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Abstract We establish some new criteria for the oscillation of second-order Emden–Fowler
neutral delay differential equations. We study the case of superlinear and the case of sublinear
equations subject to various conditions. The results obtained show that the presence of a
neutral term in a differential equation can cause or destroy oscillatory properties. Several
examples are provided to illustrate the relevance of new theorems.
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1 Introduction

Emden–Fowler-type differential equations have some applications in the real world. For
instance, equation

x ′′(t) + a

t
x ′(t) + btm−1xn(t) = 0, (1.1)
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1862 R. P. Agarwal et al.

where n �= 0, n �= 1, a, b, m are parameters, is used in mathematical physics, theoretical
physics, and chemical physics, etc., see [9,31]. This paper is concerned with the oscillatory
behavior of second-order Emden–Fowler neutral delay differential equations of the form

(
r(t)

(
(x(t) + p(t)x(τ (t)))′

)α)′ + q(t)xγ (σ (t)) = 0, t ≥ t0 (1.2)

subject to the following hypotheses:

(H1) α, γ ∈ R, where R is the set of all ratios of odd positive integers;
(H2) r ∈ C([t0,∞), (0,∞)), p, q ∈ C([t0,∞), R), 0 ≤ p(t) < 1, q(t) ≥ 0, and q is
not identically zero for large t ;
(H3) τ, σ ∈ C([t0,∞), R), τ (t) ≤ t, σ (t) ≤ t, limt→∞ τ(t) = ∞, and limt→∞ σ(t) =
∞.

By a solution of (1.2), we mean a nontrivial function x satisfying (1.2) for t ≥ tx ≥ t0.
In the sequel, we assume that solutions of (1.2) exist and can be continued indefinitely to
the right. A solution of (1.2) is called oscillatory if it has arbitrarily large zeros on [tx ,∞);
otherwise, it is called nonoscillatory. Equation (1.2) is said to be oscillatory if all its solutions
are oscillatory.

During the past few years, there has been constant interest in obtaining sufficient conditions
for oscillatory or nonoscillatory behavior of different classes of differential and functional
differential equations; see, e.g., [1–8,10–38]. Very recently, Baculíková and Džurina [7]
established several oscillation theorems for equation

(
r(t) (x(t) + p(t)x(τ (t)))′

)′ + q(t)x(σ (t)) = 0

via a comparison with associated first-order delay differential equations in the case when, in
addition to

τ ∈ C1 ([t0,∞), R) , τ ′(t) ≥ τ0 > 0, and τ ◦ σ = σ ◦ τ, (1.3)

condition
∞∫

t0

r−1(t)dt = ∞

is satisfied. Assuming

∞∫

t0

r−1/α(t)dt = ∞,

Baculíková and Džurina [8] extended results of [7] to Eq. (1.2). Under conditions

∞∫

t0

r−1/α(t)dt < ∞ (1.4)

and

p′(t) ≥ 0, lim
t→∞ p(t) = A, (1.5)

Xu and Meng [34, Theorem 2.3] obtained sufficient conditions for oscillation and asymptotic
behavior of a nonlinear neutral differential equation of the form

(
r(t)

(
(x(t) + p(t)x(t − τ))′

)α)′ + q(t)xα(σ (t)) = 0, (1.6)
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Neutral differential equations 1863

where τ ≥ 0 is a constant. Further results in that direction were obtained by Ye and Xu [35]
under the assumptions that

p′(t) ≥ 0, σ (t) ≤ t − τ, (1.7)

see also the paper by Han et al. [13] where inaccuracies in [35] have been corrected and new
oscillation criteria for (1.6) were established [13, Theorem 2.1 and Theorem 2.2]. Developing
further ideas from the paper by Hasanbulli and Rogovchenko [14] concerned with a particular
case of Eq. (1.6) with α = 1, Li et al. [24] studied the oscillation of (1.6) in the case where
(1.4) holds and α ≥ 1. Li et al. [22] considered the Emden–Fowler neutral delay differential
equation

(
r(t) (x(t) + p(t)x(t − τ))′

)′ + q(t)xγ (σ (t)) = 0, (1.8)

where τ ≥ 0 is a constant, γ ∈ R, γ ≥ 1, σ ∈ C1([t0,∞), R), σ ′ > 0, σ (t) ≤ t , and
limt→∞ σ(t) = ∞, and they presented the following result.

