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Abstract We prove the existence of a magnetic field created by a planar configuration of
piecewise rectilinear wires having no analytic first integral. This is a counterexample to the
Stefanescu conjecture (Rev Roum Phys 31:701–721, 1986) in the analytic setting.
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1 Introduction

Magnetic fields created by current flows are the vector fields of particular interest and impor-
tance in physics. They appear in several branches of sciences such as electrical engineering
[2], spectroscopy [6], medicine [8].

In order to define a magnetic field, mathematically consider a smooth curve L ⊂ R
3,

parameterized by the map l : I � τ → l(τ ) ∈ R
3, where I ⊂ R is an interval, L represents

the electric wire, and J is the current intensity associated with it. Using the Biot–Savart law
[4], we can compute the magnetic field B generated by a steady current associated with a
current distribution (L , J ) as follows:

B(r) = μ0 J

4π

∫

I

l ′(τ ) × (r − l(τ ))

|r − l(τ )|3 dτ, (1)

where μ0 is a magnetic constant, which is the value of the magnetic permeability in a classical
vacuum, l ′(τ ) = dl/dτ, | · | represents the Euclidean norm in R

3, and × represents the vector
product. A magnetic field B created by a configuration (L1, J1), · · · , (Ln, J1) is obtained
via linear superposition, that is, B = B1 + · · · + Bn , where each Bi is obtained from the

C. Valls (B)
Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais,
1049-001 Lisbon, Portugal
e-mail: cvalls@math.ist.utl.pt

123



1250 C. Valls

Biot–Savart law (1). Consequently, the resulting vector field B is defined everywhere in
R

3 \ (
⋃n

i=0 Li ).
It is well known that in general, magnetic field lines can be very complicated, for example,

they can be knotted, quasi–periodic and give rise to Hamiltonian chaos. As it was pointed out
by some authors [3,5], it is still believed that magnetic fields created by wires cannot be too
complicated, especially the ones induced by a planar rectilinear configuration. This belief,
and some calculations performed by Stefanescu [7] motivated him to state the following
conjecture.

Stefanescu’s conjecture [7]: There exists an algebraic first integral for any magnetic field
originated by a configuration of piecewise rectilinear wires.

For a definition of the first integral, see Sect. 2.
In what follows using the example of the vector field induced by three planar configurations

of rectilinear wires (see Fig. 1),
we prove that it does not admit an analytic first integral globally defined, contradicting

Stefanescu conjecture in the analytic category.
The following theorem is our main result:

Theorem 1 The magnetic field B associated with the rectilinear wires on the x = 0 plane
with a unit current flow given by

L1 = {x = 0, y = −1}, in the positive z direction,

L2 = {x = 0, y = 1}, in the negative z direction,

L3 = {x = 0, z = 0}, in the positive y direction,

does not admit a global real analytic first integral.

The knowledge of the first integrals of a vector field is very useful in order to understand
the topological structure of the orbits. It can also be viewed as a measure of complexity of
this structure. Thus, our main result confirms that a magnetic field induced even by a planar
configuration of wires is not as simple as it was thought first (see [5] and [7]).

Fig. 1 Magnetic lines of the Biot–Savart vector fields induced by three planar rectilinear configuration of
wires
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We conclude this introduction with some general remarks about the integrability of mag-
netic fields created by planar configuration of wires.

It is clear that the Biot–Savart magnetic field created by a straight line wire, which we
assume is perpendicular to the z = 0 plane, has two independent polynomial first integrals:
F1(x, y, z) = z and F2(x, y, z) = x2 + y2. Also, if a magnetic field is created by two
rectilinear wires, then there is always at least one polynomial first integral. Finally, magnetic
fields created by planar configuration of wires possess two independent smooth first integrals
in a sufficiently small tubular neighborhood of each current line, provided that the tubular
neighborhood does not enclose any non-regular point (see [1, Corollary 1]). This is only a
local result and does not say anything about the existence of the global first integral.

Finally, we point out that our main theorem does not contradict the existence of an algebraic
but non-polynomial first integral. Thus, we conjecture the following.

Conjecture: The magnetic field induced by the configuration given in Theorem 1 does
not admit a rational first integral.

In the following section, we prove Theorem 1 which is our main result.

