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Abstract Under the assumption that the coefficients are regularly varying functions, exis-
tence and asymptotic form of strongly decreasing solutions are here studied for a system of
two coupled nonlinear second-order equations of Emden–Fowler type, satisfying a subho-
mogeneity condition. Several examples of application of the main result and a comparison
with existing literature complete the paper.
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1 Introduction

We consider the nonlinear differential system of Emden–Fowler type{
(p(t)Φα(x ′))′ = ϕ(t)Φλ(y),
(q(t)Φβ(y′))′ = ψ(t)Φμ(x),

(1)

where Φζ (u) = |u|ζ sgn u, with ζ > 0, α, β, λ, μ are positive constants, and p, q, ϕ, ψ are
positive continuous functions defined on [a,∞), a ≥ 0. If it is not said otherwise, we assume

p ∈ RV(γ ), q ∈ RV(δ), ϕ ∈ RV(σ ), ψ ∈ RV(�), (2)

S. Matucci (B)
Department of Electronics and Telecommunications, University of Florence, 50139 Florence, Italy
e-mail: serena.matucci@unifi.it

P. Řehák
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P. Řehák
Faculty of Education, Masaryk University, Poříčí 31, 60300 Brno, Czech Republic

123



838 S. Matucci, P. Řehák

that is, the coefficients p, q, ϕ, ψ are regularly varying (at infinity) of indices γ, δ, σ, �,
respectively, with γ, δ, σ, � ∈ R. The definition of regular variation will be recalled in the
next section, together with the relevant properties of RV-functions. Further, we suppose that
system (1) is subhomogeneous (at ∞), that is,

αβ > λμ.

In contrast to the most of related works, we do not pose in general any condition on divergence
or convergence of the integrals

P =
∞∫

a

p− 1
α (s) ds, Q =

∞∫
a

q− 1
β (s) ds, (3)

and we do not explicitly distinguish among particular cases. In fact, all possible cases (includ-
ing the mixed ones) are covered by our results.

By a solution of (1), we mean a continuously differentiable couple (x, y) on (T,∞), T ≥
a, such that the quasiderivatives

x [1] = pΦα(x
′), y[1] = q Φβ(y

′)

are continuously differentiable in (T,∞) and satisfy (1). We study the exact asymptotic
behavior of solutions to (1), where both components are eventually positive decreasing and
tend to zero along with their quasiderivatives as the independent variable tends to infinity; such
solutions are usually called strongly decreasing. In contrast to the case where at least one of
the component or its quasiderivative tends to a nonzero real number, classical existence results
do not provide any asymptotic formula for strongly decreasing solutions. The statement of
our main result is given in Sect. 3; roughly speaking, it asserts the following:

If the coefficients of (1) are regularly varying functions and suitable conditions on
α, β, λ, μ, γ, δ, σ and � are assumed, then (1) possesses strongly decreasing solutions.
Further, each strongly decreasing solution (x, y) is regularly varying of known index and
satisfies the asymptotic formulae

x(t) ∼ C1

(
tα+1ϕ(t)

p(t)

)β/(αβ−λμ) (
tβ+1ψ(t)

q(t)

)λ/(αβ−λμ)
,

y(t) ∼ C2

(
tβ+1ψ(t)

q(t)

)α/(αβ−λμ) (
tα+1ϕ(t)

p(t)

)μ/(αβ−λμ)
(4)

as t → ∞, where C1,C2 are explicitly given positive constants, depending only on the
exponents and indices.

The application of the theory of regularly varying functions to the study of the asymptotic
behavior of nonoscillatory solutions plays a key role in deriving our main result. After the
pioneering works by Marić and Tomić (see the monography [20]), several authors worked in
this field, providing important contributions to the understanding of the asymptotic expansion
for special classes of nonoscillatory solutions of linear and nonlinear equations, especially
of order two. We refer, for instance, to the recent works [9,11–13,17,24] and the references
therein. Our paper continues the study and extends the results of previous papers on nonoscil-
latory solutions of systems of the type (1). For instance, Tanigawa in [23] presented some
existence results for decreasing solutions. Some of those results are here generalized, and
additional information about behavior of strongly decreasing solutions is provided. Further,
we extend the asymptotic results of [21] since more general coefficients are here considered
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Asymptotics of decreasing solutions 839

and more general existence conditions are established. Our results provide new observa-
tions even for the case of second-order scalar equations of the Emden–Fowler type (cf. [10]
and very recent paper [17]). More detailed comparisons and further related works are men-
tioned in the third section. We remark that, if (x, y) is a solution of (1), then x satisfies the
fourth-order equation

