Quaternion geometries on the twistor space of the six-sphere

Francisco Martín Cabrera • Andrew Swann

Received: 6 March 2013 / Accepted: 7 May 2013 / Published online: 21 May 2013
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract

We explicitly describe all $S O$ (7)-invariant almost quaternion-Hermitian structures on the twistor space of the six-sphere and determine the types of their intrinsic torsion.

Keywords Twistor space - Almost quaternion-Hermitian structure • Homogeneous space • Canonical variation • Intrinsic torsion

Mathematics Subject Classification (2000) Primary 53C26; Secondary 53C10 • 53C30

1 Introduction

Recently, Moroianu, Pilca and Semmelmann [5] found that the twistor space $M=$ $S O(7) / U(3)$ of the six-sphere S^{6} admits a homogeneous almost quaternion-Hermitian structure. This arose as part of their striking result that M is the only such homogeneous space with non-zero Euler characteristic that is neither quaternionic Kähler (the quaternionic symmetric spaces of Wolf [9]) nor $S^{2} \times S^{2}$.

In this paper, we show that there is exactly a one-dimensional family of invariant almost quaternion-Hermitian structures on M, with fixed volume, and determine the types of their intrinsic torsion. We will see that the family contains inequivalent structures and includes

[^0]the symmetric Kähler metric of the quadric $\widetilde{\mathrm{Gr}}_{2}\left(\mathbb{R}^{6}\right)=S O(8) / S O(2) S O(6)$. Each member of the family will be shown to have almost quaternion-Hermitian type $\Lambda_{0}^{3} E\left(S^{3} H+H\right)$ with the first component non-zero, confirming that they are not quaternionic Kähler; one member of the family has pure type $\Lambda_{0}^{3} E S^{3} H$, and this is the first known example of such a geometry. However, the structure singled out by this almost quaternionic-Hermitian intrinsic torsion is not the Kähler metric of the quadric nor the squashed Einstein metric in the canonical variation.

2 Invariant forms

The subgroup $U(3)$ of $S O(7)$ arises from a choice of identification of \mathbb{R}^{7} as $\mathbb{R} \oplus \mathbb{C}^{3}$. Regarding $U(3)$ as $U(1) S U(3)$, we may write $\mathbb{C}^{3}=\mathbb{R}^{6}=\llbracket L \lambda^{1,0} \rrbracket$, meaning that $\mathbb{R}^{6} \otimes \mathbb{C}=L \lambda^{1,0}+$ $\overline{L \lambda^{1,0}} \cong L \lambda^{1,0}+L^{-1} \lambda^{0,1}$, where $L=\mathbb{C}$ and $\lambda^{1,0}=\mathbb{C}^{3}$ as the standard representations of $U(1)$ and $S U(3)$, respectively. We thus have $U(3) \leqslant S O(6) \leqslant S O(7)$, so $M=S O(7) / U(3)$ fibres over $S^{6}=S O(7) / S O(6)$ with fibre $S O(6) / U(3)$, the almost complex structures on $T_{x} S^{6}$. Thus, M is the (Riemannian) twistor space of S^{6}.

Since $\lambda^{3,0}=\Lambda^{3} \lambda^{1,0}=\mathbb{C}$ is trivial, we have $\lambda^{2,0} \cong \lambda^{0,1}$ as $S U(3)$-modules. The Lie algebra of $S O(7)$ now decomposes as

$$
\begin{aligned}
\mathfrak{s o}(7) & =\Lambda^{2} \mathbb{R}^{7}=\Lambda^{2}\left(\mathbb{R}+\llbracket L \lambda^{1,0} \rrbracket\right)=\llbracket L \lambda^{1,0} \rrbracket+\llbracket L^{2} \lambda^{2,0} \rrbracket+\left[\lambda^{1,1}\right] \\
& \cong \llbracket L \lambda^{1,0} \rrbracket+\llbracket L^{2} \lambda^{0,1} \rrbracket+\mathfrak{u}(1)+\mathfrak{s u}(3) .
\end{aligned}
$$

Here, $\left[\lambda^{1,1}\right]$ is the real module whose complexification is $\lambda^{1,1}=\lambda^{1,0} \otimes \lambda^{0,1}$; it splits in to two irreducible modules $\left[\lambda_{0}^{1,1}\right] \cong \mathfrak{s u}(3)$ and $\mathbb{R}=\mathfrak{u}(1)$.

