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Abstract We provide existence results of multiple solutions for quasilinear elliptic equa-
tions depending on a parameter under the Neumann and Dirichlet boundary condition. Our
main result shows the existence of two opposite constant sign solutions and a sign changing
solution in the case where we do not impose the subcritical growth condition to the nonlinear
term not including derivatives of the solution. The studied equations contain the p-Laplacian
problems as a special case. Our approach is based on variational methods combining super-
and sub-solution and the existence of critical points via descending flow.
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1 Introduction and statements of main results

In this paper, we consider the existence of nontrivial multiple solutions for the following
quasilinear elliptic equation

{−div A(x,∇u) = μ f (x, u) in �,

Bu = 0 on ∂�,
(P)μ
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1256 D. Motreanu, M. Tanaka

where μ > 0 is a parameter and � ⊂ R
N is a bounded domain with C2 boundary ∂�.

Here, Bu = 0 denotes the Dirichlet or Neumann boundary condition, namely Bu := u
or Bu := ∂u/∂ν, respectively, where ν denotes the outward unit normal vector on ∂�.
Moreover, A : � × R

N → R
N is a map which is strictly monotone in the second variable

and satisfies certain regularity conditions (see the following assumption (A)).
Throughout this paper, we assume that the map A and the nonlinear term f satisfy the

following assumptions (A) and ( f ), respectively:
(A) A(x, y) = a(x, |y|)y, where a(x, t) > 0 for all (x, t) ∈ �× (0,+∞), 1 < p < ∞

and

(i) A ∈ C0(�× R
N ,RN ) ∩ C1(�× (RN \ {0}),RN );

(ii) there exists C1 > 0 such that

|Dy A(x, y)| ≤ C1|y|p−2 for every x ∈ �, and y ∈ R
N \ {0};

(iii) there exists C0 > 0 such that

Dy A(x, y)ξ · ξ ≥ C0|y|p−2|ξ |2 for every ξ ∈ �, y ∈ R
N \ {0} and ξ ∈ R

N ;
(iv) there exists C2 > 0 such that

|Dx A(x, y)| ≤ C2(1 + |y|p−1) for every x ∈ �, y ∈ R
N \ {0};

(v) there exist C3 > 0 and 1 ≥ t0 > 0 such that

|Dx A(x, y)| ≤ C3|y|p−1 (− log |y| )
for every x ∈ �, y ∈ R

N with 0 < |y| < t0.

( f ) f is a Carathéodory function on � × R with f (x, 0) = 0 for a.e. x ∈ � and f is
bounded on bounded sets.

In this paper, we say that u ∈ W 1,p(�) (resp. W 1,p
0 (�)) is a (weak) solution of (P)μ

under the Neumann boundary condition (resp. the Dirichlet boundary condition) if∫
�

A(x,∇u)∇ϕ dx = μ

∫
�

f (x, u)ϕ dx

for all ϕ ∈ W 1,p(�) (resp. W 1,p
0 (�)) provided the integral on the right-hand side exists. We

say that u is a positive (resp. negative) solution of (P)μ if u ∈ W 1,p(�) is a solution in the
above sense and u(x) > 0 (resp. u(x) < 0) for a.e. x ∈ �.

A similar hypothesis to (A) is considered in the study of quasilinear elliptic problems (cf.
[28, Example 2.2.] and see [14,26,27,32] too). We also refer to [19,29,31] for the generalized
p-Laplace operators. In particular, for A(x, y) = |y|p−2 y, that is, divA(x,∇u) stands for
the usual p-Laplacian �pu, we can take C0 = C1 = p − 1 in (A). Conversely, in the case
where C0 = C1 = p −1 holds in (A), by the inequalities in Remark 6 (ii) and (iii) in Sect. 2,
we see that a(x, t) = |t |p−2 whence A(x, y) = |y|p−2 y. Hence, our equation (P)μ contains
the corresponding p-Laplacian problem as a special case.

The main purpose of this paper is to show the existence of at least three nontrivial solutions
for (P)μ, provided μ is sufficiently large, without assuming the subcritical growth condition
for the term f . This is achieved through a variational approach that encompasses both the
Dirichlet and Neumann problems. It is well known that for the Dirichlet problems, due to
the Poincaré inequality, we can construct a coercive functional corresponding to the equation
simply by the truncation of the nonlinearity. This argument does not work for the Neumann
problems because for them the Poincaré inequality does not hold. However, in [26], the
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Multiple existence results of solutions for quasilinear elliptic equations 1257

present authors overcome this difficulty by introducing new functionals (see also Sects. 4, 5)
by means of which we can prove under the Neumann boundary condition, an existence result
as in the Dirichlet case via super- and sub-solution, that is, the existence of a solution within
the ordered interval determined by a sub-solution and a super-solution.

Here, for such a coercive functional under several hypotheses, we show that it has at least
three critical points via the descending flow argument which is done in our main abstract
result stated as Theorem 11. This result is developed from the one in [5] which deals with the
p-Laplace operator in place of our generalized operator and a super-linear nonlinearity under
the Dirichlet boundary condition (so, a functional as in [5] is not coercive). Furthermore, we
point out that we drop the hypothesis regarding N and p imposed in Bartsch and Liu [5] and
removed in [7] in the case of Dirichlet boundary condition. We overcome this difficulty by
a different way from the one in [7], roughly speaking by constructing a suitable descending
flow on C1

0 (�) and C1(�) in place of the Sobolev space W 1,p
0 (�). As a result, although the

result in [7] covers only the case of f (x, u) = o(|u|p−1) as |u| → 0, our abstract theorem
can provide the result to the cases of f (x, u) = O(|u|p−1) as |u| → 0 (see Sect. 1.1) and
concave near zero (see Sect. 1.2) in Neumann problem too.

Moreover, even without assuming the subcritical growth condition, in [11] (for the Dirich-
let problems with the p-Laplacian) and in [26] (for the Neumann problems with a general
operator in the principal part), the existence of multiple solutions can be established. How-
ever, the statements in [11] and [26] did not depend on parameters and the nonlinearities
treated there were essentially different from those considered here because now we focus
on a nonlinearity f (x, u) without the local sign-condition and whose growth condition near
u = 0 matters only when the parameter μ is sufficiently large. In addition, since we do not
impose the subcritical growth condition, we can handle nonlinearities f (x, u) containing
terms like |u|q−2u (1 < q < ∞) and eu . Based on Theorem 11, we are able to establish
the existence of multiple solutions with complete sign information for both Dirichlet and
Neumann nonlinear elliptic equations whose principal part is much more general than the
p-Laplacian.

Let us recall some relevant results for the p-Laplacian problems under the Dirichlet
boundary condition. Consider

−�pu = f (x, u, μ) in �, u = 0 on ∂�, (1)

where �pu = div (|∇u|p−2∇u) and μ is a parameter. When the parameter μ is large, there
are few results of multiple existences containing a sign-changing solution (cf. [6,12]). In
[6], Bartsch and Liu treated the nonlinearity f (x, u, μ) = μ f (x, u) satisfying f (x, u) =
o(|u|p−1) as |u| → ∞ under additional hypotheses. In [12], Carl and the first author consider
the nonlinearity f such that f (x, u, μ) = μ|u|p−2u − g(x, u) with g(x, u) = o(|u|p−1) as
u → 0 and g(x, u)/|u|p−2u → +∞ as |u| → ∞. In this paper, we give a general result
which admits f (x, u) to behave like m(x)|u|p−2u near u = 0 with a bounded sign-changing
function m [see Corollary 2 (ii)].

We also mention that many authors studied a positive (or a nonnegative) solution of Eq. (1)
(cf. [1,10,17,20,21,30]). This occurred, in particular, when the nonlinearity f is concave–
convex, that is,

f (x, u, μ) = μ|u|q−2u + |u|r−2u

with 1 < q < p < r ≤ p∗. In the semilinear case (p = 2), the study of existence or
nonexistence of a positive solution is well known from Ambrosetti et al. [2]. Later, it has been
developed by many authors for the p-Laplace problem with concave–convex nonlinearity
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(cf. [4,18,20]). One of our purposes is to provide a sign-changing solution when a positive
solution exists (see Corollary 4 and Example 1).

For the generalized operator under the Dirichlet boundary condition, we can see the
existence of a nontrivial or a positive radially symmetric solution in [29] or [19], respectively.
For the Neumann problems with p-Laplacian, we refer to [8,9]. However, there are no
results regarding a sign-changing solution. In the present paper, we prove the existence
of three solutions of problem (P)μ: one positive, one negative and one changing its sign,
provided the parameter μ is sufficiently large. We emphasize that in problem (P)μ the
operator divA(x,∇u) is much more general than the p-Laplacian, in particular it is not
required to be (p − 1)-homogeneous. Our main result in this direction is Theorem 1 that
applies to both Dirichlet and Neumann boundary value problems. Various corollaries of it
provide verifiable conditions for the nonlinearity f (x, u) in order to guarantee the conclusion
of Theorem 1. Our approach relies on the analysis with respect to the positive and negative
cones of a descending flow related to problem (P)μ.
The contents of the paper: Section 1.1 contains the statements of our main results without
assuming the (local) sign-condition for f and the growth condition for f near zero [see (H3)
and (H6)].

In Sect. 1.2, we present existence results in the case where the nonlinearity f contains a
concave term near zero [see (H̃3)].

Section 2 is devoted to the properties of the general map A in problem (P)μ.
In Sect. 3, we prove the main abstract theorem (Theorem 11). In Sect. 4, we give the proofs

of our results in the case where the parameter is sufficiently large. In Sect. 5, we prove our
results in special cases where the parameter μ is arbitrary.

1.1 Statements of main results

To simplify the notation, we introduce the following spaces:

WB := W 1,p(�) or WB := W 1,p
0 (�),

X B := C1(�) or X B := C1
0 (�),

C1,α
B (�) := C1,α(�) or C1,α

B (�) := C1,α
0 (�) for α ∈ (0, 1)

in the case of Bu := ∂u/∂ν or Bu := u, respectively. Denote the positive cone PB := {u ∈
X B ; u(x) ≥ 0 for every x ∈ � } and the closure of PB in WB by P̃B . For simplicity, we
denote the positive cone in C1(�) by P , and so

int P := {u ∈ C1(�) ; u(x) > 0 for every x ∈ �}.

In this paper, we set t± := max{±t, 0} and so u+ and u− denote the positive and the negative
part of a function u, respectively (that is, u = u+ − u−).

Next, we formulate the following hypothesis: there exists μ0 ≥ 0 such that

(H1) for each μ > μ0, there exist a super-solution uμ ∈ W 1,p(�) ∩ L∞(�)+ \ {0} and a
sub-solution vμ ∈ W 1,p(�) ∩ (−L∞(�)+) \ {0} of (P)μ;
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Multiple existence results of solutions for quasilinear elliptic equations 1259

Here, we say that u ∈ W 1,p(�) ∩ L∞(�) is a super-solution (resp. sub-solution) of
(P)μ if u satisfies ∫

�

A(x,∇u)∇ϕ dx ≥ μ

∫
�

f (x, u)ϕ dx

⎛
⎝ resp.

∫
�

A(x,∇u)∇ϕ dx ≤ μ

∫
�

f (x, u)ϕ dx

⎞
⎠

for every ϕ ∈ WB with ϕ ≥ 0. In addition, in the case of WB = W 1,p
0 (�) (that is,

Dirichlet boundary problem), we impose u ≥ 0 resp. u ≤ 0) on ∂� in the sense of
trace operator.
We introduce several conditions for f which are not necessarily simultaneously
assumed in our results.

(H2) there exist D1 > 0 and δ0 > 0 such that f (x, u)u ≥ −D1|u|p for every |u| < δ0 and
a.e. x ∈ �;

(H3) there exist open subsets �1, �2 of �, positive constants δ0, d1 and d2 such that

inf
x∈�1

uμ(x) ≥ d1, sup
x∈�2

vμ(x) ≤ −d2 for every μ ≥ μ0,

f (x, u) > 0 for every 0 < u < δ0, a.e. x ∈ �1,

f (x, u) < 0 for every 0 > u > −δ0, a.e. x ∈ �2,

where uμ ≥ 0 and vμ ≤ 0 denote a super- or sub-solution as in (H1), respectively;
(H4) there exist m ∈ L∞(�) and δ1 > 0 such that |{x ∈ � ; m(x) > 0}| > 0 and

f (x, u)u ≥ m(x)|u|p for every |u| ≤ δ1, a.e. x ∈ �;
(H5) there exist T − < 0 < T + such that f (x, T +) ≤ 0 ≤ f (x, T −) for a.e. x ∈ �;
(H6) there exist δ2 > 0 and an open subset �3 of � such that f (x, u)u > 0 for every

0 < |u| < δ2, a.e. x ∈ �3.

Theorem 1 Assume (H1), (H2) and (H3) or (H4). In addition, in the case of (H4), we
also suppose that uμ ∈ int PB ∪ int P and vμ ∈ −int PB ∪ −int P for a super-solution
uμ and a sub-solution vμ as in (H1). Then, for sufficiently large μ, (P)μ has a positive
solution wμ,1 ∈ intPB, a negative solution wμ,2 ∈ −int PB and a sign-changing solution
wμ,3 ∈ X B \ (PB ∪ −PB) with wμ,i ∈ [vμ, uμ] for i = 1, 2, 3, where

int PB =
{

u ∈ C1
0 (�) ; u > 0 in � and

∂u

∂ν
< 0 on ∂�

}

and int PB = {u ∈ C1(�) ; u > 0 on � }
in the Dirichlet case (Bu = u) or the Neumann case (Bu = ∂u/∂ν), respectively.

By applying the above theorem, we have the following result.

Corollary 2 If one of the following conditions holds

(i) (H2), (H4) and (H5);
(ii) (H2), (H5) and (H6);

(iii) Bu = u, (H4) and ess supx∈� lim sup|u|→∞
f (x,u)

|u|p−2u
≤ 0,
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then for sufficiently large μ, (P)μ has a positive solutionwμ,1 ∈ int PB, a negative solution
wμ,2 ∈ −intPB and a sign-changing solution wμ,3 ∈ X B \ (PB ∪ −PB).

1.2 The existence result in special cases

In this subsection, we state the existence result in the case where the nonlinearity contains a
concave term near zero. Precisely, we consider the problem{−div A(x,∇u) = ψ1(μ) f1(x, u)+ ψ2(μ) f2(x, u) in �,

Bu = 0 on ∂�,
(P̃)μ

where ψ1 and ψ2 are functions defined on some subset M ⊂ R (ψ1 can be identically zero).
Here, we suppose that f1 and f2 satisfy ( f ).

Theorem 3 Assume that

(H̃1) for eachμ ∈ M , there exist a super-solution uμ ∈ int PB∪int P and a sub-solution
vμ ∈ −int PB ∪ −int P of (P̃)μ;

(H̃2) there exist D1 > 0 and δ0 > 0 such that f1(x, u)u ≥ −D1|u|p for every |u| < δ0

and a.e. x ∈ �;
(H̃3) there exists 1 < β < p such that

ess inf
x∈� lim inf

u→0

f2(x, u)

|u|β−2u
> 0;

(H̃4) ψ1(μ) ≥ 0 and ψ2(μ) > 0 for every μ ∈ M .

Then, for every μ ∈ M , (P̃)μ has a positive solution wμ,1 ∈ int PB, a negative solution
wμ,2 ∈ −int PB and a sign-changing solutionwμ,3 ∈ X B \(PB ∪−PB)withwμ,i ∈ [vμ, uμ]
for i = 1, 2, 3.

Since any solutions are super- and sub-solutions, the following result follows from The-
orem 3.

Corollary 4 Let M = {μ} for someμ ∈ R. Assume (H̃2), (H̃3) and (H̃4). If (P̃)μ has two
solutions u ∈ int PB and v ∈ −int PB, then (P̃)μ has at least one sign-changing solution
within the order interval [v, u].

Moreover, if we suppose the additional hypothesis that f1 and f2 are odd in the second
variable, then the existence of a solution belonging to int PB ensures a pair of sign-changing
solutions.

Example 1 In the following cases 1–3, it is known that there exists a positive solution (in
int PB) for sufficiently small μ > 0 of the p-Laplace equation

−�pu = ψ1(μ) f1(x, u)+ ψ2(μ) f2(x, u) in �, Bu = 0 on ∂�.

Thus, according to Corollary 4, there exists a sign-changing solution in each case for
sufficiently small μ > 0 since f1 and f2 are odd in the second variable.

Dirichlet problem:

1. ψ1(μ) ≡ 1, ψ2(μ) = μ, f1(x, u) = |u|q−2u, f2(x, u) = |u|β−2u with 1 < β < p <
q ≤ p∗ (that is, ABC problem for the p-Laplacian);

2. ψ1(μ) = μ,ψ2(μ) ≡ 1, f1(x, u) = a(x)|u|q−2u, f2(x, u) = |u|β−2u −m(x)|u|p−2u,
where 0 = m ∈ L∞(�)+, a ∈ C(�) and 2 < β < p < q < p∗.
Refer to [20] and [1], respectively.
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Multiple existence results of solutions for quasilinear elliptic equations 1261

Neumann problem:
3. ψ1(μ) = μ, ψ2(μ) ≡ 1, f1(x, u) = m(x)|u|p−2u, f2(x, u) = |u|β−2u with 1 <

β < p, where m ∈ L∞(�) is a sign-changing function satisfying
∫
�

m(x) dx = 0 (see
[8]).

Corollary 5 Assume (H̃2), (H̃3) and (H̃4). Set

f̃ (x, u, μ) = ψ1(μ) f1(x, u)+ ψ2(μ) f2(x, u).

Suppose that

(i) for every μ ∈ M there exist T (μ)− < 0 < T (μ)+ such that f̃ (x, T (μ)+, μ) ≤ 0 ≤
f̃ (x, T (μ)−, μ) for a.e. x ∈ �;

or

(ii) Bu = u and for every μ ∈ M ,

ess sup
x∈�

lim sup
|u|→∞

f̃ (x, u, μ)

|u|p−2u
<

C0λ1

p − 1
,

where λ1 > 0 denotes the first eigenvalue of −�p under the Dirichlet boundary condition.
Then, for every μ ∈ M , (P̃)μ has a positive solution wμ,1 ∈ int PB, a negative solution
wμ,2 ∈ −int PB and a sign-changing solution wμ,3 ∈ X B \ (PB ∪ −PB).

2 The properties of the map A

In what follows, the norm on WB is given by ‖u‖p := ‖∇u‖p
p + ‖u‖p

p, where ‖u‖q denotes
the usual norm of Lq(�) for u ∈ Lq(�) (1 ≤ q ≤ ∞). Setting

G(x, y) :=
|y|∫

0

a(x, t)t dt, (2)

we can easily see that

∇y G(x, y) = A(x, y) and G(x, 0) = 0

for every x ∈ � (see [27] for details).

Remark 6 the following assertions hold under condition (A):

(i) for all x ∈ �, A(x, y) is maximal monotone and strictly monotone in y;
(ii) |A(x, y)| ≤ C1

p−1 |y|p−1 for every (x, y) ∈ �× R
N ;

(iii) A(x, y)y ≥ C0
p−1 |y|p for every (x, y) ∈ �× R

N ;
(iv) G(x, y) is convex in y for all x and satisfies the following inequalities:

A(x, y)y ≥ G(x, y) ≥ C0

p(p − 1)
|y|p and G(x, y) ≤ C1

p(p − 1)
|y|p (3)

for every (x, y) ∈ �× R
N ,

where C0 and C1 are the positive constants in (A).

Lemma 7 [14, Lemma 2.1.] The map A satisfies the following inequalities:
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(i)
∣∣A(x, y)− A(x, y′)

∣∣ ≤ c1(|y| + |y′|)p−2|y − y′|;
(ii)

(
A(x, y)− A(x, y′)

) · (y − y′) ≥ c2(|y| + |y′|)p−2|y − y′|2 if |y| + |y|′ > 0;
(iii)

∣∣A(x, y)− A(x, y′)
∣∣ ≤ c3|y − y′|p−1 if 1 < p ≤ 2;

(iv)
(

A(x, y)− A(x, y′)
) · (y − y′) ≥ c4|y − y′|p if p ≥ 2

for every y, y′ ∈ R
N and x ∈ �, where ci is a positive constant (i = 1, 2, 3, 4).

The following result is important for the proof of the Palais–Smale condition for the
functionals related to our problem.

Proposition 8 [27, Proposition 1] Let V : WB → W ∗
B be the map defined by

〈V (u), v〉 =
∫
�

A(x,∇u)∇v dx

for u, v ∈ WB. Then, V has the (S)+ property, that is, any sequence {um} weakly convergent
to u strongly converges to u provided lim supm→∞〈V (um), um − u〉 ≤ 0.

Proposition 9 For λ > 0, we define a map Tλ : WB → W ∗
B by

〈Tλ(u), v〉 =
∫
�

A(x,∇u)∇v dx + λ

∫
�

|u|p−2uv dx (4)

for u, v ∈ WB. Then, the inverse T −1
λ : W ∗

B → WB of Tλ exists and it is continuous.