{
q(t)Φβ

[(
1

ϕ
1
λ (t)

Φ 1
λ

((
p(t)Φα(x

′)
)′))′]}′

= ϕ(t)Φμ(x), (5)

and, vice versa, if x is a solution of (5), then
(

x, ϕ− 1
λ (t)Φ 1

λ

((
p(t)Φα(x ′)

)′)) is a solution

of (1). A similar remark can be made for the component y of any solution (x, y) of (1).
Therefore, system (1) covers various nonlinear fourth-order equations, like, for example,
(ϕ̃(t)x ′′)′′ = ψ(t)Φδ(x), which have been studied previously; see, for instance [6,14,15];
see also [19] where the structure of positive solutions is analyzed under the opposite sign
assumption on the potential. In particular, the recent paper [14] is closely related to our
setting, and in Sect. 3, we will provide a precise comparison with those results. Of course,
since the coefficients are of one sign, Eq. (5) (or system (1)) can be equivalently written as
a suitable first-order nonlinear system of four equations, and the results can be formulated
in such terms. But, in some situations, fourth-order equations viewed as coupled systems
enable better understanding of the structure of a solution space; in particular, we can use the
similarity with some computations and results for scalar second-order equations, which have
been widely studied.

Our results can also be applied to obtain nontrivial information about the behavior of
positive radial solutions of systems of quasilinear partial differential equations of the form{

div
(‖∇u‖α−1∇u

) = ϕ̄(‖z‖)|v|λ−1v,

div
(‖∇v‖β−1∇v) = ψ̄(‖z‖)|u|μ−1u

in exterior domains in R
N , N ≥ 2; see Sect. 3.

The paper is organized as follows: in Sect. 2, we recall the main properties of RV functions,
and we state the existence theorem for strongly decreasing solutions of (1). The main result
about existence of regularly varying solutions of (1) and about their asymptotic form is given
in Sect. 3; there we also compare our results with the existing literature, and we show some
possible applications. The proofs of all statements presented are given in the last section.

2 Preliminaries

Basic properties of regularly varying functions are here recalled. Further, we derive conditions
guaranteeing the existence of strongly decreasing solutions and show important relations
between system (1) and its reciprocal counterpart.

We make use of the following notation: f (t) ∼ g(t) as t → ∞ means f (t)/g(t) → 1 as
t → ∞.

A measurable function f : [a,∞) → (0,∞) is called regularly varying (at infinity) of
index ϑ if

lim
t→∞

f (κt)

f (t)
= κϑ for every κ > 0;

we write f ∈ RV(ϑ). If ϑ = 0, then f is called slowly varying; we write f ∈ SV . We
recommend the monographs [1,8] as very good sources of information on the theory of
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regular variation. The following properties of regularly varying functions find applications
in our considerations.

Proposition 1 ([1,8])

1. f ∈ RV(ϑ) if and only if f (t) = tϑ L(t), where L ∈ SV .
2. If L1, . . . , Ln ∈ SV , n ∈ N, and R(x1, . . . , xn) is a rational function with positive

coefficients, then R(L1, . . . , Ln) ∈ SV .
3. If L ∈ SV and ϑ > 0, then tϑ L(t) → ∞, t−ϑ L(t) → 0 as t → ∞.
4. (The Karamata theorem; direct half). If L ∈ SV , then

∞∫
t

sζ L(s) ds ∼ 1

−ζ − 1
tζ+1L(t) as t → ∞ (6)

provided ζ < −1, and

t∫
a

sζ L(s) ds ∼ 1

ζ + 1
tζ+1L(t) as t → ∞

provided ζ > −1. The integral
∫∞

a L(s)/s ds may converge or not. The function L̃(t) =∫ t
a L(s)/s ds is a new slowly varying function such that L(t)/L̃(t) → 0 as t → ∞.