We thus have that the complexified tangent space of $M=S O(7) / U(3)$ is the bundle associated with

$$
\begin{align*}
T \otimes \mathbb{C} & =\left(\llbracket L \lambda^{1,0} \rrbracket+\llbracket L^{2} \lambda^{0,1} \rrbracket\right) \otimes \mathbb{C} \\
& =L \lambda^{1,0}+L^{-1} \lambda^{0,1}+L^{2} \lambda^{0,1}+L^{-2} \lambda^{1,0} \\
& =\left(L^{1 / 2} \lambda^{0,1}+L^{-1 / 2} \lambda^{1,0}\right)\left(L^{3 / 2}+L^{-3 / 2}\right) . \tag{2.1}
\end{align*}
$$

This allows us to write $T \otimes \mathbb{C}=E H$, where $E=L^{1 / 2} \lambda^{0,1}+L^{-1 / 2} \lambda^{1,0}$ and $H=L^{3 / 2}+L^{-3 / 2}$ are representations of $U(1)_{2} \times S U(3)$ as a subgroup of $U(1)_{L} S U(3) \times U(1)_{R} \leqslant S p(3) \times S p(1)$. Here, $U(1)_{2}$ is a double cover of $U(1)$ and is included in $U(1)_{L} \times U(1)_{R}$ via the map $e^{i \theta} \mapsto\left(e^{-i \theta}, e^{3 i \theta}\right)$. In this way, we see that $M=S O(7) / U(3)$ carries an invariant $S p(3) S p(1)-$ structure, where $S p(3) S p(1)=(S p(3) \times S p(1)) /\{ \pm(1,1)\}$. This is the G-structure description of an almost quaternion-Hermitian structure.

Geometrically, an almost quaternion-Hermitian structure is specified by a Riemannian metric g and a three-dimensional subbundle \mathcal{G} of End(TM) which locally has a basis I, J, K satisfying the quaternion identities

$$
I^{2}=-1=J^{2}, \quad I J=K=-J I
$$

and the compatibility conditions

$$
g(I \cdot, I \cdot)=g(\cdot, \cdot)=g(J \cdot, J \cdot)
$$

There are then local two-forms

$$
\begin{aligned}
\omega_{I}(X, Y)= & g(X, I Y), \quad \omega_{J}(X, Y)=g(X, J Y), \\
& \omega_{K}(X, Y)=g(X, K Y)
\end{aligned}
$$

and with the local form $\omega_{c}=\omega_{J}+i \omega_{K}$ of type $(2,0)$ with respect to I. Since they are nondegenerate, the local forms $\omega_{I}, \omega_{J}, \omega_{K}$ are sufficient to determine the local almost complex structures I, J and K and the metric g.

Equation (2.1) show us that T has two inequivalent irreducible summands $\llbracket L \lambda^{1,0} \rrbracket$ and $\llbracket L^{2} \lambda^{0,1} \rrbracket$ and so there are two invariant forms ω_{0} and $\tilde{\omega}_{0}$ spanning $\Omega^{2}(M)^{S O(7)}$. However, we have that

$$
\begin{align*}
\Lambda^{2} T= & \Lambda^{2} \llbracket L \lambda^{1,0} \rrbracket+\Lambda^{2} \llbracket L^{2} \lambda^{0,1} \rrbracket+\llbracket L \lambda^{1,0} \rrbracket \wedge \llbracket L^{2} \lambda^{0,1} \rrbracket \\
= & \left(\mathbb{R} \omega_{0}+\left[\lambda_{0}^{1,1}\right]+\llbracket L^{2} \lambda^{0,1} \rrbracket\right)+\left(\mathbb{R} \tilde{\omega}_{0}+\left[\lambda_{0}^{1,1}\right]+\llbracket L^{4} \lambda^{1,0} \rrbracket\right) \\
& +\left(\llbracket L^{3} \rrbracket+\llbracket L^{3} \rrbracket\left[\lambda_{0}^{1,1}\right]+\llbracket L \lambda^{1,0} \rrbracket+\llbracket L \sigma^{0,2} \rrbracket\right), \tag{2.2}
\end{align*}
$$

where $\sigma^{0,2}=S^{2} \lambda^{0,1}$. There is thus an addition two-dimensional subspace $\llbracket L^{3} \rrbracket$ preserved by the $S U(3)$-action. This space is spanned by local $S U(3)$-invariant forms ω_{J} and ω_{K} that are mixed under the $U(1)$-action, so that $\omega_{c}=\omega_{J}+i \omega_{K}$ is a basis element of L^{3}. We may now consider the triple of forms

