]. We use a scaling argument
which is different from one used in [16], since the equation has a different scale invariance.

InSect. 5,we show that the branchhas infinitelymany turningpointswhen3 ≤ N ≤ 9.The
problem (1.11) has the same phenomenon. See [4,7,12] for (1.11) and [6,17] for equations
with rather general nonlinearities. We use the intersection number of the regular and singular
solutions. This method was also used by Guo andWei [12] and the author [17] in the study of
the elliptic equation with supercritical exponent. Let (λ(γ ), u(r, γ )) be the regular solution
of (1.3) such that (u(0, γ ), ur (0, γ )) = (γ, 0), and let (λ∗, u∗(r)) be the singular solution
of (1.3). Let û(s, γ ) := u(r, γ ) (s := √

λ(γ )r), and let û∗(s) := u∗(r) (s := √
λ∗r ). Then

û and û∗ satisfy ⎧
⎪⎨

⎪⎩

ûss + N−1
s ûs + f (û) = 0, 0 < s <

√
λ,

û(s) > 0, 0 < s <
√

λ,

û(
√

λ) = 0,

(1.12)

where λ reads as λ∗ if û∗ is considered. Note that two intervals [0, √λ(γ )] and [0,√λ∗]may
not be equal.We define ũ(ρ, γ ) := û(s, γ )−γ (ρ := eγ /2s) and ũ∗(ρ, γ ) := û∗(s)−γ . Note
that ũ(0, γ ) = 0. Taking the limit as γ → ∞, we show that ũ(ρ, γ ) and ũ∗(ρ, γ ) converge
to the regular solution ū(ρ, 0) and the singular solution ū∗(ρ) in C1

loc(0,∞), respectively.
Here, ū(ρ, α) is the solution of the problem

⎧
⎪⎨

⎪⎩

ūρρ + N−1
ρ

ūρ + eū = 0, 0 < ρ < ∞,

ū(0, α) = α,

ūρ(0, α) = 0,

(1.13)

and
ū∗(ρ) := −2 log ρ + κ (1.14)

which satisfies the equation in (1.13). We define the zero number of the function v(r) on the
interval I by

ZI [v( · )] := �{r ∈ I ; v(r) = 0}.
Then the intersection number of ū( · , 0) − ū∗( · ) can be written as ZI [ū( · , 0) − ū∗( · )].
It is well known that

Z[0,∞)[ū( · , 0) − ū∗( · )] = ∞ (1.15)

provided that 3 ≤ N ≤ 9. In Sect. 2, we briefly prove (1.15). In Sect. 4, we prove
√

λ(γ )eγ /2 → ∞ (γ → ∞). (1.16)

Let
λ̂(γ ) := min{√λ∗,

√
λ(γ )} and Iγ := [0, λ̂(γ )]. (1.17)

Using (1.15) and (1.16), we will prove

ZIγ [û( · , γ ) − û∗( · )] → ∞ (γ → ∞). (1.18)

Because of the uniqueness of the solution of the ODE of the second order, each zero of
û(s, γ ) − û∗(s) is simple. Thus, the intersection number on Iγ is preserved unless a zero
enters Iγ from the boundary ∂ Iγ . Since û(0, γ ) − û∗(0) = −∞, (1.18) indicates that a
simple zero enters Iγ from λ̂(γ ) infinitely many times. Therefore, λ̂(γ ) oscillates around
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936 Y. Miyamoto

λ∗ as γ → ∞, otherwise the sign of û(λ̂(γ ), γ ) − û∗(λ̂(γ )) does not change hence a zero
cannot enter Iγ .

We prove Theorem B in Sect. 7. In general, the singular solution cannot be written explic-
itly. Hence, we compare û∗(s) with ū∗(s) and show that û∗(s) ≤ ū∗(s) under the condition
(f1′). The technique used in the proof of lemma 6, which is a key of the proof of Theorem B,
was devised by Gui [10,11] and was extended by Bae and Ni [1]. Using this inequality, we
check the assumptions of Proposition 2.

We prove TheoremC in Sect. 8. In the proof of the case N ≥ 11, we useHardy’s inequality
and (1.4). When 3 ≤ N ≤ 9, we can find an arbitrary large number of unstable directions
and show that m(u∗) = ∞.

This paper consists of ten sections. In Sect. 2, we recall known results of the case f (u) =
eu . In Sects. 3, 4, and 5, we prove (ii), (iii), and (iv) of Theorem A, respectively. The other
assertions of Theorem A are proved in Sect. 6. In Sects. 7 and 8, we prove Theorems B and
C, respectively. Several examples including Corollary D are given in Sect. 9. In Sect. 10, we
briefly prove the existence of the singular solution (Proposition 1).

2 Preliminaries

We recall known results about the branch of the positive solutions of the Gel’fand problem.
See [14,18,19] for details of the facts in this section. We study the equation

ū′′ + N − 1

ρ
ū′ + eū = 0, 0 < ρ < ∞, (2.1)

where the prime stands for the derivative. It is well known that (1.14) is a singular solution
of (2.1). Next, we consider regular solutions of (2.1). Let ū(ρ, α) be the solution of (1.13).
We change variables to t := log ρ and y(t) := ū(ρ, α) − ū∗(ρ). Then y(t) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

y′′ + (N − 2)y′ + 2(N − 2)(ey − 1) = 0, −∞ < t < ∞,

lim
t→−∞(y(t) − 2t + κ) = α,

lim
t→−∞ e−t (y′(t) − 2) = 0.

(2.2)

The singular solution ū∗(ρ) is transformed into y∗(t)(:= ū∗(ρ) − ū∗(ρ)) = 0. The problem
(2.2) becomes the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y′ = z,

z′ = −(N − 2)z − 2(N − 2)(ey − 1),

lim
t→−∞(y(t) − 2t + κ) = α,

lim
t→−∞ e−t (z(t) − 2) = 0.

(2.3)

The problem (2.3) has a unique solution (y(t), z(t)). This system has the Lyapunov function

E(y, z) := z2

2
+ 2(N − 2)(ey − y).

