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Abstract We explicitly describe all SO(7)-invariant almost quaternion-Hermitian structures
on the twistor space of the six-sphere and determine the types of their intrinsic torsion.
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1 Introduction

Recently, Moroianu, Pilca and Semmelmann [5] found that the twistor space M =
SO(7)/U(3) of the six-sphere S® admits a homogeneous almost quaternion-Hermitian struc-
ture. This arose as part of their striking result that M is the only such homogeneous space with
non-zero Euler characteristic that is neither quaternionic Kahler (the quaternionic symmetric
spaces of Wolf [9]) nor $2 x 82

In this paper, we show that there is exactly a one-dimensional family of invariant almost
quaternion-Hermitian structures on M, with fixed volume, and determine the types of their
intrinsic torsion. We will see that the family contains inequivalent structures and includes
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the symmetric Kdhler metric of the quadric Gr» (R%) = SO(8)/SO(2)SO(6). Each member
of the family will be shown to have almost quaternion-Hermitian type ASE (S3H + H) with
the first component non-zero, confirming that they are not quaternionic Kéhler; one member
of the family has pure type ASE $3 H , and this is the first known example of such a geometry.
However, the structure singled out by this almost quaternionic-Hermitian intrinsic torsion
is not the Kéhler metric of the quadric nor the squashed Einstein metric in the canonical
variation.

2 Invariant forms

The subgroup U(3) of SO(7) arises from a choice of identification of R as R®C>. Regarding
U(3) as U(1)SU(3), we may write C? = RS = [LA!], meaning that R® ® C = LA!10 +
L0 = a0 4 =100 where L = C and A0 = C3 as the standard representations of
U(1) and SU(3), respectively. We thus have U(3) < SO(6) < SO(7),so M = SO(7)/U(3)
fibres over S® = SO(7) /SO(6) with fibre SO(6)/U(3), the almost complex structures on
T, S®. Thus, M is the (Riemannian) twistor space of S0.

Since A0 = A3AM0 = C is trivial, we have 1>0 = A%! as SU(3)-modules. The Lie
algebra of SO(7) now decomposes as

50(7) = A’R7 = A2(R + [LAMO]) = [ZLAMO] + 1222207 + (A1)
= (LAY + [L2A% 1] + u(l) + su(3).

Here, [Al*l] is the real module whose complexification is ALl = (L0 & 0.1, j¢ splits in to
two irreducible modules [k(l)’l] = su(3) and R = u(1).

We thus have that the complexified tangent space of M = SO(7)/U(3) is the bundle
associated with

T®C=([LA"1+ L2 ) ® C
=LA L0 L0 4 7200
= (L2301 4 L=1/2)01.0) (132 4 132y, 2.1
This allows us towrite TQC = EH,where E = LYV/2)0 14 [ ~1/2)1.0gnd g = 1.3/241,73/2
are representations of U(1), x SU(3) as a subgroup of U(1).SUB) x U(1)g < Sp(3) xSp(1).
Here, U(1), is a double cover of U(1) and is included in U(1);, x U(1)g via the map
e > (1% 39 Inthis way, we see that M = SO(7)/U(3) carries an invariant Sp(3)Sp(1)-
structure, where Sp(3)Sp(1) = (Sp(3) xSp(1))/{=£(1, 1)}. This is the G-structure description
of an almost quaternion-Hermitian structure.
Geometrically, an almost quaternion-Hermitian structure is specified by a Riemannian

metric g and a three-dimensional subbundle G of End(TM) which locally has a basis 7, J, K
satisfying the quaternion identities

and the compatibility conditions
g 1)=g(C,)=g(- J).
There are then local two-forms

wr(X,Y) = g(X, 1Y), o;(X,Y)=gX,JY),
wk(X,Y) =g(X,KY)
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and with the local form w, = w; + iwk of type (2,0) with respect to . Since they are non-
degenerate, the local forms wy, wj, wg are sufficient to determine the local almost complex
structures /, J and K and the metric g.

