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Abstract We explicitly describe all SO(7)-invariant almost quaternion-Hermitian structures
on the twistor space of the six-sphere and determine the types of their intrinsic torsion.
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1 Introduction

Recently, Moroianu, Pilca and Semmelmann [5] found that the twistor space M =
SO(7)/U(3) of the six-sphere S6 admits a homogeneous almost quaternion-Hermitian struc-
ture. This arose as part of their striking result that M is the only such homogeneous space with
non-zero Euler characteristic that is neither quaternionic Kähler (the quaternionic symmetric
spaces of Wolf [9]) nor S2 × S2.

In this paper, we show that there is exactly a one-dimensional family of invariant almost
quaternion-Hermitian structures on M , with fixed volume, and determine the types of their
intrinsic torsion. We will see that the family contains inequivalent structures and includes
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the symmetric Kähler metric of the quadric ˜Gr2(R
6) = SO(8)/SO(2)SO(6). Each member

of the family will be shown to have almost quaternion-Hermitian type�3
0 E(S3 H + H) with

the first component non-zero, confirming that they are not quaternionic Kähler; one member
of the family has pure type�3

0 E S3 H , and this is the first known example of such a geometry.
However, the structure singled out by this almost quaternionic-Hermitian intrinsic torsion
is not the Kähler metric of the quadric nor the squashed Einstein metric in the canonical
variation.

2 Invariant forms

The subgroup U(3) of SO(7) arises from a choice of identification of R
7 as R⊕C

3. Regarding
U(3) as U(1)SU(3), we may write C

3 = R
6 = [[Lλ1,0]], meaning that R

6 ⊗ C = Lλ1,0 +
Lλ1,0 ∼= Lλ1,0 + L−1λ0,1, where L = C and λ1,0 = C

3 as the standard representations of
U(1) and SU(3), respectively. We thus have U(3) � SO(6) � SO(7), so M = SO(7)/U(3)
fibres over S6 = SO(7)/SO(6) with fibre SO(6)/U(3), the almost complex structures on
Tx S6. Thus, M is the (Riemannian) twistor space of S6.

Since λ3,0 = �3λ1,0 = C is trivial, we have λ2,0 ∼= λ0,1 as SU(3)-modules. The Lie
algebra of SO(7) now decomposes as

so(7) = �2
R

7 = �2(R + [[Lλ1,0]]) = [[Lλ1,0]] + [[L2λ2,0]] + [λ1,1]
∼= [[Lλ1,0]] + [[L2λ0,1]] + u(1)+ su(3).

Here, [λ1,1] is the real module whose complexification is λ1,1 = λ1,0 ⊗ λ0,1; it splits in to
two irreducible modules [λ1,1

0 ] ∼= su(3) and R = u(1).
We thus have that the complexified tangent space of M = SO(7)/U(3) is the bundle

associated with

T ⊗ C = ([[Lλ1,0]] + [[L2λ0,1]]) ⊗ C

= Lλ1,0 + L−1λ0,1 + L2λ0,1 + L−2λ1,0

= (L1/2λ0,1 + L−1/2λ1,0)(L3/2 + L−3/2). (2.1)

This allows us to write T ⊗C = E H , where E = L1/2λ0,1+L−1/2λ1,0 and H = L3/2+L−3/2

are representations of U(1)2×SU(3) as a subgroup of U(1)L SU(3)×U(1)R � Sp(3)×Sp(1).
Here, U(1)2 is a double cover of U(1) and is included in U(1)L × U(1)R via the map
eiθ �→ (e−iθ, e3iθ ). In this way, we see that M = SO(7)/U(3) carries an invariant Sp(3)Sp(1)-
structure, where Sp(3)Sp(1) = (Sp(3)×Sp(1))/{±(1, 1)}. This is the G-structure description
of an almost quaternion-Hermitian structure.