Then d
dt E(y(t), z(t)) = −(N − 2)(z(t))2 ≤ 0. The orbit {(y(t), z(t)); −∞ < t < ∞} in

the (y, z)-plane starts along the line z = 2 at t = −∞ and converges to the origin. When
3 ≤ N ≤ 9, the origin is a stable spiral and the orbit rotates clockwise around the origin.
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Classification of bifurcation diagrams 937

Therefore, there is {t j }∞j=1 (t1 < t2 < · · · ) such that y(t j ) = 0 ( j ∈ {1, 2, . . .}) and
z(t2) < z(t4) < · · · < z(t2 j ) < · · · < 0 < · · · < z(t2 j−1) < · · · < z(t3) < z(t1).

This means that y(t) oscillates around 0 infinitely many times. Since y(t) = ū(ρ, α)− ū∗(ρ),
the intersection number of ū and ū∗ is ∞. When N ≥ 11 (resp. N = 10), the origin is a
stable node (resp. a stable star). The orbit does not cross the z-axis, and it converges to the
origin.

ū(eα/2ρ, 0) + α also satisfies (1.13), hence it follows from the uniqueness of the solution
that ū(ρ, α) = ū(eα/2ρ, 0) + α. This transformation does not change the singular solution,
i.e., ū∗(ρ) = ū∗(eα/2ρ) + α.

Proposition 3 Let ū(ρ, α) be the regular solution of (1.13), and let ū∗(ρ) be the singular
solution of (2.1) given by (1.14). Then ū(ρ, α) = ū(eα/2ρ, 0)+α and ū∗(ρ) = ū∗(eα/2ρ)+α.
Moreover,

Z[0,∞)[ū( · , α) − ū∗( · )] =
{

+∞ (3 ≤ N ≤ 9),

0 (N ≥ 10).

We consider the case N ≥ 10. As mentioned in Sect. 1, the positive branch of (1.3) consists
only of the minimal solutions when f (u) = eu . In particular, for each fixed λ > 0, (1.3) has
at most one solution. Let β > α.We suppose that there is ρ0 > 0 such that ū(ρ, β) > ū(ρ, α)

for 0 ≤ ρ < ρ0 and ū(ρ0, β) = ū(ρ0, α). Let γ := ū(ρ0, β)(= ū(ρ0, α)). Let u0(ρ) :=
ū(ρ0ρ, β)− γ and u1(ρ) := ū(ρ0ρ, α)− γ . Then both u0 and u1 satisfy �u+ρ2

0e
γ eu = 0.

Moreover, u0(1) = u1(1) = 0. Since u0(0) = β − γ �= α − γ = u1(0), (1.3) has two
solutions for λ = ρ2

0e
γ , which is a contradiction. Therefore, we obtain the following:

Proposition 4 Assume that N ≥ 10. If β > α, then ū(ρ, β) > ū(ρ, α) for ρ ≥ 0.

3 Parametrization results of the branch

3.1 Assumption (f2)

We transform (f2) into (f2′) below.

Proposition 5 If (f2) holds, then the following (f2′) holds:

f (u) = eu + g(u),where there are constants δ > 0,C0 > 0 such that
max0≤ρ≤u |g(ρ)| ≤ C0e(1−δ)u (u ≥ 0) and max0≤ρ≤u |g′(ρ)|

≤ C0e(1−δ)u (u ≥ 0).
(f2′)

Proof of Proposition 5 We take C0 > 0 large enough such that

max
0≤ρ≤u0

{|g(ρ)|, |g′(ρ)|} ≤ C0,

where u0 appears in (f2). Then (f2′) holds. ��
3.2 Parametrization of the positive branch

Let C denote the branch consisting of the positive regular solutions of (1.3). We recall known
properties of C.
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938 Y. Miyamoto

Proposition 6 Suppose that (f1) holds. Let (λ0, u0(r)) ∈ C. Then C can be locally
parametrized by ‖u‖∞ = u(0). Specifically, there are a C1-map (λ(γ ), u(r, γ )) and
a neighborhood U of (λ0, u0) such that (λ(γ0), u(r, γ0)) = (λ0, u0(r)) and C ∩ U =
{(λ(γ ), u(r, γ )); u(0, γ ) = γ, |γ − γ0| < ε}.
This proposition was proven by Korman [15, Theorem 2.1]. However, we give a proof for
readers’ convenience.

Proof of Proposition 6 Let u(r, γ ) be the unique solution of
⎧
⎪⎪⎨

⎪⎪⎩

u′′ + N − 1

r
u′ + λ f (u) = 0, 0 < r < 1,

u(0, γ ) = γ, u′(0, γ ) = 0, u(1, γ ) = 0,

u(r, γ ) > 0, 0 ≤ r < 1.

(3.1)

We change variables to û(s, γ ) := u(r, γ ) and s = √
λr . Then û satisfies

⎧
⎪⎪⎨

⎪⎪⎩

û′′ + N − 1

s
û′ + f (û) = 0, 0 < s <

√
λ,

û(0, γ ) = γ, û′(0, γ ) = 0, û(
√

λ, γ ) = 0,

û(s, γ ) > 0, 0 ≤ s <
√

λ.

(3.2)

We define h(λ, γ ) := û(
√

λ, γ ). Then h(λ0, γ0) = 0 and h ∈ C1 in a neighborhood of
(λ0, γ0). Let BR denote the ball of radius R. Differentiating h with respect to λ, we have
hλ(λ, h) = ûs(

√
λ, γ )/(2

√
λ). Since −�û = f (û) > 0 in B√

λ0
and 0 is the minimum

of û( · , γ0) in B√
λ0
, Hopf’s boundary point lemma tells us that ûs(

√
λ0, γ0) < 0. Thus,

hλ(λ0, γ0) < 0. The implicit function theorem says that there are aC1-functionλ = λ(γ ) and
a small ε > 0 such that h(λ(γ ), γ ) = 0 for γ ∈ (γ0 −ε, γ0 +ε) and λ(γ0) = λ0. This means
that all the solutions of (3.1) in a neighborhood of (λ0, γ0) are {(λ(γ ), u(r, γ ))}|γ−γ0|<ε . ��

Because of (f1), f (0) > 0, hence C emanates from (λ, u) = (0, 0). We extend C. Specifi-
cally, we show the global parametrization result of C under the condition f (t) ≥ C1t (t ≥ 0).

Proposition 7 Suppose that (f1) and (f2) hold. Then the branch C can be globally parame-
trizedby‖u‖∞, it is unbounded in the positive directionof‖u‖∞, and there isC0 > 0 such that
C ⊂ {(λ, u); 0 < λ < C0}. Specifically, C := {(λ(γ ), u(r, γ )); u(0, γ ) = γ, 0 < γ < ∞}
and 0 < λ(γ ) < C0.

