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Abstract Under super or asymptotically quadratic assumptions at infinity,weobtain the exis-
tence of nontrivial ground state homoclinic orbits for a class of second-order Hamiltonian
systemswith general potentials by a variant generalizedweak linking theorem. For the asymp-
totically quadratic case, a necessary and sufficient condition is obtained for the existence of
nontrivial homoclinic orbits. For the superquadratic case, we use general superquadratic
conditions to replace the Ambrosetti–Rabinowitz condition.
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1 Introduction and main results

In this paper, we consider the following second-order Hamiltonian system

− ü(t) + A(t)u(t) = ∇W (t, u(t)), t ∈ R, (1.1)

where A(t) is continuous T -periodic N × N symmetric matrix, W (t, u) ∈ C1(R × R
N ,R)

is continuous for each u ∈ R
N and T -periodic in t , and ∇W (t, u) denotes its gradient

with respect to the u variable. We say that a solution u(t) of (1.1) is homoclinic (with 0) if
u(t) ∈ C2(R,RN ) such that u(t) → 0 and u̇(t) → 0 as |t | → ∞. If u(t) �≡ 0, then u(t) is
called a nontrivial homoclinic solution.
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In recent decades,many authors are devoted to the existence andmultiplicity of homoclinic
orbits for second-order Hamiltonian systems with super or asymptotically linear terms, see
[1–10,12,14–17,21,24] and the references therein. If the matrix A(t) is positive definite
uniformly in t , some authors [6–8,16,17] obtained the existence of homoclinic orbits for
(1.1). However, for some mathematical physics, the global positive definiteness of A(t) is
not satisfied; thus, it is necessary for us to study the case that the matrix A(t) is not uniformly
positively definite for t ∈ R.

We notice that, in these works (except for [8,21]), it was always assumed that W (t, u)

satisfies the following superquadratic condition (see [2]): there exists a constant μ > 2
such that

0 < μW (t, u) ≤ (∇W (t, u), u) , u ∈ R
N\{0}, (1.2)

where (·, ·) denotes the standard inner product in R
N , and the associated norm is denoted by

| · |. However, we are interested in the case where W (t, u) satisfies conditions that are more
general than (1.2). Also, there are some authors who have considered (1.1) withW (t, u) satis-
fying asymptotically quadratic growth at infinity, see [8,21] and so on.However, to the best
of our knowledge, there is no result published concerning necessary and sufficient conditions
for the existence of nontrivial homoclinic orbits of (1.1) with W satisfying asymptotically
quadratic growth at infinity.

We assume 0 lies in a gap of σ(B), the spectrum of B := − d2

dt2
+ A(t), that is,

(A1) � := sup(σ (B) ∩ (−∞, 0)) < 0 < � := inf(σ (B) ∩ (0,∞)).

Let ˜W (t, u) := 1
2 (∇W (t, u), u) − W (t, u). Firstly, we consider the superquadratic sit-

uation. We shall use a general assumption to replace the superquadratic condition (1.2) and
assume

(W1) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly in t ∈ R.
(W2) W (t, u) ≥ 0 for all (t, u) ∈ R × R

N and ˜W (t, u) > 0 if u ∈ R
N\{0}.

(W3)
W (t,u)

|u|2 → +∞ as |u| → +∞ uniformly in t ∈ R.
(W4) There exist c0, r0 > 0, and σ > 1 such that

|∇W (t, u)|σ
|u|σ ≤ c0 ˜W (t, u) if |u| ≥ r0.

Next we consider the asymptotically quadratic situation. We still need (W2) and assume

(W′
1) |∇W (t, u)| ≤ c|u|μ−1 if |u| ≤ R for some c, R > 0 and μ > 2, ∀t ∈ R.

(W′
3) W (t, u) = 1

2V |u|2 + F(t, u), where

|∇F(t, u)| = o(|u|) as |u| → +∞ uniformly in t, 0 < V < ∞.

(W′
4) There exist c1, c2, R1, R2 > 0 and 1 < α < 2 such that

˜W (t, u) ≥ c1|u|μ if |u| ≤ R1, ˜W (t, u) ≥ c2|u|α if |u| ≥ R2, ∀t ∈ R.

Now, our main results read as follows:

Theorem 1.1 Assume that (A1) and (W2) hold. If either ((W1), (W3) and (W4)) or
((W ′

1), (W ′
4), and (W ′

3) with V > �) hold, then (1.1) has at least one nontrivial ground
state homoclinic orbit.

For the asymptotically quadratic situation, by Theorem 1.1, we obtain a necessary and
sufficient condition for the existence of nontrivial homoclinic orbit of (1.1).
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Corollary 1.1 Assume that (A1), (W ′
1), (W2), (W ′

3), and (W ′
4) hold. If

|∇W (t,u)|
|u| ≤ V for

all (t, u) ∈ R × R
N and

� + V ≤ min
{

0,� − V
}

, (1.3)

then (1.1) admits a nontrivial homoclinic orbit if and only if V > �.