Proof We have that Tλ is injective due to the monotonicity of A and |u|p−2u. Furthermore,
Tλ is continuous being the potential operator of a C1-function and is coercive on the basis
of Remark 6 (iii). Since Tλ is monotone, hemicontinuous and coercive, we infer that Tλ is
surjective (see [32, p. 557]). So, there exists the inverse operator T −1

λ : W ∗
B → WB , which

is known to be strictly monotone, semicontinuous and bounded (see [32, p. 557]).
We show that T −1

λ : W ∗
B → WB is continuous. Let ξn → ξ in W ∗

B . There exists a unique
un ∈ WB such that Tλ(un) = ξn . This ensures that

min

{
C0

p − 1
, λ

}
‖un‖p ≤

∫
�

A(x,∇un)∇un dx + λ

∫
�

|un |p dx

= 〈ξn, un〉 ≤ ‖ξn‖W ∗
B
‖un‖,

thereby the sequence {un} is bounded in WB . Hence, along a relabeled subsequence, we may
suppose that un ⇀ u in WB and un → u in L p(�) as n → ∞, with some u ∈ WB . Passing
to the limit in the equality∫

�

A(x,∇un)∇(un − u) dx + λ

∫
�

|un |p−2un(un − u) dx = 〈ξn, un − u〉,

we find that

lim
n→∞

∫
�

A(x,∇un)∇(un − u) dx = 0.

Recalling that the operator V : WB → W ∗
B satisfies the (S)+-property (refer to Proposition 8),

it turns out that un → u strongly in WB (for the whole sequence {un}). Hence, ξn = Tλ(un) →
Tλ(u), which leads to ξ = Tλ(u). Therefore, we have that T −1

λ (ξn) → T −1
λ (ξ). We conclude

that T −1
λ is continuous. ��
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The following result is proved by an argument similar to [22, Lemma 4.6.]. We give the
proof in “Appendix”.

Proposition 10 Assume λ > 0, 1 < p ≤ N and r > N/p. Let Tλ be the map defined by
(4). Then, there exists a D2 > 0 such that

‖T −1
λ (u)‖∞ ≤ D2‖u‖1/(p−1)

r for every u ∈ Lr (�),

so, T −1
λ maps a bounded set of Lr (�) into a bounded set of L∞(�).

3 The existence of critical points via descending flow

Throughout this section, we suppose that h : �×R → R is a Carathéodory function satisfying
h(x, 0) = 0 a.e. x ∈ � and there exist C > 0 such that

|h(x, t)| ≤ C(1 + |t |p−1) for every t ∈ R, a.e. x ∈ �, (5)

Under (5), we define a C1 functional J on WB by

J (u) :=
∫
�

G(x,∇u) dx −
∫
�

u(x)∫
0

h(x, t) dtdx .

There holds 〈J ′(u), v〉 =
∫
�

A(x,∇u)∇v dx −
∫
�

h(x, u)v dx

for u, v ∈ WB .

Theorem 11 Assume the following conditions:

(A1) there exists λ0 > 0 such that

h(x, u)u + λ0|u|p ≥ 0 for every u ∈ R, a.e. x ∈ �;
(A2) there exists γ ∈ C([0, 1] , X B) such that γ (0) ∈ PB, γ (1) ∈ −PB and

maxt∈[0,1] J (γ (t)) < 0.

If J is coercive on WB, then J has at least three critical points w1 ∈ int PB, w2 ∈ −int PB

and w3 ∈ X B \ (PB ∪ −PB).

Set

ϕp(u) := |u|p−2u and Bλ(u) := T −1
λ (h(·, u)+ λϕp(u)) (6)

for u ∈ WB and λ > 0, where T −1
λ is the inverse of Tλ (see Proposition 9 for the existence

of the inverse). Note that under N > p, h(·, u) + ϕp(u) ∈ L p∗/(p∗−1)(�) provided u ∈
L p∗(p−1)/(p∗−1)(�) and so Bλ : L p∗(p−1)/(p∗−1)(�) → WB is well defined. Also, we note
that Bλ : WB → WB is continuous according to Proposition 9 and (5).

Throughout this section, we denote the critical set of J by K , that is, K := {u ∈
WB ; J ′(u) = 0 }.
Remark 12 If u ∈ WB ∩ L∞(�), then v = Bλ(u) ∈ C1,α(�) (some α ∈ (0, 1)) and v is a
solution of

−div A(x,∇v)+ λ|v|p−2v = h(x, u)+ λ|u|p−2u in �, Bv = 0 on ∂�.
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1264 D. Motreanu, M. Tanaka

Indeed, v = Bλ(u) satisfies∫
�

A(x,∇v)∇w dx + λ

∫
�

|v|p−2vw dx =
∫
�

h(x, u)w dx + λ

∫
�

|u|p−2uw dx

for every w ∈ WB . Because of u ∈ L∞(�), we have v ∈ L∞(�) by the Moser iteration
process or Lemma 13 in the next subsection. Therefore, we see that v ∈ C1,α(�) (0 < α < 1)
by the regularity result in [23].

In the case of the Neumann problem, by [13, Theorem 3], v satisfies the boundary condition

0 = ∂v

∂νA
= A(·,∇v) ν = a(·, |∇v|) ∂v

∂ν
in W −1/q,q(∂�)

for every 1 < q < ∞ (see [13] for the definition of W −1/q,q(∂�)). Since v ∈ C1,α(�) and
a(x, t) > 0 for every t = 0, v satisfies the Neumann boundary condition, that is, ∂v

∂ν
(x) = 0

for every x ∈ ∂�.
Consequently, the critical points of J correspond to the fixed points of Bλ.
Moreover, we remark that K ⊂ X B . In fact, if u is a critical point of J , then we have

u ∈ L∞(�) by the Moser iteration process (refer to Theorem C in [26]). Thus, from the
above argument, u ∈ X B follows.

3.1 Constructing a descending flow

Lemma 13 For λ > 0, Bλ satisfies the following properties:

(i) there exists a D3 = D3(λ) > 0 such that

‖Bλ(u)‖∞ ≤ D3(‖u‖∞ + 1) for every u ∈ L∞(�);
(ii) for every R > 0, there exist α = α(R, λ) ∈ (0, 1) and M = M(R, λ) > 0 such that

‖Bλ(u)‖C1,α
B (�)

≤ M for all u ∈ L∞(�) with ‖u‖∞ ≤ R;

(iii) If N ≥ p and r > max{N/p, 1/(p − 1)}, then there exists a D4 = D4(λ) > 0 such
that

‖Bλ(u)‖∞ ≤ D4(‖u‖r(p−1) + 1) for every u ∈ Lr(p−1)(�).

Proof (i) Let u ∈ L∞(�) and v = Bλ(u)(∈ WB).
First, we consider N < p. Because WB ↪→ L∞(�) is continuous, there exists D > 0
such that D‖w‖∞ ≤ ‖w‖ for every w ∈ WB . Hence, by Hölder’s inequality and (5),
we obtain

min

{
C0

p − 1
, λ

}
D p−1‖v‖p−1∞ ‖v‖ ≤ min

{
C0

p − 1
, λ

}
‖v‖p

≤
∫
�

A(x,∇v)∇v dx + λ

∫
�

|v|p dx = 〈Tλ(v), v〉 = 〈h(·, u)+ λϕp(u), v〉

≤ ‖v‖p|�|p/(p−1)
(

C + (C + λ)‖u‖p−1∞
)

≤ ‖v‖|�|p/(p−1)
(

C + (C + λ)‖u‖p−1∞
)
.

This proves our conclusion.
In the case of N ≥ p, we choose r > N/p. Then, by Proposition 10 and (5), we have

‖v‖∞ ≤ D2‖h(·, u)+λϕp(u)‖1/(p−1)
r ≤2

1
p−1 D2

(
C

1
p−1 +(λ+C)

1
p−1 ‖u‖∞

)
|�|1/(r(p−1)),

which establishes (i).
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(ii) This assertion follows from (i) and the argument in Remark 12. Note that α and M
depend on ‖u‖∞ generally (refer to [23]).

(iii) By Proposition 10 and (5), we obtain

‖Bλ(u)‖∞ ≤ D2‖h(·, u)+ λϕp(u)‖1/(p−1)
r ≤ D2C ′(1 + (λ+ 1)‖u‖r(p−1))

for every u ∈ Lr(p−1)(�), where C ′ > 0 is a constant independent of u.
��

Lemma 14 Let p < N. Define inductively

q0 := p∗ and qn+1 := p∗qn/p = (p∗/p)n+1 p∗. (7)

For every n ∈ N ∪ {0}, there exists a positive constant C∗
n+1 such that

‖Bλ(u)‖qn+1 ≤ C∗
n+1(1 + ‖u‖qn ) for every u ∈ Lqn (�).

Proof Let u ∈ Lqn (�) and v = Bλ(u) ∈ WB . Now, for ϕ = v+ or v− and M > 0, we put
ϕM (x) := min {ϕ(x),M}. By taking ϕq+1

M (if ϕ = u+) or −ϕq+1
M (if ϕ = u−) with q > 0 as

test function in Tλ(v) = h(·, u)+ λ|u|p−2u in W ∗
B , (note that ∇(ϕq+1

M ) = (q + 1)ϕq
M∇ϕM ),

we have

C0(q + 1)

p − 1

∫
�

|∇ϕM |pϕ
q
M dx + λ‖ϕM‖p+q

p+q

≤ (q + 1)
∫
�

ϕ
q
M A(x,±∇ϕM )(±∇ϕM ) dx + λ‖ϕM‖p+q

p+q

≤
∫
�

(C + (C + λ)|u|p−1)|ϕM |q+1 dx

≤ C ′(1 + (1 + λ)‖u‖p−1
qn )‖ϕM‖q+1

(q+1)qn/(qn−p+1), (8)

where we use (5), Hölder’s inequality and Remark 6 (iii). On the other hand, the embedding
of WB into L p∗

(�) guarantees the existence of C∗ > 0 satisfying

C∗‖ϕM‖p+q
p∗(p+q)/p = C∗‖(ϕM )

1+q/p‖p
p∗ ≤ ‖(ϕM )

1+q/p‖p

= (1 + q/p)p
∫
�

|∇ϕM |p (ϕM )
q dx + ‖ϕM‖p+q

p+q . (9)

Combining (8) and (9), it follows that

C∗‖ϕM‖p+q
p∗(p+q)/p ≤ D(1 + ‖u‖p−1

qn )‖ϕM‖q+1
(q+1)qn/(qn−p+1),

where D = D(λ, p, q, |�|) is a positive constant independent of u and v. Here, we choose
q = qn − p. Then, we obtain