$$
\begin{equation*}
\omega_{I}=\lambda \omega_{0}+\mu \tilde{\omega}_{0}, \quad \omega_{J} \quad \text { and } \quad \omega_{K} \tag{2.3}
\end{equation*}
$$

which will be seen to result in an almost quaternion-Hermitian structure when

$$
\begin{equation*}
20 \lambda^{3} \mu^{3}\left(\omega_{0}\right)^{3}\left(\tilde{\omega}_{0}\right)^{3}=\left(\omega_{J}\right)^{6} \tag{2.4}
\end{equation*}
$$

This equation is necessary, as each two-form in the triple must define the same volume element.

We note that for an almost quaternion-Hermitian structure the four-form $\Omega=\omega_{I}^{2}+\omega_{J}^{2}+$ ω_{K}^{2} is globally defined. For an invariant structure, this form must lie in $\Omega^{4}(M)^{S O(7)}$ which in our particular case is four-dimensional. Indeed, the complete decomposition of $\Lambda^{4} T$ in to irreducible $U(3)$-modules is

$$
\begin{aligned}
\Lambda^{4} T= & \llbracket L^{6} \rrbracket+2 \llbracket L^{3} \rrbracket+4 \mathbb{R}+\llbracket L^{7} \lambda^{1,0} \rrbracket+3 \llbracket L^{4} \lambda^{1,0} \rrbracket+5 \llbracket L \lambda^{1,0} \rrbracket \\
& +4 \llbracket L^{2} \lambda^{0,1} \rrbracket+2 \llbracket L^{5} \lambda^{0,1} \rrbracket+2 \llbracket L^{2} \sigma^{2,0} \rrbracket+2 \llbracket L \sigma^{0,2} \rrbracket+\llbracket L^{4} \sigma^{0,2} \rrbracket \\
& +\llbracket L^{3} \sigma^{3,0} \rrbracket+\llbracket \sigma^{3,0} \rrbracket+\llbracket L^{3} \sigma^{0,3} \rrbracket+\llbracket L^{6} \lambda_{0}^{1,1} \rrbracket+4 \llbracket L^{3} \lambda_{0}^{1,1} \rrbracket+6\left[\lambda_{0}^{1,1}\right] \\
& +\llbracket L^{4} \sigma_{0}^{2,1} \rrbracket+2 \llbracket L^{2} \sigma_{0}^{2,1} \rrbracket+\llbracket L^{2} \sigma_{0}^{1,2} \rrbracket+\llbracket \sigma_{0}^{2,2} \rrbracket .
\end{aligned}
$$

Now, the four-forms $\omega_{0}^{2}, \tilde{\omega}_{0}^{2}, \omega_{0} \wedge \tilde{\omega}_{0}$ and $\omega_{J}^{2}+\omega_{K}^{2}$ are invariant and linearly independent, so they provide a basis for $\Omega^{4}(M)^{S O(7)}$. It follows, Lemma 4.1 below, that any invariant almost hyperHermitian structure on M is described via the forms of (2.3).

3 Intrinsic torsion

Given an invariant almost Hermitian structure on M, there is a unique $S p(3) S p(1)$-connection ∇ characterised by the condition that the pointwise norm of its torsion is the least possible. More precisely, ∇ is related to the Levi-Civita connection by

$$
\nabla=\nabla^{\mathrm{LC}}+\xi
$$

where ξ is the intrinsic torsion given [4] by

$$
\xi_{X} Y=-\frac{1}{4} \sum_{A=I, J, K} A\left(\nabla_{X}^{\mathrm{LC}} A\right) Y+\frac{1}{2} \sum_{A=I, J, K} \lambda_{A}(X) A Y,
$$

with

$$
6 \lambda_{I}(X)=g\left(\nabla_{X}^{\mathrm{LC}} \omega_{J}, \omega_{K}\right),
$$

etc. The tensor ξ takes values in

$$
\mathcal{Q}=T^{*} \otimes(\mathfrak{s p}(3)+\mathfrak{s p}(1))^{\perp} \subset T^{*} \otimes \Lambda^{2} T^{*}
$$

where $\mathfrak{s p}(3)=\left[S^{2} E\right]$ and $\mathfrak{s p}(1)=\left[S^{2} H\right]$ are the Lie algebras of $S p(3)$ and $S p(1)$. Under the action of $\operatorname{Sp}(3) \operatorname{Sp}(1)$, the space $\mathcal{Q} \otimes \mathbb{C}$ decomposes as

$$
\mathcal{Q} \otimes \mathbb{C}=\left(\Lambda_{0}^{3} E+K+E\right)\left(S^{3} H+H\right)
$$

with $\Lambda_{0}^{3} E$ and K irreducible $S p(3)$-modules satisfying $\Lambda^{3} E=\Lambda_{0}^{3} E+E$ and $E \otimes S^{2} E=$ $S^{3} E+K+E$. The space \mathcal{Q} thus has six irreducible summands under $S p(3) S p(1)$.