Theorem 1.1 (See [22, Theorem 2.1]) Assume (H2) and let (1.4) hold with α = 1. Assume
further that there exists a function ρ ∈ C1([t0,∞), R) with ρ(t) ≥ t, ρ′(t) > 0, and
σ(t) ≤ ρ(t)− τ such that, for all sufficiently large t1 and for all positive constants M and L

∞∫ [

q(t)(1 − p(σ (t)))γ Rγ (σ (t)) − γ M1−γ σ ′(t)Rγ−1(σ (t))

r(σ (t))
∫ t

t1
σ ′(s)

r(σ (s)) ds

]

dt = ∞

and

∞∫ [
q(t)

(
1

1 + p(ρ(t))

)γ

δγ (t) − γρ′(t)
Lγ−1δ(t)r(ρ(t))

]
dt = ∞,

where R(t) := ∫ t
t0

r−1(s)ds and δ(t) := ∫ ∞
ρ(t) r−1(s)ds. Then, (1.8) is oscillatory.

As a special case of Eq. (1.2), Zhang et al. [37] employed Riccati transformation to study
oscillation of a nonlinear differential equation

(
r(t)

(
x ′(t)

)α)′ + q(t)xγ (σ (t)) = 0, (1.9)

where α, γ ∈ R, r, q ∈ C([t0,∞), (0,∞)), σ ∈ C([t0,∞), R), σ (t) < t , and
limt→∞ σ(t) = ∞. They established several new results, one of which we present below for
the convenience of the reader.

Theorem 1.2 (See [37, Theorem 2.1]) Assume (1.4), γ ≤ α, and let the differential equation

y′(t) + q(t)

(
λ0σ(t)

r1/α(σ (t))

)γ

yγ /α(σ (t)) = 0 (1.10)

be oscillatory for some constant λ0 ∈ (0, 1). If

lim sup
t→∞

t∫

t0

[
Mγ−αq(s)ξα(s) − αα+1

(α + 1)α+1

1

ξ(s)r1/α(s)

]
ds = ∞ (1.11)
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holds for every constant M > 0, where

ξ(t) :=
∞∫

t

r−1/α(s)ds, (1.12)

then (1.9) is oscillatory.

On the basis of conditions (1.3), 0 ≤ p(t) ≤ p0 < ∞, τ (t) ≤ t, σ (t) ≤ t , and

lim sup
t→∞

t∫

t0

[

δ(s)Q(s) − 1 + p0
τ0

4δ(s)r(s)

]

ds = ∞, (1.13)

where Q(t) := min{q(t), q(τ (t))} and δ(t) := ∫ ∞
t r−1(s)ds, Han et al. [13] established

some oscillation criteria [13, Theorem 3.1 and Theorem 3.2] for the second-order neutral
delay differential equation

(
r(t) (x(t) + p(t)x(τ (t)))′

)′ + q(t)x(σ (t)) = 0.

Sun et al. [30] investigated nonlinear differential equation

(
r(t)

(
(x(t) + p(t)x(τ (t)))′

)α)′ + q(t)xα(σ (t)) = 0, (1.14)

where α ∈ R, α ≥ 1, r ∈ C([t0,∞), (0,∞)), p, q ∈ C([t0,∞), R), 0 ≤ p(t) ≤ p0 <

∞, q(t) ≥ 0, q is not identically zero for large t, τ, σ ∈ C1([t0,∞), R), σ ′ > 0, σ (t) ≤
τ(t) ≤ t , and limt→∞ τ(t) = limt→∞ σ(t) = ∞. They obtained the following oscillation
criterion.