Remark 1.1 Notice that the inequality (1.3) always holds if 0 < V < ∞ is small enough.
Therefore, Corollary 1.1 shows that V > � is a sharp condition for the existence of nontrivial
homoclinic orbit for (1.1). To the best of our knowledge, there is no result published con-
cerning necessary and sufficient conditions for the existence of nontrivial homoclinic orbits
of (1.1).

For the superquadratic situation, we give the following example. As is shown in the next
example, assumptions (W1)−(W4) are reasonable, and there are cases in which the condition
(1.2) is not satisfied.

Example 1.1 (Superquadratic). Let

W (t, u) = g(t)
(|u|p + (p − 2)|u|p−ε sin2(|u|ε/ε)) ,

where g(t) > 0 is T -periodic in t, 0 < ε < p − 2 and p > 2. It is not hard to check
that W (t, u) satisfies (W1) − (W4). However, similar to Remark 1.2 of [23], let um :=
(ε(mπ + 3π

4 ))
1
ε LN , where LN = (1, 0, . . . , 0). Then, for any γ > 2, one has

(∇W (t, um), um) − γW (t, um)

= g(t)

[

(p − γ )|um |p + (p − 2)(p − ε − γ )|um |p−ε sin2
( |um |ε

ε

)

+ (p − 2)|um |p sin 2(|um |ε/ε)]

= g(t)|um |p
⎡

⎣2 − γ +
(p − 2)(p − ε − γ ) sin2

( |um |ε
ε

)

|um |ε

⎤

⎦ → −∞ as m → ∞,

that is, the condition (1.2) cannot be satisfied for γ > 2.

For the asymptotically quadratic situation, we give the following example.

Example 1.2 (Asymptotically quadratic). Let

W (t, u) =
{( 1

2V − d(t)
) |u|μ if |u| ≤ 1,

1
2V |u|2 − d(t)|u|α if |u| ≥ 1,

where 0 < inf t∈R d(t) ≤ supt∈R d(t) < 1
2V and μ > 2 > α > 1. It is not hard to check that

the above function satisfies (W ′
1), (W2), (W ′

3), and (W ′
4).

The rest of this paper is organized as follows. In Sect. 2, we firstly establish the variational
framework of (1.1), and then, we give some preliminary lemmas, which are useful in the
proofs of our main results. In Sect. 3, we give the detailed proofs of our main results.

2 Variational framework and preliminary lemmas

Throughout this paper, we denote by ‖ · ‖Lq the usual Lq(R,RN )-norm, and we set Br (s) :=
[s − r, s + r ].
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906 G.-W. Chen

Under assumption (A1), B := − d2

dt2
+ A(t) is a self-adjoint operator acting on L2 :=

L2(R,RN ) with domain D(B) = H2(R,RN ), and we have the orthogonal decomposition

L2 = L− ⊕ L+, u = u− + u+

such that B is negative (respectively, positive) in L− (respectively, in L+). Let E := D(|B|1/2)
be equipped, respectively, with the inner product and norm

〈u, v〉 := (|B|1/2u, |B|1/2v)

L2 , ‖u‖ := ‖|B|1/2u‖L2 , (2.1)

where (·, ·)L2 denotes the inner product of L2(R,RN ). Then, we have the decompostion

E = E− ⊕ E+, E± = E ∩ L±,

orthogonal with respect to both (·, ·)L2 and 〈·, ·〉. By (A1), E = H1(R,RN ) with equivalent
norms. Then, E is a Hilbert space and it is not difficult to show that E ⊂ C0(R,RN ), the
space of continuous functions u on R such that u(t) → 0 as |t | → ∞ (see, e.g., [16]).

Now, the corresponding functional with (1.1) can be rewritten as:

I (u) = 1

2

∫

R

(|u̇|2 + (A(t)u, u)
)

dt −
∫

R

W (t, u)dt

= 1

2

(‖u+‖2 − ‖u−‖2) −
∫

R

W (t, u)dt. (2.2)

The hypotheses on W imply that I ∈ C1(E,R). Moreover, critical points of I are classical
solutions of (1.1) satisfying u̇(t) → 0 as |t | → ∞. Thus u is a homoclinic solution of (1.1).

The following abstract critical point theorem plays an important role in proving our main
result. Let E be a Hilbert space with norm ‖ · ‖ and have an orthogonal decomposition
E = N ⊕ N⊥, N ⊂ E is a closed and separable subspace. There exists norm |v|ω satisfies
|v|ω ≤ ‖v‖ for all v ∈ N and induces an topology equivalent to the weak topology of N on
bounded subset of N . For u = v + w ∈ E = N ⊕ N⊥ with v ∈ N , w ∈ N⊥, we define
|u|2ω = |v|2ω + ‖w‖2. Particularly, if (un = vn + wn) is ‖ · ‖-bounded and un

|·|ω→ u, then
vn ⇀ v weakly in N , wn → w strongly in N⊥, un ⇀ v + w weakly in E (cf. [18]).

Let E = E− ⊕ E+, z0 ∈ E+ with ‖z0‖ = 1. Let N := E− ⊕ Rz0 and E+
1 := N⊥ =

(E− ⊕ Rz0)⊥. For R > 0, let

Q := {

u := u− + sz0 : s ∈ R
+, u− ∈ E−, |u‖ < R

}

with p0 = s0z0 ∈ Q, s0 > 0. We define

D := {

u := sz0 + w+ : s ∈ R, w+ ∈ E+
1 , |sz0 + w+‖ = s0

}

.