Equation (2.1) show us that T has two inequivalent irreducible summands [LA"0] and
[L2A%17 and so there are two invariant forms g and @p spanning Q2(M)SOD  However,
we have that

AT = APILANOT + APL2A% ] 4 L0 A L2201
= (Rwo + [hg' 1+ [L21D) + (Rao + [Ag ']+ [L*A"01)

FUL3 + DL T+ ILANO] + (L2, (2.2)
where 092 = §21%!. There is thus an addition two-dimensional subspace [L>] preserved
by the SU(3)-action. This space is spanned by local SU(3)-invariant forms w; and wg that
are mixed under the U(1)-action, so that w. = w; + iwk is a basis element of L3. We may
now consider the triple of forms

w; = Awy + uwg, wy and wg (2.3)
which will be seen to result in an almost quaternion-Hermitian structure when
201313 (@0)* (@0)° = (0)°. (24)

This equation is necessary, as each two-form in the triple must define the same volume
element.
We note that for an almost quaternion-Hermitian structure the four-form Q = w% + w% +

a)%( is globally defined. For an invariant structure, this form must lie in *(M)S°") which
in our particular case is four-dimensional. Indeed, the complete decomposition of A*T in to
irreducible U(3)-modules is

T = [LO] + 2[L°] + 4R + [L7A"0] + 3[L*A] + 50LA"0]
HALLAAO ] + 20700 ) + 20 L2020 + 2[ Lo 2] + [L*e "]
HIL ™01 + 1071 + [ " + TLO T+ 411725 T+ 61 ']
‘HIL4 21]]+2[[L2 21]]+[[L2 12]]+H 52]]

Now, the four-forms wé, 6)3, wo A& and @3 7+ w? % are invariant and linearly independent, so
they provide a basis for Q*(M)3S°7) It follows, Lemma 4.1 below, that any invariant almost
hyperHermitian structure on M is described via the forms of (2.3).

3 Intrinsic torsion

Given an invariant almost Hermitian structure on M, there is a unique Sp(3)Sp(1)-connection
V characterised by the condition that the pointwise norm of its torsion is the least possible.
More precisely, V is related to the Levi-Civita connection by

V=vCaig

where £ is the intrinsic torsion given [4] by

ExY=—1 D AVEAY+1 D aax)ay,
A=I,J.K A=I,J,K
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with
611 (X) = g(V§ oy, wk),
etc. The tensor & takes values in
Q=T"® (sp(3) +sp(1)" C T*® A’T*

where sp(3) = [S2E] and sp(l) = [S2H] are the Lie algebras of Sp(3) and Sp(1). Under
the action of Sp(3)Sp(1), the space Q ® C decomposes as

O®C=(AE+K+E)SH+H)

with A%E and K irreducible Sp(3)-modules satisfying A3E = A?)E +Eand E ® S’E =
S3E 4+ K + E. The space Q thus has six irreducible summands under Sp(3)Sp(1).

For an invariant structure on M = SO(7)/U(3), the intrinsic torsion lies in a U(3)-
invariant submodule of Q. As sp(3) = [S2(L1/2201)] = [Lo%2] + [)»(1)’1] +Rand sp(1) =
[S2(L3/%)] = [L3*] + R, Eq. (2.2) implies that

(5p(3) +sp()L 2= A0 T+ TL2A% ]+ [LA O + [L3 0y 1 + 1LAM0].

Comparing with Eq. (2.1), we see that (sp(3) +sp(1 ))L contains a unique copy of each of the
irreducible summands of 7', so QU®) is two-dimensional. As A3(A + B) X ASA + A2AQ®
B+ A® A*B + A’B, we find that

ASE = (L2 + L1732 4 (L2620 4 [71/2502)

The first summand is a copy of H and is also a submodule of S3H = L%2 4+ L3/2 4+ 173/ 4
L=9/2. This shows that [AJES?H]Y®) and [A}EH]Y® are each one-dimensional, and so
we have

£ e QU C[AJESHY+ A} EH). G.1

4 Explicit structures

We now wish to determine the components of £ in each of the summands of (3.1). An invariant
almost Hermitian structure on M may be described by two-forms as in (2.3). As w; and wg
are only invariant under SU(3), they do not define global forms on M. However, we do get
two such invariant forms on the total space of the circle bundle N = SO(7)/SUQ3) - M =
SO(7)/U3).

Let 0, 1,2,3, 1,2, 3 be an orthonormal basis for R’ = R 4+ C3, with0 € Rand il = 1/,
etc. Writing 12 for 1 A 2, a standard basis for [LA"0] C so(7) is given by

A=01, B=02, C=03, A'=01') B=02, C'=03
and a corresponding basis for [L21%1] is
P=23-23, 0=31-31, R=12-172,
P =23 -32", Q' =31"-13, R =12"-21.