Theorem 1.3 (See [30, Theorem 4.1]) Assume (1.3), (1.4), and there exists a function ρ ∈
C1([t0,∞), (0,∞)) such that

lim sup
t→∞

t∫

t0

⎡

⎣ρ(s)Q(s)

2α−1 −
(

1 + p0
α

τ0

)
r(σ (s))(ρ′+(s))α+1

(α + 1)α+1(ρ(s)σ ′(s))α

⎤

⎦ ds = ∞.

If there exists a function η ∈ C1([t0,∞), R) such that η(t) ≥ t, η′(t) > 0, and

lim sup
t→∞

t∫

t0

⎡

⎣πα(s)Q(s)

2α−1 −
αα+1

(
1 + p0

α

τ0

)
η′(s)

(α + 1)α+1π(s)r1/α(η(s))

⎤

⎦ ds = ∞,

where Q(t) := min{q(t), q(τ (t))}, ρ′+(t) := max{0, ρ′(t)}, and π(t) := ∫ ∞
η(t) r−1/α(s)ds,

then (1.14) is oscillatory.

The objective of this paper is to improve the results in [13,22,30,34,35,37]. This paper
is organized as follows: In the next section, we give some lemmas. In Sect. 3, four new
oscillation criteria are obtained. In Sect. 4, we present some conclusions to summarize the
contents of this paper.
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2 Some lemmas

We begin with the following lemma.

Lemma 2.1 (See [28, Theorem 1]) Suppose λ ∈ R, g, h ∈ C[t0,∞), g(t) ≥ 0, h(t) < t ,
and limt→∞ h(t) = ∞. If the first-order delay differential inequality

z′(t) + g(t)zλ(h(t)) ≤ 0

has an eventually positive solution, so does the delay differential equation

z′(t) + g(t)zλ(h(t)) = 0. (2.1)

Lemma 2.2 (See [16, Theorem 2]) Assume λ ∈ R, g, h ∈ C[t0,∞), g(t) ≥ 0, h(t) < t ,
and limt→∞ h(t) = ∞. Then, Eq. (2.1) with λ ∈ (0, 1) is oscillatory if

∞∫

t0

g(t)dt = ∞. (2.2)

Lemma 2.3 (See [6, Lemma 2.3]) Suppose λ ∈ R, g, η ∈ C[t0,∞), g(t) ≥ 0, and η(t) > t .
If the first-order advanced differential inequality

z′(t) − g(t)zλ(η(t)) ≥ 0

has an eventually positive solution, so does the advanced differential equation

z′(t) − g(t)zλ(η(t)) = 0. (2.3)

Lemma 2.4 (See [16, Theorem 1]) Assume λ ∈ R, g, η ∈ C[t0,∞), g(t) ≥ 0, and η(t) > t .
Then, Eq. (2.3) with λ ∈ (1,∞) is oscillatory if (2.2) holds.

3 Oscillation criteria

In what follows, all functional inequalities are assumed to hold eventually, that is, for all t
large enough. We also use the notation

z(t) := x(t) + p(t)x(τ (t)) and f (t) :=
(

1 − p(σ (t))
ξ(τ (σ (t)))

ξ(σ (t))

)γ

> 0,

where ξ is as in (1.12).

Theorem 3.1 Let (H1)–(H3), (1.4), and γ ≥ α hold. Assume that

∞∫

t2

q(t) (1 − p(σ (t)))γ

⎛

⎝
σ1(t)∫

t1

r−1/α(s)ds

⎞

⎠

β

dt = ∞ (3.1)

holds for some β ∈ R with β < α, for all sufficiently large t1 ≥ t0, for some t2 > t1, and for
some function σ1 ∈ C([t0,∞), R) with σ1(t) ≤ σ(t), σ1(t) < t , and limt→∞ σ1(t) = ∞.
Suppose further that

∞∫

t0

q(t) f (t)ξ θ (σ2(t))dt = ∞ (3.2)
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holds for some θ ∈ R with θ ≥ γ and θ > α, and for some function σ2 ∈ C([t0,∞), R)

with σ2(t) > t . Then, (1.2) is oscillatory.