2 Proof of Theorem 1

Before proving our main result, we introduce an auxiliary statement that we shall use.
Consider

ẋ = f (x), x = (x1, ..., xn) ∈ C
n, (2)

where f (x) = ( f1(x), . . . , fn(x)) is an n–dimensional vector–function such that f (0) = 0.
We say that a non-constant analytic function H : U → C, where U is an open connected
subset of C

n , is the analytic first integral of (2) if

n∑
i=1

fi (x)
∂ H

∂xi
≡ 0.

When U is an open connected subset of R
n and H : U → R, we say that it is a real analytic

first integral.

Lemma 2 System

ẋ = −2(x2 + z2) + z(x2 + 1), ż = −x(x2 + 1). (3)

has no global real analytic first integrals.

Proof We proceed by contradiction. Assume that h = h(x, z) is a global real analytic first
integral. We set X = x2 + z2 and Z = z. Then, we have that system (3) becomes

Ẋ = ∓4
√

X − Z2 X, Ż = ∓
√

X − Z2(X − Z2 + 1).

Moreover, if we set H = H(X, Z) = h(x, z), we have that H satisfies

4X
∂ H

∂ X
+ (X − Z2 + 1)

∂ H

∂ Z
= 0.

Solving this partial differential equation, we get that

H = K

(
e−√

X (1 + √
X + Z)√

X − Z − 1

)
,
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where K is any function of e−√
X (1+√

X+Z)√
X−Z−1

. Therefore, we obtain the following first integral
of the restricted system (3)

h(x, z) = K

(
e−√

x2+z2
(1 + √

x2 + z2 + z)√
x2 + z2 − z − 1

)
.

It is easy to check that the function

F =
e−√

x2+z2
(

1 + √
x2 + z2 + z

)
√

x2 + z2 − z − 1
=

e−√
x2+z2

(
1 + √

x2 + z2 + z
)2

x2 − 2z − 1

is not globally defined, and 1/F is not analytic at the origin; thus, there is no global analytic
first integral. This completes the proof of the lemma. 
�
Proof of Theorem 1 We shall consider a magnetic field created by L1, L2 and L3, with the
unit current flows in the positive z direction for L1, in the negative z direction in L2 and in
the positive y direction in L3. Then, the Biot–Savart law gives us B = μ0/2π(Bx , By, Bz),
where

Bx = −(y + 1)

x2 + (y + 1)2 + y − 1

x2 + (y − 1)2 + z

x2 + z2 ,

By = x

x2 + (y + 1)2 − x

x2 + (y − 1)2 , (4)

Bz = −x

x2 + z2

(we recall that we do not use directly Biot–Savart law. Notice that the vector field
B = (Bx , By, Bz) is given by three straight lines. Using superposition, we obtain that
B = B1 + B2 + B3 where each B j for j = 1, 2, 3 is the vector field associated with
only one infinite straight line. To compute B j for each j = 1, 2, 3, we use a well-known
theorem given in the classical book [4]).

Doing a simple rescaling of the time in the vector field B (i.e., setting dt = (x2 +(y +1)2)

(x2 + (y − 1)2)(x2 + z2) dτ ) which does not affect the integrability, and writing this vector
field as a system of differential equations, we get

ẋ = 2
(
x2 + z2) (

y2 − x2 − 1
) + z

[
x2 + (y + 1)2] [

x2 + (y − 1)2] ,

ẏ = −4xy
(
x2 + z2) , (5)

ż = −x
[
x2 + (y + 1)2] [

x2 + (y − 1)2] .

We shall prove that system (5) does not admit an analytic first integral.
We note that y = 0 is an invariant plane of system (5). If h = h(x, y, z) is an analytic first

integral of system (5), it can be written in the form h(x, y, z) = h0(x, z)+ yg(x, y, z) where
h0 and g are analytic functions in their variables. Furthermore, without loss of generality, we
can assume that h0 is either zero or an analytic first integral of system (5) restricted to y = 0.

Consider the restriction of (5) to y = 0, that is,

ẋ = −2
(
x2 + z2) (

x2 + 1
) + z

(
x2 + 1

)2
, ż = −x

(
x2 + 1

)2
.

Rescaling the time variable by (x2 + 1) (i.e., setting dτ = (x2 + 1) dt), we get system (3).
In view of Lemma 2, we obtain that it has no global analytic first integrals.
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Hence, if h is an analytic first integral of system (5), it can be written in the form
h(x, y, z) = yg(x, y, z), where g is an analytic function in the variables (x, y, z). We write
g as a formal power series in the variable y as

g(x, y, z) =
∑
j≥0

g j (x, z)y j ,

where each g j is a formal power series in the variables (x, z). Then, substituting h in (5) and
canceling out y, we get that g satisfies the following relation:

A(x, y, z)
∂g

∂x
− 4xy(x2 + z2)

∂g

∂y
− B(x, y, z)

∂g

∂z
− 4x(x2 + z2)g = 0, (6)

where

A(x, y, z) = 2
(
x2 + z2) (

y2 − x2 − 1
) + z

[
x2 + (y + 1)2] [

x2 + (y − 1)2] ,

B(x, y, z) = x
[
x2 + (y + 1)2] [

x2 + (y − 1)2] .

We will show that g = 0. We proceed by contradiction. We assume that g = 0, and we
consider two complementary cases:
Case 1: g is not divisible by y. In this case, we have that g0 = g0(x, z) = 0, and g0 satisfies
(6) restricted to y = 0, that is,

(
x2 + 1

) [
z
(
x2 + 1

) − 2
(
x2 + z2)] ∂g0

∂x
− x

(
x2 + 1

)2 ∂g0

∂z
− 4x

(
x2 + z2) g0 = 0.

(7)

It follows from (7) that g0 must be divisible by (x2 + 1). Therefore, it is of the form
g0 = (x2 + 1)m f , with m ≥ 1 and f = f (x, z) is a formal power series in its variables.
Then, introducing g0 in (7) and canceling out (x2 +1)m , we get that f satisfies the following
equation:

− (
x2 + 1

) [
2

(
x2 + z2) − z

(
x2 + 1

)] ∂ f

∂x
− x

(
x2 + 1

)2 ∂ f

∂z
− E(x, z) f = 0, (8)

where

E(x, z) = 2mx(1 + x2)z − 4(1 + m)x(x2 + z2).

From (8), we deduce that f must be divisible by (x2+1). Proceeding inductively, we conclude
that g0 must be divisible by x2 + 1 infinitely many times and hence g0 = 0.
Case 2: g is divisible by y. In this case, we have that g0 = · · · = gm−1 = 0 and

g =
∑
j≥m

y j g j (x, z) = ym
∑
j≥0

gm+ j y j = ym G, m ≥ 1,

where

G = G(x, y, z) =
∑
j≥0

gm+ j y j .

We note that gm = G(x, 0, z). Then, imposing that g satisfies (6) and simplifying by ym , we
obtain

A(x, y, z)
∂G

∂x
− 4xy(x2 + z2)

∂G

∂y
− B(x, y, z)

∂g

∂z
− 4(m + 1)x(x2 + z2)G = 0. (9)
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Restricting (9) to y = 0, we get that gm satisfies

(x2 + 1)[z(x2 + 1) − 2(x2 + z2)]∂gm

∂x
− x(x2 + 1)2 ∂gm

∂z
− 4(m + 1)x(x2 + z2)gm = 0.

(10)

It follows from (10) that gm must be divisible by (x2 + 1). Therefore, it is of the form
gm = (x2 + 1)l f , with l ≥ 1 and f = f (x, z) is a formal power series in its variables.
Introducing gm in (10) and canceling out (x2 + 1)l , we get that f satisfies the following
equation:

− (x2 + 1)[2(x2 + z2) − z(x2 + 1)]∂ f

∂x
− x(x2 + 1)2 ∂ f

∂z
+ F(x, z) f = 0, (11)

where

F(x, z) = 2mx(1 + x2)z − 4(1 + m + l)x(x2 + z2).

Then, from (11), we deduce that f must be divisible (x2 + 1). Proceeding inductively, we
conclude that gm must be divisible by x2 + 1 infinitely many times and hence gm = 0.

In summary, we get that g = 0 which yields h = 0, and consequently, system (1) is not
analytically integrable. This concludes the proof of the theorem. 
�
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