This proposition was essentially proved by Crandall and Rabinowitz [5, Theorem 1.1].
Because of Proposition 7, we can choose a sequence {γn}∞n=1 diverging to +∞ such that

(λ(γn), u(r, γn)) is a solution of (3.1). The sequence {(λ(γn), u(r, γn))}∞n=1 is used for the
scaling argument in the proof of Theorem A.

4 Convergence to the singular solution

We consider the initial value problem
⎧
⎪⎨

⎪⎩

ûss + N−1
s û + eû + g(û) = 0, 0 < s < ∞,

û(0) = γ,

ûs(0) = 0.

(4.1)
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Classification of bifurcation diagrams 939

Let û(s, γ ) be the solution of (4.1). Let ρ := eγ /2s, and let ũ(ρ, γ ) := û(s, γ ) − γ . Then,
ũ satisfies ⎧

⎪⎨

⎪⎩

ũρρ + N−1
ρ

ũρ + eũ + e−γ g(ũ + γ ) = 0, 0 < ρ < ∞,

ũ(0) = 0,

ũρ(0) = 0.

(4.2)

Lemma 1 Let ū(ρ, α) be the solution of (1.13). Then

ũ(ρ, γ ) → ū(ρ, 0) in C1
loc[0,∞) as γ → ∞.

Proof Because of (f2′),
e−γ g(ũ + γ ) ≤ e−γC0e

(1−δ)(ũ+γ ). (4.3)

We see that if γ > 0 is large, then
C0e

−δγ ≤ 3. (4.4)

We easily see that
ũ(ρ, γ ) ≤ 0 for 0 ≤ ρ < ∞. (4.5)

Using (4.3) and (4.4), we have

ũρρ + N − 1

ρ
ũρ = −eũ − e−γ g(ũ + γ )

≥ −eũ − C0e
−δγ e(1−δ)ũ

≥ −eũ − 3e(1−δ)ũ

≥ −4eũ .

Therefore, (ρN−1ũρ)ρ ≥ −4eũρN−1. Integrating this inequality, we have

ũρ(ρ) ≥ − 4

ρN−1

ρ∫

0

eũηN−1dη

≥ − 4

ρN−1

ρ∫

0

ηN−1dη

= −4ρ

N
,

where we use (4.5). Integrating this inequality, we have

ũ(ρ) ≥ −2ρ2

N
. (4.6)

Because of (4.6) and (4.5),

− 2ρ2

N
≤ ũ(ρ, γ ) ≤ 0. (4.7)

Thus, for each ρ0 > 0, ũ(ρ, γ ) is bounded in 0 ≤ ρ ≤ ρ0. Since |e−γ g(ũ(ρ, γ ) + γ )| ≤
C0e−δγ+(1−δ)ũ(ρ,γ ), e−γ g(ũ(ρ, γ ) + γ ) uniformly converges to 0 in 0 ≤ ρ ≤ ρ0 as γ →
+∞. This indicates that

ũ(ρ, γ ) → ū(ρ, 0) in C1[0, ρ0] as γ → ∞. (4.8)

We can choose ρ0 arbitrarily large. We obtain the conclusion. ��
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We change variables t := log s and y(t, γ ) := û(s, γ ) + 2t − κ . Then y(t, γ ) satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ytt + (N − 2)yt + 2(N − 2)(ey − 1)

zw + e2t g(y − 2t + κ) = 0, −∞ < t < log
√

λ(γ ),

lim
t→−∞(y(t) − 2t + κ) = γ,

lim
t→−∞ e−t (y′(t) − 2) = 0.

(4.9)

Let

τ := t + γ

2
and ŷ(τ, γ ) := y(t, γ ).

Then ŷ satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ŷττ + (N − 2)ŷτ + 2(N − 2)(eŷ − 1)

zw + e2τ−γ g(ŷ − 2τ + γ + κ) = 0, −∞ < τ <
γ
2 + log

√
λ(γ ),

lim
τ→−∞(ŷ(τ ) − 2τ + κ) = 0,

lim
τ→−∞ e−τ (ŷ(τ ) − 2) = 0.

Let y̌(t, γ ) be the solution of (4.9) with g ≡ 0, and let ȳ(τ ) := y̌(t, γ ). Then, ȳ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

ȳττ + (N − 2)ȳτ + 2(N − 2)(eȳ − 1) = 0, −∞ < τ <
γ
2 + log

√
λ(γ ),

lim
τ→−∞(ȳ(τ ) − 2τ + κ) = 0,

lim
τ→−∞ e−τ (ȳ(τ ) − 2) = 0.

(4.10)

Because of Lemma 1, for each ρ0 > 0, (4.8) holds. Since ũ(ρ, γ ) = û(s, γ ) − γ =
y(t, γ ) − 2t + κ − γ = ŷ(τ, γ ) − 2τ + κ ,

ŷ(τ, γ ) − 2τ + κ = ũ(ρ, γ ) → ū(ρ, γ ) = ȳ(τ ) − 2τ + κ

uniformly on −∞ < τ < log ρ0 as γ → +∞ and

e−τ (ŷτ (τ, γ ) − 2) = ũρ(ρ, γ ) → ūρ(ρ, γ ) = e−τ (ȳτ (τ ) − 2)

uniformly on −∞ < τ < log ρ0 as γ → +∞. Since ρ0 > 0 can be chosen arbitrarily large,
we have

Corollary 1 For each τ0 > 0,

ŷ(τ, γ ) → ȳ(τ ), ŷτ (τ, γ ) → ȳτ (τ ) as γ → +∞
uniformly on the interval −∞ < τ < τ0.