Proof Suppose to the contrary that x is a nonoscillatory solution of (1.2). Without loss of
generality, we may assume that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0 for all large t . From
(1.2), one can easily obtain that there exists a t1 ≥ t0 such that either

z(t) > 0, z′(t) > 0, (r(z′)α)′(t) ≤ 0, (3.3)

or

z(t) > 0, z′(t) < 0, (r(z′)α)′(t) ≤ 0 (3.4)

for t ≥ t1.
Suppose first (3.3). Then, we have

x(t) = z(t) − p(t)x(τ (t)) ≥ z(t) − p(t)z(τ (t)) ≥ (1 − p(t)) z(t) (3.5)

and

z(t) ≥ (r1/αz′)(t)
t∫

t1

r−1/α(s)ds. (3.6)

It follows from (1.2) and (3.5) that

(r(z′)α)′(t) + q(t) (1 − p(σ (t)))γ zβ(σ (t))zγ−β(σ (t)) ≤ 0.

By virtue of z′ > 0 and β < α, there exists a constant c1 > 0 such that

(r(z′)α)′(t) + c1q(t) (1 − p(σ (t)))γ zβ(σ1(t)) ≤ 0. (3.7)

Letting y := r(z′)α and using (3.6) and (3.7), we have

y′(t) + c1q(t) (1 − p(σ (t)))γ

⎛

⎝
σ1(t)∫

t1

r−1/α(s)ds

⎞

⎠

β

yβ/α(σ1(t)) ≤ 0.

By Lemma 2.1, we obtain that the delay differential equation

y′(t) + c1q(t) (1 − p(σ (t)))γ

⎛

⎝
σ1(t)∫

t1

r−1/α(s)ds

⎞

⎠

β

yβ/α(σ1(t)) = 0

also has positive solutions. Using Lemma 2.2 and condition (3.1), one can obtain that the
above equation is oscillatory, which is a contradiction.

Suppose now (3.4). From (r(z′)α)′ ≤ 0, we obtain that r(z′)α is nonincreasing. Hence,
we have

r1/α(s)z′(s) ≤ r1/α(t)z′(t), s ≥ t. (3.8)

Dividing (3.8) by r1/α(s) and integrating the resulting inequality from t to l, we obtain

z(l) ≤ z(t) + r1/α(t)z′(t)
l∫

t

r−1/α(s)ds, l ≥ t.
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Letting l → ∞ in the above inequality, we obtain

0 ≤ z(t) + r1/α(t)z′(t)ξ(t),

i.e.,

z(t) ≥ −ξ(t)r1/α(t)z′(t). (3.9)

From (3.9), we have
(

z

ξ

)′
≥ z′ξ + ξr1/αz′ξ ′

ξ2 = z′(1 + ξ ′r1/α)

ξ
= 0. (3.10)

Thus, we get by (3.10) that

x(t) = z(t) − p(t)x(τ (t)) ≥ z(t) − p(t)z(τ (t)) ≥
(

1 − p(t)
ξ(τ (t))

ξ(t)

)
z(t). (3.11)

It follows from (1.2) that

(r(z′)α)′(t) + q(t) f (t)zγ (σ (t)) ≤ 0, (3.12)

which yields

(r(z′)α)′(t) + q(t) f (t)zγ (σ2(t)) ≤ 0.

Writing the latter inequality in the form

(r(z′)α)′(t) + q(t) f (t)zθ (σ2(t))z
γ−θ (σ2(t)) ≤ 0.

By virtue of z′ < 0 and θ ≥ γ , there exists a constant c2 > 0 such that

(r(z′)α)′(t) + c2q(t) f (t)zθ (σ2(t)) ≤ 0. (3.13)

Letting u := r(z′)α and using (3.9) and (3.13), we obtain

u′(t) − c2q(t) f (t)ξ θ (σ2(t))u
θ/α(σ2(t)) ≤ 0.