For an invariant structure on $M=S O(7) / U(3)$, the intrinsic torsion lies in a $U(3)$ invariant submodule of \mathcal{Q}. As $\mathfrak{s p}(3)=\left[S^{2}\left(L^{1 / 2} \lambda^{0,1}\right)\right]=\llbracket L \sigma^{0,2} \rrbracket+\left[\lambda_{0}^{1,1}\right]+\mathbb{R}$ and $\mathfrak{s p}(1)=$ $\left[S^{2}\left(L^{3 / 2}\right)\right]=\llbracket L^{3} \rrbracket+\mathbb{R}$, Eq. (2.2) implies that

$$
(\mathfrak{s p}(3)+\mathfrak{s p}(1))^{\perp} \cong\left[\lambda_{0}^{1,1}\right]+\llbracket L^{2} \lambda^{0,1} \rrbracket+\llbracket L^{4} \lambda^{1,0} \rrbracket+\llbracket L^{3} \rrbracket\left[\lambda_{0}^{1,1}\right]+\llbracket L \lambda^{1,0} \rrbracket .
$$

Comparing with Eq. (2.1), we see that $(\mathfrak{s p}(3)+\mathfrak{s p}(1))^{\perp}$ contains a unique copy of each of the irreducible summands of T, so $\mathcal{Q}^{U(3)}$ is two-dimensional. As $\Lambda^{3}(A+B) \cong \Lambda^{3} A+\Lambda^{2} A \otimes$ $B+A \otimes \Lambda^{2} B+\Lambda^{3} B$, we find that

$$
\Lambda_{0}^{3} E=\left(L^{3 / 2}+L^{-3 / 2}\right)+\left(L^{1 / 2} \sigma^{2,0}+L^{-1 / 2} \sigma^{0,2}\right)
$$

The first summand is a copy of H and is also a submodule of $S^{3} H=L^{9 / 2}+L^{3 / 2}+L^{-3 / 2}+$ $L^{-9 / 2}$. This shows that $\left[\Lambda_{0}^{3} E S^{3} H\right]^{U(3)}$ and $\left[\Lambda_{0}^{3} E H\right]^{U(3)}$ are each one-dimensional, and so we have

$$
\begin{equation*}
\xi \in \mathcal{Q}^{U(3)} \subset\left[\Lambda_{0}^{3} E S^{3} H\right]+\left[\Lambda_{0}^{3} E H\right] . \tag{3.1}
\end{equation*}
$$

4 Explicit structures

We now wish to determine the components of ξ in each of the summands of (3.1). An invariant almost Hermitian structure on M may be described by two-forms as in (2.3). As ω_{J} and ω_{K} are only invariant under $S U(3)$, they do not define global forms on M. However, we do get two such invariant forms on the total space of the circle bundle $N=S O(7) / S U(3) \rightarrow M=$ $S O(7) / U(3)$.

Let $0,1,2,3,1^{\prime}, 2^{\prime}, 3^{\prime}$ be an orthonormal basis for $\mathbb{R}^{7}=\mathbb{R}+\mathbb{C}^{3}$, with $0 \in \mathbb{R}$ and $i 1=1^{\prime}$, etc. Writing 12 for $1 \wedge 2$, a standard basis for $\llbracket L \lambda^{1,0} \rrbracket \subset \mathfrak{s o (7)}$ is given by

$$
A=01, \quad B=02, \quad C=03, \quad A^{\prime}=01^{\prime}, \quad B^{\prime}=02^{\prime}, \quad C^{\prime}=03^{\prime}
$$

and a corresponding basis for $\llbracket L^{2} \lambda^{0,1} \rrbracket$ is

$$
\begin{aligned}
P & =23-2^{\prime} 3^{\prime}, & Q=31-3^{\prime} 1^{\prime}, & R=12-1^{\prime} 2^{\prime} \\
P^{\prime} & =23^{\prime}-32^{\prime}, & Q^{\prime}=31^{\prime}-13^{\prime}, & R^{\prime}=12^{\prime}-21^{\prime}
\end{aligned}
$$