5. If f ∈ RV(ϑ) with ϑ ≤ 0 and f (t) = ∫∞
t g(s) ds with g nonincreasing, then

−t f ′(t)
f (t)

= tg(t)

f (t)
→ −ϑ as t → ∞. (7)

6. (The representation theorem) It holds L ∈ SV if and only if

L(t) = c(t) exp

⎧⎨
⎩

t∫
a

h(s)/s ds

⎫⎬
⎭ , (8)

t ≥ a, for some a > 0, where c, h are measurable functions and c(t) → c ∈ (0,∞),
h(t) → 0 as t → ∞.

If c(t) ≡ c in (8), then L is called normalized slowly varying; we write L ∈ NSV . A
regularly varying function f (t) = tϑ L(t) with L ∈ NSV is called normalized regularly
varying of index ϑ ; we write f ∈ NRV(ϑ). From the above results, we can see that a
regularly varying function of index ϑ can be seen as a product of the power function tϑ and
a factor which varies “more slowly” (a slowly varying function L). The coefficients in (1)
can therefore been regarded as power functions multiplied by any slowly varying function.

The class of regularly varying functions substantially extends the class of the functions
which are asymptotically equivalent to (a multiple of) a power function. Here are some
examples of slowly varying functions:

∏n
i=1(logi t)μi , where logi t = log logi−1 t and μi ∈

R; exp
{∏n

i=1(logi t)νi
}
, where 0 < νi < 1; 2 + sin(log2 t); (logΓ (t))/t , where Γ is the

classical gamma function. Note that 2+sin t, 2+sin(log t) �∈ SV . For L ∈ SV , it may happen
lim inf t→∞ L(t) = 0, lim supt→∞ L(t) = ∞ (i.e., may exhibit “infinite oscillation”), an
example being L(t) = exp

{
(log t)1/3 cos((log t)1/3)

}
.

As we will show, in the framework of our theory, suitable transformations can enable us
to consider even some systems with coefficients that are not regularly varying.
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Asymptotics of decreasing solutions 841

In the remaining part of this section, we analyze positive decreasing solutions of (1) and
establish existence results. Here, we do not need to assume in general that the coefficients of
(1) are regularly varying, that is, (2) is dropped for now.

Let DS denote the set of all positive decreasing solutions of (1), that is, all solutions whose
components are both eventually positive and decreasing. Note that, due to the sign conditions
on the coefficients, any solution of (1) has necessarily both components eventually of one
sign and monotone. If P = Q = ∞, then limt→∞ x [1](t) = limt→∞ y[1](t) = 0 for any
(x, y) ∈ DS. Indeed, −x [1] is eventually positive decreasing. If limt→∞ −x [1](t) = c > 0,

then p(t)(−x ′(t))α ≥ c or −x ′(t) ≥ c
1
α p− 1

α (t), t ≥ t0 with some t0 ≥ a. Integrating the

latter inequality, we get x(t) ≤ x(t0) − c
1
α

∫ t
t0

p− 1
α (s) ds → −∞ as t → ∞, a contradic-

tion. Similarly, we prove limt→∞ y[1](t) = 0. However, in general, for positive decreasing
solutions, the limits of quasiderivatives do not need to be zero. Observe that any positive
decreasing solution has both the components and their quasiderivatives tending to a finite
value, which is, respectively, nonnegative and nonpositive. Among all these solutions, we
are interested in the so-called strongly decreasing solutions, which we denote as

SDS =
{
(x, y) ∈ DS : lim

t→∞ x(t) = lim
t→∞ y(t) = lim

t→∞ x [1](t) = lim
t→∞ y[1](t) = 0

}
.