When the solution ȳ(τ ) of (4.10) is defined on the whole interval R, (4.10) says
that (ȳ(τ ), ȳτ (τ )) → (0, 0) as τ → +∞. This fact and Corollary 1 indicate that
(y(t, γ ), yt (t, γ )) approaches (0, 0) as γ → ∞ along t = τ0 − γ

2 provided that τ0 is
chosen large enough. Let z(t, γ ) := yt (t, γ ). Then (y, z) satisfies

{
yt = z

zt = −(N − 2)z − 2(N − 2)(ey − 1) − e2t g(y − 2t + κ).
(4.11)

In the next lemma, we prove the following: If there is large t0 > 0 such that
(y(−t0, γ ), z(−t0, γ )) is in a neighborhood of (0, 0), then there exists T (> −t0) independent
of γ such that (y(t, γ ), z(t, γ )) stays in the neighborhood for −t0 < t < T .
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Lemma 2 Let �ε := {(y, z) ∈ R
2; 2(N − 2)(ey − 1− y) + z2

2 ≤ ε}. For each small ε > 0,
there is a large t0 > 0 such that (y(−t0, γ ), yt (−t0, γ )) ∈ �ε provided that γ > 0 is large.
Moreover, there is Tε independent of t0 such that (y(t, γ ), yt (t, γ )) ∈ �2ε (−t0 ≤ t ≤ Tε).

Proof Let H(y, z) := 2(N−2)(ey−1−y)+ z2
2 andG(u) = ∫ u

0 g(s)ds.We define E(y, z, t)
by E(y, z, t) := H(y, z) + e2tG(y − 2t + κ). By direct calculation, we have

d

dt
E(y(t), z(t), t) = −(N − 2)(yt (t))

2 + 2e2t (G(y(t) − 2t + κ) − g(y(t) − 2t + κ))

≤ 2e2t (G(y(t) − 2t + κ) − g(y(t) − 2t + κ)). (4.12)

Let ε > 0 be small such that �2ε ⊂ {|y| < 1}. Note that �ε is a neighborhood of (0, 0). We
choose T ∈ R such that

max

{
C0(2 − δ)

δ(1 − δ)
e(1−δ)(1+κ)e2δT ,

C0

1 − δ
e(1−δ)(1+κ)e2δT

}

≤ ε

4
. (4.13)

Because of Corollary 1, there is large t0 > 0 (t0 > −T ) such that if γ > 0 is large, then

(y(−t0, γ ), z(−t0, γ )) ∈ �ε. (4.14)

We show that (y(t), z(t)) ∈ �2ε (−t0 ≤ t ≤ T ). Suppose the contrary, we assume that

(y(t), z(t)) ∈ �2ε (−t0 ≤ t < T ) and (y(T ), z(T )) �∈ �2ε. (4.15)

Integrating (4.12) over [−t0, T ], we have
E(y(T ), y(T ), T ) − E(y(−t0), z(−t0),−t0)

≤ 2

T∫

−t0

e2t (G(y(t) − 2t + κ) − g(y(t) − 2t + κ))dt

≤ 2

T∫

−t0

e2t (|G(y(t) − 2t + κ)| + |g(y(t) − 2t + κ)|)dt

≤ 2

T∫

−t0

e2t
(

C0

1 − δ
e(1−δ)(y(t)−2t+κ) + C0e

(1−δ)(y(t)−2t+κ)

)

dt

= 2C0(2 − δ)

1 − δ

T∫

−t0

e(1−δ)(y(t)+κ)+2δtdt

= C0(2 − δ)

δ(1 − δ)
e(1−δ)(1+κ)

(
e2δT − e−2δt0

)
,

where we use

|g(u)| ≤ C0e
(1−δ)u, |G(u)| ≤ C0

1 − δ
e(1−δ)u, and |y(t)| ≤ 1.

Using

|e−2t0G(y(−t0) + 2t0 + κ)| ≤ C0

1 − δ
e(1−δ)(1+κ)−2δt0 ≤ ε

4
and

|e2T G(y(T ) − 2T + κ)| ≤ C0

1 − δ
e(1−δ)(1+κ)+2δT ≤ ε

4
,
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942 Y. Miyamoto

we have

H(y(T ), z(T )) ≤ H(y(−t0), z(−t0)) + e−2t0G(y(−t0) + 2t0 + κ)

zw − e2T G(y(T ) − 2T + κ)

zw + C0(2 − δ)

δ(1 − δ)
e(1−δ)(1+κ)

(
e2δT − e−2δt0

)

≤ ε + ε

4
+ ε

4
+ ε

4

= 7ε

4
,

where we use (4.13) and (4.14). Hence, (y(T ), z(T )) ∈ �7ε/4 ⊂ �2ε, which contradicts to
(4.15). The conclusion of the lemma holds. ��
Lemma 3 Let (λ∗, u∗) be the singular solution given in Proposition 1. Then, as γ → ∞,

λ(γ ) → λ∗ and u(r, γ ) → u∗(r) in C1
loc(0, 1].

Proof Let {γn}∞n=1 be a sequence diverging to +∞, and let y(t, γn) be a solution of (4.9).
We define z(t, γn) by z(t, γn) := yt (t, γn). By Lemma 2, we see that (y(t, γn), z(t, γn)) is
uniformly bounded in (C0[−t0, T ])2. Because y and yt satisfy (4.9), ytt (t, γn) is also uni-
formly bounded in C0[−t0, T ]. Differentiating the equation in (4.9), we see that yttt (t, γn)
is uniformly bounded. By Arzelá–Ascoli theorem, we see that there is a subsequence, which
is still denoted by {(y(t, γn), z(t, γn))}, such that (y(t, γn), z(t, γn)) converges to some pair
of functions (y∗(t), z∗(t)) in (C1[−t0, T ])2. Since t0 > 0 can be arbitrary large, we see that
(y(t, γn), z(t, γn)) → (y∗(t), z∗(t)) in (C1

loc(−∞, T ))2. Since 0 < λ(γn) < C0 (Proposi-
tion 7), there is λ∗ ∈ [0,C0] such that λ(γn) → λ∗. Since (y(t, γn), z(t, γn)) satisfies (4.11),
(y∗, z∗) also satisfies (4.11). In order to show that (y∗, z∗, λ∗) is a solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yt = z,

zt = −(N − 2)z − 2(N − 2)(ey − 1) − e2t g(y − 2t + κ),

y(t) − 2t + κ > 0, −∞ < t < log
√

λ∗,
lim

t→−∞ y(t) = 0,

y(log
√

λ∗) − 2 log
√

λ∗ + κ = 0,

we show later that
y∗(t) → 0 as t → −∞. (4.16)

In the proof of Proposition 1, we show that this problem has a unique solution (y∗, z∗, λ∗).
Thus, y∗ = y∗ and λ∗ = λ∗. Since y(t, γ ) → y∗(t) in C1

loc(−∞, T ], it follows from the
uniqueness of the solution to the ODE that y(t, γn) → y∗(t) in C1

loc(−∞, λ∗). Therefore,
û(s, γn) → û∗(s) in C1

loc(0, λ
∗ + 1), which also implies that λ(γn) → λ∗ (n → ∞). Since

u(r, γn) = û(s, γn) (
√

λ(γn)r = s), u(r, γn) → u∗(r) in C1
loc(0, λ

∗]. The conclusion of the
lemma holds.

