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Abstract We prove local regularity in Lebesgue spaces for weak solutions u of quasilinear
elliptic systems whose off-diagonal coefficients are small when |u| is large: the faster off-
diagonal coefficients decay, the higher integrability of u becomes.
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1 Introduction

We study integrability properties of mappings u : � ⊂ R
n → R

N solving nonlinear elliptic
systems

−
n∑

i=1

Di
(

Aαi (x, u(x), Du(x))
) = 0, x ∈ �, α = 1, . . . , N . (1.1)

We assume coercivity:

N∑

α=1

n∑

i=1

Aαi (x, y, z)zαi ≥ |z|2. (1.2)
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1672 F. Leonetti, P. V. Petricca

We require also growth condition: for some constant M ∈ (0,+∞), we have
∣∣Aαi (x, y, z)

∣∣ ≤ M |z|. (1.3)

In addition, we suppose that x → Aαi (x, y, z) is measurable and (y, z) → Aαi (x, y, z) is
continuous. Inequalities (1.2) and (1.3) are assumed to hold for almost every x ∈ �, for any
y ∈ R

N and every z ∈ R
N×n . If u ∈ W 1,2(�,RN ) is a weak solution to system (1.1), then

u ∈ L2∗(1+t)
loc (�,RN ) (1.4)

for every t ∈ (0, t1), for some t1 = t1(n, N ,M) > 0, according to Remark (a) after theorem
4 in [15], see also [6,8,16] and chapter 6 in [7]; 2∗ is the Sobolev exponent: 2∗ = 2n/(n −2).
In general, t1 cannot be very large because of counterexamples [4,5,14]; see also [17,18]. If
we add the following restriction

N∑

α,β=1

n∑

i=1

Aαi (x, y, z)
yα

|y| zβi
yβ

|y| ≥ −δ|z|2 (1.5)

for some constant δ > 0, then (1.4) holds true for every t ∈ (0, 1/(2δ)), see theorem 4 in
[15]. Note that (1.5) with small δ gives very high degree of integrability. Now let us assume
that system (1.1) is quasilinear, that is,

Aαi (x, y, z) =
n∑

j=1

N∑

β=1

aαβi j (x, y)zβj . (1.6)

In such a case, structure condition (1.5) is satisfied with any δ > 0 when

aαβi j (x, y) = 0 if α 	= β, (1.7)

aααi j (x, y) = bi j (x, y) (1.8)

and
n∑

i, j=1

bi j (x, y)ξ jξi ≥ 0. (1.9)

Note that (1.7) says that off-diagonal coefficients are zero; (1.8) requires that diagonal coef-
ficients are taken from the same matrix. If diagonal coefficients are taken from different
bounded and elliptic matrices, then structure condition (1.5) is satisfied only for δ ≥ δ0 > 0
(see the “Appendix” of the present paper) thus theorem 4 in [15] guarantees integrability
only up to a certain degree. On the other hand, when off-diagonal coefficients vanish, the
system is decoupled and we can apply standard regularity theory for a single elliptic equation
thus every component uα of the solution u is locally bounded, thus it is integrable with any
exponent. In the present paper, we deal with the quasilinear case (1.6); so we consider weak
solutions u : � ⊂ R

n → R
N of quasilinear systems

−
n∑

i=1

Di

⎛

⎝
n∑

j=1

N∑

β=1

aαβi j (x, u(x))D j u
β(x)

⎞

⎠ = 0, x ∈ �, α = 1, . . . , N . (1.10)

Now we no longer assume that off-diagonal coefficients vanish; we only know that they are
small when |uγ | is large:

|aγβi j (x, u)| ≤ c

(1 + |uγ |)q for β 	= γ (1.11)
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Summability for solutions to elliptic systems 1673

for some constants c, q ∈ (0,+∞). We assume ellipticity only for diagonal coefficients
aγ γi j (x, u) and only for large values of |uγ |:

θ ≤ |uγ | 
⇒ ν|ξ |2 ≤
n∑

i, j=1

aγ γi j (x, u)ξ jξi (1.12)

for some constants θ ∈ [0,+∞) and ν ∈ (0,+∞). Also diagonal coefficients are assumed
to be bounded:

|aγ γi j (x, u)| ≤ c̃ (1.13)

for some constant c̃ ∈ (0,+∞). In this paper, we prove that every weak solution u : � ⊂
R

n → R
N , with u ∈ W 1,2(�,RN ), of quasilinear system (1.10) enjoys the following higher

integrability

u ∈ L2∗(1+q)
loc (�,RN ) (1.14)

where q is the exponent in the right-hand side of (1.11), 2∗ is the Sobolev exponent 2n
n−2 and

n ≥ 3, see theorem 2.1 in Sect. 2. The proof, in Sect. 3, is based on a finite version of Moser’s
iteration [19]. To apply such an iteration, it is usual to test (1.1) with

v = |u|pu, (1.15)

in the scalar case N = 1 [1,13] as well in the vectorial one N ≥ 2 [2,3,15]. In the vectorial
case, we have

Div
α = p|u|p−1

N∑

γ=1

uγ

|u| (Di u
γ )uα + |u|p Di u

α; (1.16)

the second piece is “good” and the first one gives us

n∑

i=1

N∑

α=1

Aαi (x, u, Du)
N∑

γ=1

uγ

|u| (Di u
γ )

uα

|u| ; (1.17)

such a sum might be negative (see the “Appendix” at the end of the paper) and it has to be
controlled by means of assumption (1.5). In the scalar case, the derivative of the test function
(1.15) is

Div = p|u|p−1 u

|u| (Di u)u + |u|p Di u; (1.18)

now the first piece is

p|u|p−1 u

|u| (Di u)u = p|u|p−1 u2

|u| (Di u) = p|u|p(Di u) (1.19)

so it is like the second piece in (1.18) and it is “good”. In the present paper, we fix one
component uγ and we test the equation by means of

v = (0, . . . , 0, |uγ |puγ , 0, . . . , 0). (1.20)

Due to the quasilinear structure and to small off-diagonal coefficients, we are able to argue
as in the scalar case and we get higher integrability of the selected component uγ ; we cannot
arrive up to infinity since off-diagonal coefficients have to be controlled in a way that the
exponent p cannot be too high with respect to exponent q of the assumption (1.11). Please,
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1674 F. Leonetti, P. V. Petricca

note that the above discussion gives only the main idea of the proofs: they actually need the
test v to be multiplied by a cut off function and a suitable approximation of the power |u|p.
Our result (1.14) improves on theorem 2.1 of [11]: in both cases quasilinear systems with
small off-diagonal coefficients are considered; in theorem 2.1 of [11], the integrability of the
solution u does not reach the degree of (1.14) since the proof of theorem 2.1 in [11] uses |u|p

in the test function. We thank the referee for usuful suggestions.

2 Assumptions and results

Let � be a bounded open subset of R
n, n ≥ 3. For N ≥ 2, let aαβi j : � × R

N → R be

Carathéodory functions, that is, aαβi j (x, y) are measurable with respect to x and continu-

ous with respect to y. We assume that diagonal coefficients aγ γi j are bounded: there exists
c1 ∈ (0,+∞) such that

|aγ γi j (x, y)| ≤ c1 (2.1)

for almost every x ∈ �, for every y ∈ R
N , for all i, j ∈ {1, . . . , n}, for any γ ∈ {1, . . . , N }.