We put $E=11^{\prime}+22^{\prime}+33^{\prime}$, and note that, this is a generator of the central $\mathfrak{u}(1)$ in $\mathfrak{u}(3)$. Then $\left\{E, A, \ldots, R^{\prime}\right\}$ is a basis for $\mathfrak{n}=T_{\operatorname{Id} S U(3)} N$ and $\left\{A, \ldots, R^{\prime}\right\}$ is a basis for $\mathfrak{m}=T_{\operatorname{Id} U(3)} M$. We use lower case letters to denote the corresponding dual bases of \mathfrak{n}^{*} and \mathfrak{m}^{*}. These give
left-invariant one-forms on $S O(7)$, with $d a(X, Y)=-a([X, Y])$ for $X, Y \in \mathfrak{s o (7) , ~ e t c . ~ W e ~}$ write

$$
d_{N} a=\left.(\mathrm{da})\right|_{\Lambda^{2} \mathfrak{n}} \text { and } d_{M} a=\left.(\mathrm{da})\right|_{\Lambda^{2} \mathfrak{m}}
$$

at $\mathrm{Id} \in S O$ (7). For a left-invariant form $\alpha \in \Omega^{k}(S O(7))$, we have at Id $\in S O$ (7) that $d \alpha=d_{N} \alpha$ if α is right $S U(3)$-invariant and $d \alpha=d_{M} \alpha$ if α is right $U(3)$-invariant. For our choice of bases, we have

$$
\begin{aligned}
d_{M} a & =-b \wedge r+c \wedge q-b^{\prime} \wedge r^{\prime}+c^{\prime} \wedge q^{\prime}, & & d_{M} p=-\frac{1}{2}\left(b \wedge c-b^{\prime} \wedge c^{\prime}\right), \\
d_{M} a^{\prime} & =-b \wedge r^{\prime}+c \wedge q^{\prime}+b^{\prime} \wedge r-c^{\prime} \wedge q, & & d_{M} p^{\prime}=-\frac{1}{2}\left(b \wedge c^{\prime}+b^{\prime} \wedge c\right)
\end{aligned}
$$

with the other derivatives obtained by applying the cyclic permutation $\left(a, a^{\prime}, p, p^{\prime}\right) \rightarrow$ $\left(b, b^{\prime}, q, q^{\prime}\right) \rightarrow\left(c, c^{\prime}, r, r^{\prime}\right) \rightarrow\left(a, a^{\prime}, p, p^{\prime}\right)$. We use \mathfrak{S} to denote sums over this group of permutations.

The two-form ω_{I} of (2.3) is

$$
\begin{aligned}
\omega_{I} & =\lambda\left(a^{\prime} \wedge a+b^{\prime} \wedge b+c^{\prime} \wedge c\right)+\mu\left(p^{\prime} \wedge p+q^{\prime} \wedge q+r^{\prime} \wedge r\right) \\
& =\mathfrak{S}\left(\lambda a^{\prime} \wedge a+\mu p^{\prime} \wedge p\right)
\end{aligned}
$$

On N, we have the forms $\hat{\omega}_{J}$ and $\hat{\omega}_{K}$ given by

$$
\hat{\omega}_{J}+i \hat{\omega}_{K}=\mathfrak{S}\left(\left(p+i p^{\prime}\right) \wedge\left(a+i a^{\prime}\right)\right) .
$$

Choosing a local section s of $\pi: N \rightarrow M$ such that $s(\operatorname{Id} U(3))=\operatorname{Id} S U(3)$ and $s^{*} e=0$, we then obtain local two-forms

$$
\omega_{J}=s^{*} \hat{\omega}_{J}, \quad \omega_{K}=s^{*} \hat{\omega}_{K}
$$

completing the triple of (2.3). The corresponding metric on M is

$$
\begin{equation*}
g=\mathfrak{S}\left(\lambda\left(a^{2}+a^{\prime 2}\right)+\mu\left(p^{2}+p^{\prime 2}\right)\right) \tag{4.1}
\end{equation*}
$$

and condition (2.4) is simply

$$
\begin{equation*}
\lambda \mu=1 \tag{4.2}
\end{equation*}
$$

These are the only invariant metrics on M with normalised volume form, since TM (2.1) has exactly two irreducible summands.