C∗‖ϕM‖p−1
qn+1 = C∗‖ϕM‖p−1

p∗qn/p ≤ D(1 + ‖u‖p−1
qn )|�|(p∗−p)(qn−p+1)/p∗qn

because of qn < qn p∗/p = qn+1 and using Hölder’s inequality. Therefore, by letting
M → +∞, we see that v± ∈ Lqn+1(�) and ‖v±‖qn+1 ≤ D′(1 + ‖u‖qn ) for some positive
constant D′ = D′(λ, p, qn, |�|,C∗). ��
Lemma 15 Assume (A1) and let λ0 > 0 be a constant as in (A1). Then, for each λ > λ0,
we have Bλ(u) ∈ ± int PB provided u ∈ ± P̃B ∩ L∞(�) \ {0}, respectively.
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1266 D. Motreanu, M. Tanaka

Proof We may assume that u ∈ P̃B ∩ L∞(�) \ {0} by considering −u in the other case. Let
u ∈ P̃B ∩ L∞(�) \ {0} and v = Bλ(u). Then, v ∈ C1,α(�) (some α ∈ (0, 1)) and v is a
solution of

−div A(x,∇v)+ λ|v|p−2v = h(x, u)+ λu p−1 in �, Bv = 0 on ∂�

(see Remark 12). By taking −v− as a test function, we obtain

min

{
C0

p − 1
, λ

}
‖v−‖p ≤

∫
�

A(x,∇v)(−∇v−) dx + λ

∫
�

v
p
− dx

= −
∫
�

(h(x, u)+ λu p−1) v− dx ≤ 0

since h(x, u)+λu p−1 ≥ 0 holds by (A1), whence v− = 0 a.e.�. Furthermore, we note that
h(·, u)+ λu p−1 = 0 in W ∗

B by the inequality

〈h(·, u)+ λu p−1, u〉 =
∫
�

(h(x, u)+ λ0u p−1)u dx + (λ− λ0)

∫
�

u p dx

≥ (λ− λ0)

∫
�

u p dx > 0

(note u = 0). This yields v = 0 because of v = Bλ(u) = T −1
λ (h(·, u)+ λϕp(u)).

By noting that v ∈ C1,α(�) and v = 0, we have v(x) > 0 for every x ∈ � by Theorem B
in [26]. In addition, due to the strong maximum principle (see Theorem A in [26]), we easily
see that ∂v(x)/∂ν < 0 for every x ∈ ∂� provided v(x) = 0. Hence, under the Neumann
boundary condition (that is, Bv = ∂v/∂ν = 0), v(x) > 0 for every x ∈ �. This means that
v ∈ int PB . ��

The proof of the following lemma can be shown by the argument in [5, Lemma 3.7 and
3.8] and Lemma 7. Thus, we omit the proof.

Lemma 16 Let λ > 0. Then, there exist di = di (λ) > 0 (1 ≤ i ≤ 4) such that

(i) 〈J ′(u), u − Bλ(u)〉 ≥ d1‖u − Bλ(u)‖2(‖u‖ + ‖Bλ(u)‖)p−2 if 1 < p ≤ 2;
(ii) 〈J ′(u), u − Bλ(u)〉 ≥ d2‖u − Bλ(u)‖p if p ≥ 2;

(iii) ‖J ′(u)‖W ∗
B

≤ d3‖u − Bλ(u)‖p−1 if 1 < p ≤ 2;

(iv) ‖J ′(u)‖W ∗
B

≤ d4‖u − Bλ(u)‖(‖u‖ + ‖Bλ(u)‖)p−2 if p ≥ 2

for every u ∈ WB, where Bλ is the operator defined by (6).

The next result follows from a similar argument as in [5, Lemma 4.1.] using the properties
of Bλ described in Lemmas 16, 15, 14 and 13.

Lemma 17 Let λ > λ0 (λ0 being the positive constant as in (A1)). Then, there exists a
locally Lipschitz continuous operator Vλ from X B \ K into X B such that

(i) For u ∈ X B \ K , we have

〈J ′(u), u − Vλ(u)〉 ≥ d1

2
‖u − Bλ(u)‖2(‖u‖ + ‖Bλ(u)‖)p−2 if 1 < p ≤ 2;

〈J ′(u), u − Vλ(u)〉 ≥ d2

2
‖u − Bλ(u)‖p if p ≥ 2;

1

2
‖u − Bλ(u)‖ ≤ ‖u − Vλ(u)‖ ≤ 2‖u − Bλ(u)‖;
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where d1 and d2 are the positive constants in Lemma 16.
(ii) Vλ(u) ∈ ± int PB for every u ∈ ± PB \ K , respectively;

(iii) For the sequence {qn} defined by (7), Vλ satisfies

‖Vλ(u)‖qn+1 ≤ C∗
n+1(2 + |�| + ‖u‖qn ) for every u ∈ X B \ K ,

where C∗
n+1 is the positive constant obtained in Lemma 14.

(iv) If N ≥ p and r > max{N/p, 1/(p − 1)}, then Vλ satisfies

‖Vλ(u)‖∞ ≤ D4(‖u‖r(p−1) + 2 + |�|) for every u ∈ X B \ K ,

where D4 is the positive constant obtained in Lemma 13 (iii) for r above;
(v) there holds

‖Vλ(u)‖∞ ≤ D3(2 + ‖u‖∞) for every u ∈ X B \ K ,

where D3 is the positive constant obtained in Lemma 13 (i);
(vi) for every R > 0, there exist α ∈ (0, 1) and M > 0 such that ‖Vλ(u)‖C1,α

B (�)
≤ M for

every u ∈ X B \ K with ‖u‖∞ ≤ R.

Proof For u ∈ WB \ K , we define

δ1(u) := 1

2
‖u − Bλ(u)‖,

δ2(u) := d1

2d3
‖u − Bλ(u)‖3−p(‖u‖ + ‖Bλ(u)‖)p−2 if 1 < p ≤ 2,

δ2(u) := d2

2d4
‖u − Bλ(u)‖p−1(‖u‖ + ‖Bλ(u)‖)2−p if p > 2,

where di > 0 (i = 1, 2, 3, 4) denotes a constant as in Lemma 16. Note that δ1(u) > 0 and
δ2(u) > 0 by u ∈ K . We denote the usual X B norm by ‖ · ‖X . Choose an open neighborhood
N (u) of u in X B such that

N (u) :=
{
v ∈ X B \ K ; ‖u − v‖X < 1/2, δ1(v) > δ1(u)/2, δ2(v) > δ1(u)/2,

‖Bλ(u)− Bλ(v)‖ < min{δ1(u), δ2(u)}/4
}
.

Note that

‖v − w‖X < 1 and ‖Bλ(v)− Bλ(w)‖ < min{δ1(v), δ1(w), δ2(v), δ2(w)} (10)

for every v, w ∈ N (u). It is obvious that {N (u) ; u ∈ X B \ K } is an open covering of
X B \ K . According to the paracompactness of X B \ K , X B \ K has a locally finite open
refinement {Uξ }ξ∈I of {N (u) ; u ∈ X B \ K }. If there exists a Uξ such that Uξ ∩ PB = ∅ and
Uξ ∩ −PB = ∅, then we replace Uξ with two open sets Uξ \ PB and Uξ \ −PB . In this way,
we may assume that Uξ satisfies one of the following conditions:

(a) Uξ ∩ PB = ∅ and Uξ ∩ −PB = ∅; (b) Uξ ∩ PB = ∅ and Uξ ∩ −PB = ∅;
(c) Uξ ∩ PB = ∅ and Uξ ∩ −PB = ∅.

For each case above, we choose a point uξ satisfying uξ ∈ Uξ , uξ ∈ Uξ ∩ PB and
uξ ∈ Uξ ∩ −PB in the case of (a), (b) and (c), respectively. Let {ψξ }ξ∈I be a C1 partition of
the unity with respect to {Uξ }ξ∈I .

Define

Vλ(u) :=
∑
ξ∈I

ψξ (u)Bλ(uξ )
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for every u ∈ X B \ K . It is easily shown that Vλ is locally Lipschitz continuous since {Uξ }ξ∈I

is locally finite.

(i) For ξ ∈ I such that ψξ (u) = 0, we have ‖Bλ(uξ ) − Bλ(u)‖ < min{δ1(u), δ2(u)}
by (10). Therefore, we get ‖Bλ(u) − Vλ(u)‖ < δ1(u) = ‖u − Bλ(u)‖/2, whence
‖u − Bλ(u)‖/2 ≤ ‖u − Vλ(u)‖ ≤ 3‖u − Bλ(u)‖/2 holds. The other inequalities follow
from ‖Bλ(uξ )− Bλ(u)‖ < δ2(u), the inequality for ‖J ′(·)‖W ∗

B
in Lemma 16, (10) and

〈J ′(u), u − Vλ(u)〉 ≥ 〈J ′(u), u − Bλ(u)〉 − ‖J ′(u)‖W ∗
B
‖Bλ(u)− Vλ(u)‖.

(ii) Let u ∈ PB \ K . Then, for ξ ∈ I such that ψξ (u) = 0, we see that uξ ∈ PB because
Uξ satisfies (b). Thus, Bλ(uξ ) ∈ int PB holds by Lemma 15. Since int PB is convex,
our assertion is proved. Similarly, we can show that Vλ(u) ∈ −int PB provided u ∈
(−PB) \ K .

(iii) According to Lemma 14, we obtain

‖Vλ(u)‖qn+1 ≤ C∗
n+1

∑
ξ∈I

ψξ (u)(1 + ‖uξ‖qn )

≤ C∗
n+1

∑
ξ∈I

ψξ (u)(1 + ‖u‖qn + ‖uξ − u‖qn ) ≤ C∗
n+1(2 + |�| + ‖u‖qn )

by noting (10), ‖uξ − u‖qn ≤ ‖uξ − u‖∞|�|1/qn and |�|1/qn ≤ 1 + |�|.
(iv) By a similar argument to (iii) and Lemma 13 (iii), our conclusion holds.
(v) By a similar argument to (iii) and Lemma 13 (i), our conclusion holds.

(vi) For ξ ∈ I such that ψξ (u) = 0, ‖uξ‖∞ ≤ ‖uξ − u‖∞ + ‖u‖∞ ≤ 1 + ‖u‖∞ holds.
Thus, if ‖u‖∞ ≤ R, then by Lemma 13 (ii), there exist α = α(R + 1, λ) ∈ (0, 1) and
M = M(R + 1, λ) > 0 with ‖Bλ(uξ )‖C1,α

B (�)
≤ M for ξ ∈ I such that ψξ (u) = 0.

Hence, our conclusion follows.

��
Fix λ > λ0, where λ0 > 0 is the constant as in (A1). For u ∈ X B \ K , we consider the

following initial value problem in X B :{ dη

dt
(t) = −η(t)+ Vλ ( η(t))

η(0) = u,

where Vλ is the locally Lipschitz continuous map from X B \ K into X B constructed in
Lemma 17. Let η(t, u) be the unique solution of the above problem considered in X B .
Moreover, we denote by [0, τ (u)) the right maximal interval of existence of η(t, u).

Lemma 18 The following assertions hold:

(i) J (η(t, u)) ≤ J (u) for every u ∈ X B \ K and t ∈ [0, τ (u));
(ii) If τ(u) < +∞ and η(t, u) weakly converges to some w in WB as t → τ(u)− 0, then

w ∈ K and η(t, u) converges to w in X B as t → τ(u)− 0.
(iii) if η(t, u) converges to some w in WB as t → τ(u) − 0, then w ∈ X B and η(t, u)

converges to w in X B as t → τ(u)− 0.

Proof (i) Let u ∈ X B \ K and t ∈ [0, τ (u)). Then, by the property of Vλ in Lemma 17 (i),
d J (η(t, u))/dt ≤ 0. Thus, our conclusion holds.

(ii) Let τ(u) < +∞. Note that η(t, u) satisfies

η(t, u) = e−t u +
t∫

0

e−t+s Vλ(η(s, u)) ds for 0 ≤ t < τ(u)
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in X B . Then, we obtain

‖η(t, u)‖∞ ≤ e−t‖u‖∞ + 2D3 + D3

t∫
0

e−t+s‖η(s, u)‖∞ ds for 0 ≤ t < τ(u)

by Lemma 17 (v). Hence, due to Gronwall’s inequality, we have

‖η(t, u)‖∞ ≤ eD3τ(u)(‖u‖∞ + 2D3) for every t ∈ [0, τ (u)).
Therefore, it follows from Lemma 17 (vi) that there exists α ∈ (0, 1) such that
{∫ t

0 e−t+s Vλ(η(s, u)) ds ; t ∈ [0, τ (u))} is bounded in C1,α
B (�). Since the embedding

of C1,α
B (�) into X B is compact and η(t, u) ⇀ w in WB as t → τ(u) − 0, η(t, u)

converges to w in X B as t → τ(u)− 0. By the definition of τ(u) and τ(u) < +∞, we
see that w ∈ K holds.

(iii) For the proof, it suffices to show that {∫ t
0 e−t+s Vλ(η(s, u)) ds ; t ∈ [0, τ (u))} is bounded

in L∞(�) proceeding as in (ii). In the case of p > N , it is obvious because WB ↪→
L∞(�) is continuous and η(t, u) converges to some w in WB .

In the case of N = p, then by taking an r > max{1, 1/(p − 1)}, we obtain

t∫
0

e−t+s‖Vλ(η(s, u))‖∞ ds ≤ D4(2 + |�| + sup
t∈[0,τ (u))

‖η(t, u)‖r(p−1))

due to Lemma 17 (iv) and the continuity of WB ↪→ Lr(p−1)(�) (note that {η(t, u) ; t ∈
[0, τ (u))} is bounded in WB ).

Now, we consider the case of N > p. Note that we can choose n0 ∈ N such that qn0 >

N (p − 1)/p since qn → ∞ as n → ∞, where {qn} is the increasing sequence defined by
(7). By considering

WB
Vλ−→ Lq0(�)

Vλ−→ Lq1(�)
Vλ−→ · · · Vλ−→ Lqn0 (�)

Vλ−→ L∞(�)

(that is, a bootstrap argument), we can show that sup{‖Vλ(η(t, u))‖∞ ; t ∈ [0, τ (u))} <
∞ holds by sup{‖η(t, u)‖ ; t ∈ [0, τ (u))} < ∞ because Vλ is bounded from Lqn (�) to
Lqn+1(�) and also from Lqn0 (�) to L∞(�) due to Lemma 17 (iii) and (iv) , respectively.
This boundedness leads to our claim. ��
3.2 Proof of Theorem 11

The next result follows from Lemma 17 (ii) and the argument in [24, Lemma 3.2.]. We omit
the proof.

Lemma 19 If u ∈ ± PB \ K , then η(t, u) ∈ ± int PB for every 0 < t < τ(u).

The following result is well known (see [24, Lemma 2.3.]).

Lemma 20 Set

Q± := {u ∈ X B \ K ; η(t, u) ∈ ± int PB for some t ∈ [0, τ (u)) } ∪ (± int PB). (11)

Then, Q+ and Q− are open subsets of X B and they are invariant for the descending flow η,
that is, η(t, u) ∈ Q± for every t ∈ [0, τ (u)) provided u ∈ Q± \ K , respectively. In addition,
∂Q± are invariant closed subsets of X B for the descending flow η, where ∂Q± denotes the
boundary of Q± in X B.
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An additional preliminary result is needed.

Lemma 21 If J is coercive on WB, then for every β ∈ R, there exists an R = R(β) > 0
such that ‖u‖ ≤ R and ‖Bλ(u)‖ ≤ R for every u ∈ J−1((−∞, β]).
Proof By the coercivity of J , we have an R1 > 0 satisfying ‖u‖ ≤ R1 for every u ∈
J−1((−∞, β]). Let u ∈ J−1((−∞, β]) and v = Bλ(u), namely Tλ(v) = h(·, u)+ λϕp(u)
in W ∗

B . By taking v as a test function, we obtain

min

{
C0

p − 1
, λ

}
‖v‖p ≤

∫
�

A(x,∇v)∇v dx + λ‖v‖p
p

≤ (C + λ)

∫
�

|u|p−1|v| dx + C‖v‖1 ≤ (C + λ)‖u‖p−1
p ‖v‖p + C |�|(p−1)/p‖v‖p

≤ (C + λ)R p−1
1 ‖v‖ + C |�|(p−1)/p‖v‖

[we use the Hölder’s inequality and Remark 6 (iii)], where C is a positive constant as in (5).
Because p > 1, this yields the desired conclusion. ��
Proof of Theorem 11 First, we note that the boundary of ±PB in X B includes no nontrivial
critical points of J by combining Lemma 15 and the fact that the critical points of J are exactly
the fixed points of Bλ. Due to the (S)+ property of V (see Proposition 8) and the compactness
of WB ↪→ L p(�), it is clear that J satisfies the bounded Palais–Smale condition.

Choose a constant β satisfying maxt∈[0,1] J (γ (t)) < β < 0, where γ is the continuous
path in (A2). Since it follows from Lemmas 19 and 20 that γ (0) ∈ Q+, γ (1) ∈ Q− and Q±
are open in X B , there exist 0 < t+ ≤ t− < 1 such that γ (t+) ∈ ∂Q+ and γ (t−) ∈ ∂Q− (it
may happen that t+ = t− because it is not known whether ∂Q+ = ∂Q−). Set u1 := γ (0),
u2 := γ (1) and u3 := γ (t+). Note that there exists an R > 0 such that

‖η(t, ui )‖ ≤ R and ‖Bλ(η(t, ui ))‖ ≤ R for every t ∈ [0, τ (ui )) (12)

by Lemma 21 and infWB J ≤ J (η(t, ui )) ≤ β for every t ∈ [0, τ (ui )). Therefore, if
τ(ui ) < ∞ holds (i = 1, 2, 3), then we have for every 0 < t1 < t2 < τ(ui ) < ∞

‖η(t1, ui )− η(t2, ui )‖ ≤
t2∫

t1

‖η(s, ui )− Vλ(η(s, ui ))‖ ds

≤ 2

t2∫
t1

‖η(s, ui )− Bλ(η(s, ui ))‖ ds ≤ 4R(t2 − t1)

by Lemma 17 (i) and (12). Hence, η(t, ui ) converges to some wi in WB as t → τ(ui ) − 0
provided τ(ui ) < ∞. Moreover, according to Lemmas 18, 19 and 20, wi ∈ K , η(t, ui )

converges to wi in X B as t → τ(ui ) − 0, J (wi ) ≤ J (ui ) ≤ β < 0 (i = 1, 2, 3) and
wi ∈ int PB if i = 1, wi ∈ −int PB if i = 2 and wi ∈ ∂Q+ if i = 3. Because of
∂Q+ ∩ (±PB \ {0}) = ∅ (note that ±PB \ {0} ⊂ Q±), our conclusion is shown when
τ(ui ) < ∞ for every i = 1, 2, 3. Thus, we suppose that τ(ui ) = ∞ for some i ∈ {1, 2, 3}.
We claim that there exists a sequence {tn} ⊂ R

+ such that

tn → +∞ and J ′(η(tn, ui )) → 0 in W ∗
B as n → ∞.

If our claim is shown, then it provides the existence of a Palais–Smale sequence of J which is
bounded because of (12). Thus, there exists wi ∈ WB ∩ K such that limn→∞ η(tn, ui ) = wi

123



Multiple existence results of solutions for quasilinear elliptic equations 1271

in WB by choosing a subsequence if necessary. Furthermore, by the argument in Lemma 18
(iii) and (12), we see that {η(t, ui ) ; t ≥ 0} is bounded in C1,α

B (�) for some 0 < α < 1. This

yields that limn→∞ η(tn, ui ) = wi in X B due to the compactness of C1,α
B (�) ↪→ X B and

limn→∞ η(tn, ui ) = wi in WB . Therefore, there holds wi ∈ int PB if i = 1, wi ∈ −int PB

if i = 2 and wi ∈ X B \ (PB ∪ −PB) if i = 3.
Finally, we prove our claim. Note that there exists a sequence {tn} ⊂ R

+ such that
tn → +∞ and d

dt J (η(tn, ui )) → 0 because −∞ < infWB J ≤ J (η(t, ui )) ≤ β for every
t ≥ 0 and J (η(t, ui )) is nondecreasing in t .

In the case of 1 < p ≤ 2, the following inequality follows from Lemma 16 (iii), Lemma 17
(i) and (12):

− d

dt
J (η(t, ui )) ≥ d1

2
‖η(t, ui )− Bλ(η(t, ui ))‖2(‖η(t, ui )‖ + ‖Bλ(η(t, ui ))‖)p−2

≥ d1d−2/(p−1)
3 2p−3 R p−2‖J ′(η(t, ui ))‖2/(p−1)

W ∗
B

for every t > 0. Similarly, in the case of p > 2, we obtain

− d

dt
J (η(t, ui )) ≥ 22p−p2−1 R2p−p2

d2d−p
4 ‖J ′(η(t, ui ))‖p

W ∗
B

for every t > 0. These inequalities applied for the sequence {tn} imply the proof of our
claim. ��

4 Proof of Theorem 1 and Corollary 2

Throughout this section, we denote a super-solution and a sub-solution of (P)μ in (H1) by
uμ and vμ, respectively. We define

f[vμ,uμ](x, u) :=
⎧⎨
⎩

f (x, uμ(x)) if u ≥ uμ(x),
f (x, u) if vμ(x) < u < uμ(x),
f (x, vμ(x)) if u ≤ vμ(x),

(13)

Moreover, we set

hμ(x, u) := μ f[vμ,uμ](x, u)− p(u − uμ(x))
p−1
+ + p(u − vμ(x))

p−1
− . (14)

Lemma 22 Assume (H1) and (H2). Then, for every μ > μ0, there exists a λ = λ(μ) > 0
such that

hμ(x, u)u + λ|u|p ≥ 0 for every u ∈ R, a.e. x ∈ �.
Proof Because f is bounded on each bounded set and by (H2), there exists λ0 > 0 such
that

f (x, t)t + λ0|t |p ≥ 0 for every |t | ≤ max{‖vμ‖∞, ‖uμ‖∞}, a.e. x ∈ �. (15)

Set λ := μλ0 + p. If uμ(x) ≥ t ≥ vμ(x) holds, then hμ(x, t)t + λ|t |p = μ( f (x, t)t +
λ0|t |p)+ p|t |p ≥ 0 follows from (15). In the case of t > uμ(x)(≥ 0), we have

hμ(x, t)t + λ|t |p = μt ( f (x, uμ(x))+ λ0uμ(x)
p−1)+ λ0(t

p−1 − uμ(x)
p−1)μt

+p(t p−1 − (t − uμ(x))
p−1)t ≥ 0

since s p−1 is nondecreasing on R
+ and (15). Similarly, we can show that hμ(x, t)t+λ|t |p ≥ 0

for t < vμ(x). ��
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Now, we introduce the functional Iμ on WB by

Iμ(u) :=
∫
�

G(x,∇u) dx −
∫
�

u(x)∫
0

hμ(x, t) dtdx (16)

=
∫
�

G(x,∇u) dx − μ

∫
�

u(x)∫
0

f[vμ,uμ](x, t) dtdx

+‖(u − uμ)+‖p
p + ‖(u − vμ)−‖p

p (17)

for u ∈ WB [see (2), (14) and (13) for the definitions of G, hμ and f[vμ,uμ]].
Because f[vμ,uμ](·, u) ∈ L∞(�) for every u ∈ WB by uμ, vμ ∈ L∞(�), we easily

prove the following result due to the last two terms in (17) [that is, we use that ‖(u −
w)±‖p/‖u±‖p → 1 as ‖u±‖p → ∞ forw ∈ L∞(�)]. See Lemma 11 in [26] for the proof.

Lemma 23 Assume (H1). Then, for every μ > μ0, Iμ is coercive on WB.

Moreover, we state the following important fact.

Lemma 24 Assume (H1) and let μ > μ0. If u ∈ WB is a critical point of Iμ, then u
satisfies vμ(x) ≤ u(x) ≤ uμ(x) for a.e. x ∈ �. Therefore, u is a solution of (P)μ with
u ∈ [vμ, uμ] = {w ∈ WB ; vμ ≤ w(x) ≤ uμ a.e. x ∈ �}.
Proof This proof has been essentially done in [26, Lemma 14.]. For the readers’ convenience,
we give it.

Let u ∈ WB be a critical point of Iμ. Because vμ and uμ are a sub-solution and a super-
solution of (P)μ, we have∫

�

A(x,∇vμ)∇w dx ≤ μ
∫
�

f (x, vμ(x))w dx = μ
∫
�

f[vμ,uμ](x, vμ(x))w dx

∫
�

A(x,∇uμ)∇w dx ≥ μ
∫
�

f (x, uμ(x))w dx = μ
∫
�

f[vμ,uμ](x, uμ(x))w dx (18)

for every w ∈ WB with w ≥ 0. Because of (u − uμ)+ ∈ WB (note that in the definition of a
super-solution, we assume that uμ ≥ 0 on ∂� in the Dirichlet problem), by taking (u −uμ)+
as a test function in I ′

μ(u) = 0 and (18), we have

0 ≥ 〈I ′
μ(u), (u − uμ)+〉 −

∫
�

A(x,∇uμ)∇(u − uμ)+ dx

+μ
∫
�

f[vμ,uμ](x, uμ(x))(u − uμ)+ dx

=
∫

u≥uμ

(A(x,∇u)− A(x,∇uμ))(∇u − ∇uμ) dx + p‖(u − uμ)+‖p
p ≥ 0

(note that uμ ≥ vμ and the map A is strictly monotone in the second variable). This leads to
u(x) ≤ uμ(x) for a.e. x ∈ �. Similarly, we obtain u(x) ≥ vμ(x) for a.e. x ∈ � by replacing
(u − uμ)+ and uμ with −(u − vμ)− and vμ, respectively. Consequently, u is a solution of
(P)μ with vμ ≤ u ≤ uμ because of hμ(x, u) = μ f[vμ,uμ](x, u) = μ f (x, u) (see Remark 12
for the boundary condition). ��
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Lemma 25 Assume (H1) and (H3). Then, there exist μ1 > μ0, u0 ∈ PB and v0 ∈ −PB

such that

max
t∈[0,1] Iμ(tu0 + (1 − t)v0) < 0 for every μ ≥ μ1.

Proof Let�1 and�2 be open subsets as in (H3). By taking new open subsets of�1 and�2

if necessary, we may assume that �1 ∩�2 = ∅.
Choose a nonnegative function u0 ∈ C∞

0 (�1) and a nonpositive function v0 ∈ C∞
0 (�2)

such that ‖u0‖∞ < min{d1, δ0}, u0 > 0 somewhere, ‖v0‖∞ < min{d2, δ0} and v0 < 0
somewhere, where δ0, d1 and d2 are positive constants as in (H3).

Then, by the sign-condition for f on�1 and�2 as in (H3), we have
∫
�

F(x, tu0) dx > 0
and

∫
�

F(x, tv0) dx > 0 for every 0 < t ≤ 1, where F(x, t) := ∫ t
0 f (x, s) ds. Define

d+ := min
1≥t≥1/2

∫
�

F(x, tu0) dx > 0, d− := min
1≥t≥1/2

∫
�

F(x, tv0) dx > 0,

and choose a positive number μ1 satisfying μ1 > μ0 and

μ1 >
C1

p(p − 1)min{d+, d−}
( ‖∇u0‖p

p + ‖∇v0‖p
p
)
, (19)

where C1 > 0 is the positive constant in (A) (ii). Because supp u0 ∩ supp v0 = ∅, 0 ≤ u0 ≤
d1 ≤ uμ in �1 and 0 ≥ v0 ≥ −d2 ≥ vμ in �2 hold, it is clear that∫

�

Hμ(x, tu0 + (1 − t)v0) dx = μ

∫
�

F(x, tu0) dx + μ

∫
�

F(x, (1 − t)v0) dx

for every t ∈ [0, 1], where Hμ(x, s) := ∫ s
0 hμ(x, τ ) dτ . Therefore, we have

Iμ(tu0 + (1 − t)v0) =
∫
�1

G(x, t∇u0) dx +
∫
�2

G(x, (1 − t)∇v0) dx

−μ
∫
�

F(x, tu0) dx − μ

∫
�

F(x, (1 − t)v0) dx

≤ C1

p(p − 1)

(
t p‖∇u0‖p

p + (1 − t)p‖∇v0‖p
p
)

−μ
∫
�

F(x, tu0) dx − μ

∫
�

F(x, (1 − t)v0) dx (20)

for every t ∈ [0, 1], where we use (3) in the last inequality. If μ ≥ μ1 and 0 ≤ t ≤ 1/2, then
from (19), (20) and the definition of d−,

Iμ(tu0 + (1 − t)v0) ≤ C1

p(p − 1)

( ‖∇u0‖p
p + ‖∇v0‖p

p
) − μd− < 0

follows. Similarly, in the case of μ ≥ μ1 and 1 ≥ t ≥ 1/2, we easily obtain the inequality
Iμ(tu0+(1−t)v0) ≤ C1( ‖∇u0‖p

p+‖∇v0‖p
p)/(p(p−1))−μd+ < 0. Hence, our conclusion

holds since u0 ∈ PB and v0 ∈ −PB . ��
Lemma 26 Assume (H1), (H2) and (H4). In addition, we suppose that uμ ∈ int PB ∪ int P
and vμ ∈ −int PB ∪ −int P for every μ > μ0. Then, there exist μ1 > μ0, u0 ∈ PB and
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v0 ∈ −PB such that for every μ ≥ μ1 we can choose an rμ > 0 satisfying

max
t∈[0,1] Iμ(trμu0 + (1 − t)rμv0) < 0.

Proof Let m ∈ L∞(�) and δ1 > 0 be as in (H4). Then, since |{x ∈ � ; m(x) > 0}| > 0,
we can take two open balls B1 and B2 such that B1 ∩ B2 = ∅ and |{x ∈ Bi ; m(x) > 0}| > 0
(i = 1, 2) (refer to [15, Corollary 2, p 28] for the existence). It is well known that the first
eigenvalue of the following weighted eigenvalue (Dirichlet) problem for the p-Laplacian on
Bi is positive and simple and that it has a positive eigenfunction belonging to C1

0 (Bi ) (refer
to [3] and [16, section 6.2]):

−�pu = λm(x)|u|p−2u in Bi , u = 0 on ∂Bi , (i = 1, 2), (21)

where �p denotes the p-Laplacian. Therefore, since the above eigenvalue problem is
(p − 1) homogeneous, for each i = 1, 2, there exist a positive solution ψi ∈ C1

0 (Bi )

with ‖ψi‖C1
0 (Bi )

= 1 of

−�pu = λ1(m, Bi )m(x)|u|p−2u in Bi , u = 0 on ∂Bi , (22)

where λ1(m, Bi ) > 0 denotes the first eigenvalue of (21). By taking r pψi as a test function
in (22), we have

r pλ1(m, Bi )

∫
Bi

mψ p
i dx =

∫
Bi

|r∇ψi |p dx ≥ p(p − 1)

C1

∫
Bi

G(x, r∇ψi ) dx (23)

for every r > 0, where we use (3) in the last inequality. Take μ1 > 0 satisfying μ1 > μ0 and

μ1 > max

{
C1λ1(m, Bi )

p(p − 1)
; i = 1, 2

}
. (24)

Since uμ ∈ int PB ∪ int P and vμ ∈ −int PB ∪ −int P for each μ > μ0, there exists an
0 < rμ < δ1 such that uμ − rμψi ∈ PB ∪ P and vμ + rμψi ∈ −PB ∪ −P for i = 1, 2. As
a result, it is easily shown that vμ ≤ −rμψi < 0 < rμψi ≤ uμ (i = 1, 2) and∫

�

Hμ(x, trμψ1 − (1 − t)rμψ2) dx

= μ

∫
�

F(x, trμψ1) dx + μ

∫
�

F(x,−(1 − t)rμψ2) dx

≥ μ(trμ)
p
∫
�

mψ p
1 dx + μ(1 − t)pr p

μ

∫
�

mψ p
2 dx (25)

for every t ∈ [0, 1] by (H4) (note ‖rμψi‖∞ < δ1).
Therefore, for every μ ≥ μ1 and t ∈ [0, 1], we obtain

Iμ(trμψ1 − (1 − t)rμψ2) ≤ t pr p
μ

(
C1

p(p − 1)
− μ

λ1(m, B1)

)
‖∇ψ1‖p

p

+(1 − t)pr p
μ

(
C1

p(p − 1)
− μ

λ1(m, B2)

)
‖∇ψ2‖p

p < 0

by (24), (25) and (23) with trμψ1 and (1 − t)rμψ2 in the place of rψi . ��
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Proof of Theorem 1 First, we note that it suffices to find critical points of Iμ in int PB ,−int PB

and X B \ (PB ∪−PB) for sufficiently large μ according to Lemma 24. We already know that
Lemmas 22, 25 or 26 imply (A1) and (A2) for hμ and Iμ if μ > max{μ0, μ1}. Moreover,
Lemma 23 ensures that Iμ is coercive on WB for every μ > μ0. Therefore, by applying
Theorem 11 to Iμ for each μ > max{μ0, μ1}, we obtain three critical points wμ,1 ∈ int PB ,
wμ,2 ∈ −int PB and wμ,3 ∈ X B \ (PB ∪ −PB) of Iμ. ��
Proof of Corollary 2 (i) and (ii): By (H5), we easily see that T+ > 0 and T− < 0 are a
super-solution and a sub-solution of (P)μ for every μ > 0, respectively. Consequently, our
conclusion follows from Theorem 1. (iii): Note that we are assuming Bu = u = 0 (that is,
Dirichlet boundary condition) in this case. Moreover, we also note that (H2) follows from
(H4) (with D1 = ‖m‖∞ and δ0 = δ1).

According to Theorem 1, it is sufficient to obtain a super-solution in int PB and a sub-
solution in −int PB of (P)μ for each μ > 0. Here, we fix any μ > 0 and choose ε > 0
satisfying

ε <
λ1C0

μ(p − 1)
, (26)

where λ1 denotes the first eigenvalue of −�p in � under the Dirichlet boundary condition.
By the condition ess supx∈� lim sup|u|→∞ f (x, u)/|u|p−2u ≤ 0, there exists an R > 0 such
that

f (x, u) ≤ εu p−1 for u ≥ R, a.e. x ∈ �
and f (x, u) ≥ −ε|u|p−1 for u ≤ −R, a.e. x ∈ �. (27)

We set M+ := sup{ f (x, u) ; x ∈ �, R ≥ u ≥ 0} + 1 ≥ 1 and M− := inf{ f (x, u) ; x ∈
�, −R ≤ u ≤ 0}− 1 ≤ −1 where the inequalities hold because f is bounded on a bounded
set and f (x, 0) = 0 for a.e. x ∈ �. We define two functionals I ±

μ on WB by

I ±
μ (u) :=

∫
�

G(x,∇u) dx − μM±
∫
�

u dx − εμ

p

∫
�

u p
± dx

for u ∈ WB . Then, it is easily shown that I ±
μ is coercive and bounded from below on

WB by Poincaré’s inequality, (3) and (26). Furthermore,
∫
�

G(x,∇u) dx is weakly lower
semicontinuous (w.l.s.c.) on WB because G is convex in the second variable (see Remark 6)
and

∫
�

G(x,∇u) dx is continuous on WB (see [25, Theorem 1.2.]). Thus, I ±
μ is also w.l.s.c.

on W 1,p(�) since the inclusion of WB into L p(�) is compact. As a result, I +
μ and I −

μ have
a global minimizer uμ and vμ, respectively. Let us prove that uμ = 0 and vμ = 0. Indeed,
by taking a positive eigenfunction ϕ1 of −�p corresponding to λ1, we obtain

I +
μ (uμ) = min

WB
I +
μ ≤ I +

μ (tϕ1) ≤ t pC1

p(p − 1)
‖∇ϕ1‖p

p − tμM+‖ϕ1‖1 − εμt p

p
‖ϕ1‖p

p < 0

for sufficiently small t > 0 because of p > 1 and M+ > 0. Hence, uμ = 0. Similarly, by
considering −tϕ1, we have vμ = 0.

We point out that uμ ∈ X B and vμ ∈ X B due to the regularity theorem in [23] because
uμ ∈ L∞(�) and vμ ∈ L∞(�) by Moser’s iteration process (refer to Theorem C in [26] by
noting that the nonlinearity satisfies the subcritical growth condition).
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Next, we see that uμ and vμ are a super-solution and a sub-solution of (P)μ, respectively.
Indeed, by the definition of M± and (27), we obtain

−div A(x,∇uμ) = μM+ + με(uμ)
p−1
+ ≥ μ f (x, uμ)

−div A(x,∇vμ) = μM− − με(vμ)
p−1
− ≤ μ f (x, vμ)

in �. This shows our claim [note that uμ, vμ ∈ X B = C1
0 (�)].

Finally, we prove that uμ ∈ int PB and vμ ∈ −int PB . In fact, by taking −(uμ)− as a test
function, we have

0 = 〈(I +
μ )

′(uμ),−(uμ)−〉 =
∫
�

A(x,∇uμ)(−∇(uμ)−) dx + μM+
∫
�

(uμ)− dx

≥ C0

p − 1
‖∇(uμ)−‖p

p ≥ λ1C0

p − 1
‖(uμ)−‖p

p ≥ 0

by Remark 6 (iii), M+ > 0 and Poincaré’s inequality. Thus, (uμ)−(x) = 0 for every x ∈ �,

whence uμ ≥ 0. Since −div A(x,∇uμ) = μM+ + μεu p−1
μ ≥ 0 in �, we have uμ(x) > 0

for every x ∈ � by Theorem B in [26] (note that uμ ∈ X B and uμ ≡ 0). In addition, due
to the strong maximum principle (see Theorem A in [26]), we see that ∂uμ(x)/∂ν < 0 for
every x ∈ ∂�. This implies uμ ∈ int PB .

Concerning vμ, by replacing uμ with −vμ in the above argument, we see that −vμ ∈ int PB

(note that A is odd in the second variable). ��

5 Proofs in the special cases

First, in a similar way to Iμ as in Sect. 4, we define a functional Ĩμ on WB as follows:

Ĩμ(u) :=
∫
�

G(x,∇u) dx −
∫
�

H(x, u, μ) dx

for u ∈ WB and μ ∈ M , where H(x, u, μ) := ∫ u
0 h(x, t, μ) dx and

h(x, u, μ) := ψ1(μ) f1,[vμ,uμ](x, u)+ ψ2(μ) f2,[vμ,uμ](x, u)

−p(u − uμ(x))
p−1
+ + p(u − vμ(x))

p−1
−

with a super-solution uμ and a sub-solution vμ [see (13) for the definition of fi,[vμ,uμ]].
Throughout this section, we denote a super-solution and a sub-solution of (P̃)μ in (H̃1)

by uμ and vμ, respectively.
By the same argument as in Sect. 4, we can prove the following two lemmas. Here, we

omit the proofs.

Lemma 27 Assume (H̃1). Then, for every μ ∈ M , Ĩμ is coercive on WB.

Lemma 28 Assume (H̃1). If u ∈ WB is a critical point of Ĩμ, then u satisfies vμ(x) ≤
u(x) ≤ uμ(x) for a.e. x ∈ �. Therefore, u is a solution of (P̃)μ within the order interval
[vμ, uμ].
Lemma 29 Assume (H̃1), (H̃2), (H̃3) and (H̃4). Then, for every μ ∈ M , there exists a
λ = λ(μ) > 0 such that

h(x, u, μ)u + λ|u|p ≥ 0 for every u ∈ R, a.e. x ∈ �.
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Proof Fix anyμ ∈ M . Because f1 is bounded on each bounded set and by (H̃2), there exists
λ1 > 0 such that

f1(x, t)t + λ1|t |p ≥ 0 for every |t | ≤ max{‖vμ‖∞, ‖uμ‖∞}, a.e. x ∈ �.
Moreover, there exists λ2 > 0 such that

f2(x, t)t + λ2|t |p ≥ 0 for every |t | ≤ max{‖vμ‖∞, ‖uμ‖∞}, a.e. x ∈ �.
since f2(x, t)t is positive for sufficiently small |t | > 0 by (H̃3) and f2 is also bounded
on each bounded set. Set λ = ψ1(μ)λ1 + ψ2(μ)λ2 + p > 0. By the same argument as in
Lemma 22, we can reach our conclusion. ��
Lemma 30 Assume (H̃1), (H̃2), (H̃3) and (H̃4). Then, for every μ ∈ M , there exist
w1
μ ∈ PB and w2

μ ∈ −PB such that

max
t∈[0,1] Ĩμ

(
tw1

μ + (1 − t)w2
μ

)
< 0.

Proof First, we choose smooth functions u0 ≡ 0 and v0 ≡ 0 satisfying supp u0∩supp v0 = ∅
and u0 ≥ 0 ≥ v0 in�. Fix anyμ ∈ M . Since uμ ∈ int PB ∪int P and vμ ∈ −int PB ∪−int P
[see (H̃1)], there exists an rμ > 0 such that uμ± ru0 ∈ PB ∪ P and vμ± rv0 ∈ −PB ∪−P
for every 0 < r ≤ rμ. Because of supp u0 ∩ supp v0 = ∅, this implies that uμ ≥ tru0 ≥ 0 ≥
(1 − t)rv0 ≥ vμ and∫

�

H(x, tru0 + (1 − t)rv0, μ) dx

=
2∑

i=1

ψi (μ)

∫
�

Fi (x, tru0) dx +
2∑

i=1

ψi (μ)

∫
�

Fi (x, (1 − t)rv0) dx (28)

for every 0 < r ≤ rμ and t ∈ [0, 1], where Fi (x, s) := ∫ s
0 fi (x, τ ) dτ (i = 1, 2). By the

hypothesis (H̃3), there exist δ1 > 0 and ρ1 > 0 such that

f2(x, u)u ≥ βρ1|u|β for every |u| < δ1.