We prove (4.16) by contradiction. Suppose the contrary, there is a sequence tk such that
tk → −∞ and (y∗(tk), z∗(tk)) �∈ �δ for all k ≥ 1. We choose ε = δ/4. By Corollary 1 there
exist large τ0 > 0 and large γ > 0 such that

(
y
(
τ0 − γ

2

)
, z

(
τ0 − γ

2

)) ∈ �ε . By Lemma 3,
we see that (y(t), z(t)) ∈ �2ε ⊂ �δ in (τ0 − γ

2 , T ), where T is independent of γ . Since
γ > 0 is large enough, the interval (τ0 − γ

2 , T ] can be made to include an element of {tk}.
We obtain a contradiction. ��
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Classification of bifurcation diagrams 943

5 Oscillation of the branch

Lemma 4 Suppose that 3 ≤ N ≤ 9 and that (f1) and (f2) are satisfied. Then (1.18) holds.

Proof We show that

ũ(ρ, γ ) → ū(ρ, 0) in C1
loc(0,∞) as γ → +∞. (5.1)

For each bounded interval I , there is a constant C > 0 independent of γ such that
‖ũ( · , γ )‖C0(I ) < C , because of (4.7). Then,

|e−γ g(ũ(ρ, γ ) + γ )| ≤ C0e
(1−δ)ũ(ρ,γ )−δγ → 0 in C0(I ) (γ → ∞).

Since ũ satisfies

ũρρ + N − 1

ρ
ũρ + eũ + e−γ g(ũ + γ ) = 0,

ũ(ρ, γ ) converges to ū(ρ, 0) in C1(I ) as γ → ∞. Since I can be arbitrarily chosen, (5.1)
holds.

We define ũ∗(ρ, γ ) := û∗(s) − γ (ρ := e
γ
2 s). Because of Proposition 1, û∗(s) =

−2 log s + κ + o(1) (s → 0). Then, ũ∗(ρ, γ ) = 2 log ρ + κ + o(1) (e− γ
2 ρ → 0). For each

bounded interval I , e−γ ρ → 0 in C0(I ) (γ → ∞). Thus,

ũ∗(ρ, γ ) → ū∗(ρ) in C1
loc(0,∞) as γ → ∞. (5.2)

Here ū∗(ρ) is defined by (1.14).
Lemma 3 says that λ(γ ) → λ∗ (γ → ∞). Since λ∗ > 0,

√
λ(γ )e

γ
2 → ∞ (γ → ∞).

Using (5.1), (5.2), and Proposition 3, we have

Z[0,min{√λ∗e
γ
2 ,

√
λ(γ )e

γ
2 }][ũ( · , γ ) − ũ∗( · , γ )] → ∞ (γ → ∞).

Hence, we obtain (1.18). ��
The main result of this section is the following:

Lemma 5 Suppose that 3 ≤ N ≤ 9 and that (f1) and (f2) are satisfied. The function λ(γ )

oscillates infinitely many times around λ∗ as γ → ∞.

Proof We consider û(s, γ ) and û∗(s). Let Iγ be given by (1.17). They satisfy the equation
in (1.12) on Iγ . Because of the uniqueness of the solution of the ODE, if û(s, γ )− û∗(s) has
a zero, then it should be simple. We call ZIγ [û( · , γ ) − û∗( · )] the intersection number. For
each γ > 0, the intersection number is finite, otherwise zeros of û(s, γ ) − û∗(s) accumulate
at some point and the accumulation point is a degenerate zero which contradicts to the
uniqueness of the solution of the ODE. Since every zero of û(s, γ ) − û∗(s) is simple and
the intersection number is finite, it follows from the implicit function theorem that each zero
depends continuously on γ . The intersection number is preserved unless another zero enters
Iγ from the boundary of Iγ . Since û(0, γ ) − û∗(0) = −∞, a zero cannot enter Iγ from
s = 0. We prove the statement of the lemma by contradiction. Suppose the contrary, i,e.,

there is γ0 > 0 such that λ(γ ) > λ∗ forall γ > γ0. (5.3)

Then, Iγ = [0,√λ∗] and û(
√

λ∗, γ )− û∗(
√

λ∗) > 0. Therefore, a zero cannot enter Iγ from
s = √

λ∗, and the zero number does not increase. This contradicts to Lemma 4. (5.3) does
not hold. We can similarly show that
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944 Y. Miyamoto

there does not exist γ0 > 0 such that λ(γ ) < λ∗ forall γ > γ0. (5.4)

By (5.3) and (5.4), we see that λ(γ ) oscillates infinitely many times around λ∗ as γ → ∞. ��

6 Proof of Theorem A

Proof of Theorem A Let C := {(λ(γ ), u(r, γ ))} be the continuum of solutions of (1.3) con-
structed in Proposition 7. Since for each γ > 0, there is a unique λ > 0, which is λ(γ ),
such that (1.10) holds. Hence, there is no solution except C. Thus, (i) holds. Because of
Proposition 6, λ(γ ) ∈ C1(0,∞). We easily see that λ(0) = 0 and λ(γ ) > 0 (0 < γ < ∞).
(ii) holds. By Lemma 3, we see that (iii) holds. (iv) follows from Lemma 5. The proof is
complete. ��

7 Proof of Theorem B

Let ū(s, α) be the solution of (1.13), and let û(s, γ ) be the solution of (4.1).

Lemma 6 Suppose that N ≥ 10 and that (f1′) and (f2) are satisfied. If 0 < γ < α, then
û(s, γ ) < ū(s, α) for s > 0.