At Id $U(3)$, the almost complex structures satisfy

$$
\begin{array}{cl}
I A=A^{\prime}, \quad & I P=P^{\prime}, \quad J \frac{1}{\sqrt{\lambda}} A=\frac{1}{\sqrt{\mu}} P, \quad J \frac{1}{\sqrt{\lambda}} A^{\prime}=-\frac{1}{\sqrt{\mu}} P^{\prime}, \\
& K \frac{1}{\sqrt{\lambda}} A=\frac{1}{\sqrt{\mu}} P^{\prime}, \quad K \frac{1}{\sqrt{\lambda}} A^{\prime}=\frac{1}{\sqrt{\mu}} P .
\end{array}
$$

These act on forms via $I a=-a(I \cdot)$, so with the normalisation condition (4.2), we have $J a=\mu p, J p=-\lambda a$, etc.

Lemma 4.1 These describe all invariant almost quaternion-Hermitian structures on M with normalised volume form.

Proof We have noted above that (4.1) gives all the invariant metrics. Now, the local almost complex structures, or equivalently their Hermitian two-forms, associated with the almost quaternion-Hermitian structure span a $U(3)$-invariant subspace V of $\Lambda^{2} T$ of dimension 3 . Counting dimensions in the decomposition (2.2) shows that V is a subspace of $\mathbb{R} \omega_{0}+$ $\mathbb{R} \tilde{\omega}_{0}+\llbracket L^{3} \rrbracket$. In particular, $V \cap \llbracket L^{3} \rrbracket$ is at least one-dimensional; $U(3)$-invariance implies
that $\llbracket L^{3} \rrbracket \leqslant V$. As ω_{J} and ω_{K} are g-orthogonal of the same length for each normalised g in (4.1), we see that J and K are local almost complex structures belonging to the almost quaternion-Hermitian geometry. Finally, $I=J K$ is specified too.

Lemma 4.2 For the choices of ω_{I}, ω_{J} and ω_{K} above normalised by (4.2) we have at the base point $\operatorname{Id} U(3) \in M$ that

$$
\begin{aligned}
I d \omega_{I} & =I d_{M} \omega_{I}=\left(\frac{1}{2} \mu-2 \lambda\right) \Phi \\
J d \omega_{J} & =2 \lambda \Phi-\frac{1}{2} \mu^{3} \Psi, \quad K d \omega_{K}=2 \lambda \Phi+\frac{1}{2} \mu^{3} \Psi
\end{aligned}
$$

where

$$
\begin{aligned}
& \Phi=\mathfrak{S}\left(a \wedge b \wedge r-a^{\prime} \wedge b^{\prime} \wedge r+a \wedge b^{\prime} \wedge r^{\prime}+a^{\prime} \wedge b \wedge r^{\prime}\right) \\
& \Psi=\mathfrak{S}\left(p \wedge q \wedge r-3 p \wedge q^{\prime} \wedge r^{\prime}\right)
\end{aligned}
$$

and $A d \omega_{A}(\cdot, \cdot, \cdot)=-d \omega_{A}(A \cdot, A \cdot, A \cdot)$, for $A=I, J, K$.
Proof As ω_{I} is $U(3)$-invariant, we have $I d \omega_{I}=I d_{M} \omega_{I}$ which equals

$$
\left(2 \lambda-\frac{1}{2} \mu\right) I \mathfrak{S}\left(a \wedge b^{\prime} \wedge r+a^{\prime} \wedge b \wedge r-a \wedge b \wedge r^{\prime}+a^{\prime} \wedge b^{\prime} \wedge r^{\prime}\right)
$$

and gives the first claimed formula valid at any point of M.
For our choice of section s, we have at $\operatorname{Id} U(3)$ that $J d \omega_{J}=J s^{*} d_{N} \tilde{\omega}_{J}=J d_{M} \tilde{\omega}_{J}$ which is
$J \mathfrak{S}\left(-\frac{1}{2} a \wedge b \wedge c+\frac{3}{2} a \wedge b^{\prime} \wedge c^{\prime}+2\left(a \wedge q \wedge r-a \wedge q^{\prime} \wedge r^{\prime}+a^{\prime} \wedge q \wedge r^{\prime}+a^{\prime} \wedge q^{\prime} \wedge r\right)\right)$.
Combined with the description of J, we thus get the claimed formula. The computation for $K d \omega_{K}$ is similar.