That is, y := −u is a positive solution of inequality

y′(t) − c2q(t) f (t)ξ θ (σ2(t))yθ/α(σ2(t)) ≥ 0.

Then, we obtain by Lemma 2.3 that the advanced differential equation

y′(t) − c2q(t) f (t)ξ θ (σ2(t))yθ/α(σ2(t)) = 0

also has positive solutions. Applications of Lemma 2.4 and condition (3.2) yield a contra-
diction. The proof is complete. 
�

Example 3.2 For t ≥ 4, consider the second-order superlinear Emden–Fowler neutral delay
differential equation

(
t2

(
x(t) + 1

2
x(t − 1)

)′)′
+ t2x3(t − 2) = 0. (3.14)
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Let σ1(t) = t − 2, β = 1/3, σ2(t) = t + 1, θ = 3. Then, condition (3.1) is satisfied. Note
that ξ(t) = t−1 and

∞∫

t0

q(t) f (t)ξ θ (σ2(t))dt =
∞∫

4

t2
(

1 − t − 2

2(t − 3)

)3

(t + 1)−3dt = ∞.

An application of Theorem 3.1 yields oscillation of Eq. (3.14). Theorem 1.1 fails to apply in
(3.14) because, for any L ∈ (0, 9

√
2/4),

∞∫

4

[
q(t)

(
1

1 + p(ρ(t))

)γ

δγ (t) − γρ′(t)
Lγ−1δ(t)r(ρ(t))

]
dt

=
∞∫

4

[(
2

3

)3

ρ−3(t)t2 − 3ρ′(t)
L2ρ(t)

]

dt

≤
∞∫

4

[(
2

3

)3

t−1 − 3ρ′(t)
L2ρ(t)

]

dt

= lim
s→∞

s∫

4

[(
2

3

)3

t−1 − 3ρ′(t)
L2ρ(t)

]

dt

= lim
s→∞

[(
2

3

)3

ln s − 3

L2 ln ρ(s) −
(

2

3

)3

ln 4 + 3

L2 ln ρ(4)

]

≤ lim
s→∞

[((
2

3

)3

− 3

L2

)

ln s −
(

2

3

)3

ln 4 + 3

L2 ln ρ(4)

]

= −∞.

It may well happen that condition (3.2) of Theorem 3.1 is not satisfied, in which case the
following result proves to be useful.

Theorem 3.3 Assume (H1)–(H3), (1.4), (3.1), and γ ≥ α. If

lim sup
t→∞

t∫

t0

[
(Mξ(σ (s)))γ−αq(s) f (s)ξα(s) − αα+1

(α + 1)α+1

1

ξ(s)r1/α(s)

]
ds = ∞ (3.15)

holds for all constants M > 0, then (1.2) is oscillatory.

Proof We proceed as in the proof of Theorem 3.1, assuming, without loss of generality, that
there exists a solution x of (1.2) such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0 for all
large t . Then, there exists a t1 ≥ t0 such that either (3.3) or (3.4) holds for all t ≥ t1. One
can obtain a contradiction to (3.1) when (3.3) holds. Assume now (3.4). Define the function
w by

w(t) := r(t)(z′)α(t)

zα(t)
, t ≥ t1. (3.16)
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Then, w(t) < 0 for t ≥ t1. From the proof of Theorem 3.1, we get (3.9), (3.10), and (3.12).
Hence, by (3.9) and (3.16), we have

− w(t)ξα(t) ≤ 1. (3.17)

Differentiating (3.16), we have

w′(t) = (r(z′)α)′(t)
zα(t)

− α
r(t)(z′)α+1(t)

zα+1(t)
.