For I ∈ C1(E,R), define 
 := {h|h : [0, 1] × Q̄ �→ E is | · |ω-continuous, h(0, u) =
u, I (h(s, u)) ≤ I (u), ∀u ∈ Q̄. For any (s0, u0) ∈ [0, 1] × Q̄, there is a | · |ω-neighborhood
U(s0,u0), such that {u − h(t, u) : (t, u) ∈ U(s0,u0) ∩ ([0, 1] × Q̄)} ⊂ E f in .}, where E f in

denotes various finite-dimensional subspaces of E, 
 �= 0 since id ∈ 
.
The following variant generalized weak linking theorem due to Schechter and Zou [18],

see also [20,23], where the authors developed the idea of monotonicity trick for strongly
indefinite problems, the original idea is due to [11,19].

Lemma 2.1 [18] The family of C1-functional {Iλ} has the form
Iλ(u) := J (u) − λK (u), ∀λ ∈ [1, 2].
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Superquadratic or asymptotically quadratic Hamiltonian systems 907

Assume that

(a) K (u) ≥ 0, ∀u ∈ E, I1 = I ;
(b) J (u) → ∞ or K (u) → ∞ as ‖u‖ → ∞;
(c) Iλ is | · |ω-upper semicontinuous, and I ′

λ is weakly sequentially continuous on E. More-
over, Iλ maps bounded sets to bounded sets;

(d) sup∂Q Iλ < infD Iλ,∀λ ∈ [1, 2].
Then, for almost all λ ∈ [1, 2], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, I ′
λ(un) → 0, Iλ(un) → cλ,

where cλ := infh∈
 supu∈Q Iλ(h(1, u)) ∈ [infD Iλ, supQ̄ I ].
In order to apply Lemma 2.1, we consider

Iλ(u) := 1

2
‖u+‖2 − λ

⎛

⎝

1

2
‖u−‖2 +

∫

R

W (t, u)dt

⎞

⎠ .

It is easy to see that Iλ satisfies conditions (a), (b) in Lemma 2.1. To see (c), if un
|·|ω→ u and

Iλ(un) ≥ a, then u+
n → u+ and u−

n ⇀ u− in E , going to a subsequence if necessary, un → u
a.e. on R. Next, we prove Iλ(u) ≥ a, which means that Iλ is | · |ω-upper semicontinuous.
Since

Iλ(un) = 1

2
‖u+

n ‖2 − λ

⎛

⎝

1

2
‖u−

n ‖2 +
∫

R

W (t, un)dt

⎞

⎠ ≥ a,

it follows from u+
n → u+ and u−

n ⇀ u− in E , the weak lower semicontinuity of the norm,
W (t, un) ≥ 0 and the Fatou’s lemma that

a ≤ lim sup
n→∞

Iλ(un) = lim sup
n→∞

⎛

⎝

1

2
‖u+

n ‖2 − λ

⎛

⎝

1

2
‖u−

n ‖2 +
∫

R

W (t, un)dt

⎞

⎠

⎞

⎠

≤ 1

2
‖u+‖2 − lim inf

n→∞ λ

⎛

⎝

1

2
‖u−

n ‖2 +
∫

R

W (t, un)dt

⎞

⎠

≤ 1

2
‖u+‖2 − λ

⎛

⎝

1

2
‖u−‖2 +

∫

R

W (t, u)dt

⎞

⎠ = Iλ(u).

Thus, we get Iλ(u) ≥ a. I ′
λ is weakly sequentially continuous on E is due to [22]. To continue

the discussion, we still need to verify condition (d). Indeed, we have:

Lemma 2.2 Under assumptions of Theorem 1.1, the following facts hold true:

(i) There exists ρ > 0 independent of λ ∈ [1, 2] such that κ := inf Iλ(SρE+) > 0, where

SρE
+ := {

z ∈ E+ : ‖z‖ = ρ
}

.

(ii) For fixed z0 ∈ E+ with ‖z0‖ = 1 and any λ ∈ [1, 2], there is R > ρ > 0 such that
sup Iλ(∂Q) ≤ 0, where Q := {

u := v + sz0 : s ≥ 0, v ∈ E−, ‖u‖ < R
}

.
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908 G.-W. Chen

Proof (i) By ((W1) and (W4)) or ((W ′
1) and (W ′

3)), we know for any ε > 0 there exists
Cε > 0 such that

|∇W (t, u)| ≤ ε|u| + Cε|u|p−1 (2.3)

and

|W (t, u)| ≤ ε|u|2 + Cε|u|p, (2.4)

where p > 2 in case (W ′
3) and p ≥ 2σ

σ−1 with σ > 1 in case (W4). Hence, by the Sobolev
embedding theorem, for any u ∈ E+, we have

Iλ(u) ≥ 1

2
‖u‖2 − λε‖u‖2 − C ′

ε‖u‖p,

which implies the conclusion.
(i i) Case 1 (Superquadratic case). That is, if (W3) holds.
Part 1. Suppose by contradiction that there exist un ∈ E− ⊕ R