Now we assume ellipticity of diagonal coefficients aγ γi j for large values of yγ : there exist
θ ∈ [0,+∞) and ν ∈ (0,+∞) such that

θ ≤ |yγ | 
⇒ ν|ξ |2 ≤
n∑

i, j=1

aγ γi j (x, y)ξ j ξi (2.2)

for almost every x ∈ �, for any ξ ∈ R
n and for any γ ∈ {1, . . . , N }. Now we assume that

off-diagonal coefficients aγβi j (x, y) do not vanish any more, but they are small when yγ is
large: there exist q ∈ (0,+∞) and c2 ∈ (0,+∞) such that

|aγβi j (x, y)| ≤ c2

(1 + |yγ |)q for β 	= γ. (2.3)

Note that both diagonal and off-diagonal coefficients are bounded.

Theorem 2.1 Under the previous assumptions (2.1), (2.2), (2.3) let u = (u1, . . . , uN ) be a
weak solution of the system (1.10), that is, u ∈ W 1,2(�,RN ) and

∫

�

N∑

α,β=1

n∑

i, j=1

aαβi j (x, u(x))D j u
β(x)Div

α(x)dx = 0 ∀v ∈ W 1,2
0 (�,RN ). (2.4)

Then

u ∈ L2∗(q+1)
loc (�,RN ). (2.5)

A global integrability result is contained in [10]. Let us note that, when off-diagonal coeffi-
cients are zero for large values of |yγ |, regularity has been studied in [9,12,20].

Remark Assumptions of theorem 2.1 in [11] are more restrictive than the present ones;
moreover, in the present paper, the degree of integrability (2.5) is better than the one in
theorem 2.1 of [11]: this is due to the smarter choice of the test function. In the present paper,
we fix one component uγ and we (basically) test the equation by means of

v = (0, . . . , 0, |uγ |puγ , 0, . . . , 0); (2.6)
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Summability for solutions to elliptic systems 1675

in the proof of theorem 2.1 in [11] it was (basically) used

v = (0, . . . , 0, |u|puγ , 0, . . . , 0) (2.7)

so all of u appears in |u|p and this gives trouble in the calculations, thus resulting in a worse
result. After changing the test function, the present proof closely follows the one given in
[11]: for this reason, we only give the required modification with respect to [11].

3 Proof of Theorem 2.1

We start as in the proof of theorem 2.1 in [11]. Let φ : [0,+∞) → [0,+∞) be increasing
and C1([0,+∞)); moreover, we assume that there exists a constant c̃ ∈ [1,+∞) such that

0 ≤ φ(t) ≤ c̃ ∀t ∈ [0,+∞) (3.1)

0 ≤ φ′(t) ≤ c̃ ∀t ∈ [0,+∞) (3.2)

0 ≤ φ′(t)t ≤ c̃ ∀t ∈ [0,+∞). (3.3)

Let Bρ = B(x0, ρ) and BR = B(x0, R) be open balls with the same center x0 and radii
0 < ρ < R ≤ 1, with BR ⊂ �. We assume that η : R

n → R, η ∈ C1
0(BR)with 0 ≤ η ≤ 1 in

R
n , η = 1 on Bρ , |Dη| ≤ 4/(R −ρ) in R

n . Note that 0 < R −ρ < R ≤ 1 so 4/(R −ρ) > 4.
We fix γ ∈ {1, . . . , N }; we consider the test function v = (v1, . . . , vN ) defined as follows

vα =
{

0 if α 	= γ,

φ(|uα|)uαη2 if α = γ ; (3.4)

please, note that such a test function is different from the one in [11]. It results that

v ∈ W 1,2
0 (BR; R

N ) ⊂ W 1,2
0 (�; R

N ) (3.5)

and

Div
γ = [

φ′(|uγ |)|uγ | + φ(|uγ |)] (Di u
γ )η2 + [

φ(|uγ |)uγ ]
Di (η

2) : (3.6)

this derivatives is better than the corresponding derivative in [11]. We insert such a test
function v into (2.4) and we get:

∫

{θ≤|uγ |}

n∑

i, j=1

aγ γi j (x, u)D j u
γ

[
φ′(|uγ |)|uγ | + φ(|uγ |)] (Di u

γ )η2

= −
∫

{θ>|uγ |}

n∑

i, j=1

aγ γi j (x, u)D j u
γ

[
φ′(|uγ |)|uγ | + φ(|uγ |)] (Di u

γ )η2

−
∫

�

n∑

i, j=1

∑

β 	=γ
aγβi j (x, u)D j u

β
[
φ′(|uγ |)|uγ | + φ(|uγ |)] (Di u

γ )η2

−
∫

�

n∑

i, j=1

aγ γi j (x, u)D j u
γ φ(|uγ |)uγ Di (η

2)

−
∫

�

n∑

i, j=1

∑

β 	=γ
aγβi j (x, u)D j u

βφ(|uγ |)uγ Di (η
2). (3.7)
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1676 F. Leonetti, P. V. Petricca

Now we use ellipticity (2.2) on the left-hand side and decay for off-diagonal coefficients
(2.3) on the right-hand side: we get

ν

∫

{θ≤|uγ |}
[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2

≤ nc1

∫

{θ>|uγ |}
[φ′(|uγ |) |uγ | + φ(|uγ |)]|Duγ |2η2

+
∫

�

n2 Nc2

(1 + |uγ |)q |Du|[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |η2

+
∫

�

n2 Nc2

(1 + |uγ |)q |Du|φ(|uγ |)|uγ |2η|Dη| + nc1

∫

�

2η|Duγ |φ(|uγ |)|uγ ||Dη|.

(3.8)

We add to both sides

ν

∫

{θ>|uγ |}
[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2 (3.9)

and we get

ν

∫

�

[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2

≤ (ν + nc1)

∫

{θ>|uγ |}
[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2

+
∫

�

n2 Nc2

(1 + |uγ |)q |Du|[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |η2

+
∫

�

n2 Nc2

(1 + |uγ |)q |Du|φ(|uγ |)|uγ |2η|Dη| + nc1

∫

�

2η|Duγ |φ(|uγ |)|uγ ||Dη|.

(3.10)

We use the inequality 2AB ≤ εA2 + B2/ε, twice with ε = ν/4 and once with ε = 1; then
we get

ν

2

∫

�

[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2

≤ (ν + nc1)

∫

{θ>|uγ |}
[φ′(|uγ |)|uγ | + φ(|uγ |)]|Duγ |2η2

+
(

1 + 4n2c2
1

ν

) ∫

�

φ(|uγ |)|uγ |2|Dη|2

+
∫

�

(
1 + 4

ν

)
n4 N 2c2

2

(1 + |uγ |)2q
[φ′(|uγ |)|uγ | + φ(|uγ |)]|Du|2η2. (3.11)
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Summability for solutions to elliptic systems 1677

Let us consider p ∈ (0,+∞) and let us assume that

|uγ |2(p+1) ∈ L1(BR). (3.12)

For t ∈ [0,+∞) we set

ψ(t) = (p + 1)2t2p; (3.13)

we would like to take φ = ψ in (3.11) but we cannot do that, since φ must satisfy (3.1), (3.2)
and (3.3). So we approximate ψ in this way: for every k ∈ N, when p < 1/2 we take

θk(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ψ ′( 1
k ) if t ∈ [0, 1

k )

ψ ′(t) if t ∈ [ 1
k , k]

ψ ′(k)(k + 1 − t) if t ∈ (k, k + 1)
0 if t ∈ [k + 1,+∞);

(3.14)

when 1/2 ≤ p we take

θk(t) =
⎧
⎨

⎩

ψ ′(t) if t ∈ [0, k]
ψ ′(k)(k + 1 − t) if t ∈ (k, k + 1)
0 if t ∈ [k + 1,+∞);

(3.15)

in both cases we consider

ψk(s) =
s∫

0

θk(t)dt. (3.16)

Then ψk : [0,+∞) → [0,+∞) is increasing, C1([0,+∞)) and

0 ≤ ψ ′
k(t) ≤ ψ ′(t) ∀t ∈ (0,+∞), (3.17)