We put E = 11’ +22" 433, and note that, this is a generator of the central u(1) in u(3). Then
{E,A,...,R'}isabasis forn = Tigsy@3)N and {A, ..., R} is a basis form = Tiqyz)M.
We use lower case letters to denote the corresponding dual bases of n* and m*. These give
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left-invariant one-forms on SO(7), with da(X, Y) = —a([X, Y]) for X, Y € so0(7), etc. We
write

dya = (da)|p2, and dya = (da)|p2,

at Id € SO(7). For a left-invariant form o € Q¥(SO(7)), we have at Id € SO(7) that
da = dya if « is right SU(3)-invariant and do = dy o if « is right U(3)-invariant. For our
choice of bases, we have

dya=—bAr4+cng—b rr'+c Aq, de:—%(b/\c—b//\c/),
dya' = —bAr +cAng +b Ar—C Ag, de’:—%(b/\c'—f—b’/\c)

with the other derivatives obtained by applying the cyclic permutation (a,d’, p, p’) —
b,b,q,q9") — (c,c',r,¥") — (a,d, p, p'). We use S to denote sums over this group of
permutations.

The two-form w; of (2.3) is

w=Mad ANa+b Ab+IA)Fu(P Ap+qg AgHr AT
=60a Aa+ up' A p).
On N, we have the forms @; and @k given by
dy+idg =6 ((p+ip) Ala+id)).

Choosing a local section s of 7: N — M such that s(Id U(3)) = Id SU(3) and s*e = 0, we
then obtain local two-forms

wj =50y, wg =s*ox
completing the triple of (2.3). The corresponding metric on M is
g =60 +a*) +n(p* +p?) @.1)
and condition (2.4) is simply
Ap=1. (4.2)

These are the only invariant metrics on M with normalised volume form, since TM (2.1) has
exactly two irreducible summands.
At Id U(3), the almost complex structures satisfy

Al _ p/ B 1 opr_— 1 pr
IA=A", IP=P, JﬁA_ﬁP, JﬁA_ ﬁP’
1L 4 _ 1 pr VA
KﬁA_ﬁP, KﬁA_\/ﬁP.
These act on forms via la = —a(I-), so with the normalisation condition (4.2), we have

Ja = up, Jp = —Aa, etc.

Lemma 4.1 These describe all invariant almost quaternion-Hermitian structures on M with
normalised volume form.

Proof We have noted above that (4.1) gives all the invariant metrics. Now, the local almost
complex structures, or equivalently their Hermitian two-forms, associated with the almost
quaternion-Hermitian structure span a U(3)-invariant subspace V of A2T of dimension 3.
Counting dimensions in the decomposition (2.2) shows that V is a subspace of Rwy +
R&o + [L3]. In particular, V N [L3] is at least one-dimensional; U(3)-invariance implies
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that [L3]] < V. As w; and wg are g-orthogonal of the same length for each normalised g
in (4.1), we see that J and K are local almost complex structures belonging to the almost
quaternion-Hermitian geometry. Finally, / = J K is specified too.

Lemma 4.2 For the choices of wy, wj and wg above normalised by (4.2) we have at the
base point Id U3) € M that

ldw; = Idyw; = (51— 20)®,
Jdoj = 20® — 13V, Kdwg =210 + 112w,
where
d=6@arbrr—a Ab Ar+anb Ar'+d Abnar),
U =06(pArqgnrr—=3pnrqg Ar)
and Adwa (-, -, ") = —dwa(A-, A, A-), for A=1,J, K.
Proof As wy is U(3)-invariant, we have Idw; = Idyw; which equals
(2X—%,u)l@(a/\b’/\r—l—a’/\b/\r—a/\b/\r/—i—a’/\b’/\r’)

and gives the first claimed formula valid at any point of M.

For our choice of section s, we have at Id U(3) that Jd wy = Js*dy@y = Jdy @y which
is
JG (—%a/\bAc—{—%a/\b’Ac’—i—Z(aAq Ar—ang nr'+d AgAr +d g AT)).

Combined with the description of J, we thus get the claimed formula. The computation for
Kdwg is similar.