+z0 such that Iλ(un) > 0
for all n and ‖un‖ → ∞ as n → ∞. Set wn = un‖un‖ = snz0 + w−

n , then

0 <
Iλ(un)

‖un‖2 = 1

2

(

s2n − λ‖w−
n ‖2) − λ

∫

R

W (t, un)

|un |2 |wn |2dt. (2.5)

From (W2), we know W (t, u) ≥ 0 and have

‖w−
n ‖2 ≤ λ‖w−

n ‖2 < s2n = 1 − ‖w−
n ‖2,

therefore, ‖w−
n ‖ ≤ 1√

2
and 1√

2
≤ sn ≤ 1. So sn → s �= 0 after passing to a subsequence,

wn ⇀ w and wn → w a.e. in R. Hence, w = sz0 + w− �= 0, and thus,

|un | = |wn | · ‖un‖ → +∞.

Part 2. By (W3), the fact |un | → ∞ and the Fatou’s lemma, we have

∫

R

W (t, un)

u2n
w2
ndt → +∞,

which contradicts with (2.5).
Case 2 (Asymptotically quadratic case). That is, if (W ′

3) with V > � holds.
Since V > �, we can choose ε0 > 0 such that

V ≥ � + 2ε0. (2.6)

Since σ(B) is absolutely continuous, we can choose z0 ∈ E+ with ‖z0‖ = 1 such that

‖z0‖2 ≤ (� + ε0)‖z0‖2L2 . (2.7)

Next, we use z0 in Case 2 to replace the z0 in the Part 1 of the Case 1. Then, the Part 1 is
still true. By (W2), (W ′

3), (2.5)–(2.7), the facts |un | → ∞ and ‖z0‖ = 1, the Fatou’s lemma
and the weak lower semicontinuity of the norm, we have
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0 ≤ lim sup
n→∞

Iλ(un)

‖un‖2 = lim sup
n→∞

⎛

⎝

1

2

(

s2n − λ‖w−
n ‖2) − λ

∫

R

W (t, un)

|un |2 |wn |2dt
⎞

⎠

≤ 1

2

(

s2‖z0‖2 − ‖w−‖2) − 1

2

∫

R

Vw2dt

≤ 1

2
s2‖z0‖2 − 1

2
V s2‖z0‖2L2

≤ 1

2
s2(� + ε0)‖z0‖2L2 − 1

2
(� + 2ε0)s

2‖z0‖2L2

= −1

2
ε0s

2‖z0‖2L2 < 0,

which is a contradiction.
Therefore, the proof is finished. ��

Lemma 2.3 Under assumptions of Theorem 1.1, for almost all λ ∈ [1, 2], there exists a uλ

such that I ′
λ(uλ) = 0 and Iλ(uλ) ≤ supQ̄ I.

Proof By Lemmas 2.1 and 2.2, for almost all λ ∈ [1, 2], there exists a sequence {un} such
that

sup
n

‖un‖ < ∞, I ′
λ(un) → 0, Iλ(un) → cλ ∈ [κ, sup

Q̄

I ],

where κ is defined in Lemma 2.2. We write un = u−
n + u+

n with u±
n ∈ E±. Since {u+

n } is
bounded, by a Lion’s concentration compactness principle [13], either {u+

n } is vanishing, i.e.,
for each l > 0,

lim
n→∞ sup

s∈R

∫

Bl (s)

|u+
n |2dt = 0

(in this case u+
n → 0 in Lq(R,RN ) for all q ∈ (2,∞)), or it is nonvanishing, i.e., there exist

r, δ > 0 and a sequence sn ∈ R such that

lim
n→∞

∫

Br (sn)

|u+
n |2dt ≥ δ.

If {u+
n } is vanishing, then u+

n → 0 in Lq(R,RN ) for all q ∈ (2,∞), it follows from (2.3),
the boundedness of {un} and the Hölder’s inequality that

∫

R

|(∇W (t, un), u
+
n )|dt ≤ ε

∫

R

|un | · |u+
n |dt + Cε

∫

R

|un |p−1|u+
n |dt

≤ ε‖un‖L2‖u+
n ‖L2 + Cε‖un‖p−1

L p ‖u+
n ‖L p → 0 as n → ∞.

Therefore,

Iλ(un) ≤ ‖u+
n ‖2 = I ′

λ(un)u
+
n + λ

∫

R

(∇W (t, un), u
+
n )dt → 0,
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910 G.-W. Chen

which contradicts with the fact that Iλ(un) ≥ κ . Hence, {u+
n } must be nonvanishing. Let us

define vn = un(· − sn), then

lim
n→∞

∫

Br (0)

|v+
n |2dt ≥ δ

2
. (2.8)

Since Iλ and I ′
λ are both invariant under translation, we know

I ′
λ(vn) → 0, Iλ(vn) → cλ.