Proof Suppose the contrary, i.e., there is S > 0 such that û(s, γ ) < ū(s, α) for 0 < s < S
and û(S, γ ) = ū(S, α). Let w0(s) := ū(s, α) − û(s, γ ), and let BS denote the ball of radius
S. Then

⎧
⎪⎨

⎪⎩

�w0 + k0w0 = g(û) in BS,

w0 > 0 in BS,

w0(S) = 0,

where

k0 := eū(s,α) − eû(s,γ )

ū(s, α) − û(s, α)
< eū(s,γ ) in BS

and w′
0(S) ≤ 0. Let w1(s) := ū(s, β) − ū(s, α). When β > α, then we see by Proposition 4

that w1(s) > 0 for s > 0. We have

�w1 + k1w1 = 0 in R
N ,

where

k1 := eū(s,β) − eū(s,α)

ū(s, β) − ū(s, α)
> eū(s,α).

By Green’s identity, we have

ωN S
N−1w1(S)w′

0(S) =
∫

BS

(w1�w0 − w0�w1)

≥
∫

BS

(k1 − k0)w0w1 > 0,

where ωN denotes the surface area of the unit sphere inRN and we used the inequality g > 0
in (0,∞). This implies that w′

0(S) > 0, which contradicts that w′
0(S) ≤ 0. ��
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Lemma 7 Suppose that N ≥ 10 and that (f1′) and (f2) are satisfied. û∗(s) ≤ ū∗(s) for
0 < s ≤ √

λ∗
N .

Proof Suppose the contrary, i.e., there is s0 ∈ (0,
√

λ∗
N ] such that û∗(s0) > ū∗(s0). Because

of Lemma 3, as α → +∞,

û(s, α) → û∗(s) in C0
loc(0,

√

λ∗
N ]

and

ū(s, α + 1) → ū∗(s) in C0
loc(0,

√

λ∗
N ].

It follows from Lemma 6 that û(s, α) < ū(s, α + 1). Taking the limit, we have that û∗(s) ≤
ū∗(s) for s ∈ (0,

√
λ∗
N ]. We obtain a contradiction, because û∗(s0) ≤ ū∗(s0). ��

Proof of Theorem B We can easily show that (1.5) holds, using (f1′). It follows from Propo-
sition 1 that u∗ ∈ H1(B). All we have to do is to check (1.6). Because of Lemma 7, we have
û∗(s) ≤ ū∗(s). Therefore,

eû
∗ + g′(û∗) ≤ eû

∗ + N − 10

8
eû

∗

= N − 2

8
eû

∗

≤ N − 2

8
eū

∗

= (N − 2)

8

2(N − 2)

s2
,

where we used eū
∗ = 2(N−2)

s2
and the inequality g′(u) ≤ N−10

8 eu . Therefore,

1∫

0

(
|∇φ|2 − λ∗ (

eu
∗ + g′(u∗)

)
φ2

)
r N−1dr

= (λ∗)−
N−2
2

√
λ∗∫

0

(
|∇φ̂|2 −

(
eû

∗ + g′(û∗)
)

φ̂2
)
sN−1ds

≥ (λ∗)−
N−2
2

√
λ∗∫

0

(

|∇φ̂|2 − (N − 2)2

4s2
φ̂2

)

sN−1ds ≥ 0,

where φ̂(s) := φ(r), s := √
λ∗r , and we use Hardy’s inequality. We have checked (1.6). ��

8 Proof of Theorem C

We study the Morse index of the singular solution.

Lemma 8 Suppose that 3 ≤ N ≤ 9 and that (f1) and (f2) are satisfied. Then m(u∗) = ∞.
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Proof Let (λ∗, u∗(r)) be the singular solution given by Proposition 1. Let û∗(s) := u∗(r),
and let s := √

λ∗r . Because of (1.4), for each small θ > 0, there is a small ρ0 > 0 such that

−2 log s + κ − θ ≤ û∗(s) ≤ −2 log s + κ + θ for s ∈ (0, ρ0).

Because of (f2′),

|g′(û∗(s))| ≤ C0e
(1−δ)û∗ ≤ C0

{2(N − 2)}1−δ

s2(1−δ)
e(1−δ)θ for s ∈ (0, ρ0). (8.1)

For each small ε > 0, there is ρ1 ∈ (0, ρ0) such that

f ′(û∗) = eû
∗ + g′(û∗) ≥ 2(N − 2)

s2

(
e−θ − C0{2(N − 2)}−δs2δe(1−δ)θ

)

≥ 2(N − 2)(1 − ε)

s2
for s ∈ (0, ρ1).

Using this inequality, we have

ρ1∫

0

(
|∇φ̂|2 − f ′(û∗)φ̂2

)
sN−1ds ≤

ρ1∫

0

(

|∇φ̂|2 − 2(N − 2)(1 − ε)

s2
φ̂2

)

sN−1ds. (8.2)

When 3 ≤ N ≤ 9, 2(N − 2)(1− ε) > (N − 2)2/4. Hence, there is a small ε0 > 0 such that

− 2(N − 2)(1 − ε)

s2
< −

(
(N − 2)2

4
+ ε20

)
1

s2
. (8.3)

We define φ̂ j (s) := φ̂(s)χ j (s), where φ̂(s) := s− N−2
2 sin( ε0

2 log s), s j := e−2π j/ε0 , and

χ j (s) :=
{
1 (s ∈ [s j+1, s j ]),
0 (s �∈ [s j+1, s j ]).

Then φ̂ j satisfies

φ̂′′
j + N − 1

s
φ̂′
j + 1

s2

(
(N − 2)2

4
+ ε20

4

)

φ̂ j = 0, s j+1 < s < s j .

This indicates that

√
λ∗∫

0

(

|∇φ̂ j |2 − 1

s2

(
(N − 2)2

4
+ ε20

)

φ̂2
j

)

sN−1ds = −
√

λ∗∫

0

3ε20
4

φ̂2
j s

N−3ds < 0. (8.4)
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Because of (8.2), (8.3), and (8.4), there is a large j0 > 0 such that, for j ≥ j0,

1∫

0

(
|∇φ j |2 − λ∗ f ′(u∗)φ2

j

)
r N−1dr (8.5)

= (λ∗)−
N−2
2

√
λ∗∫

0

(
|∇φ̂ j |2 − f ′(û∗)φ̂2

j

)
sN−1ds

< −(λ∗)−
N−2
2

√
λ∗∫

0

3ε20
4

φ̂2
j s

N−3ds < 0, (8.6)

where φ̂ j (s) := φ j (r) and s := √
λ∗r . Since

∫ 1
0 φ jφkr N−1dr = 0 ( j �= k), (8.6) indicates

that m(u∗) = ∞. ��
Lemma 9 Suppose that N ≥ 11 and that (f1) and (f2) holds. Then m(u∗) < ∞.