It follows from (3.12) and (3.16) that

w′(t) ≤ −q(t) f (t)
zγ (σ (t))

zα(t)
− α

w(α+1)/α(t)

r1/α(t)
. (3.18)

Then, we obtain by (3.10) and (3.18) that there exists a constant M > 0 such that

w′(t) ≤ −q(t) f (t)zγ−α(σ (t))
zα(σ (t))

zα(t)
− α

w(α+1)/α(t)

r1/α(t)

≤ −(Mξ(σ (t)))γ−αq(t) f (t) − α
w(α+1)/α(t)

r1/α(t)
. (3.19)

Multiplying (3.19) by ξα(t) and integrating the resulting inequality from t1 to t , we have

ξα(t)w(t) − ξα(t1)w(t1) + α

t∫

t1

r−1/α(s)ξα−1(s)w(s)ds

+
t∫

t1

(Mξ(σ (s)))γ−αq(s) f (s)ξα(s)ds + α

t∫

t1

w(α+1)/α(s)

r1/α(s)
ξα(s)ds ≤ 0.

Set B := r−1/α(s)ξα−1(s), A := ξα(s)/r1/α(s), and v := −w(s). Using (3.17) and the
inequality (see [37,38])

Av(α+1)/α − Bv ≥ − αα

(α + 1)α+1

Bα+1

Aα
, A > 0,

we have

t∫

t1

[
(Mξ(σ (s)))γ−αq(s) f (s)ξα(s) − αα+1

(α + 1)α+1

1

ξ(s)r1/α(s)

]
ds ≤ ξα(t1)w(t1) + 1,

which contradicts (3.15). This completes the proof. 
�

Example 3.4 For t ≥ 1, consider the second-order superlinear Emden–Fowler neutral delay
differential equation

(
et

(
x(t) + 1

2e
x(t − 1)

)′)′
+ te2t x3

(
t

2

)
= 0. (3.20)
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Let σ1(t) = t/2 and β = 1/3. Then, condition (3.1) is satisfied. Further, ξ(t) = e−t and for
all constants M > 0,

lim sup
t→∞

t∫

t0

[
(Mξ(σ (s)))γ−αq(s) f (s)ξα(s) − αα+1

(α + 1)α+1

1

ξ(s)r1/α(s)

]
ds

= lim sup
t→∞

t∫

1

[
M2

8
s − 1

4

]
ds = ∞.

An application of Theorem 3.3 yields oscillation of Eq. (3.20). Theorem 1.1 cannot be applied
to (3.20) because, for any L > 0,

∞∫

1

[
q(t)

(
1

1 + p(ρ(t))

)γ

δγ (t) − γρ′(t)
Lγ−1δ(t)r(ρ(t))

]
dt

=
∞∫

1

[(
2e

2e + 1

)3

e−3ρ(t)te2t − 3ρ′(t)
L2

]

dt

≤
∞∫

1

[(
2e

2e + 1

)3

te−t − 3ρ′(t)
L2

]

dt < ∞.

Theorem 3.1 also fails to apply in (3.20) since

∞∫

t0

q(t) f (t)ξ θ (σ2(t))dt =
∞∫

1

t

8
e2t e−θσ2(t)dt ≤

∞∫

1

t

8
e2t e−3t dt < ∞.

Example 3.5 For t ≥ 1, consider the second-order half-linear neutral delay differential equa-
tion

(

t6
((

x(t) + 1

4
x

(
t

2

))′)3
)′

+ q0t2x3
(

t

3

)
= 0, (3.21)

where q0 > 0 is a constant. Let σ1(t) = t/4 and β = 1/3. Then, condition (3.1) holds.
Moreover, ξ(t) = t−1 and

lim sup
t→∞

t∫

t0

[
(Mξ(σ (s)))γ−αq(s) f (s)ξα(s) − αα+1

(α + 1)α+1

1

ξ(s)r1/α(s)

]
ds

=
[

q0

8
−

(
3

4

)4
]

lim sup
t→∞

t∫

1

ds

s
= ∞,

if q0 > 81/32. An application of Theorem 3.3 yields oscillation of Eq. (3.21) when q0 >