To compute the intrinsic torsion, we use the "minimal description" of [4] which relies on computing the forms $\beta_{I}=J d \omega_{J}+K d \omega_{K}$, etc., and the contractions $\Lambda_{A} \beta_{B}$ of β_{B} with ω_{A}. For our structures, we have at the base point

$$
\beta_{I}=4 \lambda \Phi, \quad \beta_{J}=\frac{1}{2}\left(\mu \Phi+\mu^{3} \Psi\right), \quad \beta_{K}=\frac{1}{2}\left(\mu \Phi-\mu^{3} \Psi\right)
$$

and all contractions $\Lambda_{A} \beta_{B}=0$. This confirms that the intrinsic torsion ξ has no components in $\left[E\left(S^{3} H+H\right)\right]$.

Theorem 4.3 The component of ξ in $\left[\Lambda_{0}^{3} E S^{3} H\right]$ is always non-zero, so the almost quaternion-Hermitian is never quaternionic. The component of ξ in $\left[\Lambda_{0}^{3} E H\right]$ is zero if and only if $2 \lambda=\mu$.

Proof Since we have shown in $\S 3$ that ξ has no component in $\left[K\left(S^{3} H+H\right)\right]$ and we saw above that each one form $\Lambda_{A} \beta_{B}$ is zero, at the base point, the results of [4] show that the $\Lambda_{0}^{3} E S^{3} H$-component of ξ corresponds to

$$
\psi^{(3)}:=\frac{1}{12}\left(\beta_{I}+\beta_{J}+\beta_{K}\right)=\frac{1}{12}(4 \lambda+\mu) \Phi
$$

which is always non-zero under condition (4.2). The component in $\Lambda_{0}^{3} E H$ is determined by

$$
\psi_{I}^{(3)}:=\frac{1}{8}\left(-\beta_{I}+2\left(3+\mathcal{L}_{I}\right) \psi^{(3)}\right),
$$

where $\mathcal{L}_{I}=I_{(12)}+I_{(13)}+I_{(23)}$, with $I_{(12)} \alpha=\alpha(I \cdot, I \cdot, \cdot)$, etc. Now $\mathcal{L}_{I} \Phi=\Phi$, so

$$
\psi_{I}^{(3)}=\frac{1}{12}(\mu-2 \lambda) \Phi
$$

and the result follows.

Corollary 4.4 The invariant almost quaternion-Hermitian structures on M are not quaternionic integrable, and their quaternionic twistor spaces are not complex.

Proof This follows directly from the following two facts [7]: (1) The underlying quaternionic structure is integrable if and only if the intrinsic torsion ξ has no $S^{3} H$ component, i.e., it lies in ($\left.\Lambda_{0}^{3} E+K+E\right) H$. (2) The quaternionic twistor space is complex if and only if the underlying quaternionic structure is integrable. But, we have shown the $\Lambda_{0}^{3} E S^{3} H$-component of ξ is non-zero, so the result follows.

The almost Hermitian structure $\left(g, \omega_{I}\right)$ is easily seen to be integrable: $d_{M}\left(a+i a^{\prime}\right)=$ $-\left(b-i b^{\prime}\right) \wedge\left(r+i r^{\prime}\right)+\left(c-i c^{\prime}\right) \wedge\left(q+i q^{\prime}\right) \in \Lambda_{I}^{1,1}, d_{M}\left(p+i p^{\prime}\right)=-\frac{1}{2}\left(b+i b^{\prime}\right) \wedge\left(c+i c^{\prime}\right) \in$ $\Lambda_{I}^{2,0}$. In addition, from Lemma 4.2, we see that $d \omega_{I}$ is orthogonal to $\omega_{I} \wedge \Lambda^{1}$. It follows that $d \omega_{I}$ is primitive.

Now, recall that Gray and Hervella [3] showed that the intrinsic torsion of an almost Hermitian structure (g, ω) lies in

$$
\mathcal{W}=\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{W}_{3}+\mathcal{W}_{4}=\llbracket \Lambda^{3,0} \rrbracket+\llbracket U^{3,0} \rrbracket+\llbracket \Lambda_{0}^{2,1} \rrbracket+\llbracket \Lambda^{1,0} \rrbracket,
$$

with $U^{3,0}$ irreducible: the $\mathcal{W}_{1}+\mathcal{W}_{2}$-part is determined by the Nijenhuis tensor; the $\mathcal{W}_{1}+$ $\mathcal{W}_{3}+\mathcal{W}_{4}$-part by $d \omega$. We now have from Lemma 4.2:

Proposition 4.5 The Hermitian structure $\left(g, \omega_{I}, I\right)$ is of Gray-Hervella type \mathcal{W}_{3}, except when $4 \lambda=\mu$, when it is Kähler. Furthermore, the Kähler metric is symmetric.