0 ≤ ψk(t) ≤ ψ(t) ∀t ∈ [0,+∞); (3.18)

in addition, there exists ck ∈ [0,+∞) such that

0 ≤ ψk(t) ≤ ck ∀t ∈ [0,+∞), (3.19)

0 ≤ ψ ′
k(t) ≤ ck ∀t ∈ [0,+∞), (3.20)

0 ≤ ψ ′
k(t)t ≤ ck ∀t ∈ [0,+∞). (3.21)

Moreover

lim
k→+∞ψk(t) = ψ(t) ∀t ∈ [0,+∞). (3.22)

Please, note that the present approximation is not the same as in [11]. Now we can take
φ = ψk in (3.11); we remark that

ψk(t) ≤ ψ ′
k(t)t + ψk(t) ≤ (p + 1)2[2p + 1]t2p (3.23)
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1678 F. Leonetti, P. V. Petricca

and we get

ν

2

∫

�

ψk(|uγ |)|Duγ |2η2 ≤ (ν + nc1)(p + 1)2[2p + 1]|θ |2p
∫

�

|Duγ |2η2

+
(

1 + 4n2c2
1

ν

) ∫

�

(p + 1)2[2p + 1]|uγ |2(p+1)|Dη|2

+
∫

�

(
1 + 4

ν

)
n4 N 2c2

2

(1 + |uγ |)2q
(p + 1)2[2p + 1]|uγ |2p|Du|2η2.

(3.24)

Now we require that

p ≤ q (3.25)

in order to have

|uγ |2p

(1 + |uγ |)2q
≤ 1; (3.26)

positivity of ψk and pointwise convergence (3.22) allow us to use Fatou lemma so that

ν

2

∫

�

|uγ |2p|Duγ |2η2 ≤
(
(ν + nc1)θ

2p +
(

1 + 4

ν

)
(n4 N 2c2

2)

)
(2p + 1)||Du||2L2(�)

+
(

1 + 4n2c2
1

ν

)
[2p + 1] 16

(R − ρ)2

∫

BR

|uγ |2(p+1). (3.27)

Let us set

w = |uγ |p+1η; (3.28)

then

w ∈ W 1,2
0 (BR) (3.29)

and

|Dw|2 ≤ 2(p + 1)2|uγ |2p|Duγ |2η2 + 2n|uγ |2(p+1)
(

4

R − ρ

)2

. (3.30)

The previous inequality and (3.27) give
∫

BR

|Dw|2 ≤ 4

ν
(p + 1)2

(
(ν + nc1)θ

2p +
(

1 + 4

ν

)
(n4 N 2c2

2)

)
(2p + 1)||Du||2L2(�)

+
(

4

ν
(p + 1)2

(
1 + 4n2c2

1

ν

)
[2p + 1] + 2n

)
16

(R − ρ)2

∫

BR

|uγ |2(p+1).

(3.31)

123



Summability for solutions to elliptic systems 1679

Now we use Sobolev embedding and the properties of η in order to get

∫

Bρ

|uγ |(p+1)2∗ ≤
∫

BR

||uγ |p+1η|2∗ =
∫

BR

|w|2∗ ≤
⎡

⎢⎣
2(n − 1)

n − 2

∫

BR

|Dw|2
⎤

⎥⎦

2∗/2

≤
[

4

ν
(p + 1)2

(
(ν + nc1)θ

2p +
(

1 + 4

ν

)
(n4 N 2c2

2)

)
(2p + 1)||Du||2L2(�)

+
(

4

ν
(p + 1)2

(
1 + 4n2c2

1

ν

)
[2p + 1] + 2n

)
16

(R − ρ)2

∫

BR

|uγ |2(p+1)

]2∗/2

×
(

2(n − 1)

n − 2

)2∗/2
. (3.32)