81/32. Using Theorem 1.3, it is not difficult to see that Eq. (3.21) is oscillatory if q0 >

2673/512. Hence, Theorem 3.3 improves Theorem 1.3 sufficiently.
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Theorem 3.6 Let (H1)–(H3), (1.4), and γ < α hold. Assume that

∞∫

t2

q(t) (1 − p(σ (t)))γ

⎛

⎝
σ1(t)∫

t1

r−1/α(s)ds

⎞

⎠

γ

dt = ∞ (3.22)

holds for all sufficiently large t1 ≥ t0, for some t2 > t1, and for some function σ1 ∈
C([t0,∞), R) with σ1(t) ≤ σ(t), σ1(t) < t , and limt→∞ σ1(t) = ∞. Suppose also that

∞∫

t0

q(t) f (t)ξβ(σ2(t))dt = ∞ (3.23)

holds for some β ∈ R with β > α and for some function σ2 ∈ C([t0,∞), R) with σ2(t) > t .
Then, (1.2) is oscillatory.

Proof Suppose to the contrary that x is a nonoscillatory solution of (1.2). Without loss of
generality, we may assume that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0 for all large t . From
(1.2), we can easily obtain that there exists a t1 ≥ t0 such that either (3.3) or (3.4) holds for
all t ≥ t1.

Suppose first (3.3). Similar as in the proof of Theorem 3.1, we obtain that the delay
differential equation

y′(t) + q(t) (1 − p(σ (t)))γ

⎛

⎝
σ1(t)∫

t1

r−1/α(s)ds

⎞

⎠

γ

yγ /α(σ1(t)) = 0

has positive solutions. Using Lemma 2.2 and condition (3.22), one can obtain a contradiction.
Suppose now (3.4). Proceeding as in the proof of Theorem 3.1, we have (3.12). That is,

(r(z′)α)′(t) + q(t) f (t)zβ(σ (t))zγ−β(σ (t)) ≤ 0. (3.24)

Since z′ < 0, there exist a t2 ≥ t1 and a constant k > 0 such that z(t) ≤ k for t ≥ t2. Hence,
by (3.24) and σ2(t) > t , we find

(r(z′)α)′(t) + kγ−βq(t) f (t)zβ(σ2(t)) ≤ 0.

Similar as in the proof of Theorem 3.1, we see that the advanced differential equation

y′(t) − kγ−βq(t) f (t)ξβ(σ2(t))yβ/α(σ2(t)) = 0

also has positive solutions. Applications of Lemma 2.4 and condition (3.23) yield a contra-
diction. This completes the proof. 
�

It may well happen that condition (3.23) of Theorem 3.6 is not satisfied, in which case
the following result proves to be useful.

Theorem 3.7 Assume (H1)–(H3), (1.4), (3.22), and γ < α = 1. If

∞∫

t1

∫ s
t1

q(v) f (v)dv

r(s)
ds = ∞ (3.25)

holds for all sufficiently large t1 ≥ t0, then (1.2) is oscillatory.
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Proof We proceed as in the proof of Theorem 3.6, assuming, without loss of generality, that
there exists a solution x of (1.2) such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0 for all
large t . Then, there exists a t1 ≥ t0 such that either (3.3) or (3.4) holds for all t ≥ t1. One can
obtain a contradiction to (3.22) when (3.3) holds. Assume now (3.4). Then, we have (3.11)
when using the proof of Theorem 3.1. Writing (1.2) in the form

(r z′)′(t) + q(t)xγ (σ (t)) = 0.

Integrating this equation from t1 to s, we get

r(s)z′(s) − r(t1)z
′(t1) +

s∫

t1

q(v)xγ (σ (v))dv = 0.

That is,

z′(s) − r(t1)z′(t1)
r(s)

+
∫ s

t1
q(v)xγ (σ (v))dv

r(s)
= 0.

