A family of nonminimizing abnormal curves

Roberto Monti

Received: 7 November 2012 / Accepted: 18 April 2013 / Published online: 27 April 2013
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract

In a four-dimensional sub-Riemannian structure, we study a specific family of abnormal extremals, and we show that they are not length minimizing, answering in the negative to a question that was recently asked. We extend the result to a class of 4-dimensional sub-Riemannian manifolds of step 5 .

Keywords Sub-Riemannian geometry • Regularity of geodesics • Abnormal extremals
Mathematics Subject Classification 53 C 17 . 49K30

1 Introduction

One of the main open problems in sub-Riemannian geometry is the regularity of lengthminimizing curves. Minimizers may be abnormal extremals, in the language of Geometric Control Theory, and R. Montgomery showed in [5] an example of abnormal extremal that is length minimizing. Liu and Sussmann proved later that the existence of length-minimizing abnormal extremals is typical of rank 2 distributions [3].

All known examples of length-minimizing curves are smooth. On the other hand, there is no regularity theory of a general character for sub-Riemannian "geodesics", apart from the partial results of [2] and [6].

During the meeting Geometric control and sub-Riemannian geometry held in Cortona in May 2012, A. Agrachev and J. P. Gauthier suggested the following situation, in order to find a nonsmooth length-minimizing curve.

Consider in \mathbb{R}^{4} the vector fields

$$
\begin{equation*}
X_{1}=\frac{\partial}{\partial x_{1}}+2 x_{2} \frac{\partial}{\partial x_{3}}+x_{3}^{2} \frac{\partial}{\partial x_{4}}, \quad X_{2}=\frac{\partial}{\partial x_{2}}-2 x_{1} \frac{\partial}{\partial x_{3}}, \tag{1.1}
\end{equation*}
$$

R. Monti (\boxtimes)

Padova, Italy
e-mail: monti@math.unipd.it
and denote by \mathcal{D} the distribution of 2-planes in \mathbb{R}^{4} spanned pointwise by X_{1} and X_{2} :

$$
\begin{equation*}
\mathcal{D}(x)=\operatorname{span}\left\{X_{1}(x), X_{2}(x)\right\}, \quad x \in \mathbb{R}^{4} . \tag{1.2}
\end{equation*}
$$

A Lipschitz curve $\gamma:[0,1] \rightarrow \mathbb{R}^{4}$ is horizontal if $\dot{\gamma}(t) \in \mathcal{D}(\gamma(t))$ for a.e. $t \in[0,1]$. Namely, γ is horizontal if there exist two functions $h_{1}, h_{1} \in L^{\infty}(0,1)$ such that

$$
\begin{equation*}
\dot{\gamma}=h_{1} X_{1}(\gamma)+h_{2} X_{2}(\gamma) \text { a.e. on }[0,1] . \tag{1.3}
\end{equation*}
$$

The length of γ is then defined as

$$
\begin{equation*}
L(\gamma)=\int_{0}^{1} g_{\gamma}(\dot{\gamma}, \dot{\gamma})^{1 / 2} \mathrm{~d} t \tag{1.4}
\end{equation*}
$$

where g_{x} is a metric on $\mathcal{D}(x), x \in \mathbb{R}^{4}$.
Fix a parameter $\alpha>0$ and consider the initial and final points $L=(-1, \alpha, 0,0) \in \mathbb{R}^{4}$ and $R=(1, \alpha, 0,0) \in \mathbb{R}^{4}$. Let $\bar{\gamma}:[-1,1] \rightarrow \mathbb{R}^{4}$ be the curve

$$
\begin{equation*}
\bar{\gamma}_{1}(t)=t, \quad \bar{\gamma}_{2}(t)=\alpha|t|, \quad \bar{\gamma}_{3}(t)=0, \quad \bar{\gamma}_{4}(t)=0, \quad t \in[-1,1] . \tag{1.5}
\end{equation*}
$$

The curve $\bar{\gamma}$ is horizontal and joins L to R. Moreover, it can be easily checked that $\bar{\gamma}$ is an abnormal extremal in the sense of Geometric Control Theory. The question is whether the curve $\bar{\gamma}$ is length minimizing or not, especially for small $\alpha>0$.

The interest of this question arises from the following consideration. Let M be an n dimensional smooth manifold with $n \geq 3$, and let \mathcal{D} be a completely nonintegrable (i.e., bracket generating) distribution on M. Let $\mathcal{D}_{1}=\mathcal{D}$ and $\mathcal{D}_{i}=\left[\mathcal{D}_{1}, \mathcal{D}_{i-1}\right]$, i.e., \mathcal{D}_{i} is the linear span of all commutators $\left[\mathcal{D}_{1}, \mathcal{D}_{i-1}\right]$. We let $\mathcal{L}_{0}=\{0\}$ and $\mathcal{L}_{i}=\mathcal{D}_{1}+\cdots+\mathcal{D}_{i}, i \geq 1$. By the nonintegrability condition, for any $p \in M$, there exists $r \in \mathbb{N}$ such that $\mathcal{L}_{r}(p)=T_{p} M$, the tangent space of M at p. Assume that \mathcal{D} is equiregular, i.e., assume that for each $i=1, \ldots, r$

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{L}_{i}(p) / \mathcal{L}_{i-1}(p)\right) \text { is constant for } p \in M . \tag{1.6}
\end{equation*}
$$

In [2], Leonardi and the author proved the following theorem.
Theorem 1.1 Let (M, \mathcal{D}, g) be a sub-Riemannian manifold, where g is a metric on \mathcal{D}, that satisfies (1.6) and

$$
\begin{equation*}
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right] \subset \mathcal{L}_{i+j-1}, \quad i, j \geq 2, i+j>4 \tag{1.7}
\end{equation*}
$$

Then, any curve in M with a corner is not length minimizing in (M, \mathcal{D}, g).
A "curve with a corner" is a \mathcal{D}-horizontal curve $\gamma:[0,1] \rightarrow M$ such that at some point $t \in(0,1)$ the left and right derivatives $\dot{\gamma}_{L}(t) \neq \dot{\gamma}_{R}(t)$ exist and are different and nonzero.

In view of Theorem 1.1, it is natural to look for a nonsmooth length-minimizing curve in a sub-Riemannian manifold violating (1.7). The step r associated with (M, \mathcal{D}) has to be at least 5 , because condition (1.7) is automatically satisfied if $r \leq 4$. A first attempt could be to consider the free Carnot group of step 5 and rank 2. This structure is diffeomorphic to \mathbb{R}^{8} and, by the results in [1], all abnormal extremals are computable.

If we drop the equiregularity condition (1.6), however, the search for structures violating (1.7) is easier. The manifold $M=\mathbb{R}^{4}$ with the distribution \mathcal{D} spanned by the vector fields (1.1) is one such example.

For $n \in \mathbb{N}$, we define the set of multi-indexes $\mathcal{I}_{n}=\{1,2\}^{n}=\left\{\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}\right.$: $\left.\beta_{1}, \ldots, \beta_{n}=1,2\right\}$ and, for any $\beta \in \mathcal{I}_{n}$, we let

$$
\begin{equation*}
X_{\beta}=\left[X_{\beta_{1}},\left[\ldots,\left[X_{\beta_{n-1}}, X_{\beta_{n}}\right] \ldots\right]\right] . \tag{1.8}
\end{equation*}
$$

We define the length of the commutator X_{β} as $\operatorname{len}\left(X_{\beta}\right)=n$ if and only if $\beta \in \mathcal{I}_{n}$.
For any $\beta \in \mathcal{I}_{3} \cup \mathcal{I}_{4}$, we have $X_{\beta}(0)=0$. On the other hand, when $\beta \in \mathcal{I}_{5}$, we have the following situation:

$$
\begin{align*}
\frac{1}{16} X_{\beta} & =\frac{\partial}{\partial x_{4}}, \quad \text { when } \beta=(1,1,2,2,1) \text { or } \beta=(1,2,1,2,1) \\
\frac{1}{32} X_{\beta} & =-\frac{\partial}{\partial x_{4}}, \quad \text { when } \beta=(2,1,1,2,1) \\
X_{\beta} & =0 \quad \text { otherwise. } \tag{1.9}
\end{align*}
$$

In particular, there holds

$$
\frac{1}{48}\left[\left[X_{2}, X_{1}\right],\left[\left[X_{2}, X_{1}\right], X_{1}\right]\right]=\frac{\partial}{\partial x_{4}},
$$

and thus, (1.7) is violated with $i=2$ and $j=3$.
We show that the curve $\bar{\gamma}$ in (1.5) is not length minimizing for any small α, thus answering in the negative to the question raised by Agrachev and Gauthier. Namely, we prove the following.

Theorem 1.2 For any $\alpha>0$ with $\alpha \neq 1$, the curve $\bar{\gamma}$ in (1.5) is not length minimizing in $\left(\mathbb{R}^{4}, \mathcal{D}, g\right)$, for any choice of metric g on \mathcal{D}.

The proof of the theorem is constructive. For $\alpha \neq 1$, we construct a horizontal curve joining the left and right end-points L and R that is strictly shorter than $\bar{\gamma}$.