Since {vn} is still bounded, we may assume v+
n ⇀ u+

λ , v−
n ⇀ u−

λ in E, vn ⇀ uλ a.e. on R

and v+
n → u+

λ in L2
loc(R,RN ), which together with (2.9) implies that uλ = u+

λ + u−
λ �= 0

and

I ′
λ(uλ)ϕ = lim

n→∞ I ′
λ(vn)ϕ = 0, ∀ϕ ∈ C∞

0 (R). (2.9)

By (W2) and the Fatou’s lemma, we have

sup
Q̄

I ≥ cλ = lim
n→∞

(

Iλ(vn) − 1

2
I ′
λ(vn)vn

)

= lim
n→∞

∫

R

(

1

2
(∇W (t, vn), vn) − W (t, vn)

)

dt

≥
∫

R

(

1

2
(∇W (t, uλ), uλ) − W (t, uλ)

)

dt = Iλ(uλ).

Thus, we get Iλ(uλ) ≤ supQ̄ I . ��

Lemma 2.4 Under assumptions of Theorem 1.1, there exist {λn} ⊂ [1, 2] with λn → 1 and
sequence {uλn } such that I ′

λn
(uλn ) = 0 and Iλn (uλn ) ≤ supQ̄ I ; moreover, {uλn } is bounded.

Proof The existence of {λn} ⊂ [1, 2] with λn → 1 and {uλn } such that
I ′
λn

(uλn ) = 0 and Iλn (uλn ) ≤ sup
Q̄

I

is the direct consequence of Lemma 2.3. Next, we divide our proof into two parts according
to super and asymptotically quadratic case, i.e., the following Part 1 and Part 2.

Part 1 (superquadratic case). If (W1) − (W4) hold. To prove the boundedness of {uλn },
arguing by contradiction, suppose that ‖uλn‖ → ∞. Let vλn := uλn‖uλn ‖ . Then, ‖vλn‖ =
1, vλn ⇀ v in E and vλn → v a.e. in R, after passing to a subsequence.

Recall that I ′
λn

(uλn ) = 0. Thus, for any ϕ ∈ E , we have

〈u+
λn

, ϕ〉 − λn〈u−
λn

, ϕ〉 = λn

∫

R

(∇W (t, uλn ), ϕ
)

dt. (2.10)

Consequently, {vλn } satisfies

〈v+
λn

, ϕ〉 − λn〈v−
λn

, ϕ〉 = λn

∫

R

(∇W (t, uλn ), ϕ
)

‖uλn‖
dt. (2.11)
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Let ϕ = v±
λn

in (2.11), respectively. Then, we have

〈v+
λn

, v+
λn

〉 = λn

∫

R

(

∇W (t, uλn ), v
+
λn

)

‖uλn‖
dt

and

−λn〈v−
λn

, v−
λn

〉 = λn

∫

R

(

∇W (t, uλn ), v
−
λn

)

‖uλn‖
dt.

Since 1 = ‖vλn‖2 = ‖v+
λn

‖2 + ‖v−
λn

‖2, we have

1 =
∫

R

(

∇W (t, uλn ), λnv
+
λn

− v−
λn

)

‖uλn‖
dt. (2.12)

For r ≥ 0, let

h(r) := inf
{

˜W (t, u) : t ∈ R and u ∈ R
N with |u| ≥ r

}

.

By (W2), we have h(r) > 0 for all r > 0. By (W2) and (W4), for |u| ≥ r0,

c0 ˜W (t, u) ≥ |∇W (t, u)|σ
|u|σ =

( |∇W (t, u)||u|
|u|2

)σ

≥
(

(∇W (t, u), u)

|u|2
)σ

≥
(

2W (t, u)

|u|2
)σ

,

it follows form (W3) and the definition of h(r) that

h(r) → ∞ as r → ∞.

For 0 ≤ a < b, let

�n(a, b) := {

t ∈ R : a ≤ |uλn (t)| < b
}

and

Cb
a := inf

{

˜W (t, u)

|u|2 : t ∈ R and u ∈ R
N with a ≤ |u| ≤ b

}

.

Since W (t, u) depends periodically on t and ˜W (t, u) > 0 if u ∈ R
N \ {0}, one has Cb

a > 0
and

˜W (t, uλn ) ≥ Cb
a |uλn |2 for all t ∈ �n(a, b).

Since

I ′
λn

(uλn ) = 0, Iλn (uλn ) ≤ sup
Q̄

I,

we have there exists a constant C0 > 0 such that for all n

C0 ≥ Iλn (uλn ) − 1

2
I ′
λn

(uλn )uλn =
∫

R

˜W (t, uλn )dt, (2.13)
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from which we have

C0 ≥
∫

�n(0,a)

˜W (t, uλn )dt +
∫

�n(a,b)

˜W (t, uλn )dt +
∫

�n(b,∞)

˜W (t, uλn )dt

≥
∫

�n(0,a)

˜W (t, uλn )dt + Cb
a

∫

�n(a,b)

|uλn |2dt + h(b)|�n(b,∞)|. (2.14)

Invoking (W4), set τ := 2σ/(σ − 1) and σ ′ = τ/2. Since σ > 1, one sees τ ∈ (2,∞). Fix
arbitrarily τ̂ ∈ (τ,∞). Using (2.14), we have

|�n(b,∞)| ≤ C0

h(b)
→ 0

as b → ∞ uniformly in n, which implies by theHölder inequality and the Sobolev embedding
theorem that

∫

�n(b,∞)

|vλn |τdt ≤ C |�n(b,∞)|1− τ
τ̂ → 0 (2.15)

as b → ∞ uniformly in n. Using (2.14) again, for any fixed 0 < a < b,
∫

�n(a,b)

|vλn |2dt = 1

‖uλn‖2
∫

�n(a,b)

|uλn |2dt ≤ C0

Cb
a‖uλn‖2

→ 0 as n → ∞. (2.16)

Let 0 < ε < 1
3 . Note that the Sobolev embedding theorem implies ‖vλn‖2L2 ≤ C‖vλn‖2 =

C and |λn | ≤ C1. By (W1) there is aε > 0 such that |∇W (t, u)| < ε
C1C

|u| for all |u| ≤ aε,
consequently,

∫

�n(0,aε)

(

∇W (t, uλn ), λnv
+
λn

− v−
λn

)

‖uλn‖
dt ≤

∫

�n(0,aε)

|∇W (t, uλn )|
|uλn |

|vλn | · |λnv+
λn

− v−
λn

|dt

≤ ε

C1C

∫

�n(0,aε)

|vλn | · |λnv+
λn

− v−
λn

|dt

≤ ε

C1C

⎛

⎝

∫

R

v2λn dt

⎞

⎠

1/2⎛

⎝

∫

R

(λnv
+
λn

− v−
λn

)2dt

⎞

⎠

1/2

≤ ε

C
‖vλn‖2L2 ≤ ε (2.17)

for all n. By (W4), (2.13), (2.15), and the Sobolev embedding theorem, we can take bε ≥ r0
large so that

∫

�n(bε,∞)

(

∇W (t, uλn ), λnv
+
λn

− v−
λn

)

‖uλn‖
dt ≤

∫

�n(bε,∞)

|∇W (t, uλn )|
|uλn |

|vλn | · |λnv+
λn

− v−
λn

|dt

≤
⎛

⎜

⎝

∫

�n(bε,∞)

|∇W (t, uλn )|σ
|uλn |σ

dt

⎞

⎟

⎠

1/σ ⎛

⎜

⎝

∫

�n(bε,∞)

(

|vλn | · |λnv+
λn

− v−
λn

|
)σ ′

dt

⎞

⎟

⎠

1/σ ′

123
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≤
⎛

⎝

∫

R

c0 ˜W (t, uλn )dt

⎞

⎠

1/σ ⎛

⎝

∫

R

|λnv+
λn

− v−
λn

|τdt
⎞

⎠

1/τ
⎛

⎜

⎝

∫

�n(bε,∞)

|vλn |τdt
⎞

⎟

⎠

1/τ

< ε

(2.18)

for all n. Note that there is γ = γ (ε) > 0 independent of n such that |∇W (t, uλn )| ≤ γ |uλn |
for t ∈ �n(aε, bε). By (2.16), there is n0 such that

∫

�n(aε,bε)

(

∇W (t, uλn ), λnv
+
λn

− v−
λn

)

‖uλn‖
dt

≤
∫

�n(aε,bε)

|∇W (t, uλn )|
|uλn |

|vλn | · |λnv+
λn

− v−
λn

|dt

≤ γ

∫

�n(aε,bε)

|vλn | · |λnv+
λn

− v−
λn

|dt

≤ γ

⎛

⎝

∫

R

v2λn dt

⎞

⎠

1/2
⎛

⎜

⎝

∫

�n(aε,bε)

(λnv
+
λn

− v−
λn

)2dt

⎞

⎟

⎠

1/2

≤ γ λn‖vλn‖L2

⎛

⎜

⎝

∫

�n(aε,bε)

|vλn |2dt
⎞

⎟

⎠

1/2

< ε (2.19)

for all n ≥ n0. Therefore, the combination of (2.17)–(2.19) implies that for n ≥ n0, we have

∫

R

(

∇W (t, uλn ), λnv
+
λn

− v−
λn

)

‖uλn‖
dt < 3ε < 1,

which contradicts with (2.12). Thus, {uλn } is bounded.
Part 2 (asymptotically quadratic case). If (W ′

1), (W2), (W ′
4), and (W ′

3)with V > � hold.
Note that (W ′

3) implies that there exists c3, R3 > 0 such that

|∇W (t, u)| ≤ c3|u|, |u| ≥ R3. (2.20)

Let R0 := min{1, R, R1, R2, R3}, where R, R1, and R2 are defined, respectively, in (W ′
1)

and (W ′
4). Note that I

′
λn

(uλn ) = 0 and Iλn (uλn ) ≤ supQ̄ I , thus

Iλn (uλn ) − 1
2 I

′
λn

(uλn )uλn

λn
≤ C.
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914 G.-W. Chen

It follows from (W2), (W ′
4) and the definition of ˜W that

C ≥ Iλn (uλn ) − 1
2 I

′
λn

(uλn )uλn

λn

=
∫

R

˜W (t, uλn )dt

=
∫

{t∈R: |uλn |≤R0}
˜W (t, uλn )dt +

∫

{t∈R: |uλn |≥R0}
˜W (t, uλn )dt

≥ c1

∫

{t∈R: |uλn |≤R0}
|uλn |μdt + c′

2

∫

{t∈R: |uλn |≥R0}
|uλn |αdt. (2.21)