Thus, we have∫
�

F2(x, w) dx ≥ ρ1‖u‖ββ for every w ∈ L∞(�) with ‖w‖∞ < δ1. (29)

Moreover, it follows from (H̃2) that∫
�

F1(x, w) dx ≥ − D1

p
‖w‖p

p for every w ∈ L∞(�) with ‖w‖∞ < δ0, (30)

where D1 and δ0 are the positive constants in (H̃2). Here, to simplify the notation, we set

�(r, w) := C1r p−β‖∇w‖p
p + D1(p − 1)r p−βψ1(μ)‖w‖p

p − ρ1 p(p − 1)ψ2(μ)‖w‖ββ
for w ∈ WB . Then, by p > β > 1, ψ2(μ) > 0, ‖u0‖β > 0 and ‖v0‖β > 0, we can choose
an r > 0 such that

r < min

{
rμ,

δ0

‖u0‖∞
,

δ0

‖v0‖∞
,

δ1

‖u0‖∞
,

δ1

‖v0‖∞

}
,�(r, u0) < 0 and �(r, v0) < 0. (31)
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Therefore, for every t ∈ [0, 1] and such r > 0, we obtain

Ĩμ(tru0 + (1 − t)rv0)

=
∫
�

G(x, tr∇u0) dx +
∫
�

G(x, (1 − t)r∇v0) dx

−
2∑

i=1

ψi (μ)

∫
�

Fi (x, tru0) dx −
2∑

i=1

ψi (μ)

∫
�

Fi (x, (1 − t)rv0) dx

≤ C1
(
(tr)p‖∇u0‖p

p + (1 − t)pr p‖∇v0‖p
p
)

p(p − 1)
+ D1ψ1(μ)

(‖tru0‖p
p + ‖(1 − t)rv0‖p

p
)

p

−ρ1ψ2(μ)
(
‖tru0‖ββ + ‖(1 − t)rv0‖ββ

)

≤ (tr)β

p(p − 1)
�(r, u0)+ (1 − t)βrβ

p(p − 1)
�(r, v0) < 0

by (3), (28), (29), (30) and (31). ��
Proof of Theorem 3 Fix any μ ∈ M . It follows from Lemma 27 that Ĩμ is coercive on WB .
According to Lemma 29 and Lemma 30, h(x, u, μ) satisfies (A1) and (A2) holds for J = Ĩμ.
Thus, by applying Theorem 11, Ĩμ has three critical points w1 ∈ int PB , w2 ∈ −int PB and
w3 ∈ X B \ (PB ∪ −PB). Moreover, Lemma 28 guarantees that they are solutions of (P̃)μ
with wi ∈ [uμ, vμ] (i = 1, 2, 3). The proof is complete. ��
Proof of Corollary 5 (i) Since the constant function T (μ)+ > 0 is a super-solution and

T (μ)− < 0 is a sub-solution of (P̃)μ, our conclusion follows from Theorem 3.
(ii) First, we recall that in this case we assume the Dirichlet boundary condition. Accord-

ing to Theorem 3, it suffices to prove that for every μ ∈ M , there exists a super-
solution uμ ∈ int PB and a sub-solution vμ ∈ −int PB of (P̃)μ. Fix μ ∈ M . Because
ess supx∈� lim sup|u|→∞ f̃ (x, u, μ)/|u|p−2u < C0λ1/(p − 1) there exist ε > 0 and
R > 0 such that

f̃ (x, u, μ) ≤ C0(λ1 − ε)

p − 1
u p−1 for u ≥ R, a.e. x ∈ �,

and f̃ (x, u, μ) ≥ −C0(λ1 − ε)

p − 1
|u|p−1 for u ≤ −R, a.e. x ∈ �.

Set M+ := sup{ f̃ (x, u, μ) ; 0 ≤ u ≤ R, x ∈ �} + 1 > 0 and M− := inf{ f̃ (x, u, μ) ; 0 ≥
u ≥ −R, x ∈ �} − 1 < 0. Define the functionals Ĩ ±

μ on W 1,p
0 (�) by

Ĩ ±
μ (u) :=

∫
�

G(x,∇u) dx − M±
∫
�

u dx − C0(λ1 − ε)

p(p − 1)

∫
�

u p
± dx

for u ∈ W 1,p
0 (�). Due to the same argument as in Corollary 2, these functionals have a global

minimizer with min Ĩ ±
μ < 0. Moreover, this guarantees the existence of a super-solution in

int PB and a sub-solution in −int PB (refer to Corollary 2 for details). Thus, our conclusion
holds. ��
Acknowledgments The second author would like to express her sincere thanks to Professor Shizuo Miyajima
for helpful comments and encouragement. The authors are grateful to the Referee for his important comments.
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Appendix

For readers’ convenience, we give the proof of Proposition 10. We remark that we do not
need inequality (35) in the following proof under the Dirichlet boundary condition. However,
it is necessary for our approach because we consider the Neumann problem too.

Proof of Proposition 10 Let u ∈ Lr (�) and v = T −1
λ (u)(∈ WB) with r > N/p. Consider

p̄∗ such that p̄∗ := p∗ if N > p and p̄∗ > pr/(r − 1) if N = p.
Set k = ‖u‖1/(p−1)

r and for ϕ = v+ or v−, we put ϕM (x) := min {ϕ(x),M} for M > 0
to simplify the notation. For q ≥ 1, we define

H(z) :=
{

0 if z < k,

zq − kq if k ≤ z.

Let w := ϕ + k and wM := ϕM + k. Define

K (wM ) :=
wM∫
k

H ′(s)p ds.

Note that H ′(s) ≥ 0 for every s = 0 and that if ϕ ∈ W 1,p
0 (�), then wM = k on ∂� in the

sense of the trace operator, and hence K (wM ) ∈ WB .
First, we consider ϕ = v+. By taking K (wM ) as a test function in Tλ(v) = u, we obtain

∫
�

A(x,∇v)∇K (wM ) dx + λ

∫
�

|v|p−2vK (wM ) dx (32)

=
∫
�

uK (wM ) dx ≤
∫
�

|u|
⎛
⎝
wM∫
k

H ′(s)p ds

⎞
⎠ dx

≤
∫
�

|u|wM H ′(wM )
p dx ≤ k−p+1

∫
�

|u|w p
M H ′(wM )

p dx

≤ k−p+1‖u‖r‖wM H ′(wM )‖p
pr/(r−1) = ‖wM H ′(wM )‖p

pr/(r−1), (33)

by Hölder’s inequality and k = ‖u‖1/(p−1)
r , where we use wM/k ≥ 1 and H ′(s) ≤ H ′(wM )

for every s ≤ wM . On the other hand, the inequality

∫
�

A(x,∇v)∇K (wM ) dx =
∫
�

A(x,∇v)∇ϕM H ′(wM )
p dx

≥ C0

p − 1

∫
�

|∇ϕM |p H ′(wM )
p dx = C0

p − 1
‖∇ H(wM )‖p

p

(34)
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follows from Remark 6 (iii), wM = ϕM + k and v+ = ϕ. Concerning the second term in the
left-hand side of (32), we have

∫
�

|v|p−2vK (wM ) dx =
∫
v≥0

v p−1

wM∫
k

H ′(s)p dsdx

≥
∫
v≥0

wM∫
k

H ′(s)
(
(wM − k)H ′(s)

)p−1 dsdx

=
∫
v≥0

wM +k∫
2k

H ′(s − k)
(
(wM − k)H ′(s − k)

)p−1 dsdx

≥
∫
v≥0

wM +k∫
2k

H ′(s − k)(H(s − k))p−1 dsdx = 1

p

∫
�

H(wM )
p dx (35)

by (v+ =)ϕ ≥ ϕM = wM −k and (wM −k)H ′(s−k) ≥ q(s−k)q −kq(s−k)q−1 ≥ H(s−k)
for 2k ≤ s ≤ wM + k. Because WB ↪→ L p̄∗

(�) is continuous, according to (33), (34) and
(35), there exists a C∗ > 0 such that

C∗ min

{
C0

p − 1
,
λ

p

}
‖H(wM )‖p

p̄∗ ≤ ‖wM H ′(wM )‖p
pr/(r−1) = q p‖wM‖pq

pqr/(r−1). (36)

Similarly, by taking −K (wM ) as a test function in Tλ(v) = u for the case of ϕ = v−, we
have the same inequality as above. Consequently, we have

C ′∗‖wM‖q
p̄∗q ≤ q‖wM‖q

pqr/(r−1) + C ′∗kq |�|1/ p̄∗

≤ q(1 + C ′∗|�|1/ p̄∗+(1−r)/(pr))‖wM‖q
pqr/(r−1)

for every q ≥ 1, where C ′∗ = C1/p∗ min{C0/(p−1), λ/p}1/p and we use Holder’s inequality,
kq = ‖k‖q

q/|�| and k ≤ wM in the last inequality. This yields

‖wM‖ p̄∗q ≤ (q D∗)1/q‖wM‖αq (37)

for every q ≥ 1 with α := pr/(r − 1), where D∗ > 0 is a positive constant independent of
M , k, u, v. Note that α < p̄∗ by our assumption r > N/p and the definition of p̄∗. At this
point, we define a sequence {qn} by q0 := p̄∗/α(> 1) and qn+1 := qn p̄∗/α = ( p̄∗/α)n+2.
Then, by taking M → ∞ in (37), we see that if w ∈ Lαqn (�), then w ∈ Lαqn+1(�) and
it satisfies ‖w‖αqn+1 ≤ (qn D∗)1/qn ‖w‖αqn . This leads to ‖w‖∞ ≤ C‖w‖ p̄∗ by a standard
argument, where C is a positive constant independent of w and n. Therefore, we have

‖ϕ‖∞ ≤ C‖ϕ‖ p̄∗ + k(1 + C |�|1/ p̄∗
) = C‖ϕ‖ p̄∗ + ‖u‖1/(p−1)

r (1 + C |�|1/ p̄∗
) (38)

(note w = ϕ + k and k = ‖u‖1/(p−1)
r ). On the other hand, by taking ±v± as test function in

Tλ(v) = u,

C∗ min

{
C0

p − 1
, λ

}
‖ϕ‖p

p̄∗ ≤ min

{
C0

p − 1
, λ

}
‖ϕ‖p ≤ 〈Tλ(v),±v±〉

≤ ‖u‖r‖ϕ‖r/(r−1) ≤ ‖u‖r‖ϕ‖ p̄∗ |�|β (39)
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(note that ϕ denotes v+ or v−), where we use Remark 6 (iii) in the second inequality and
Hölder’s inequality settingβ = ((r−1) p̄∗−r)/(r−1) p̄∗. From (38) and (39), our conclusion
follows. ��
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