When $\alpha=1$, the construction does not work, and our shorter curves for $\alpha \neq 1$ converge to the curve $\bar{\gamma}$ as $\alpha \rightarrow 1$ (see Remark 3.1). The problem of establishing whether $\bar{\gamma}$ for $\alpha=1$ is length minimizing or not is open.

In the second part of the paper, we extend Theorem 1.2 to 4-dimensional sub-Riemannian manifolds having at the corner point of the involved curve the same infinitesimal structure as $\left(\mathbb{R}^{4}, \mathcal{D}\right)$.

Let M be a 4-dimensional smooth manifold, and let $\mathcal{D} \subset T M$ be a distribution of 2-planes on M. Locally, we have $\mathcal{D}=\operatorname{span}\left\{Y_{1}, Y_{2}\right\}$, where Y_{1} and Y_{2} are linearly independent smooth vector fields on M. We denote by $\mathcal{L}_{2}=\operatorname{span}\left\{Y_{i},\left[Y_{j}, Y_{k}\right]: i, j, k=1,2\right\}$ the pointwise linear span of \mathcal{D} and of the brackets of \mathcal{D}.

Fix a point $p \in M$. We make the following three assumptions:
(H1) The vector fields

$$
\begin{equation*}
Y_{1}, Y_{2}, Y_{3}=\frac{1}{4}\left[Y_{2}, Y_{1}\right], \text { and } Y_{4}=\frac{1}{16}\left[Y_{1},\left[Y_{1},\left[Y_{2},\left[Y_{2}, Y_{1}\right]\right]\right]\right] \tag{1.10}
\end{equation*}
$$

are linearly independent at the point p.
(H2) For all $\beta \in \mathcal{I}_{3} \cup \mathcal{I}_{4}$, we have

$$
\begin{equation*}
Y_{\beta}(p)=0 \bmod \mathcal{L}_{2}(p), \tag{1.11}
\end{equation*}
$$

where $\mathcal{L}_{2}(p)=\left\{Y(p): Y \in \mathcal{L}_{2}\right\}$.
(H3) For all $\beta \in \mathcal{I}_{5}$ with $\beta=(*, *, *, 2,1)$, we have

$$
\begin{align*}
& Y_{\beta}(p)=16 Y_{4}(p) \bmod \mathcal{L}_{2}(p), \text { for } \beta=(1,2,1,2,1) \text { or } \beta=(1,1,2,2,1), \\
& Y_{\beta}(p)=-32 Y_{4}(p) \bmod \mathcal{L}_{2}(p), \text { for } \beta=(2,1,1,2,1), \text { and } \\
& Y_{\beta}(p)=0 \bmod \mathcal{L}_{2}(p) \text { otherwise. } \tag{1.12}
\end{align*}
$$

Finally, let g be a metric on \mathcal{D} making the vector fields Y_{1} and Y_{2} orthogonal at p,

$$
\begin{equation*}
g_{p}\left(Y_{1}, Y_{2}\right)=0 \tag{1.13}
\end{equation*}
$$

In Sect. 5, we prove the following result. Below, we denote by $\dot{\gamma}_{L}(t)$ and $\dot{\gamma}_{R}(t)$ the left and right derivative of a curve $\gamma:[0,1] \rightarrow M$ at the point $t \in(0,1)$. The curve γ has a corner at the point $p=\gamma(t)$, if the left and right derivatives at t exist, do not vanish, and $\dot{\gamma}_{L}(t) \neq \dot{\gamma}_{R}(t)$.

Theorem 1.3 Let (M, \mathcal{D}, g) be 4-dimensional sub-Riemannian manifold satisfying (H1)(H3) and (1.13) at the point $p \in M$. Let $\gamma:[0,1] \rightarrow M$ be a horizontal curve in (M, $\mathcal{D})$ having a corner at the point $p=\gamma(t), t \in(0,1)$, such that $g_{p}\left(\dot{\gamma}_{L}(t), \dot{\gamma}_{R}(t)\right) \neq 0$. Then, γ is not length minimizing.

The proof of Theorem 1.3 relies upon a blow-up argument reducing the situation to the one of the Theorem 1.2. Theorem 1.3 is proved in Sect. 5, and the preliminary nilpotent approximation is explained in Sect. 4. In Sect. 2, we set up the construction of the shorter curve used to prove Theorem 1.2. In Sect. 3, we solve a system of end-point equations, concluding the proof of Theorem 1.2.

We thank D. Vittone for his careful reading of an early version of this paper. We also thank the referee for suggesting to us possible extensions of Theorem 1.2.

2 Construction of the competing curve

In this section, we construct the competing curve used to prove Theorem 1.2. In a first step, we cut the corner of $\bar{\gamma}$ at $t=0$ in the $x_{1} x_{2}$-plane. Lifting the new curve in \mathbb{R}^{2} to a horizontal curve in \mathbb{R}^{4} produces an error on the third and fourth coordinates of the final point. To restore the final point, we use two devices. We describe the intuition behind the construction. The vector fields X_{1} and X_{2} in (1.1) have a Heisenberg group structure in the $x_{1} x_{2} x_{3}$ space. Thus, to restore the third coordinate, we have to add an "area" in the $x_{1} x_{2}$-plane equaling the "area" cut at the corner. We do this by means of a "rectangle" having basis of fixed length and variable height ε_{1}, the first parameter.

Restoring the fourth coordinate is more delicate. This is due to the fact that the coefficient of $\partial / \partial x_{4}$ of X_{1} in (1.1), the power x_{3}^{2}, is always nonnegative. This means that the cut produces a positive error, see (2.7). To correct it, the perturbation of $\bar{\gamma}$ must contain arcs where the first coordinate is decreasing. To do this, we add a square with side length ε_{2}, the second parameter, at the final point R in the $x_{1} x_{2}$ plane.

Our goal is to prove that the final end-point can be adjusted via this construction. Technically, this means that we have to find solutions $\varepsilon_{1}, \varepsilon_{2}$ to a system of two equations depending on the cut parameter. Moreover, we need to check that the cost of length of "rectangle" and square does not exceed the gain of length of the cut. This will be done in Sect. 3.

We begin the construction of the shorter curve.

2.1 Cut

Fix a cut parameter $0<\eta<1 / 4$, and let

$$
T_{\eta}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \alpha\left|x_{1}\right|<x_{2}<\alpha \eta\right\} .
$$

The curve $\bar{\gamma}$ is deviated along the cut, i.e., along the side of the triangle T_{η} parallel to the x_{1}-axis. In other words, we cut the corner. The cut produces an error on the final point, namely
on the third and fourth coordinates. To correct these errors, we use two devices, a "rectangle" and a square.

2.2 Rectangle

We deviate $\bar{\gamma}$ along a "rectangle" put along $\bar{\gamma}$. The length of the basis is fixed. The height is a variable parameter. Namely, for $\varepsilon_{1}>0$, we let

$$
R_{\varepsilon_{1}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \frac{1}{4}<x_{1}<\frac{1}{2}, \alpha x_{1}<x_{2}<\alpha x_{1}+\varepsilon_{1}\right\} .
$$

The curve $\bar{\gamma}$ is deviated following clockwise three sides of the rectangle. When $\varepsilon_{1}<0$, the construction is analogous, but the rectangle is below the curve, and we follow its boundary counterclockwise.

2.3 Square

Next, we use a square with bottom-left vertex at R, the final point. Namely, for any $\varepsilon_{2} \in \mathbb{R}$, we let:

$$
Q_{\varepsilon_{2}}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 1<x_{1}<1+\left|\varepsilon_{2}\right|, \alpha<x_{2}<\alpha+\left|\varepsilon_{2}\right|\right\} .
$$

When $\varepsilon_{2}>0$, we follow the boundary of the square clockwise. When $\varepsilon_{2}<0$, we follow the boundary counterclockwise.

The devices $R_{\varepsilon_{1}}$ and $Q_{\varepsilon_{2}}$ produce effects in the coordinates 3 and 4 of $\bar{\gamma}$ after the cut. We call $\gamma:[-1,1] \rightarrow \mathbb{R}^{4}$ the curve obtained after using $T_{\eta}, R_{\varepsilon_{1}}$, and $Q_{\varepsilon_{2}}$. To construct the coordinate γ_{3}, we use the formula

$$
\begin{equation*}
\gamma_{3}(t)=2 \int_{-1}^{t}\left(\gamma_{2} \dot{\gamma}_{1}-\gamma_{1} \dot{\gamma}_{2}\right) \mathrm{d} s, \quad t \in[0,1] . \tag{2.1}
\end{equation*}
$$

To construct γ_{4}, we use the formula

$$
\begin{equation*}
\gamma_{4}(t)=\int_{-1}^{t} \dot{\gamma}_{1} \gamma_{3}^{2} \mathrm{~d} s, \quad t \in[0,1] \tag{2.2}
\end{equation*}
$$

On suitable subintervals, we shall use different parameterizations for γ.
We construct step by step the horizontal lift of γ.