Take s ∈ (0, α
2 ), then by (2.21), the Hölder’s inequality, and the Sobolev imbedding theorem,

we have
∫

{t∈R: |uλn |≥R0}
|uλn |2dt

=
∫

{t∈R: |uλn |≥R0}
|uλn |2s |uλn |2(1−s)dt

≤
⎛

⎜

⎝

∫

{t∈R: |uλn |≥R0}
|uλn |α

⎞

⎟

⎠

2s
α

⎛

⎜

⎝

∫

{t∈R: |uλn |≥R0}
|uλn |

2α(1−s)
α−2s

⎞

⎟

⎠

α−2s
α

≤ C1‖uλn‖2(1−s)

(2.22)

for some constant C1 > 0, where 2α(1−s)
α−2s > 2. Note that I ′

λn
(uλn )u

+
λn

= 0, it follows from
(W ′

1), (2.20)–(2.22), the Hölder’s inequality, and the Sobolev imbedding theorem that

‖u+
λn

‖2 = λn

∫

R

(∇W (t, uλn ), u
+
λn

)dt

≤ C2

∫

{t∈R: |uλn |≤R0}
|∇W (t, uλn )| · |u+

λn
|dt+ C2

∫

{t∈R:|uλn |≥R0}
|∇W (t, uλn )| · |u+

λn
|dt

≤ C3

∫

{t∈R: |uλn |≤R0}
|uλn |μ−1 · |u+

λn
|dt + C3

∫

{t∈R: |uλn |≥R0}
|uλn | · |u+

λn
|dt

≤ C3

⎛

⎜

⎝

∫

{t∈R: |uλn |≤R0}
|uλn |μdt

⎞

⎟

⎠

μ−1
μ

⎛

⎜

⎝

∫

{t∈R: |uλn |≤R0}
|u+

λn
|μdt

⎞

⎟

⎠

1
μ

+C3

⎛

⎜

⎝

∫

{t∈R: |uλn |≥R0}
|uλn |2dt

⎞

⎟

⎠

1
2
⎛

⎜

⎝

∫

{t∈R: |uλn |≥R0}
|u+

λn
|2dt

⎞

⎟

⎠

1
2
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Superquadratic or asymptotically quadratic Hamiltonian systems 915

≤ C4‖u+
λn

‖ + C4‖u+
λn

‖ · ‖uλn‖1−s

= C4‖u+
λn

‖ + C4‖u+
λn

‖ ·
(

‖u+
λn

‖2 + ‖u−
λn

‖2
) 1−s

2
(2.23)

for some constants C2,C3,C4 > 0, where 1−s
2 < 1

2 . By I ′
λn

(uλn )uλn = 0, we have

‖u+
λn

‖2 − λn‖u−
λn

‖2 = λn

∫

R

(∇W (t, uλn ), uλn )dt ≥ 0,

that is,

‖u+
λn

‖2 ≥ λn‖u−
λn

‖2 ≥ ‖u−
λn

‖2. (2.24)

By (2.23) and (2.24), we have {uλn } is bounded.
Therefore, the proof is finished by Part 1 and Part 2. ��

Lemma 2.5 If {uλn } is the sequence obtained in Lemma 2.4, then it is also a (PS) sequence
for I satisfying limn→∞ I ′(uλn ) = 0 and limn→∞ I (uλn ) ≤ supQ̄ I.

Proof Note that uλn is bounded. From

lim
n→∞ I (uλn ) = lim

n→∞

⎛

⎝Iλn (uλn ) + (λn − 1)

⎛

⎝

1

2
‖u−

λn
‖2 +

∫

R

W (t, uλn )dt

⎞

⎠

⎞

⎠

and note that

lim
n→∞ I ′(uλn )ϕ = lim

n→∞

⎛

⎝I ′
λn

(uλn )ϕ + (λn − 1)

⎛

⎝〈u−
λn

, ϕ−〉 +
∫

R

(∇W (t, uλn ), ϕ
)

dt

⎞

⎠

⎞

⎠

for any ϕ ∈ E , we obtain the conclusion. ��

3 Proofs of main results

In this section, we are in a position to prove our main results.

Proof of Theorem 1.1 From Lemma 2.4, we know {uλn } is bounded, we have {uλn } is either
vanishing, that is, for each l > 0,

lim
n→∞ sup

s∈R

∫

Bl (s)

|uλn |2dt = 0 (3.1)

or nonvanishing, i.e., there exist r, δ > 0 and a sequence {sn} ⊂ R such that

lim
n→∞

∫

Br (sn)

|uλn |2dt ≥ δ. (3.2)

If {uλn } is vanishing, by the Lion’s concentration compactness principl, we have that uλn → 0
in L p(R,RN ) for all p ∈ (2,∞). However, by (2.3), the Hölder’s inequality, the Sobolev
embedding theorem, and the fact that I ′