Integrating again from t1 to t , we find

z(t) − z(t1) − r(t1)z
′(t1)

t∫

t1

r−1(s)ds +
t∫

t1

∫ s
t1

q(v)xγ (σ (v))dv

r(s)
ds = 0.

The latter equality and (3.11) yield

z′(t) = r(t1)z′(t1)
r(t)

−
∫ t

t1
q(v)xγ (σ (v))dv

r(t)

≤ −
∫ t

t1
q(v) f (v)zγ (σ (v))dv

r(t)
≤ −

∫ t
t1

q(v) f (v)dv

r(t)
zγ (t),

which implies that
∫ t

t1
q(v) f (v)dv

r(t)
≤ − z′(t)

zγ (t)
= − (z1−γ )′(t)

1 − γ
.

Integrating the last inequality from t1 to t , we obtain

t∫

t1

∫ s
t1

q(v) f (v)dv

r(s)
ds ≤ − z1−γ (t)

1 − γ
+ z1−γ (t1)

1 − γ
≤ z1−γ (t1)

1 − γ
,

which contradicts (3.25). The proof is complete. 
�
Example 3.8 For t ≥ 4, consider the second-order sublinear Emden–Fowler neutral delay
differential equation

(
t2

(
x(t) + 1

2
x(t − 1)

)′)′
+ q0x1/3(t − 2) = 0, (3.26)

where q0 > 0 is a constant. It is not difficult to verify that all conditions of Theorem 3.7 are
satisfied. Hence, Eq. (3.26) is oscillatory. Note that Theorem 3.6 cannot be applied to (3.26)
since condition (3.23) does not hold for this equation (due to

∫ ∞
t0

s−βds < ∞ in the case
β > 1).
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Example 3.9 For t ≥ 1, consider the second-order sublinear Emden–Fowler delay differen-
tial equation

(
t2x ′(t)

)′ + q0x1/3(σ (t)) = 0, (3.27)

where q0 > 0 is a constant. It is easy to see that all conditions of Theorem 3.7 are satisfied.
Hence, Eq. (3.27) is oscillatory. Note that Theorem 1.2 cannot be applied to (3.27) since
condition (1.11) does not hold for this equation (due to the arbitrariness in the choice of M).

4 Conclusions

In this paper, we suggest four new oscillation criteria for the neutral differential equation
(1.2) without requiring conditions (1.3), (1.5), and (1.7). These results are of independent
interest (note that Theorem 3.3 cannot be applied to Eq. (3.14) due to the arbitrary choice of
M). Example 3.9 and Example 3.8 show that the Emden–Fowler delay differential equation

x ′′(t) + 2

t
x ′(t) + q0t−2x1/3(t − 2) = 0, q0 > 0

and the Emden–Fowler neutral delay differential equation

x ′′(t) + 1

2
x ′′(t − 1) + 2

t
x ′(t) + x ′(t − 1)

t
+ q0t−2x1/3(t − 2) = 0, q0 > 0

are oscillatory, respectively. Note that [26, Theorem 11.3 and Theorem 11.4] fail to apply in
these equations due to the existence of deviating arguments and neutral term.

It is well known [10] that the presence of a neutral term in a differential equation can
cause oscillation, but it can also destroy oscillatory properties of a differential equation. For
example, using Theorem 3.3, the second-order ordinary differential equation

(
e2t x ′(t)

)′ +
(

e2t + e2t+2

2

)
x(t) = 0

and the second-order neutral delay differential equation

(
e2t

(
x(t) + 1

2e4 x(t − 2)

)′)′
+

(
e2t + e2t+2

2

)
x(t) = 0

are oscillatory (note that results in [13] and [30] cannot be applied to this neutral equation due
to restrictive conditions (1.7) and (1.13)). However, the second-order neutral delay differential
equation

(
e2t

(
x(t) + 1

2
x(t − 2)

)′)′
+

(
e2t + e2t+2

2

)
x(t) = 0

has a nonoscillatory solution x(t) = e−t . This phenomenon is caused by the different choices
of neutral term.
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