2.4 Effect of T_{η}

We parameterize on the interval $[-\eta, \eta]$ the piece of γ that is on the horizontal part of ∂T_{η}. We have, by (2.1),

$$
\gamma_{3}(t)=\int_{-\eta}^{t} 2 \alpha \eta \mathrm{~d} s=2 \alpha \eta(t+\eta), \quad t \in[-\eta, \eta] .
$$

The final value of γ_{3} is $\gamma_{3}(\eta)=4 \alpha \eta^{2}$. The final value of γ_{4} is, by (2.2),

$$
\gamma_{4}(\eta)=\int_{-\eta}^{\eta} 4 \alpha^{2} \eta^{2}(t+\eta)^{2} \mathrm{~d} t=\frac{32}{3} \alpha^{2} \eta^{5}
$$

2.5 First segment

Now, we have to follow for a time $t \in[\eta, 1 / 4]$ the piece of the original curve $\bar{\gamma}$ connecting the cut to the rectangle $R_{\varepsilon_{1}}$. Here, γ_{3} is constant: $\gamma_{3} \equiv 4 \alpha \eta^{2}$. The final value of γ_{4} is

$$
\gamma_{4}(1 / 4)=\frac{32}{3} \alpha^{2} \eta^{5}+\int_{\eta}^{1 / 4} 16 \alpha^{2} \eta^{4} \mathrm{~d} t=16 \alpha^{2} \eta^{4}\left(\frac{1}{4}-\frac{\eta}{3}\right)
$$

2.6 Rectangle

$1^{\text {st }}$ side. We compute γ_{3} along the first vertical side $\left\{(1 / 4, \alpha / 4+t) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{1}\right]\right\}$ of $R_{\varepsilon_{1}}$:

$$
\gamma_{3}(t)=4 \alpha \eta^{2}-\frac{t}{2}, \quad t \in\left[0, \varepsilon_{1}\right] .
$$

The final value is $\gamma_{3}\left(\varepsilon_{1}\right)=4 \alpha \eta^{2}-\frac{\varepsilon_{1}}{2}$. This value is correct also when $\varepsilon_{1}<0$. Along this piece of curve, γ_{4} stays constant because $\dot{\gamma}_{1}=0$.
$2^{\text {nd }}$ side. Along the second side of the rectangle, we have

$$
\gamma_{1}(t)=\frac{1}{4}+t, \quad \gamma_{2}(t)=\frac{\alpha}{4}+\varepsilon_{1}+\alpha t, \quad t \in[0,1 / 4] .
$$

Then, the third coordinate is

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}-\frac{\varepsilon_{1}}{2}+2 \varepsilon_{1} t, \quad t \in[0,1 / 4], \\
\gamma_{3}(1 / 4) & =4 \alpha \eta^{2}
\end{aligned}
$$

The final value of γ_{4} at the end of this side is

$$
\begin{align*}
\gamma_{4}(1 / 4) & =16 \alpha^{2} \eta^{4}\left(\frac{1}{4}-\frac{\eta}{3}\right)+\int_{0}^{1 / 4}\left(4 \alpha \eta^{2}-\frac{\varepsilon_{1}}{2}+2 \varepsilon_{1} t\right)^{2} \mathrm{~d} t \\
& =16 \alpha^{2} \eta^{4}\left(\frac{1}{4}-\frac{\eta}{3}\right)+4 \alpha^{2} \eta^{4}-\frac{1}{2} \alpha \eta^{2} \varepsilon_{1}+\frac{1}{48} \varepsilon_{1}^{2} \\
& =\varrho . \tag{2.3}
\end{align*}
$$

This is the final value of γ_{4} after the rectangle $R_{\varepsilon_{1}}$. The number ϱ is defined via the last identity in (2.3).
$3^{\text {rd }}$ side. We compute γ_{3} along the second vertical side $\left\{(1 / 2, \alpha / 2+t) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{1}\right]\right\}$ of the rectangle $R_{\varepsilon_{1}}$. We have to follow $-X_{2}$, and we get

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+t, \quad t \in\left[0, \varepsilon_{1}\right], \\
\gamma_{3}\left(\varepsilon_{1}\right) & =4 \alpha \eta^{2}+\varepsilon_{1} .
\end{aligned}
$$

Here, γ_{4} is constant because $\dot{\gamma}_{1}=0$ on this side of the rectangle.

2.7 Second diagonal segment

Now, we have to follow for a time $t \in[1 / 2,1]$ the piece of the original curve $\bar{\gamma}$ connecting $R_{\varepsilon_{1}}$ to the final point R. Here, γ_{3} is constant: $\gamma_{3} \equiv 4 \alpha \eta^{2}+\varepsilon_{1}$. We call $\Delta_{0}\left(\varepsilon_{1} ; \eta\right)$ the final
value of γ_{4} before the square $Q_{\varepsilon_{2}}$, and namely [recall the definition of ϱ in (2.3)],

$$
\begin{align*}
\Delta_{0}\left(\varepsilon_{1} ; \eta\right) & =\varrho+\frac{1}{2}\left(4 \alpha \eta^{2}+\varepsilon_{1}\right)^{2} \\
& =16 \alpha^{2} \eta^{4}\left(1-\frac{\eta}{3}\right)+\frac{7}{2} \alpha \eta^{2} \varepsilon_{1}+\frac{25}{48} \varepsilon_{1}^{2} \tag{2.4}
\end{align*}
$$

2.8 Square

Case $\varepsilon_{2}>0$. We compute the effect on the third and fourth coordinates of the square $Q_{\varepsilon_{2}}$. Here, we do the computations for the case $\varepsilon_{2}>0$. In this case, we follow the boundary $\partial Q_{\varepsilon_{2}}$ clockwise.
$1^{\text {st }}$ vertical side. We follow the segment $\left\{(1, \alpha+t) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{2}\right]\right\}$. The coordinate γ_{3} is

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}-2 t, \quad t \in\left[0, \varepsilon_{2}\right] \\
\gamma_{3}\left(\varepsilon_{2}\right) & =4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}
\end{aligned}
$$

The coordinate γ_{4} stays constant along this side, $\gamma_{4} \equiv \Delta_{0}\left(\varepsilon_{1} ; \eta\right)$.
$\mathbf{2}^{\text {nd }}$ (horizontal) side. We follow the line segment $\left\{\left(1+t, \alpha+\varepsilon_{2}\right) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{2}\right]\right\}$. The coordinate γ_{3} is

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}+2\left(\alpha+\varepsilon_{2}\right) t, \quad t \in\left[0, \varepsilon_{2}\right] \\
\gamma_{3}\left(\varepsilon_{2}\right) & =4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}+2\left(\alpha+\varepsilon_{2}\right) \varepsilon_{2} .
\end{aligned}
$$

Here, there is an important contribution to the fourth coordinate:

$$
\begin{aligned}
\gamma_{4}\left(\varepsilon_{2}\right)= & \Delta_{0}\left(\varepsilon_{1} ; \eta\right)+\int_{0}^{\varepsilon_{2}}\left(4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}+2\left(\alpha+\varepsilon_{2}\right) t\right)^{2} \mathrm{~d} t \\
= & \Delta_{0}\left(\varepsilon_{1} ; \eta\right)+\left(4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}\right)^{2} \varepsilon_{2} \\
& +2\left(4 \alpha \eta^{2}+\varepsilon_{1}-2 \varepsilon_{2}\right)\left(\alpha+\varepsilon_{2}\right) \varepsilon_{2}^{2}+\frac{4}{3}\left(\alpha+\varepsilon_{2}\right)^{2} \varepsilon_{2}^{3} \\
= & \Delta_{1}\left(\varepsilon_{2}, \varepsilon_{2} ; \eta\right)
\end{aligned}
$$

Above, $\Delta_{1}\left(\varepsilon_{2}, \varepsilon_{2} ; \eta\right)$ is defined via the last identity.
$3^{\text {rd }}$ (vertical) side. We have to follow the vertical side $\left\{\left(1+\varepsilon_{2}, \alpha+t\right) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{2}\right]\right\}$ along the vector field $-X_{2}$. The final coordinate γ_{3} is:

$$
\gamma_{3}\left(\varepsilon_{2}\right)=4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha \varepsilon_{2}+4 \varepsilon_{2}^{2} .
$$

The coordinate γ_{4} does not change.
$4^{\text {th }}$ (horizontal) side. We have to follow the horizontal side $\left\{(1+t, \alpha) \in \mathbb{R}^{2}: t \in\left[0, \varepsilon_{2}\right]\right\}$ along the vector field $-X_{1}$. The coordinate γ_{3} is as follows:

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha \varepsilon_{2}+4 \varepsilon_{2}^{2}-2 \alpha t, \quad t \in\left[0, \varepsilon_{2}\right] \\
\gamma_{3}\left(\varepsilon_{2}\right) & =4 \alpha \eta^{2}+\varepsilon_{1}+4 \varepsilon_{2}^{2}
\end{aligned}
$$

This is the final value of γ_{3} after the entire construction, when $\varepsilon_{2}>0$. When $\varepsilon_{2}<0$, we have to replace ε_{2}^{2} above with $\operatorname{sgn}\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right|^{2}$. There is a change of sign. We call $\Gamma_{3}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)$ the final value of γ_{3} after the entire construction, and namely,

$$
\begin{equation*}
\Gamma_{3}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=4 \alpha \eta^{2}+\varepsilon_{1}+4 \operatorname{sgn}\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right|^{2} . \tag{2.5}
\end{equation*}
$$

The final value of γ_{4} is as follows:

$$
\begin{aligned}
\gamma_{4}\left(\varepsilon_{2}\right)= & \Delta_{1}\left(\varepsilon_{2}, \varepsilon_{2} ; \eta\right)-\int_{0}^{\varepsilon_{2}}\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha \varepsilon_{2}+4 \varepsilon_{2}^{2}-2 \alpha t\right)^{2} \mathrm{~d} t \\
= & \Delta_{1}\left(\varepsilon_{2}, \varepsilon_{2} ; \eta\right)-\left[\left(4 \alpha \eta^{2}+\varepsilon_{1}+4 \varepsilon_{2}^{2}\right)^{2} \varepsilon_{2}+2\left(4 \alpha \eta^{2}+\varepsilon_{1}+4 \varepsilon_{2}^{2}\right) \alpha \varepsilon_{2}^{2}+\frac{4}{3} \alpha^{2} \varepsilon_{2}^{3}\right] \\
= & \Delta_{0}\left(\varepsilon_{1} ; \eta\right)+4 \varepsilon_{2}^{2}\left(1+2 \varepsilon_{2}\right)\left[\varepsilon_{2}\left(1-2 \varepsilon_{2}\right)-4 \alpha \eta^{2}-\varepsilon_{1}\right] \\
& +2 \varepsilon_{2}^{3}\left[4 \alpha \eta^{2}+\varepsilon_{1}-2\left(\alpha+\varepsilon_{2}\right)-4 \alpha \varepsilon_{2}\right]+\frac{4}{3} \varepsilon_{2}^{4}\left(2 \alpha+\varepsilon_{2}\right) .
\end{aligned}
$$

Recalling (2.4), we let for $\varepsilon_{2}>0$

$$
\begin{align*}
\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)= & 16 \alpha^{2} \eta^{4}\left(1-\frac{\eta}{3}\right)+\frac{7}{2} \alpha \eta^{2} \varepsilon_{1}+\frac{25}{48} \varepsilon_{1}^{2} \\
& +4 \varepsilon_{2}^{2}\left(1+2 \varepsilon_{2}\right)\left[\varepsilon_{2}\left(1-2 \varepsilon_{2}\right)-4 \alpha \eta^{2}-\varepsilon_{1}\right] \\
& +2 \varepsilon_{2}^{3}\left[4 \alpha \eta^{2}+\varepsilon_{1}-2\left(\alpha+\varepsilon_{2}\right)-4 \alpha \varepsilon_{2}\right]+\frac{4}{3} \varepsilon_{2}^{4}\left(2 \alpha+\varepsilon_{2}\right) \tag{2.6}
\end{align*}
$$

2.9 Square

$\operatorname{Case} \varepsilon_{2}<0$. We compute the effect of the square $Q_{\varepsilon_{2}}$ on the fourth coordinate when $\varepsilon_{2}<0$. In this case, we follow $\partial Q_{\varepsilon_{2}}$ counterclockwise.
$1^{\text {st }}$ horizontal side. We follow the segment $\left\{(1+t, \alpha) \in \mathbb{R}^{2}: t \in\left[0,\left|\varepsilon_{2}\right|\right]\right\}$. The coordinate γ_{3} is

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha t, \quad t \in\left[0,\left|\varepsilon_{2}\right|\right], \\
\gamma_{3}\left(\left|\varepsilon_{2}\right|\right) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right| .
\end{aligned}
$$

The final value of the coordinate γ_{4} is

$$
\begin{aligned}
\gamma_{4}\left(\left|\varepsilon_{2}\right|\right) & =\Delta_{0}\left(\varepsilon_{1} ; \eta\right)+\int_{0}^{\left|\varepsilon_{2}\right|}\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha t\right)^{2} \mathrm{~d} t \\
& =\Delta_{0}\left(\varepsilon_{1} ; \eta\right)+\left|\varepsilon_{2}\right|\left(4 \alpha \eta^{2}+\varepsilon_{1}\right)^{2}+2 \alpha\left|\varepsilon_{2}\right|^{2}\left(4 \alpha \eta^{2}+\varepsilon_{1}\right)+\frac{4}{3} \alpha^{2}\left|\varepsilon_{2}\right|^{3} \\
& =\Delta_{1}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)
\end{aligned}
$$

Here, $\Delta_{1}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ for $\varepsilon_{2}<0$ is defined via the last identity.
$\mathbf{2}^{\text {nd }}$ (vertical) side. We follow the line segment $\left\{\left(1+\left|\varepsilon_{2}\right|, \alpha+t\right) \in \mathbb{R}^{2}: t \in\left[0,\left|\varepsilon_{2}\right|\right]\right\}$. The coordinate γ_{3} is

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right) t, \quad t \in\left[0,\left|\varepsilon_{2}\right|\right] \\
\gamma_{3}\left(\left|\varepsilon_{2}\right|\right) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right| .
\end{aligned}
$$

The fourth coordinate does not change.
$\mathbf{3}^{\text {rd }}$ (horizontal) side. We have to follow the horizontal side $\left\{\left(1+t, \alpha+\left|\varepsilon_{2}\right|\right) \in \mathbb{R}^{2}: t \in\right.$ $\left.\left[0,\left|\varepsilon_{2}\right|\right]\right\}$ along the vector field $-X_{1}$. The coordinate γ_{3} is:

$$
\begin{aligned}
\gamma_{3}(t) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|-2\left(\alpha+\left|\varepsilon_{2}\right|\right) t, \\
\gamma_{3}\left(\left|\varepsilon_{2}\right|\right) & =4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|-2\left(\alpha+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|,
\end{aligned}
$$

The final value of the coordinate γ_{4} is

$$
\begin{aligned}
\gamma_{4}\left(\left|\varepsilon_{2}\right|\right)= & \Delta_{1}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)-\int_{0}^{\left|\varepsilon_{2}\right|}\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|-2\left(\alpha+\left|\varepsilon_{2}\right|\right) t\right)^{2} \mathrm{~d} t \\
= & \Delta_{1}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)-\left|\varepsilon_{2}\right|\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|\right)^{2} \\
& +2\left(\alpha+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|^{2}\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|\right)-\frac{4}{3}\left(\alpha+\left|\varepsilon_{2}\right|\right)^{2}\left|\varepsilon_{2}\right|^{3} .
\end{aligned}
$$

This is the final value of γ_{4} after the entire construction when $\varepsilon_{2}<0$. Then, for $\varepsilon_{2}<0$ we let

$$
\begin{align*}
\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)= & 16 \alpha^{2} \eta^{4}\left(1-\frac{\eta}{3}\right)+\frac{7}{2} \alpha \eta^{2} \varepsilon_{1}+\frac{25}{48} \varepsilon_{1}^{2} \\
& +\left|\varepsilon_{2}\right|\left(4 \alpha \eta^{2}+\varepsilon_{1}\right)^{2}+2 \alpha\left|\varepsilon_{2}\right|^{2}\left(4 \alpha \eta^{2}+\varepsilon_{1}\right)+\frac{4}{3} \alpha^{2}\left|\varepsilon_{2}\right|^{3} \\
& -\left|\varepsilon_{2}\right|\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|\right)^{2} \\
& +2\left(\alpha+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|^{2}\left(4 \alpha \eta^{2}+\varepsilon_{1}+2 \alpha\left|\varepsilon_{2}\right|-2\left(1+\left|\varepsilon_{2}\right|\right)\left|\varepsilon_{2}\right|\right) \\
& -\frac{4}{3}\left(\alpha+\left|\varepsilon_{2}\right|\right)^{2}\left|\varepsilon_{2}\right|^{3} . \tag{2.7}
\end{align*}
$$

3 Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. We show that the system of end-point equations has a solution, and we prove that, for a small $\eta>0$, this solution provides a curve that is shorter than $\bar{\gamma}$.

To correct the coordinates γ_{3} and γ_{4}, we have to find solutions ε_{1} and ε_{2}, depending on the (small) parameter $\eta>0$, to the following system of equations

$$
\left\{\begin{array}{l}
\Gamma_{3}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=0 \tag{3.1}\\
\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=0
\end{array}\right.
$$

Here, $\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)$ is defined in (2.6) and (2.7), for $\varepsilon_{2}>0$ and $\varepsilon_{2}<0$, respectively.
$\operatorname{By}(2.5)$, the first equation $\Gamma_{3}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=0$ is

$$
\begin{equation*}
4 \alpha \eta^{2}+\varepsilon_{1}+4 \operatorname{sgn}\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right|^{2}=0 \tag{3.2}
\end{equation*}
$$

We compute ε_{1} using Eq. (3.2) and replace this value into the second equation $\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=0$.

3.1 Case $\alpha>1$

In this case, we look for a solution $\varepsilon_{2}>0$, and we use formula (2.6) for $\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)$. Letting $\varepsilon_{2}=\sigma>0$, we obtain the following equation in σ

$$
\begin{align*}
& \frac{1}{3}\left(31 \alpha^{2} \eta^{4}-16 \alpha^{2} \eta^{5}+8 \alpha \eta^{2} \sigma^{2}+25 \sigma^{4}\right) \\
& \quad+4 \sigma^{3}\left(1-\alpha+\sigma(3-2 \alpha)+2 \sigma^{2}\right)+\frac{4}{3} \sigma^{4}(2 \alpha+\sigma)=0 \tag{3.3}
\end{align*}
$$

When $\alpha>1$ Eq. (3.3) reads

$$
\begin{equation*}
\phi(\sigma)=\alpha^{2} \eta^{4}(31-16 \eta)+8 \alpha \eta^{2} \sigma^{2}+12(1-\alpha) \sigma^{3}+o\left(\sigma^{3}\right)=0, \tag{3.4}
\end{equation*}
$$

where $o\left(\sigma^{3}\right)$ contains terms with σ^{4} and σ^{5}. Notice that the coefficient of σ^{3} is negative, because $\alpha>1$. The function ϕ introduced in (3.4) is continuous, and moreover,

$$
\phi(0)=\alpha^{2} \eta^{4}(31-16 \eta)>0,
$$

as soon as $\eta<31 / 16$. In fact, we have $\eta<1 / 4$. On the other hand, we have

$$
\phi\left(C \sqrt[3]{\frac{\alpha^{2}}{\alpha-1}} \eta^{4 / 3}\right)=\alpha^{2} \eta^{4}\left(31-12 C^{3}\right)+o\left(\eta^{4}\right)<0
$$

provided that we choose a constant C such that $12 C^{3}>31$ and $\eta>0$ is small enough.
By the theorem of zeros for continuous functions, for any $\eta>0$ that is small enough, Eq. (3.4) has a solution $\varepsilon_{2}=\sigma>0$ such that

$$
\begin{equation*}
\varepsilon_{2}=\sigma \leq C \sqrt[3]{\frac{\alpha^{2}}{\alpha-1}} \eta^{4 / 3} . \tag{3.5}
\end{equation*}
$$

Moreover, by (3.2),

$$
\varepsilon_{1}=-4 \alpha \eta^{2}-4 \operatorname{sgn}\left(\varepsilon_{2}\right)\left|\varepsilon_{2}\right|^{2}=-4 \alpha \eta^{2}-4 \varepsilon_{2}^{2} .
$$

In particular, ε_{1} is asymptotic to $-4 \alpha \eta^{2}$, for small $\eta>0$, and thus, we have

$$
\begin{equation*}
\left|\varepsilon_{1}\right| \leq 5 \alpha \eta^{2}, \tag{3.6}
\end{equation*}
$$

for all $\eta>0$ that are sufficiently small.

3.2 Case $0<\alpha<1$

In this case, we look for solutions $\varepsilon_{1}, \varepsilon_{2}$ to the system (3.1) such that $\varepsilon_{2}<0$. The unknown ε_{1} is determined by (3.2). We use formula (2.7) for $\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)$. Letting $\sigma=\left|\varepsilon_{2}\right|>0$, equation $\Gamma_{4}\left(\varepsilon_{1}, \varepsilon_{2} ; \eta\right)=0$ reads

$$
\begin{align*}
& 16 \alpha^{2} \eta^{4}\left(1-\frac{\eta}{3}\right)+14 \alpha \eta^{2}\left(\sigma^{2}-\alpha \eta^{2}\right)+\frac{25}{3}\left(\sigma^{2}-\alpha \eta^{2}\right)^{2}+16 \sigma^{5}+8 \alpha \sigma^{4} \\
& +\frac{4}{3} \alpha^{2} \sigma^{3}-4 \sigma^{3}(\sigma+\alpha-1)^{2}+4(\alpha+\sigma) \sigma^{3}(\sigma+\alpha-1)-\frac{4}{3}(\alpha+\sigma)^{2} \sigma^{3}=0 . \tag{3.7}
\end{align*}
$$

We may shorten Eq. (3.7) in the following way:

$$
\begin{equation*}
\alpha^{2} \eta^{4}(31-16 \eta)-8 \alpha \eta^{2} \sigma^{2}+12(\alpha-1) \sigma^{3}+o\left(\sigma^{3}\right)=0 . \tag{3.8}
\end{equation*}
$$

Compare Eqs. (3.8) and (3.4). Notice that the coefficient of σ^{3} in (3.8) is negative. The same argument used in the case $\alpha>1$ proves that there exists a solution $\left|\varepsilon_{2}\right|=\sigma$ to Eq. (3.8) such that

$$
\begin{equation*}
0<\left|\varepsilon_{2}\right|=\sigma \leq C \sqrt[3]{\frac{\alpha^{2}}{1-\alpha}} \eta^{4 / 3} \tag{3.9}
\end{equation*}
$$

where C is the same constant as in the case $\alpha>1$. As above, we deduce that

$$
\begin{equation*}
\left|\varepsilon_{1}\right| \leq 5 \alpha \eta^{2} . \tag{3.10}
\end{equation*}
$$

3.3 Gain of length

We compute the difference between the length of the original curve $\bar{\gamma}$ and the curve γ obtained after applying the cut T_{η}, the "rectangle" $R_{\varepsilon_{1}}$, and the square $Q_{\varepsilon_{2}}$

Without loss of generality, we can assume that the metric g on \mathcal{D} is the one making X_{1} and X_{1} orthonormal. In this case, the length $L(\gamma)$ of a horizontal curve γ as in (1.4) is

$$
\begin{equation*}
L(\gamma)=\int_{0}^{1}|h(t)| \mathrm{d} t, \quad h=\left(h_{1}, h_{2}\right) . \tag{3.11}
\end{equation*}
$$

By (3.11), the gain of length $G(\eta)$ obtained through the cut T_{η} is

$$
\begin{equation*}
G(\eta)=2 \eta\left(\sqrt{1+\alpha^{2}}-1\right) \tag{3.12}
\end{equation*}
$$

By (3.6) and (3.9), the cost of length $C_{R}\left(\varepsilon_{1}\right)$ of the correction made through the "rectangle" $R_{\varepsilon_{1}}$ is

$$
C_{R}\left(\varepsilon_{1}\right)=2\left|\varepsilon_{1}\right| \leq 10 \alpha \eta^{2} .
$$

By (3.5) and (3.9), the cost of length $C_{Q}\left(\varepsilon_{2}\right)$ of the correction made through the square $Q_{\varepsilon_{2}}$ is

$$
C_{Q}\left(\varepsilon_{2}\right)=4\left|\varepsilon_{2}\right| \leq 4 C \sqrt[3]{\frac{\alpha^{2}}{\alpha-1}} \eta^{4 / 3}
$$

We conclude that

$$
G(\eta)-C_{R}\left(\varepsilon_{1}\right)-C_{Q}\left(\varepsilon_{2}\right) \geq 2 \eta\left(\sqrt{1+\alpha^{2}}-1\right)-10 \alpha \eta^{2}-4 C \sqrt[3]{\frac{\alpha^{2}}{\alpha-1}} \eta^{4 / 3}>0
$$

for all $\eta>0$ that are sufficiently small.
Thus, the construction provides a horizontal curve γ shorter than $\bar{\gamma}$ and joining the same end-points L and R. This ends the proof of Theorem 1.2.

Remark 3.1 When $\alpha \rightarrow 1$, our solutions $\varepsilon_{1}, \varepsilon_{2}$ to the system (3.1), along with the parameter η, converge to 0 and the shorter curve γ converges to $\bar{\gamma}$.

We may look for solutions to (3.1) in the case $\alpha=1$. However, when $\alpha=1$, Eq. (3.3) for the case $\sigma=\varepsilon_{2}>0$ reads

$$
\eta^{4}(31-16 \eta)+8 \eta^{2} \sigma^{2}+45 \sigma^{4}+o\left(\sigma^{4}\right)=0 .
$$

This equation has no small solution $\sigma>0$ for small η.
On the other hand, when $\alpha=1$, Eq. (3.7) for the case $\sigma=\left|\varepsilon_{2}\right|$ with $\varepsilon_{2}<0$ reads

$$
\eta^{4}(31-16 \eta)-8 \eta^{2} \sigma^{2}+53 \sigma^{4}+o\left(\sigma^{4}\right)=0 .
$$

And also this equation has for small $\eta>0$ no small solution $\sigma>0$.

Remark 3.2 The shorter curve γ constructed above has a "curl" at the end-point R. When $\alpha>1$, this curl is oriented clockwise (i.e., $\varepsilon_{2}>0$). When $0<\alpha<1$, it is oriented counterclockwise (i.e., $\varepsilon_{2}<0$). This suggests that the geodesic joining L to R displays a similar behavior. One may wonder what is the behavior at the point R of the length-minimizing curve joining L to R when $\alpha=1$.

Remark 3.3 The proof of Theorem 1.2 shows why the problem of extending Theorem 1.1 to situations where (1.6) fails is technically complicated. The presence of coefficients depending on nonhorizontal coordinates [as the coefficient x_{3}^{2} in the vector field X_{1} in (1.1)] makes the construction of horizontal competitors complicated.

4 Nilpotent approximation

Let (M, \mathcal{D}) be a 4-dimensional sub-Riemannian manifold satisfying $(\mathrm{H} 1)$-(H3) at the point $p \in M$, where $\mathcal{D}=\operatorname{span}\left\{Y_{1}, Y_{2}\right\}$, and let Y_{1}, \ldots, Y_{4} be linearly independent vector fields at the point p, as in (1.10). In this section, we construct the homogeneous nilpotent approximation of (M, \mathcal{D}) at p.

In a neighborhood of $p \in M$, we fix the exponential coordinates of the first type induced by the frame Y_{1}, \ldots, Y_{4} starting from p. Then, we can identify M with $\mathbb{R}^{4}, Y_{1}, \ldots, Y_{4}$ with vector fields on \mathbb{R}^{4}, and p with $0 \in \mathbb{R}^{4}$. We have

$$
\begin{equation*}
x=\exp \left(\sum_{i=1}^{4} x_{i} Y_{i}\right)(0), \quad x=\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4} . \tag{4.1}
\end{equation*}
$$

Here, the exponential mapping is defined by $\exp (Y)(0)=\gamma(1)$ where γ is the solution of $\dot{\gamma}=Y(\gamma)$ and $\gamma(0)=0$.

We assign to the coordinate x_{1} the weight $w_{1}=1$, to x_{2} the weight $w_{2}=1$, to x_{3} the weight $w_{3}=2$, and to x_{4} the weight $w_{4}=5$. In fact, the length of Y_{3} is $\operatorname{len}\left(Y_{3}\right)=2$, and the length of Y_{4} is len $\left(Y_{4}\right)=5$. The natural dilations adapted to the frame Y_{1}, \ldots, Y_{4} are

$$
\delta_{\lambda}(x)=\left(\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}, \lambda^{5} x_{4}\right), \quad x \in \mathbb{R}^{4}, \lambda>0 .
$$

Let $Y=Y_{\beta}$ be a commutator of Y_{1}, \ldots, Y_{4}, with the notation (1.8) for iterated commutators. Then, we have

$$
\begin{equation*}
Y=\sum_{i=1}^{4} a_{i}(x) \frac{\partial}{\partial x_{i}}, \tag{4.2}
\end{equation*}
$$

where $a_{i} \in C^{\infty}\left(\mathbb{R}^{4}\right), i=1, \ldots, 4$, are smooth functions that have the structure described in the following proposition.

Proposition 4.1 Assume that (H1) and (H2) hold. There are polynomials $p_{i}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ and functions $r_{i}: \mathbb{R}^{4} \rightarrow \mathbb{R}, i=1, \ldots, 4$, such that:
i) $a_{i}(x)=p_{i}(x)+r_{i}(x), x \in \mathbb{R}^{4}$;
ii) $p_{i}\left(\delta_{\lambda}(x)\right)=\lambda^{w_{i}-\operatorname{len}(Y)} p_{i}(x)$, where len (Y) is the length of Y;
iii) $\lim _{\lambda \rightarrow \infty} \lambda^{w_{i}-\operatorname{len}(Y)} r_{i}\left(\delta_{1 / \lambda}(x)\right)=0, x \in \mathbb{R}^{4}$.

Proposition 4.1 can be proved as in [4, on page 306]. We omit the details, here.

Let $Y=Y_{\beta}$ be a vector field as in (4.2). For $\lambda>0$, we let

$$
\begin{equation*}
Y^{\lambda}(x)=\sum_{i=1}^{4} \lambda^{w_{i}-\operatorname{len}(Y)} a_{i}\left(\delta_{1 / \lambda}(x)\right) \frac{\partial}{\partial x_{i}}, \quad x \in \mathbb{R}^{4} . \tag{4.3}
\end{equation*}
$$

The mapping $Y \mapsto Y^{\lambda}$ is bracket-preserving. Namely, for any multi-index β, and for $i=1,2$, we have

$$
\begin{equation*}
\left[Y_{i}, Y_{\beta}\right]^{\lambda}=\left[Y_{i}^{\lambda}, Y_{\beta}^{\lambda}\right], \quad \lambda>0 . \tag{4.4}
\end{equation*}
$$

The vector fields $Y_{1}^{\lambda}, \ldots, Y_{4}^{\lambda}$ induce on \mathbb{R}^{4} exponential coordinates of the first type starting from 0 :

$$
\begin{equation*}
x=\exp \left(\sum_{i=1}^{4} x_{i} Y_{i}^{\lambda}\right)(0), \quad x \in \mathbb{R}^{4} \tag{4.5}
\end{equation*}
$$

The proof of (4.5) relies upon the fact that if a curve γ solves $\dot{\gamma}=\sum_{i=1}^{4} x_{i} Y_{i}(\gamma)$, then the curve $\gamma_{\lambda}=\delta_{\lambda}(\gamma)$ solves $\dot{\gamma}_{\lambda}=\sum_{i=1}^{4} \lambda^{w_{i}} x_{i} Y_{i}^{\lambda}\left(\gamma_{\lambda}\right)$.

By Proposition 4.1, for any $Y=Y_{\beta}$ as in (4.2), we can define the vector field Y^{∞} in \mathbb{R}^{4}

$$
Y^{\infty}(x)=\lim _{\lambda \rightarrow \infty} Y^{\lambda}(x)=\sum_{i=1}^{4} p_{i}(x) \frac{\partial}{\partial x_{i}}, \quad x \in \mathbb{R}^{4},
$$

where $p_{i}, i=1, \ldots, 4$, are polynomials such that $p_{i} \circ \delta_{\lambda}=\lambda^{w_{i}-\operatorname{len}(Y)} p_{i}$. In particular, if $w_{i}<\operatorname{len}(Y)$, then $p_{i}=0$. Passing to the limit as $\lambda \rightarrow \infty$ in (4.4), we see that also the mapping $Y \mapsto Y^{\infty}$ is bracket-preserving

$$
\begin{equation*}
\left[Y_{i}, Y_{\beta}\right]^{\infty}=\left[Y_{i}^{\infty}, Y_{\beta}^{\infty}\right], \quad \lambda>0 . \tag{4.6}
\end{equation*}
$$

Moreover, passing to the limit as $\lambda \rightarrow \infty$ in (4.5), we see that $Y_{1}^{\infty}, \ldots, Y_{4}^{\infty}$ induce exponential coordinates of the first type:

$$
\begin{equation*}
x=\exp \left(\sum_{i=1}^{4} x_{i} Y_{i}^{\infty}\right)(0), \quad x \in \mathbb{R}^{4} . \tag{4.7}
\end{equation*}
$$

Then, the vector fields $Y_{1}^{\infty}, \ldots, Y_{4}^{\infty}$ are

$$
\begin{align*}
Y_{1}^{\infty} & =\frac{\partial}{\partial x_{1}}+q_{1} \frac{\partial}{\partial x_{3}}+p_{1} \frac{\partial}{\partial x_{4}}, \\
Y_{2}^{\infty} & =\frac{\partial}{\partial x_{2}}+q_{2} \frac{\partial}{\partial x_{3}}+p_{2} \frac{\partial}{\partial x_{4}}, \\
Y_{3}^{\infty} & =\frac{1}{4}\left[Y_{2}^{\infty}, Y_{1}^{\infty}\right]=\frac{\partial}{\partial x_{3}}+p_{3} \frac{\partial}{\partial x_{4}}, \\
Y_{4}^{\infty} & =\frac{1}{16}\left[Y_{1}^{\infty},\left[Y_{1}^{\infty},\left[Y_{2}^{\infty},\left[Y_{2}^{\infty}, Y_{1}^{\infty}\right]\right]\right]\right]=\frac{\partial}{\partial x_{4}} . \tag{4.8}
\end{align*}
$$

Above, q_{i} and p_{i} are polynomials such that $q_{i} \circ \delta_{\lambda}=\lambda q_{i}$ and $p_{i} \circ \delta_{\lambda}=\lambda^{4} p_{i}$ for $i=1,2$ and $\lambda>0$. In particular, for $i=1$, 2, we have

$$
q_{i}=a_{i 1} x_{1}+a_{i 2} x_{2} \quad \text { and } \quad p_{i}=p_{i 1}+x_{3} p_{i 2}+d_{i} x_{3}^{2},
$$

where $a_{i j}, d_{i} \in \mathbb{R}$ are constants, $p_{i 1}$ are homogeneous polynomials of degree 4 in the variables x_{1}, x_{2}, and $p_{i 2}$ are homogeneous polynomials of degree 2 in the variables x_{1}, x_{2}. By the relation $Y_{3}^{\infty}=\frac{1}{4}\left[Y_{2}^{\infty}, Y_{2}^{\infty}\right]$, we deduce that the polynomial p_{3} is

$$
\begin{equation*}
p_{3}=\frac{1}{4}\left\{\left(\frac{\partial}{\partial x_{2}}+q_{2} \frac{\partial}{\partial x_{3}}\right) p_{1}-\left(\frac{\partial}{\partial x_{1}}+q_{1} \frac{\partial}{\partial x_{3}}\right) p_{2}\right\} . \tag{4.9}
\end{equation*}
$$

If Y_{1}, \ldots, Y_{4} satisfy (1.12), then the vector fields $Y_{1}^{\infty}, \ldots, Y_{4}^{\infty}$ satisfy, for all $\beta \in \mathcal{I}_{5}$ with $\beta=(*, *, *, 2,1)$,

$$
\begin{align*}
& Y_{\beta}^{\infty}(0)=16 Y_{4}^{\infty}(0) \text { for } \beta=(1,2,1,2,1) \text { or } \beta=(1,1,2,2,1), \\
& Y_{\beta}^{\infty}(0)=-32 Y_{4}^{\infty}(0) \text { for } \beta=(2,1,1,2,1), \text { and } \\
& Y_{\beta}^{\infty}(0)=0 \text { otherwise. } \tag{4.10}
\end{align*}
$$

We claim that

$$
\begin{equation*}
Y_{1}^{\infty}=X_{1} \quad \text { and } \quad Y_{2}^{\infty}=X_{2}, \tag{4.11}
\end{equation*}
$$

where X_{1} and X_{2} are the vector fields (1.1).
For any $x \in \mathbb{R}^{4}$, let $\gamma:[0,1] \rightarrow \mathbb{R}^{4}$ be the curve such that $\dot{\gamma}=\exp \left(\sum_{i=1}^{4} x_{i} Y_{i}^{\infty}(\gamma)\right)(0)$ and $\gamma(0)=0$. Condition (4.7) implies that $\gamma(t)=t x$ for all $t \in[0,1]$. Differentiating this identity at $t=1$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{4} x_{i} \frac{\partial}{\partial x_{i}}=\sum_{i=1}^{4} x_{i} Y_{i}^{\infty}(x), \quad x \in \mathbb{R}^{4} . \tag{4.12}
\end{equation*}
$$

The equation for the coordinate $i=3$ in (4.12) is $x_{1} q_{1}+x_{2} q_{2}=0$, i.e.,

$$
\sum_{i, j=1}^{2} a_{i j} x_{i} x_{j}=0 .
$$

This equation along with the relation $\frac{1}{4}\left[Y_{2}^{\infty}, Y_{1}^{\infty}\right](0)=\partial / \partial x_{3}$ gives

$$
\begin{equation*}
q_{1}=2 x_{1} \quad \text { and } \quad q_{2}=-2 x_{1} \tag{4.13}
\end{equation*}
$$

The equation for the coordinate $i=4$ in (4.12) is $x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}=0$. By (4.13) and (4.9), this equation reads

$$
x_{1} p_{1}+x_{2} p_{2}+\frac{x_{3}}{4}\left(\partial_{2} p_{1}-2 x_{1} \partial_{3} p_{1}-\partial_{1} p_{2}-2 x_{2} \partial_{3} p_{2}\right)=0
$$

or equivalently,

$$
\begin{equation*}
x_{1} p_{11}+x_{2} p_{21}+\frac{x_{3}}{4}\left(2 x_{1} p_{12}+2 x_{2} p_{22}+\partial_{2} p_{11}-\partial_{1} p_{21}\right)+\frac{x_{3}^{2}}{4}\left(\partial_{2} p_{12}-\partial_{1} p_{22}\right)=0 . \tag{4.14}
\end{equation*}
$$

Setting to 0 the coefficients of the powers of x_{3} in (4.14), we obtain the following equations:

$$
\begin{align*}
& x_{1} p_{11}+x_{2} p_{21}=0, \tag{4.15}\\
& 2 x_{1} p_{12}+2 x_{2} p_{22}+\partial_{2} p_{11}-\partial_{1} p_{21}=0, \tag{4.16}\\
& \partial_{2} p_{12}-\partial_{1} p_{22}=0 . \tag{4.17}
\end{align*}
$$

Equation (4.15) implies that

$$
\begin{equation*}
p_{11}=x_{2} p \quad \text { and } \quad p_{21}=-x_{1} p \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
p \text { is a homogeneous polynomial of degree } 3 \text { in the variables } x_{1}, x_{2} \text {. } \tag{4.19}
\end{equation*}
$$

Now, Eq. (4.16) reads

$$
\begin{equation*}
5 p+2 x_{1} p_{12}+2 x_{2} p_{22}=0 . \tag{4.20}
\end{equation*}
$$

The vector fields Y_{1}^{∞} and Y_{2}^{∞} are

$$
Y_{1}^{\infty}=X_{1}+w_{1} \frac{\partial}{\partial x_{4}} \quad \text { and } \quad Y_{2}^{\infty}=X_{2}+w_{2} \frac{\partial}{\partial x_{4}}
$$

where X_{1}, X_{2} are the vector fields (1.1), and

$$
\begin{align*}
& w_{1}=x_{2} p+x_{3} p_{12}+\left(d_{1}-1\right) x_{3}^{2}, \\
& w_{2}=-x_{1} p+x_{3} p_{22}+d_{2} x_{3}^{2} . \tag{4.21}
\end{align*}
$$

We claim that $w_{1}=w_{2}=0$. Once this claim is proved, the main claim (4.11) will follow.
We compute commutators of length 5 of Y_{1}^{∞} and Y_{2}^{∞}, as functions of X_{1}, X_{1}, w_{1}, and w_{2}. First of all, we have

$$
\left[Y_{2}^{\infty}, Y_{1}^{\infty}\right]=\left[X_{2}, X_{1}\right]+\left(X_{2} w_{1}-X_{1} w_{2}\right) \frac{\partial}{\partial x_{4}}
$$

Then, for any $i, j, k=1,2$, we have

$$
\begin{align*}
{\left[Y_{i}^{\infty},\left[Y_{j}^{\infty},\left[Y_{k}^{\infty},\left[Y_{2}^{\infty}, Y_{1}^{\infty}\right]\right]\right]\right]=} & {\left[X_{i},\left[X_{j},\left[X_{k},\left[X_{2}, X_{1}\right]\right]\right]\right] } \\
& +\left(X_{i} X_{j} X_{k} X_{2} w_{1}-X_{i} X_{j} X_{k} X_{1} w_{2}-4 X_{i} X_{j} \partial_{3} w_{k}\right) \frac{\partial}{\partial x_{4}} . \tag{4.22}
\end{align*}
$$

By (1.9) and (4.10), commutators (of length 5) of Y_{1}^{∞} and Y_{2}^{∞}, and commutators of X_{1} and X_{2} satisfy the same relations at the point $x=0$. From (4.22), we deduce that we have for all $i, j, k=1,2$

$$
\begin{equation*}
X_{i} X_{j} X_{k} X_{2} w_{1}-X_{i} X_{j} X_{k} X_{1} w_{2}-4 X_{i} X_{j} \partial_{3} w_{k}=0, \quad \text { at } x=0 . \tag{4.23}
\end{equation*}
$$

Notice that $X_{i} X_{j} X_{k} X_{2} w_{1}-X_{i} X_{j} X_{k} X_{1} w_{2}-4 X_{i} X_{j} \partial_{3} w_{k}$ is a homogeneous polynomial of degree 0 for the dilations $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}\right), \lambda>0$. Thus, Eq. (4.23) holds for all $x \in \mathbb{R}^{4}$. By integration, we deduce that $X_{j} X_{k} X_{2} w_{1}-X_{j} X_{k} X_{1} w_{2}-4 X_{j} \partial_{3} w_{k}$ is constant in \mathbb{R}^{3}. For $X_{j} X_{k} X_{2} w_{1}-X_{j} X_{k} X_{1} w_{2}-4 X_{j} \partial_{3} w_{k}$ is a homogeneous polynomial of degree 1 , we deduce that it is identically zero. Repeating the same argument, we conclude that for $k=1,2$

$$
\begin{equation*}
X_{k} X_{2} w_{1}-X_{k} X_{1} w_{2}-4 \partial_{3} w_{k}=0 \quad \text { in } \mathbb{R}^{3} . \tag{4.24}
\end{equation*}
$$

In order to analyze Eq. (4.24), we preliminarily compute

$$
\begin{aligned}
& X_{2} w_{1}=p+x_{2} \partial_{2} p+x_{3} \partial_{2} p_{12}-2 x_{1} p_{12}-4\left(d_{1}-1\right) x_{1} x_{3}, \\
& X_{1} w_{2}=-p-x_{1} \partial_{1} p+x_{3} \partial_{1} p_{22}+2 x_{2} p_{22}+4 d_{2} x_{2} x_{3} .
\end{aligned}
$$

When $k=1$, Eq. (4.24) reads

$$
\begin{aligned}
& 3 \partial_{1} p+x_{1} \partial_{1} \partial_{1} p+x_{2} \partial_{1} \partial_{2} p-6 p_{12}-2 x_{1} \partial_{1} p_{12}-2 x_{2} \partial_{1} p_{22}+2 x_{2}\left(\partial_{2} p_{12}-\partial_{1} p_{22}\right)+ \\
& \quad-8\left(d_{1}-1\right) x_{1} x_{2}-8 d_{2} x_{2}^{2}+x_{3}\left(\partial_{1} \partial_{2} p_{12}-\partial_{1} \partial_{1} p_{22}-12\left(d_{1}-1\right)\right)=0 .
\end{aligned}
$$

As $\partial_{1} p$ is a homogeneous polynomial of degree 2 , we have $x_{1} \partial_{1} \partial_{1} p+x_{2} \partial_{2} \partial_{1} p=2 \partial_{1} p$. Also using the fact that p_{12} is a homogeneous polynomial of degree 2 , and using identity (4.17), the previous equation reads

$$
5 \partial_{1} p-10 p_{12}-8\left(d_{1}-1\right) x_{1} x_{2}-8 d_{2} x_{2}^{2}-12\left(d_{1}-1\right) x_{3}=0
$$

This implies

$$
\begin{equation*}
d_{1}-1=0 \quad \text { and } \quad \partial_{1} p-2 p_{12}-\frac{8}{5} d_{2} x_{2}^{2}=0 \tag{4.25}
\end{equation*}
$$

When $k=2$, Eq. (4.24) reads

$$
\begin{aligned}
& 3 \partial_{2} p+x_{1} \partial_{2} \partial_{1} p+x_{2} \partial_{2} \partial_{2} p-6 p_{22}-2 x_{1} \partial_{2} p_{12}-2 x_{2} \partial_{2} p_{22}+2 x_{1}\left(\partial_{1} p_{22}-\partial_{2} p_{12}\right) \\
& \quad+8\left(d_{1}-1\right) x_{1}^{2}+8 d_{2} x_{1} x_{2}+x_{3}\left(\partial_{2} \partial_{2} p_{12}-\partial_{2} \partial_{1} p_{22}-12 d_{2}\right)=0 .
\end{aligned}
$$

Using the fact that $\partial_{2} p$ is homogeneous of degree 2 , identity (4.17), the fact that p_{22} is homogeneous of degree 2 , and $d_{1}=1$, the previous equation reads

$$
5 \partial_{2} p-10 p_{22}+8 d_{2} x_{1} x_{2}-12 d_{2} x_{3}=0
$$

This implies $d_{2}=0$ and $\partial_{2} p-2 p_{22}=0$. We multiply the latter equation by x_{2}, we multiply by x_{1} the second equation in (4.25) (with $d_{2}=0$), we sum the two resulting equations, and we obtain $x_{1} \partial_{1} p+x_{2} \partial_{2} p-2 x_{1} p_{12}-2 x_{2} p_{22}=0$. Using the fact that p is homogeneous of degree 3 , we finally obtain

$$
\begin{equation*}
3 p-2 x_{1} p_{12}-2 x_{2} p_{22}=0 . \tag{4.26}
\end{equation*}
$$

From (4.26) and (4.20), we deduce that $p=0$, and thus, $p_{12}=p_{22}=0$. We conclude that $w_{1}=w_{2}=0$, and this proves the main claim (4.11).

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. As in Sect. 4, we assume that $M=\mathbb{R}^{4}, p=0, \mathcal{D}=$ $\operatorname{span}\left\{Y_{1}, Y_{2}\right\}$ and that the vector fields Y_{1}, \ldots, Y_{4} satisfy $(\mathrm{H} 1)-(\mathrm{H} 3)$ and induce exponential coordinates of the first type in \mathbb{R}^{4}, as in (4.1). On \mathcal{D}, we fix a metric g satisfying (1.13).

For $\lambda>0$, let Y_{1}^{λ} and Y_{2}^{λ} be the vector fields in (4.3), and let $\mathcal{D}^{\lambda}=\operatorname{span}\left\{Y_{1}^{\lambda}, Y_{2}^{\lambda}\right\}$. Let g^{λ} be the metric on \mathcal{D}^{λ} defined by

$$
g_{x}^{\lambda}\left(Y_{i}^{\lambda}, Y_{j}^{\lambda}\right)=g_{\delta_{1 / \lambda}(x)}\left(Y_{i}, Y_{j}\right), \quad x \in \mathbb{R}^{4}, \quad i, j=1,2
$$

When $\lambda=\infty$, we let $\mathcal{D}^{\infty}=\operatorname{span}\left\{Y_{1}^{\infty}, Y_{2}^{\infty}\right\}$, where, by the discussion of Sect. 4, we have $Y_{1}^{\infty}=X_{1}$ and $Y_{2}^{\infty}=X_{2}$. On \mathcal{D}^{∞}, we define the metric g^{∞}

$$
g_{x}^{\infty}\left(Y_{i}^{\infty}, Y_{j}^{\infty}\right)=\lim _{\lambda \rightarrow \infty} g_{x}^{\lambda}\left(Y_{i}^{\lambda}, Y_{j}^{\lambda}\right)=\lim _{\lambda \rightarrow \infty} g_{\delta_{1 / \lambda}(x)}\left(Y_{i}, Y_{j}\right)=g_{0}\left(Y_{i}, Y_{j}\right), \quad x \in \mathbb{R}^{4}
$$

Remark 5.1 From (1.13), it follows that

$$
g_{x}^{\infty}\left(Y_{1}^{\infty}, Y_{2}^{\infty}\right)=g_{0}\left(Y_{1}, Y_{2}\right)=0, \quad x \in \mathbb{R}^{4}
$$

Without loss of generality, we also assume that $g_{x}^{\infty}\left(Y_{i}^{\infty}, Y_{i}^{\infty}\right)=1$ for all $x \in \mathbb{R}^{4}$ and $i=1,2$. In other words, the metric g^{∞} makes the vector fields Y_{1} and Y_{2} orthonormal. It follows that linear mappings $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ of the form

$$
T(x)=\left(U\left(x_{1}, x_{2}\right), \operatorname{det}(U) x_{3}, x_{4}\right), \quad x=\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}
$$

where $U \in O(2)$ is an orthogonal mapping in \mathbb{R}^{2}, are isometries of $\left(\mathbb{R}^{4}, \mathcal{D}^{\infty}, g^{\infty}\right)$.
Let $\gamma:[-1,1] \rightarrow M=\mathbb{R}^{4}$ be a \mathcal{D}-horizontal curve such that $\gamma(0)=0$ and

$$
\begin{equation*}
\dot{\gamma}_{L}(0) \neq \dot{\gamma}_{R}(0), \tag{5.1}
\end{equation*}
$$

where $\dot{\gamma}_{L}(0) \neq 0$ and $\dot{\gamma}_{R}(0) \neq 0$ are the left and right derivatives of γ at $t=0$.
For $\lambda>0$, the curves $\gamma^{\lambda}(t)=\delta_{\lambda} \gamma(t / \lambda), t \in[-\lambda, \lambda]$, are \mathcal{D}^{λ}-horizontal. Moreover, the limit curve $\gamma^{\infty}:(-\infty, \infty) \rightarrow \mathbb{R}^{4}$

$$
\gamma^{\infty}(t)=\left\{\begin{array}{l}
\lim _{\lambda \rightarrow \infty} \gamma^{\lambda}(t)=\dot{\gamma}_{R}(0) t t \geq 0, \tag{5.2}\\
\lim _{\lambda \rightarrow \infty} \gamma^{\lambda}(t)=\dot{\gamma}_{L}(0) t t<0,
\end{array}\right.
$$

is \mathcal{D}^{∞}-horizontal. Here, the vectors $\dot{\gamma}_{L}(0)$ and $\dot{\gamma}_{R}(0)$ are identified with vectors of \mathbb{R}^{4} and have the form $(*, *, 0,0)$. The curve γ^{∞} lies, therefore, in the $x_{1} x_{2}$-plane.

Proposition 5.1 Assume that the curve γ is length minimizing in $\left(\mathbb{R}^{4}, \mathcal{D}, g\right)$. Then, the curve γ^{∞} is length minimizing in $\left(\mathbb{R}^{4}, \mathcal{D}^{\infty}, g^{\infty}\right)$.

Proposition 5.1 is proved in [2], Proposition 2.4.
We conclude the proof of Theorem 1.3. Assume by contradiction that there exists a curve γ as in Theorem 1.3 that is length minimizing in $\left(\mathbb{R}^{4}, \mathcal{D}, g\right)$. By Proposition 5.1, the curve γ^{∞} in (5.2) is length minimizing in $\left(\mathbb{R}^{4}, \mathcal{D}^{\infty}, g^{\infty}\right)$. By assumption, we have $g_{0}\left(\dot{\gamma}_{L}(0), \dot{\gamma}_{R}(0)\right) \neq 0$. It follows that

$$
\begin{equation*}
g_{0}^{\infty}\left(\dot{\gamma}_{L}^{\infty}(0), \dot{\gamma}_{R}^{\infty}(0)\right)=\lim _{\lambda \rightarrow \infty} g_{0}^{\lambda}\left(\dot{\gamma}_{L}^{\lambda}(0), \dot{\gamma}_{R}^{\lambda}(0)\right)=g_{0}\left(\dot{\gamma}_{L}(0), \dot{\gamma}_{R}(0)\right) \neq 0 \tag{5.3}
\end{equation*}
$$

By Remark 5.1 and (5.1), we can assume that γ^{∞} has the form (1.5) with $\alpha>0$ (up to re-parameterization), and by (5.3), we have $\alpha \neq 1$. By Theorem 1.2, the curve γ^{∞} is not length minimizing. This is a contradiction.

References

1. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal curves in nilpotent Lie groups. Geom. Funct. Anal. (2013, to appear)
2. Leonardi, G.P., Monti, R.: End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal. 18, 552-582 (2008)
3. Liu, W., Sussmann, H.: Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Am. Math. Soc. 118, x+104 (1995)
4. Margulis, G.A., Mostow, G.D.: Some remarks on the definition of tangent cones in a Carnot-Carathèodory space. J. Anal. Math. 80, 299-317 (2000)
5. Montgomery, R.: Abnormal minimizers. SIAM J. Control Optim. 32, 1605-1620 (1994)
6. Monti, R.: Regularity results for sub-Riemannian geodesics. Calc. Var. (2013, to appear)