The integral expressions below play important roles in existence results for strongly
decreasing solutions:

I1(t) :=
∞∫

t

⎛
⎜⎜⎝ 1

p(u)

∞∫
u

ϕ(s)

⎛
⎜⎝

∞∫
s

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ) dτ

⎞
⎠

1
β

dr

⎞
⎟⎠
λ

ds

⎞
⎟⎟⎠

1
α

du,

I2(t) :=
∞∫

t

⎛
⎜⎝ 1

q(u)

∞∫
u

ψ(s)

⎛
⎜⎝

∞∫
s

⎛
⎝ 1

p(r)

∞∫
r

ϕ(τ) dτ

⎞
⎠

1
α

dr

⎞
⎟⎠
μ

ds

⎞
⎟⎠

1
β

du,

I3(t) :=
∞∫

t

ϕ(u)

⎛
⎜⎝

∞∫
u

⎛
⎝ 1

q(s)

∞∫
s

ψ(r)

⎛
⎝

∞∫
r

1

p
1
α (τ )

dτ

⎞
⎠
μ

dr

⎞
⎠

1
β

ds

⎞
⎟⎠
λ

du,

I4(t) :=
∞∫

t

ψ(u)

⎛
⎜⎜⎝

∞∫
u

⎛
⎜⎝ 1

p(s)

∞∫
s

ϕ(r)

⎛
⎝

∞∫
r

1

q
1
β (τ )

dτ

⎞
⎠
λ

dr

⎞
⎟⎠

1
α

ds

⎞
⎟⎟⎠
μ

du.

The following result holds. Its proof is given in the last section.

Theorem 1 If Ii (a) < ∞ for at least one index i ∈ {1, 2, 3, 4}, then SDS �= ∅.

This theorem improves some results in [23]. Indeed, Tanigawa in [23] proved, under the
condition P = Q = ∞, that SDS �= ∅ provided

∞∫
a

⎛
⎝ 1

p(s)

∞∫
t

ϕ(s) ds

⎞
⎠

1
α

dt < ∞,

∞∫
a

⎛
⎝ 1

q(s)

∞∫
t

ψ(s) ds

⎞
⎠

1
β

dt < ∞. (9)

It is easy to see that (9) implies I1(a) < ∞. Similarly, (9) implies I2(a) < ∞, but none of the
opposite implications holds. Note that, as shown in [23], (9) is sufficient and necessary for
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the existence of (x, y) ∈ DS with limt→∞ x(t) ∈ (0,∞), limt→∞ y(t) ∈ (0,∞) provided
P = Q = ∞. Further, in [23], it was proved that SDS is nonempty provided

∞∫
a

ϕ(t)

⎛
⎝

∞∫
t

(
1

q(s)

) 1
β

ds

⎞
⎠
λ

dt < ∞,

(10)∞∫
a

ψ(t)

⎛
⎝

∞∫
t

(
1

p(s)

) 1
α

ds

⎞
⎠
μ

dt < ∞,

where, of course, P < ∞, Q < ∞ need to be assumed. Again, it is easy to see that (10)
implies I3(a) < ∞, and, similarly, (10) implies I4(a) < ∞, but the opposite implications
do not hold. As shown in [23], (10) is sufficient and necessary for the existence of (x, y) ∈
DS with limt→∞ x(t)/

∫∞
t p− 1

α (s) ds ∈ (0,∞), limt→∞ y(t)/
∫∞

t q− 1
β (s) ds ∈ (0,∞)

provided P < ∞, Q < ∞. Observe that for I3(a) < ∞ or I4(a) < ∞ to be fulfilled, we do
not necessarily need both P and Q to converge. A closer examination of the proof which is
given in the last section shows how the existence results involving I3 and I4 simply follow
from the ones involving I1 and I2, respectively, by using the reciprocity principle for (1); this
principle will also enable us to extend existence and asymptotic results to new situations.

Here is a brief description of the reciprocity principle. Let (x, y) ∈ DS. Set u = −x [1],
v = −y[1]. Then, (u, v) is an eventually positive decreasing solution of the reciprocal system⎧⎪⎪⎨

⎪⎪⎩

(
1

ϕ
1
λ (t)

Φ 1
λ
(u′)
)′

= 1

q
1
β (t)

Φ 1
β
(v),

(
1

ψ
1
μ (t)

Φ 1
μ
(v′)
)′

= 1

p
1
α (t)

Φ 1
α
(u).

(11)

Observe that (11) has the same structure as (1) and is subhomogeneous. Indeed, 1/(λμ) >

1/(αβ). Moreover, the quasiderivatives of u and v, that is, ