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Abstract We employ the technique used in the classification of harmonic morphisms with
one-dimensional fibers on four-dimensional Einstein manifolds (Pantilie in Commun Anal
Geom 10:779–814, 2002) to give a simpler proof of the fact that the shear-free perfect fluids
coupled to gravity are either irrotational or expansion free in the case when the equation of
state is ρ = −3p.
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1 Introduction

Harmonic (or wave) maps [4] are critical points of the Dirichlet’s energy

E(ϕ) = 1

2

∫

M

|dϕ|2volg

where ϕ : (M, g) → (N , h) denotes a smooth map between two (semi-) Riemannian man-
ifolds M and N . Harmonic morphisms form a subclass of harmonic maps characterized by
an additional condition of transversal conformality. Both notions enjoy an extensive study
and a deep mathematical understanding, cf. [1–3]. Among their various generalizations, we
distinguish the r -harmonic maps and morphisms [8], defined in a similar way with respect
to the energy Er (ϕ) = 1

r

∫
M |dϕ|r volg, r > 0. These developments make harmonic maps

and morphisms a very appealing tool in applications, as shown by the successfully concept
of sigma model in theoretical physics. In [15], we showed that they can also play a rôle in
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general relativity. This rôle is due to the local duality between r -harmonic morphisms with
one-dimensional timelike fibers defined on a space-time and shear-free relativistic perfect
fluids (U, p = 1

3 (r − 3)λr , ρ = λr ) on that space-time, where U is the unitary vector field
tangent to the fibers and λ is the dilation of the harmonic morphism [15, Prop. 3.2]. This
duality is known to geometers through the notion of foliations that produce (r -)harmonic
morphisms [11].

Harmonic morphisms (and, to a lesser extent, r -harmonic morphisms) with one dimen-
sional fibres have been classified under various curvature restrictions on the domain metric,
see e.g. [9,12] and for a review [1,13]. In this note we want to point out that the local part of
Pantilie’s classification result [12] for harmonic morphisms on Riemannian four-manifolds
satisfying Einstein (vacuum) condition extends to Lorentzian four-manifolds solving the
Einstein field equations (with fluid source). In the dual perspective of relativistic fluids, the
counterpart of this result is the positive answer to the following

Conjecture ([16]). In general relativity, if the velocity vector field of a barotropic
perfect fluid (p + ρ �= 0 and ρ = ρ(p)) is shear free, then either the expansion or the
rotation of the fluid vanishes.

in the case when ρ = −3p. This is already known to be true [7,18], but in the present
approach, the proof is simpler and is written in coordinate-free differential geometric language
and can provide a new insight into this conjecture still not established despite a long history
of confirmations in particular cases.

For a recent discussion about the conjecture and the progress that have been made, see
[5,19].

In the following section, we review the basic definitions and results needed thereafter; in
Sect. 3, we give the proof of the main result, and we end with the proofs of some simple
technical Lemmas.

Throughout the paper, (M, g) will be a Lorentzian manifold and Ric, Scal will denote its
Ricci and scalar curvature, respectively. All the considerations are local.

2 Basic material

2.1 Perfect fluids coupled with gravity

Definition 1 [10,17] Let (M, g) be a four-dimensional space-time. A triple (U, p, ρ) is
called (relativistic) perfect fluid if

(i) U is a timelike future-pointing unit vector field on M , called the flow vector field,
(ii) ρ, p : M → R are the real functions called mass (energy) density and pressure, respec-

tively,
(iii) the stress-energy tensor of the fluid is conserved:

div
(

p g + (p + ρ)U � ⊗ U �
) = 0.

If instead of (i i i), we impose the stronger condition
(i i i)′ the Einstein equations are satisfied

Ric −1

2
Scal ·g = p g + (p + ρ)U � ⊗ U �, (1)

then (U, p, ρ) is called (relativistic) perfect fluid coupled with gravity.
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Harmonic morphisms 1141

Condition (i i i) of the definition decomposes into the fluid’s equations:

(ρ + p) div U + U (ρ) = 0 (the conservation of energy along the flow),

(ρ + p)∇U U + gradH p = 0 (the Euler equations), (2)

where gradH p is the spatial pressure gradient, that is, the component orthogonal to U . If
moreover the perfect fluid is coupled with gravity, we have the following block-diagonal
structure of the Ricci tensor of (M, g):

Ric(U, U ) = 1

2
(ρ + 3p),

Ric(X, U ) = 0, ∀X ⊥ U,

Ric(X, Y ) = 1

2
(ρ − p)g(X, Y ), ∀X, Y ⊥ U. (3)

Note that Scal = ρ − 3p.
In this paper, we are concerned with perfect fluids coupled with gravity satisfying

ρ = −3p. This equation of state is supposed to represent a hypothetical form of matter
called quintessence characterized by negative pressure and −1 < p/ρ ≤ 0. Moreover, as
shown by Vilenkin [20], a randomly oriented distribution of (infinitely thin) straight strings
averaged over all directions behaves like a perfect fluid with ρ = −3p.

2.2 Harmonic morphisms and curvature restrictions

Recall [1,6] that a harmonic morphism ϕ : (M, g) → (N , h) between (semi-) Riemannian
manifolds can be characterized as a harmonic map (i.e., trace ∇dϕ = 0) which is moreover
horizontally weakly conformal of dilation λ : M → R+ (i.e., ϕ∗h = λ2g|(Ker dϕ)⊥×(Ker dϕ)⊥ ).

Let ϕ be a harmonic morphism defined on a four-dimensional space-time taking values
in a three-dimensional Riemannian manifold, denote by U the unit vertical timelike vector
that spans V = Ker dϕ and by H = V⊥ the horizontal distribution associated with ϕ. Then
it is known that

− ∇U U + gradH(ln λ) = 0, (4)

div U + 3U (ln λ) = 0, (5)

(LU g)(X, Y ) − 2

3
div U · g(X, Y ) = 0, ∀X, Y ∈ H, (6)

where (4) is the fundamental equation of the harmonic morphism ϕ, (5) is a geometric identity
and (6) is equivalent to the horizontal conformality of ϕ.

Recall [1, p.59] also that a section σ of (⊗r H) ⊗ (⊗sH∗) is called basic if (LV σ)H = 0
for all V ∈ �(V). In particular, a function f on M is basic if V ( f ) = 0 and a horizontal
vector field X on M is basic if [V, X ]H = 0, for all V ∈ �(V); the latter condition means
that X is projectable on N .

The fundamental vector field of the map ϕ is V := λU . Analogously to [1, Lemma 11.7.2],
the importance of this vector field is given by the fact that it allows us to rewrite Eq. (4) as
follows:

[V, X ] = 0, ∀X basic vector field on M. (7)

Consider the 1-form dual to V , defined by ϑ(X) := −λ−2g(X, V ), ∀X , and the 2-form
	 := dϑ . We notice that 	(X, Y ) = λ−2g([X, Y ], V ) for all X, Y ∈ �(H).
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Lemma 1 Let ϕ : (M4, g) → (N 3, h) be a harmonic morphism defined on a
four-dimensional space-time. Then,

(i) iW 	 = 0, for all W ∈ �(V) (	 is a horizontal 2-form)
(ii) H is integrable if and only if 	 = 0 (	 is the integrability 2-form of H);

(iii) LW 	 = 0 or, equivalently, W (	(X, Y )) = 0, for all X, Y basic vectors and for all
W ∈ �(V) (	 is a basic 2-form).

Analogously to [12], [1, p. 343], we can prove the following

Proposition 1 Let (M, g) be four-dimensional space-time, (N , h) a Riemannian 3-manifold
and ϕ : (M, g) → (N , h) a harmonic morphism with one-dimensional timelike fibers tangent
to the unit vector U. Let λ : M → R+ denote the dilation of ϕ. Then, we have the identities:

Ric(U, U ) = 
 ln λ + 4U (U (ln λ)) − 6[U (ln λ)]2 + λ2

2
|	|2, (8)

Ric(X, U ) = 2X (U (ln λ)) − λ

2
{δ	(X) + 2	(X, grad ln λ)}, (9)

Ric(X, Y ) = (ϕ∗ RicN )(X, Y ) + g(X, Y )
 ln λ − 2X (ln λ)Y (ln λ) + λ2

2
〈iX	, iY 	〉,

(10)

where RicN is the Ricci curvature of (N , h) and X, Y are horizontal vectors.

Let us recall [1,12] also that a ϕ is of Killing type iff gradV λ = 0, of warped product type
iff it has totally geodesic fibers (i.e., ∇U U = 0) and H is integrable and of type three (T)
iff | gradV λ| is a nonzero function of λ. The local part of Pantilie’s classification result [12]
states that if (M, g) is an orientable (Rie-mannian) Einstein four-manifold, then ϕ belongs
to one of these types.

2.3 The duality

In the setting of the previous subsection, from a dual perspective, Eqs. (4), (5) can be identified
respectively with the Euler equations and the energy conservation along the flow (2) for the
relativistic fluid (U, p = − 1

3λ2, ρ = λ2), while (6) tells that the fluid is shear free. In this
case, the additional assumption (11) for the fluid to be coupled with gravity becomes

Ric(U, U ) = Ric(X, U ) = 0

Ric(X, Y ) = 2

3
λ2g(X, Y ), ∀X, Y ⊥ U. (11)

Conversely, given a perfect fluid (U, p, ρ = −3p), we can always integrate it locally to
obtain a (local) harmonic morphism from M into some Riemannian 3-manifold (N , h) such
that dϕ(U ) = 0 and ρ equal the squared dilation of ϕ. For more details see [15].

Remark 1 If the associated harmonic morphism ϕ is of Killing type, then the fluid is expan-
sion free (i.e., div U = 0), while if it is of warped product type, then the perfect fluid is
irrotational (i.e., 	 = 0).

3 The main result

Following the same lines in [1,12], we prove the following
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Theorem 1 Let (M, g) be four-dimensional space-time and ϕ : (M, g) → (N , h) be a har-
monic morphism into a Riemannian manifold, with one-dimensional timelike fibers tangent
to the unit vector U. Let λ denote its dilation. If Ric(X, U ) = 0 and Ric(X, Y ) = νg(X, Y )

for all X, Y orthogonal to U and for some function ν : M → R, then locally ϕ is either of
Killing type or of warped product type.

Proof Let (M, g) be a four-dimensional space-time and ϕ : (M, g) → (N , h) be a harmonic
morphism into a Riemannian manifold.

Choose a local orthogonal frame {X, Y, Z} of basic horizontal vector fields around a
regular point x in M ; we may suppose that their lengths satisfy |X | = |Y | = |Z | = 1/λ and
that Z satisfies iZ 	 = 0 1. Then, the contractions iX	 and iY 	 are both basic and orthogonal
and |iX	|2 = |iY 	|2 = λ2	(X, Y )2.

Since according to the hypothesis, Ric |H×H must be proportional to gH, Eq. (10) applied
to all pairs of vectors from {X, Y, Z} gives us: (ϕ∗ RicN )(X, Y ) − 2X (ln λ)Y (ln λ) = 0,
(ϕ∗ RicN )(Y, Z) − 2Y (ln λ)Z(ln λ) = 0, and (ϕ∗ RicN )(X, Z) − 2X (ln λ)Z(ln λ) = 0. In
particular, X (ln λ)Y (ln λ), Y (ln λ)Z(ln λ), and Z(ln λ)X (ln λ) are all basic functions. Let W
be the domain of the frame {X, Y, Z , V }. Consider the following closed subset in W :

S = {x ∈ W : Xx (ln λ) = Yx (ln λ) = 0}.
Denote its complement in W by Sc—this will be an open subset of M .

Case I - on the open set Sc. Suppose that Xx (ln λ) �= 0. By applying Equation (10) to
the pair {X + Y, X − Y }, we deduce that X (ln λ)2 − Y (ln λ)2 is basic; moreover, since
X (ln λ)Y (ln λ) is basic too, X (ln λ) and Y (ln λ) have to be both basic. Then also Z(ln λ) is
basic (since Z(ln λ)X (ln λ) is basic). Hence grad(V (ln λ)) is vertical.

Assume that at some point, grad(V (ln λ)) �= 0 so by continuity this holds in a neighbor-
hood.

As V (ln λ) is non-constant and its level surfaces are horizontal, then H is integrable (so
	 = 0). Applying Equation (9) combined with the hypothesis Ric(X, U ) = 0, we obtain
that X (U (ln λ)) = 0, or equivalently X (ln λ)V (ln λ) = 0. As we are on Sc, this would
imply that V (ln λ) = 0, a contradiction.
So grad(V (ln λ)) = 0 and then V (ln λ) = c a constant.
Assume that c �= 0.
Replacing V (ln λ) = c in Equation (9), we obtain:

0 = −2cX (ln λ) − λ2

2
{δ	(X) + 2	(X, grad ln λ)}. (12)

Notice that	(X, grad ln λ)=λ2Y (ln λ)	(X, Y ) and this implies V (λ−2	(X, grad ln λ))

= 0. A more elaborate computation leads to:
So taking the derivative of (12) along V will give

0 = V (λ4)λ−2{δ	(X) + 2	(X, grad ln λ)}.
Therefore, the term inside the brackets must vanish; substituting this back into (12) gives
us X (ln λ) = 0, contradiction.

Lemma 2 On Sc, we have V
(
λ−2δ	(X)

) = 0.

1 This is an algebraic fact. As 	 basic, it locally descends to a 2-form on N ; we may see it as a skew-symmetric
linear mapping T N → T N . Since dim N is odd, any such mapping is singular.
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Therefore, the constant c must be zero; this implies U (ln λ) = 0. We have proved that on Sc

(so on Sc), ϕ is of Killing type.

Case II: on the open set intS. Let

A = {x ∈ intS : Zx (ln λ) = 0}.
(I Ia) On the subset A, we have gradH ln λ = 0, so grad ln λ is vertical. Thus, around a
point where λ is non-constant, its level surfaces are horizontal so H is integrable and ϕ

is of warped product type (if λ is constant, div U = 0 and ϕ is of Killing type).
(I Ib) On the open subset Ac ∩ intS, we have X (ln λ) = 0, Y (ln λ) = 0 and Z(ln λ) �= 0.
The identity (10) and Ric(X, X) = Ric(Z , Z) (consequence of our hypothesis) imply

4Z(ln λ)2 + λ4	(X, Y )2 = 2
(
(ϕ∗ RicN )(Z , Z) − (ϕ∗ RicN )(X, X)

)
.

Since the right-hand term is a basic function, the derivative along V of the left-hand term
must vanish. This gives us immediately, by using Lemma 1:

− λ2	(X, Y )2 V (ln λ)

Z(ln λ)
= 2λ−2 Z(V (ln λ)). (13)

Combine this relation with the following

Lemma 3 On Ac ∩ intS, we have

δ	(Z) = −λ2	(X, Y )2 V (ln λ)

Z(ln λ)
. (14)

to obtain

δ	(Z) = 2λ−2 Z(V (ln λ)). (15)

Now Equation (9) with Ric(Z , U ) = 0 implies

4[Z(V (ln λ)) − Z(ln λ)V (ln λ)] − λ2δ	(Z) = 0.

Substituting (17) in the above relation, we get

Z(V (ln λ)) − 2Z(ln λ)V (ln λ) = 0. (16)

Reinserting (16) in the derived constraint (13), we obtain

V (ln λ)
[
4Z(ln λ)2 + λ4	(X, Y )2] = 0.

Since Z(ln λ) cannot vanish, we must have V (ln λ) = 0 so that ϕ is of Killing type on the
considered subset. ��

Taking Remark 1 into account and that coupling with gravity (11) is a special case of
Theorem 1 hypothesis, we can state the following

Corollary 1 If the velocity vector field of a perfect fluid coupled with gravity satisfying
ρ = −3p is shear free, then either the expansion or the rotation of the fluid vanishes.

Notice that the condition Ric(U, U ) = 0 from (11) was not employed.

Corollary 2 A harmonic morphism with one-dimensional timelike fibers from an Einstein
space-time or from a vacuum space-time is either of Killing type or of warped product type.
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Harmonic morphisms 1145

The above Corollary is the Lorentzian analog of the result in [12] (see also [1, p. 380]).
Note that the change of sign in the identity (10) simplifies radically the Case (I Ib) with
respect to the Riemannian case so that type (T) morphisms are now excluded. Recall that
type (T) harmonic morphisms allow both expansion and rotation (for instance on R

4 with
the Eguchi–Hanson-type metric [14]).

Remark 2 The relativistic fluids with ρ = −3p (and harmonic morphisms) represent a
genuine particular case of the shear-free conjecture. For an equation of state ρ = w p with
w �= −3 (for r -harmonic morphisms with r �= 2) in the Ricci identity (10), it will appear a
second-order term in Hess(ln λ), as we can check by performing a conformal change in metric
to render the r -harmonic morphism a harmonic morphism. This will make inapplicable the
entire argument used in the present case.

4 The Proofs of Lemmas

Proof of the Lemma 2 The basic ingredients are Lemma 1 and the following identity [1, p.
119]

(∇ϕ
X dϕ(Y )

)̂ − ∇H
X Y = X (ln λ)Y + Y (ln λ)X − g(X, Y ) gradH ln λ,

wherêstands for the horizontal lift operator. Notice that the first term in the above identity is
a basic vector field. With this in hand, we can check by straightforward but lengthy calculation
that

δ	(X) = λ2[2Y (ln λ)	(X, Y ) + Y (	(X, Y )) + 	
((∇ϕ

Y dϕ(Y )
)̂ + (∇ϕ

Z dϕ(Z)
)̂
, X

)

+	
(

Y,
(∇ϕ

Y dϕ(X)
)̂ ) ]

and, since each term inside the brackets is basic, the conclusion follows. ��
Proof of the Lemma 3 An easy computation shows us that

δ	(Z) = −λ4	(X, Y )g([X, Y ], Z). (17)

But [X, Y ](ln λ) = 0 on intS implies

[X, Y ]H(ln λ) − 	(X, Y )V (ln λ) = 0,

where we have used 	(X, Y ) = λ−2g([X, Y ], V ).
As on Ac ∩ intS, we have [X, Y ]H(ln λ) = λ2g([X, Y ], Z)Z(ln λ), it follows that

g([X, Y ], Z) = 	(X, Y )
V (ln λ)

λ2 Z(ln λ)
.

Reinserting in (17) gives us the result. ��
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