Geometrically, an almost quaternion-Hermitian structure is specified by a Riemannian
metric g and a three-dimensional subbundle G of End(TM)which locally has a basis I, J, K
satisfying the quaternion identities

I 2 = −1 = J 2, I J = K = −J I

and the compatibility conditions

g(I ·, I ·) = g(·, ·) = g(J ·, J ·).
There are then local two-forms

ωI (X, Y ) = g(X, I Y ), ωJ (X, Y ) = g(X, JY ),

ωK (X, Y ) = g(X, K Y )
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and with the local form ωc = ωJ + iωK of type (2,0) with respect to I . Since they are non-
degenerate, the local forms ωI , ωJ , ωK are sufficient to determine the local almost complex
structures I, J and K and the metric g.

Equation (2.1) show us that T has two inequivalent irreducible summands [[Lλ1,0]] and
[[L2λ0,1]] and so there are two invariant forms ω0 and ω̃0 spanning �2(M)SO(7). However,
we have that

�2T = �2[[Lλ1,0]] +�2[[L2λ0,1]] + [[Lλ1,0]] ∧ [[L2λ0,1]]
= (Rω0 + [λ1,1

0 ] + [[L2λ0,1]])+ (Rω̃0 + [λ1,1
0 ] + [[L4λ1,0]])

+([[L3]] + [[L3]][λ1,1
0 ] + [[Lλ1,0]] + [[Lσ 0,2]]), (2.2)

where σ 0,2 = S2λ0,1. There is thus an addition two-dimensional subspace [[L3]] preserved
by the SU(3)-action. This space is spanned by local SU(3)-invariant forms ωJ and ωK that
are mixed under the U(1)-action, so that ωc = ωJ + iωK is a basis element of L3. We may
now consider the triple of forms

ωI = λω0 + μω̃0, ωJ and ωK (2.3)

which will be seen to result in an almost quaternion-Hermitian structure when

20λ3μ3(ω0)
3(ω̃0)

3 = (ωJ )
6. (2.4)

This equation is necessary, as each two-form in the triple must define the same volume
element.

We note that for an almost quaternion-Hermitian structure the four-form� = ω2
I +ω2

J +
ω2

K is globally defined. For an invariant structure, this form must lie in �4(M)SO(7) which
in our particular case is four-dimensional. Indeed, the complete decomposition of�4T in to
irreducible U(3)-modules is

�4T = [[L6]] + 2[[L3]] + 4R + [[L7λ1,0]] + 3[[L4λ1,0]] + 5[[Lλ1,0]]
+4[[L2λ0,1]] + 2[[L5λ0,1]] + 2[[L2σ 2,0]] + 2[[Lσ 0,2]] + [[L4σ 0,2]]
+[[L3σ 3,0]] + [[σ 3,0]] + [[L3σ 0,3]] + [[L6λ

1,1
0 ]] + 4[[L3λ

1,1
0 ]] + 6[λ1,1

0 ]
+[[L4σ

2,1
0 ]] + 2[[L2σ

2,1
0 ]] + [[L2σ

1,2
0 ]] + [[σ 2,2

0 ]].
Now, the four-formsω2

0, ω̃
2
0, ω0 ∧ω̃0 andω2

J +ω2
K are invariant and linearly independent, so

they provide a basis for�4(M)SO(7). It follows, Lemma 4.1 below, that any invariant almost
hyperHermitian structure on M is described via the forms of (2.3).

3 Intrinsic torsion

Given an invariant almost Hermitian structure on M , there is a unique Sp(3)Sp(1)-connection
∇ characterised by the condition that the pointwise norm of its torsion is the least possible.
More precisely, ∇ is related to the Levi-Civita connection by

∇ = ∇LC + ξ,

where ξ is the intrinsic torsion given [4] by

ξX Y = − 1
4

∑

A=I,J,K

A(∇LC
X A)Y + 1

2

∑

A=I,J,K

λA(X)AY,
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with

6λI (X) = g(∇LC
X ωJ , ωK ),

etc. The tensor ξ takes values in

Q = T ∗ ⊗ (sp(3)+ sp(1))⊥ ⊂ T ∗ ⊗�2T ∗

where sp(3) = [S2 E] and sp(1) = [S2 H ] are the Lie algebras of Sp(3) and Sp(1). Under
the action of Sp(3)Sp(1), the space Q ⊗ C decomposes as

Q ⊗ C = (�3
0 E + K + E)(S3 H + H)

with �3
0 E and K irreducible Sp(3)-modules satisfying �3 E = �3

0 E + E and E ⊗ S2 E =
S3 E + K + E . The space Q thus has six irreducible summands under Sp(3)Sp(1).

For an invariant structure on M = SO(7)/U(3), the intrinsic torsion lies in a U(3)-
invariant submodule of Q. As sp(3) = [S2(L1/2λ0,1)] = [[Lσ 0,2]] + [λ1,1

0 ] + R and sp(1) =
[S2(L3/2)] = [[L3]] + R, Eq. (2.2) implies that

(sp(3)+ sp(1))⊥ ∼= [λ1,1
0 ] + [[L2λ0,1]] + [[L4λ1,0]] + [[L3]][λ1,1

0 ] + [[Lλ1,0]].
Comparing with Eq. (2.1), we see that (sp(3)+sp(1))⊥ contains a unique copy of each of the
irreducible summands of T , so QU(3) is two-dimensional. As�3(A + B) ∼= �3 A +�2 A ⊗
B + A ⊗�2 B +�3 B, we find that

Λ3
0 E = (L3/2 + L−3/2)+ (L1/2σ 2,0 + L−1/2σ 0,2).

The first summand is a copy of H and is also a submodule of S3 H = L9/2 + L3/2 + L−3/2 +
L−9/2. This shows that [�3

0 E S3 H ]U(3) and [�3
0 E H ]U(3) are each one-dimensional, and so

we have

ξ ∈ QU(3) ⊂ [�3
0 E S3 H ] + [�3

0 E H ]. (3.1)

4 Explicit structures

We now wish to determine the components of ξ in each of the summands of (3.1). An invariant
almost Hermitian structure on M may be described by two-forms as in (2.3). As ωJ and ωK

are only invariant under SU(3), they do not define global forms on M . However, we do get
two such invariant forms on the total space of the circle bundle N = SO(7)/SU(3) → M =
SO(7)/U(3).

Let 0, 1, 2, 3, 1′, 2′, 3′ be an orthonormal basis for R
7 = R + C

3, with 0 ∈ R and i1 = 1′,
etc. Writing 12 for 1 ∧ 2, a standard basis for [[Lλ1,0]] ⊂ so(7) is given by

A = 01, B = 02, C = 03, A′ = 01′, B ′ = 02′, C ′ = 03′

and a corresponding basis for [[L2λ0,1]] is

P = 23 − 2′3′, Q = 31 − 3′1′, R = 12 − 1′2′,
P ′ = 23′ − 32′, Q′ = 31′ − 13′, R′ = 12′ − 21′.

We put E = 11′ +22′ +33′, and note that, this is a generator of the central u(1) in u(3). Then
{E, A, . . . , R′} is a basis for n = TId SU(3)N and {A, . . . , R′} is a basis for m = TId U(3)M .
We use lower case letters to denote the corresponding dual bases of n∗ and m∗. These give
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left-invariant one-forms on SO(7), with da(X, Y ) = −a([X, Y ]) for X, Y ∈ so(7), etc. We
write

dN a = (da)|�2n and dM a = (da)|�2m

at Id ∈ SO(7). For a left-invariant form α ∈ �k(SO(7)), we have at Id ∈ SO(7) that
dα = dNα if α is right SU(3)-invariant and dα = dMα if α is right U(3)-invariant. For our
choice of bases, we have

dM a = −b ∧ r + c ∧ q − b′ ∧ r ′ + c′ ∧ q ′, dM p = − 1
2 (b ∧ c − b′ ∧ c′),

dM a′ = −b ∧ r ′ + c ∧ q ′ + b′ ∧ r − c′ ∧ q, dM p′ = − 1
2 (b ∧ c′ + b′ ∧ c)

with the other derivatives obtained by applying the cyclic permutation (a, a′, p, p′) →
(b, b′, q, q ′) → (c, c′, r, r ′) → (a, a′, p, p′). We use S to denote sums over this group of
permutations.

The two-form ωI of (2.3) is

ωI = λ(a′ ∧ a + b′ ∧ b + c′ ∧ c)+ μ(p′ ∧ p + q ′ ∧ q + r ′ ∧ r)

= S(λa′ ∧ a + μp′ ∧ p).

On N , we have the forms ω̂J and ω̂K given by

ω̂J + iω̂K = S
(

(p + i p′) ∧ (a + ia′)
)

.

Choosing a local section s of π : N → M such that s(Id U(3)) = Id SU(3) and s∗e = 0, we
then obtain local two-forms

ωJ = s∗ω̂J , ωK = s∗ω̂K

completing the triple of (2.3). The corresponding metric on M is

g = S(λ(a2 + a′2)+ μ(p2 + p′2)) (4.1)

and condition (2.4) is simply

λμ = 1. (4.2)

These are the only invariant metrics on M with normalised volume form, since TM (2.1) has
exactly two irreducible summands.

At Id U(3), the almost complex structures satisfy

I A = A′, I P = P ′, J 1√
λ

A = 1√
μ

P, J 1√
λ

A′ = − 1√
μ

P ′,

K 1√
λ

A = 1√
μ

P ′, K 1√
λ

A′ = 1√
μ

P.

These act on forms via I a = −a(I ·), so with the normalisation condition (4.2), we have
Ja = μp, J p = −λa, etc.

Lemma 4.1 These describe all invariant almost quaternion-Hermitian structures on M with
normalised volume form.

Proof We have noted above that (4.1) gives all the invariant metrics. Now, the local almost
complex structures, or equivalently their Hermitian two-forms, associated with the almost
quaternion-Hermitian structure span a U(3)-invariant subspace V of �2T of dimension 3.
Counting dimensions in the decomposition (2.2) shows that V is a subspace of Rω0 +
Rω̃0 + [[L3]]. In particular, V ∩ [[L3]] is at least one-dimensional; U(3)-invariance implies
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that [[L3]] � V . As ωJ and ωK are g-orthogonal of the same length for each normalised g
in (4.1), we see that J and K are local almost complex structures belonging to the almost
quaternion-Hermitian geometry. Finally, I = J K is specified too.

Lemma 4.2 For the choices of ωI , ωJ and ωK above normalised by (4.2) we have at the
base point Id U(3) ∈ M that

IdωI = IdMωI = ( 1
2μ− 2λ)�,

JdωJ = 2λ�− 1
2μ

3, KdωK = 2λ�+ 1
2μ

3,

where

� = S(a ∧ b ∧ r − a′ ∧ b′ ∧ r + a ∧ b′ ∧ r ′ + a′ ∧ b ∧ r ′),
 = S(p ∧ q ∧ r − 3p ∧ q ′ ∧ r ′)

and AdωA(·, ·, ·) = −dωA(A·, A·, A·), for A = I, J, K .

Proof As ωI is U(3)-invariant, we have I dωI = I dMωI which equals

(2λ− 1
2μ)IS(a ∧ b′ ∧ r + a′ ∧ b ∧ r − a ∧ b ∧ r ′ + a′ ∧ b′ ∧ r ′)

and gives the first claimed formula valid at any point of M .
For our choice of section s, we have at Id U(3) that Jd ωJ = Js∗dN ω̃J = JdM ω̃J which

is

JS
(− 1

2 a ∧ b ∧ c+ 3
2 a ∧ b′ ∧ c′+2(a ∧ q ∧ r −a ∧ q ′ ∧ r ′+a′ ∧ q ∧ r ′ + a′ ∧ q ′ ∧ r)

)

.

Combined with the description of J , we thus get the claimed formula. The computation for
K dωK is similar.

To compute the intrinsic torsion, we use the “minimal description” of [4] which relies on
computing the forms βI = JdωJ + K dωK , etc., and the contractions�AβB of βB with ωA.
For our structures, we have at the base point

βI = 4λ�, βJ = 1
2 (μ�+ μ3), βK = 1

2 (μ�− μ3)

and all contractions�AβB = 0. This confirms that the intrinsic torsion ξ has no components
in [E(S3 H + H)].
Theorem 4.3 The component of ξ in [�3

0ES3 H ] is always non-zero, so the almost
quaternion-Hermitian is never quaternionic. The component of ξ in [�3

0EH] is zero if and
only if 2λ = μ.

Proof Since we have shown in §3 that ξ has no component in [K (S3 H + H)] and we saw
above that each one form �AβB is zero, at the base point, the results of [4] show that the
�3

0 E S3 H -component of ξ corresponds to

ψ(3) := 1
12 (βI + βJ + βK ) = 1

12 (4λ+ μ)�

which is always non-zero under condition (4.2). The component in�3
0 E H is determined by

ψ
(3)
I := 1

8 (−βI + 2(3 + LI )ψ
(3)),

where LI = I(12) + I(13) + I(23), with I(12)α = α(I ·, I ·, ·), etc. Now LI� = �, so

ψ
(3)
I = 1

12 (μ− 2λ)�

and the result follows.
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Corollary 4.4 The invariant almost quaternion-Hermitian structures on M are not quater-
nionic integrable, and their quaternionic twistor spaces are not complex.

Proof This follows directly from the following two facts [7]: (1) The underlying quaternionic
structure is integrable if and only if the intrinsic torsion ξ has no S3 H component, i.e., it lies in
(�3

0 E +K + E)H . (2) The quaternionic twistor space is complex if and only if the underlying
quaternionic structure is integrable. But, we have shown the �3

0 E S3 H -component of ξ is
non-zero, so the result follows.

The almost Hermitian structure (g, ωI ) is easily seen to be integrable: dM (a + ia′) =
−(b−ib′)∧(r +ir ′)+(c−ic′)∧(q +iq ′) ∈ �1,1

I , dM (p+i p′) = − 1
2 (b+ib′)∧(c+ic′) ∈

�
2,0
I . In addition, from Lemma 4.2, we see that dωI is orthogonal to ωI ∧�1. It follows that

dωI is primitive.
Now, recall that Gray and Hervella [3] showed that the intrinsic torsion of an almost

Hermitian structure (g, ω) lies in

W = W1 + W2 + W3 + W4 = [[�3,0]] + [[U 3,0]] + [[�2,1
0 ]] + [[�1,0]],

with U 3,0 irreducible: the W1 + W2-part is determined by the Nijenhuis tensor; the W1 +
W3 + W4-part by dω. We now have from Lemma 4.2:

Proposition 4.5 The Hermitian structure (g, ωI , I ) is of Gray-Hervella type W3, except
when 4λ = μ, when it is Kähler. Furthermore, the Kähler metric is symmetric.

Note that the Kähler parameters do not correspond to the parameters in Theorem 4.3 that
give ξ ∈ [�3

0 E S3 H ].
Proof It remains to prove the last assertion. As in [8], note that SO(7)/U(3) ∼= SO(8)/U(6) ∼=
SO(8)/SO(2)SO(6), which is the quadric. The latter is isotropy irreducible and carries a
unique SO(8)-invariant metric with fixed volume, which is Hermitian symmetric so Kähler.
However, we have seen that there is a unique Kähler metric with the same volume invariant
under the smaller group SO(7), so these Kähler metrics must agree.

Remark 4.6 Each SO(7)-invariant metric g on M is given by (4.1) and so is a Riemannian
submersion over CP(3) with fibre S6. The standard theory of the canonical variation [2] tell
us that precisely two of these metrics are Einstein. One is the symmetric case 4λ = μ. The
other is when 8λ = 3μ, as verified by Musso [6] in slightly different notation. Again these
particular parameters are not those for which ξ is special.

Remark 4.7 It can be shown that the local almost Hermitian structures (g, ωJ , J ) and
(g, ωK , K ) above are each of strict Gray-Hervella type W1 + W3 at the base point, unless
4λ = 3μ, when they have type W1. In particular, the Nijenhuis tensors NJ and NK are
skew-symmetric at the base point and equal to 1

6 (4λ+ μ)(3�∓ μ2) at Id U(3). In [4] we
showed how NI is determined by JdωJ −KdωK . In this case, we have the interesting situation
that this latter tensor is non-zero, even though NI vanishes. Using [1], one can prove that the
obstruction to quaternionic integrability is proportional to NI + NJ + NK = (4λ + μ)�,
confirming that this is non-zero and the results of Corollary 4.4.
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