To compute the intrinsic torsion, we use the “minimal description” of [4] which relies on
computing the forms f; = Jdwj + Kdwg, etc., and the contractions A 4 8p of Bp with wy.
For our structures, we have at the base point

Br=4®, Bs = 3(ud+00), Bx = 3(ud —1>V)

and all contractions A 4 8p = 0. This confirms that the intrinsic torsion & has no components
in[E(S°H + H)].

Theorem 4.3 The component of & in [ASES3H 1 is always non-zero, so the almost
quaternion-Hermitian is never quaternionic. The component of & in [ASEH] is zero if and
only if 21 = .

Proof Since we have shown in §3 that £ has no component in [K (S*H + H)] and we saw
above that each one form A 4fp is zero, at the base point, the results of [4] show that the
ASE §3 H-component of & corresponds to

v = 5B+ B+ Br) = 154k + )@
which is always non-zero under condition (4.2). The component in ASE H is determined by
3
=3B+ 26+ Ly ),
where L; = T2y + I3y + 123, with I(j2ya = a(l-, I+, ), etc. Now L; P = P, so

U = -2

and the result follows.
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Corollary 4.4 The invariant almost quaternion-Hermitian structures on M are not quater-
nionic integrable, and their quaternionic twistor spaces are not complex.

Proof This follows directly from the following two facts [7]: (1) The underlying quaternionic
structure is integrable if and only if the intrinsic torsion &£ has no S* H component, i.e., it lies in
(Ag E+ K+ E)H. (2) The quaternionic twistor space is complex if and only if the underlying
quaternionic structure is integrable. But, we have shown the Ag E S3 H-component of & is
non-zero, so the result follows.

The almost Hermitian structure (g, wy) is easily seen to be integrable: dy(a + ia’) =
—(b—ib YA +ir) +(c—ic)A(g+ig) € Ayt du(p+ip) = —Lb+ib)A(c+ic) €
A?’O. In addition, from Lemma 4.2, we see that dw; is orthogonal to w; A A, Tt follows that
dwj is primitive.

Now, recall that Gray and Hervella [3] showed that the intrinsic torsion of an almost
Hermitian structure (g, w) lies in

W = Wi+ W + W3 + Wy = [A3] + [U30] + A1+ 1A"0],

with U39 irreducible: the W; + Wh-part is determined by the Nijenhuis tensor; the Wi +
W3 + Wiy-part by dw. We now have from Lemma 4.2:

Proposition 4.5 The Hermitian structure (g, wy, I) is of Gray-Hervella type W5, except
when 4X = u, when it is Kdihler. Furthermore, the Kdhler metric is symmetric.

Note that the Kihler parameters do not correspond to the parameters in Theorem 4.3 that
give £ € [AJ ES*H].

Proof Ttremains to prove the last assertion. As in [8], note that SO(7) /U(3) = SO(8)/U(6) =
S0(8)/SO(2)S0O(6), which is the quadric. The latter is isotropy irreducible and carries a
unique SO(8)-invariant metric with fixed volume, which is Hermitian symmetric so Kéhler.
However, we have seen that there is a unique Kéhler metric with the same volume invariant
under the smaller group SO(7), so these Kihler metrics must agree.

Remark 4.6 Each SO(7)-invariant metric g on M is given by (4.1) and so is a Riemannian
submersion over CP(3) with fibre S°. The standard theory of the canonical variation [2] tell
us that precisely two of these metrics are Einstein. One is the symmetric case 41 = p. The
other is when 84 = 3pu, as verified by Musso [6] in slightly different notation. Again these
particular parameters are not those for which £ is special.

Remark 4.7 It can be shown that the local almost Hermitian structures (g, wy, J) and
(g, wk, K) above are each of strict Gray-Hervella type W; + Wjs at the base point, unless
4) = 3u, when they have type W,. In particular, the Nijenhuis tensors N; and Nk are
skew-symmetric at the base point and equal to é(4)» +uw)(BdF pLz‘J/) at Id U(3). In [4] we
showed how N7y is determined by Jdw; —Kdwg . In this case, we have the interesting situation
that this latter tensor is non-zero, even though N; vanishes. Using [1], one can prove that the
obstruction to quaternionic integrability is proportional to Ny + Ny + Nx = (4x 4+ n)®,
confirming that this is non-zero and the results of Corollary 4.4.
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