Note that the Kähler parameters do not correspond to the parameters in Theorem 4.3 that give $\xi \in\left[\Lambda_{0}^{3} E S^{3} H\right]$.

Proof It remains to prove the last assertion. As in [8], note that $S O(7) / U(3) \cong S O(8) / U(6) \cong$ $S O(8) / S O(2) S O(6)$, which is the quadric. The latter is isotropy irreducible and carries a unique $S O(8)$-invariant metric with fixed volume, which is Hermitian symmetric so Kähler. However, we have seen that there is a unique Kähler metric with the same volume invariant under the smaller group $S O(7)$, so these Kähler metrics must agree.

Remark 4.6 Each $S O$ (7)-invariant metric g on M is given by (4.1) and so is a Riemannian submersion over $\mathbb{C P}(3)$ with fibre S^{6}. The standard theory of the canonical variation [2] tell us that precisely two of these metrics are Einstein. One is the symmetric case $4 \lambda=\mu$. The other is when $8 \lambda=3 \mu$, as verified by Musso [6] in slightly different notation. Again these particular parameters are not those for which ξ is special.

Remark 4.7 It can be shown that the local almost Hermitian structures (g, ω_{J}, J) and $\left(g, \omega_{K}, K\right)$ above are each of strict Gray-Hervella type $\mathcal{W}_{1}+\mathcal{W}_{3}$ at the base point, unless $4 \lambda=3 \mu$, when they have type \mathcal{W}_{1}. In particular, the Nijenhuis tensors N_{J} and N_{K} are skew-symmetric at the base point and equal to $\frac{1}{6}(4 \lambda+\mu)\left(3 \Phi \mp \mu^{2} \Psi\right)$ at Id $U(3)$. In [4] we showed how N_{I} is determined by $\mathrm{Jd} \omega_{J}-\mathrm{Kd} \omega_{K}$. In this case, we have the interesting situation that this latter tensor is non-zero, even though N_{I} vanishes. Using [1], one can prove that the obstruction to quaternionic integrability is proportional to $N_{I}+N_{J}+N_{K}=(4 \lambda+\mu) \Phi$, confirming that this is non-zero and the results of Corollary 4.4.

Acknowledgments This work is partially supported by the Danish Council for Independent Research, Natural Sciences and MICINN (Spain) Grant MTM2009-13383. We thank the authors of [5] for informing us of their work and in particular Andrei Moroianu for useful conversations.

References

1. Alekseevsky, D.V., Marchiafava, S.: Quaternionic structures on a manifold and subordinated structures. Ann. Mat. Pura Appl. 171, 205-273 (1996)
2. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 10. Springer, Berlin (1987)
3. Gray, A., Hervella, L.M.: The sixteen classes of almost hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35-58 (1980)
4. Martín Cabrera, F., Swann, A.F.: The intrinsic torsion of almost quaternion-Hermitian manifolds. Ann. Inst. Fourier (Grenoble) 58(5), 1455-1497 (2008)
5. Moroianu, A., Pilca, M., Semmelmann, U.: Homogeneous almost quaternion-Hermitian manifolds. Math. Ann. doi:10.1007/s00208-013-0934-1
6. Musso, E.: On the twistor space of the six-sphere. Bull. Aust. Math. Soc. 39(1), 119-127 (1989)
7. Salamon, S.M.: Differential geometry of quaternionic manifolds. Ann. Scient. Éc. Norm. Sup. 19, 31-55 (1986)
8. Salamon, S.M.: A tour of exceptional geometry. Milan J. Math. 71, 59-94 (2003)
9. Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033-1047 (1965)

[^0]: F. M. Cabrera

 Department of Fundamental Mathematics, University of La Laguna, 38200 La Laguna, Tenerife, Spain
 e-mail: fmartin@ull.es
 A. F. Swann (\triangle)

 Department of Mathematics,
 Aarhus University, Ny Munkegade 118, Bldg 1530, 8000 Aarhus C, Denmark
 e-mail: swann@imf.au.dk
 A. F. Swann

 CP3-Origins Centre of Excellence for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