λn
(uλn )u

+
λn

= 0, we have
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916 G.-W. Chen

‖u+
λn

‖2 = λn

∫

R

(

∇W (t, uλn ), u
+
λn

)

dt

≤ ε

∫

R

|uλn | · |u+
λn

|dt + Cε

∫

R

|uλn |p−1|u+
λn

|dt

≤ ε‖uλn‖ · ‖u+
λn

‖ + C ′
ε‖uλn‖p−1

L p ‖u+
λn

‖
≤ ε‖uλn‖ · ‖u+

λn
‖ + C ′′

ε ‖uλn‖p−2
L p ‖uλn‖ · ‖u+

λn
‖

≤ ε‖uλn‖2 + C ′′
ε ‖uλn‖p−2

L p ‖uλn‖2. (3.3)

Similarly, we have

‖u−
λn

‖2 ≤ ε‖uλn‖2 + C ′′
ε ‖uλn‖p−2

L p ‖uλn‖2. (3.4)

From (3.3) and (3.4), we get

‖uλn‖2 ≤ 2ε‖uλn‖2 + 2C ′′
ε ‖uλn‖p−2

L p ‖uλn‖2,
which means ‖uλn‖L p ≥ C for some constant C , hence (3.1) does not hold. Let us define
vλn = uλn (· − sn), from (3.2), we have

lim
n→∞

∫

Br (0)

|vλn |2dt ≥ δ

2
. (3.5)

I and I ′ are both invariant under translation, we know I ′(vλn ) → 0. Since {vλn } is still
bounded, we may assume vλn ⇀ u in E and vλn → u in L2

loc(R,RN ), which together with
(3.5) implies that u �= 0 with I ′(u) = 0.

Let K := {

u ∈ E : I ′(u) = 0, u �= 0
}

be the critical set of I and

c := inf {I (z) : z ∈ K\{0}} .

For any critical point u of I , assumption (W2) implies that

I (u) = I (u) − 1

2
I ′(u)u =

∫

R

(

1

2
(∇W (t, u), u) − W (t, u)

)

dt > 0 if u �= 0. (3.6)

Therefore, we have c ≥ 0. We prove that c > 0 and there is u ∈ K such that I (u) = c.
Let u j ∈ K\{0} be such that I (u j ) → c. Then, the proof in Lemma 2.4 shows that {u j }
is bounded; then, by the concentration compactness principle discussion above, we know
u j ⇀ u ∈ K\{0}. Thus,

c = lim
j→∞ I (u j ) = lim

j→∞

(

I (u j ) − 1

2
I ′(u j )u j

)

= lim
j→∞

∫

R

(

1

2

(∇W (t, u j ), u j
) − W (t, u j )

)

dt

≥
∫

R

(

1

2
(∇W (t, u), u) − W (t, u)

)

dt = I (u) ≥ c,

where the first inequality dues to the Fatou’s lemma. So I (u) = c and c > 0 because u �= 0.
��
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Proof of Corollary 1.1 By virtue of Theorem 1.1, it suffices to show that (1.1) has no non-
trivial homoclinic orbit if (A1), (W ′

1), (W2), (W ′
3), and (W ′

4) hold,
|∇W (t,u)|

|u| ≤ V for all

(t, u) ∈ R × R
N and

V ≤ �0 := min{−�,�}.
By way of contradiction, assume that (1.1) has a nontrivial homoclinic orbit u ∈ E , then for
any small ε > 0 there exists R > 0 such that

|u(t)| < ε if |t | ≥ R.

It follows from (W ′
1) that

|∇W (t, u)|
|u| < V if |t | ≥ R. (3.7)

Since u is a nonzero critical point of I , we get I ′(u)(u+ − u−) = 0, it follows from (2.1),
(2.2), and (3.7), |∇W (t,u)|

|u| ≤ V for all (t, u) ∈ R × R
N and V ≤ �0 := min{−�,�} that

(Bu+, u+)L2 − (Bu−, u−)L2 = (Bu, u+ − u−)L2 =
∫

R

(∇W (t, u), u+ − u−)dt

≤
∫

R

|∇W (t, u)| · |u+ − u−|dt

=
∫

{t∈R: |t |≤R}

|∇W (t, u)|
|u| |u| · |u+ − u−|dt +

∫

{t∈R: |t |≥R}

|∇W (t, u)|
|u| |u| · |u+ − u−|dt

<

∫

R

V |u| · |u+ − u−|dt

=
∫

R

√
V |u| · √

V |u+ − u−|dt

≤
⎛

⎝

∫

R

Vu2dt

⎞

⎠

1/2 ⎛

⎝

∫

R

V (u+ − u−)2dt

⎞

⎠

1/2

≤ �0

⎛

⎝

∫

R

u2dt

⎞

⎠

1/2 ⎛

⎝

∫

R

(u+ − u−)2dt

⎞

⎠

1/2

= �0‖u+‖2L2 + �0‖u−‖2L2 ≤ �‖u+‖2L2 − �‖u−‖2L2 .

That is,

(Bu+, u+)L2 − (Bu−, u−)L2 < �‖u+‖2L2 − �‖u−‖2L2 . (3.8)

However, we know

(Bu+, u+)L2 − (Bu−, u−)L2 ≥ �‖u+‖2L2 − �‖u−‖2L2 . (3.9)

Therefore, by (3.8) and (3.9), we get a contradiction. This contradiction completes the proof.
��
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