Proof For each small ε > 0, there is a small ρ0 > 0 such that û∗(s) ≤ −2 log s + κ + ε for
s ∈ (0, ρ0). For s ∈ [0, ρ0),

f ′(û∗) = eû
∗ + g′(û∗) ≤ 2(N − 2)

s2
eε + C0e

(1−δ)û∗

≤ 2(N − 2)

s2
eε + C0{2(N − 2)}1−δ

s2(1−δ)
e(1−δ)ε

≤ 2(N − 2)

s2

(
eε + C0(2(N − 2))1−δe(1−δ)εs2δ

)
.

When N ≥ 11, then 2(N − 2) <
(N−2)2

4 . Therefore, if ε > 0 is small, then there is
ρ1 ∈ (0, ρ0) such that f ′hatu∗) ≤ (N − 2)2/(4s2) (0 < s < ρ1). We define

χ0(s) :=
{
1 (0 < s < ρ1/2),

0 (ρ1 < s),

where 0 ≤ χ0(s) ≤ 1 and χ0(s) ∈ C1. Let χ1(s) := 1 − χ0(s). Then we have
√

λ∗∫

0

(
|∇φ̂|2 − f ′(û∗)φ̂2

)
sN−1ds =

∫ (
|∇φ̂|2 − (χ0 + χ1) f

′hatu∗)φ̂2
)
sN−1ds

=
∫ (

|∇φ̂|2 − χ0 f
′(û∗)φ̂2

)
sN−1ds +

∫ (
|∇φ̂|2 − χ1 f

′(û∗)φ̂2
)
sN−1ds

≥
∫ (

|∇φ̂|2 − (N − 2)2

4s2
φ̂2

)

sN−1ds +
∫ (

|∇φ̂|2 − χ1 f
′(û∗)φ̂2

)
sN−1ds

≥
∫ (

|∇φ̂|2 − χ1 f
′(û∗)φ̂2

)
sN−1ds. (8.7)

Let R be a function space of radial functions on B. Let

X :=

⎧
⎪⎨

⎪⎩
φ̂ ∈ H1

0 (B) ∩ R;
√

λ∗∫

0

(
|∇φ̂|2 − χ1 f

′(û∗)φ̂2
)
sN−1ds ≤ 0

⎫
⎪⎬

⎪⎭
.
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948 Y. Miyamoto

Since |χ1 f ′(û∗)| is bounded on B, the operator � + χ1 f ′(û∗) with the Dirichlet boundary
condition has at most finitely many negative eigenvalues, i.e., dim X < ∞. This inequality
indicates that

dim

⎧
⎪⎨

⎪⎩
φ̂ ∈ H1

0 (B) ∩ R;
√

λ∗∫

0

(
|∇φ̂|2 − f ′(û∗)φ̂2

)
sN−1ds ≤ 0

⎫
⎪⎬

⎪⎭
< ∞,

otherwise (8.7) indicates that dim X = ∞. Thus,m(û∗) < ∞, whichmeans thatm(u∗) < ∞.
��

Lemmas 8 and 9 prove Theorem C.

9 Examples

9.1 First example

Let f (u) := eu . Then (f1) holds. (1.3) has the singular solution (λ∗, u∗) = (λ∗
N , u∗

N ). Let
g(u) := f (u) − eu = 0. Then (f2) clearly holds. Theorems A and C are applicable. Hence,
if 3 ≤ N ≤ 9, then the branch of the positive solutions is of Type I and m(u∗) = ∞.

When N ≥ 10, Brezis andVázquez [3] studied this case by amethod different from Joseph
and Lundgren [14]. They obtained

λ∗ f ′(u∗) = 2(N − 2)

r2
.

They have shown that if N ≥ 10, then

λ∗ f ′(u∗) = 2(N − 2)

r2
≤ (N − 2)2

4r2
for r ∈ (0, 1].

Hence, if N ≥ 10, then
∫

B

(|∇φ|2 − λ∗ f ′(u∗)φ2) dx ≥
∫

B

(

|∇φ|2 − (N − 2)2

4r2
φ2

)

dx ≥ 0

for allφ ∈ C1
0(B), wherewe useHardy’s inequality. This inequality indicates thatm(u∗) = 0.

Proposition 2 says that the branch is of Type II. Hence,

the branch the positive solutions is of

{
Type I and m(u∗) = ∞ if 3 ≤ N ≤ 9,

Type II and m(u∗) = 0 if N ≥ 10.

9.2 Second example

Let f be defined by (1.7). (f1) clearly holds. Let g(u) := f (u) − eu . Then

g(u) = 3N − 5

N − 2
e
u
2 + 3N − 3

N − 2
+ N + 1

N − 2
e− u

2 + 1

N − 2
e−u .

Since

g′(u) = 3N − 5

2N − 4
e
u
2 − N + 1

2N − 4
e− u

2 − 1

N − 2
e−u,
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Classification of bifurcation diagrams 949

(f2) holds. Thus, Theorem A is applicable and the branch of the positive solutions is of
Type I if 3 ≤ N ≤ 9. By direct calculation, we see that (1.3) has the singular solution
(λ∗, u∗) defined by (1.8). Theorem C tells us that m(u∗) = ∞ if 3 ≤ N ≤ 9.

Next we consider the case N ≥ 10. By direct calculation, we can check (1.5). We have

λ∗ f ′(u∗) = 2(N − 2)

r2
− 1

r2

(
(N − 5)r

2 − r
+ 4r

(2 − r)2

)

.

We easily see that u∗ ∈ H1(B) if N ≥ 3. When N ≥ 10,

2(N − 2)

r2
− 1

r2

(
(N − 5)r

2 − r
+ 4r

(2 − r)2

)

≤ (N − 2)2

4r2
for 0 < r ≤ 1.

Using Hardy’s inequality, we have

∫

B

(|∇φ|2 − λ∗ f ′(u∗)φ2) dx ≥
∫

B

(

|∇φ|2 − (N − 2)2

4r2
φ2

)

dx ≥ 0 (9.1)

for all φ ∈ C1
0 (B) if N ≥ 10. Thus, (1.6) holds. Proposition 2 says that the branch of the

positive solutions is of Type II. Moreover, (9.1) indicates that m(u∗) = 0 if N ≥ 10. We
have obtained Corollary D.