Let us summarize as follows: if for some p ∈ (0,+∞) with

p ≤ q (3.33)

and for some 0 < ρ < R ≤ 1 with BR ⊂ � we have

|uγ |2(p+1) ∈ L1(BR) (3.34)

then it results that

|uγ |2∗(p+1) ∈ L1(Bρ). (3.35)

Since u ∈ W 1,2(�,RN ) and BR ⊂ �, Sobolev embedding gives us

|uγ |2 n
n−2 ∈ L1(BR) (3.36)

thus (3.34) and (3.33) are fulfilled with p = min{2/(n−2); q}; this improves the integrability
accordingly to (3.35); the procedure can be iterated and, following [11] page 129, after a finite
number of steps, we reach the desired integrability.

This ends the proof of Theorem 2.1. ��

4 Appendix

For N = 2, let us consider the following n × n matrices a11, a12, a21, a22:

a11
i j (x, y) =

{
0 if i 	= j,
σ1(x) if i = j; (4.1)

a12
i j (x, y) = a21

i j (x, y) = 0; (4.2)

a22
i j (x, y) =

{
0 if i 	= j,
σ2(x) if i = j.

(4.3)
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1680 F. Leonetti, P. V. Petricca

Now we assume the quasilinear structure (1.6), and we compute the left-hand side of (1.5)
with the previous choice of aαβi j :

N∑

α,β=1

n∑

i=1

Aαi (x, y, z)
yα

|y| zβi
yβ

|y| =
N∑

α,β=1

n∑

i=1

N∑

γ=1

n∑

j=1

aαγi j (x, y)zγj
yα

|y| zβi
yβ

|y|

= (since aαγi j = 0 when γ 	= α)

N∑

α,β=1

n∑

i=1

n∑

j=1

aααi j (x, y)zαj
yα

|y| zβi
yβ

|y|

= (since aααi j = 0 when i 	= j)
N∑

α,β=1

n∑

i=1

aααi i (x, y)zαi
yα

|y| zβi
yβ

|y|

= (since aααi i (x, y) = σα(x))
N∑

α,β=1

n∑

i=1

σα(x)z
α
i

yα

|y| zβi
yβ

|y|

=
n∑

i=1

N∑

α=1

σα(x)z
α
i

yα

|y|
N∑

β=1

zβi
yβ

|y| = (∗). (4.4)

Now we choose

y1 = y2 > 0 (4.5)

so that

yα

|y| = 1√
2
. (4.6)

With such a choice of y, we have

(∗) = 1

2

n∑

i=1

N∑

α=1

σα(x)z
α
i

N∑

β=1

zβi = (∗∗). (4.7)

Now we choose z as follows:

zαi = 0 if i ≥ 2 (4.8)

and

zα1 =
{−1 if α = 1,

2 if α = 2.
(4.9)

Thus

|z|2 = 5 (4.10)

and, keeping in mind that N = 2,

(∗∗) = 1

2

n∑

i=1

2∑

α=1

σα(x)z
α
i

2∑

β=1

zβi = 1

2

2∑

α=1

σα(x)z
α
1

2∑

β=1

zβ1

= 1

2
(−σ1(x)+ 2σ2(x))(−1 + 2) = −σ1(x)+ 2σ2(x)

10
|z|2. (4.11)
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Eventually

N∑

α,β=1

n∑

i=1

Aαi (x, y, z)
yα

|y| zβi
yβ

|y| = −σ1(x)+ 2σ2(x)

10
|z|2. (4.12)

If we insert this equality into (1.5), we get

−σ1(x)+ 2σ2(x)

10
|z|2 ≥ −δ|z|2; (4.13)

this means that

σ1(x)− 2σ2(x)

10
≤ δ. (4.14)

Let us take

σ1(x) = 14 + 2 sin(|x |2), σ2(x) = 2 + sin(|x |2); (4.15)

then (4.14) becomes

1 ≤ δ. (4.16)
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