When N = 10, (f1′) does not hold, but the bifurcation diagram is of Type II. Hence, (f1′)
is not a necessary condition for the bifurcation diagram to be of Type II.

9.3 Other examples

We study the case where the exact expression of the singular solution is not known.
We consider the case g(u) := 1

u+1 . Then (f1) and (f2) are satisfied. If N ≥ 10, then (f1′)
holds. Hence, (1.9) holds.

We consider the case g(u) := 1
4e

u
2 . Then (f1) and (f2) are satisfied. When N ≥ 11, then

(f1′) holds. However, if N = 10, then (f1′) does not hold. The bifurcation diagram is of Type
I (resp. Type II) if 3 ≤ N ≤ 9 (resp. N ≥ 11).

10 Singular solution

We briefly show that (1.3) has the singular solution. We consider the problem
{
y′′ + (N − 2)y′ + 2(N − 2)(ey − 1) + e2t g(y − 2t + κ) = 0,

y(t) → 0 (t → −∞).
(10.1)

Let τ := −t and η(τ) := y(t). Then the equation in (10.1) becomes

η′′ − (N − 2)η′ + 2(N − 2)(eη − 1) + e−2τ g(η + 2τ + κ) = 0. (10.2)

Lemma 10 Let η(τ) be a solution of (10.2) such that η(τ) → 0 (τ → ∞). Then η(τ) =
O(e−2δτ ) (τ → ∞).

Proof Let h(η, τ ) := −2(N − 2)(eη − 1 − η) − 2e−2τ g(η + 2τ + κ). Then η satisfies

η′′ − (N − 2)η′ + 2(N − 2)η = h(η, τ ).

123



950 Y. Miyamoto

We divide the possibilities into three cases:

(a) 3 ≤ N ≤ 9, (b) N = 10, (c) N ≥ 11.

We prove only the case (a). The other cases can be proved similarly.
Let μ := √|(N − 2)(N − 10)|/2. The function η satisfies

η(τ) = 1

μ
e

N−2
2 τ

∞∫

τ

e− N−2
2 σ sin(μ(σ − τ))h(η, σ )dσ. (10.3)

Since η(τ) → 0 (τ → ∞), there exists ε > 0 such that

|h(η, τ )| ≤ ε|η(τ)| + Ce−2δτ for large τ > 0. (10.4)

Using (10.3), we have

|η(τ)| ≤ Ce−2δτ + ε

∞∫

τ

|η(σ )|dσ for large τ > 0.

By Gronwall’s inequality, we have

|η(τ)| ≤ Ce−2δτ for large τ > 0. (10.5)

��

Proof of Proposition 1 In the proof, we consider only the case (a). Let

F(η)(τ ) := 1

μ
e

N−2
2 τ

∫ ∞

τ

e− N−2
2 σ sin(μ(σ − τ))h(η, σ )dσ.

For large T > 0 and let X be the space of continuous functions on (T,∞) equipped with
the norm ‖ξ‖ := sup{ξ(τ ); τ > T }. Let B := {ξ ∈ X; ‖ξ‖ < ε}. Then if T is large,
then F is a contraction mapping from B into itself. Hence, we see that the integral equation
η(τ) = F(η)(τ ) has a unique solution in B.

Let û(s) := −2 log s + κ + y(t). Then û(s) satisfies the equation in (1.12). Therefore, we
can extend the domain of û(s) in the positive direction of s. We show by contradiction that
there is λ∗ > 0 such that

{
û(s) > 0, 0 < s <

√
λ∗,

û(
√

λ∗) = 0.

Suppose the contrary, i.e., we assume that û(s) > 0 (0 < s < ∞). Since ûss + N−1
s ûs =

− f (û) < 0, û does not have a local minimum point, hence û(s) is decreasing. Because
û(s) > 0, ûs → 0 (s → ∞) and there is c ≥ 0 such that û → c (s → ∞). Since
ûss = − N−1

s ûs − f (û) → − f (c) < 0 (s → ∞), this contradicts that û → c (s → ∞).
By Lemma 10, we see that y(t) = O(e2δt ), hence û(s) = −2 log s + κ + O(s2δ).

Therefore, (1.4) is obtained.
Next, we show that there is a small R > 0 such that

|u∗
r (r)| ≤ 2

r
(1 + o(1)) for 0 < r < R. (10.6)
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Classification of bifurcation diagrams 951

Differentiating (10.3) with respect to τ , we have

η′(τ ) = N−2
2μ e

N−2
2 τ

∞∫
τ

e− N−2
2 σ sin(μ(σ − τ))h(η, σ )dσ

−e
N−2
2 τ

∞∫
τ

e− N−2
2 σ cos(μ(σ − τ))h(η, σ )dσ.

Because of (10.4) and (10.5),

|h(η, σ )| ≤ ε|η(τ)| + Ce−2δτ

≤ εCe−2δτ + Ce−2δτ

= Ce−2δτ .

Hence,

|η′(τ )| ≤ N − 2

2μ
e

N−2
2 τ

∞∫

τ

e− N−2
2 σCe−2δσ dσ + e

N−2
2 τ

∞∫

τ

e− N−2
2 σCe−2δσ dσ.

≤ Ce−2δτ .

Since t = −τ and η(τ) = y(t),

|y′(t)| = |η′(τ )| ≤ Ce−2δτ = Ce2δt . (10.7)

Since u∗(r) = y(t) − 2t + κ and t = log
√

λ∗r , we have u∗
r (r) = y′(log

√
λr) 1r − 2

r . Using
(10.7), we have

|u∗
r (r)| ≤ |y′(log

√
λr)|1

r
+ 2

r

≤ Cλδr2δ

r
+ 2

r
.

This inequality proves (10.6).
We prove that u∗ ∈ H1(B). Because u∗(r) has a singularity only at the origin, it is enough

to show that u∗ ∈ H1(BR) for small R > 0. Using (1.4) and (10.6), we have

∫

BR

(|∇u∗|2 + |u∗|2) dx =
R∫

0

(|u∗
r (r)|2 + |u∗(r)|2) r N−1dr

≤
R∫

0

(
9r N−3 + (−2 log r + c)2r N−1

)
dr < ∞,

if N ≥ 3. Thus, u∗ ∈ H1(BR). The proof is complete. ��
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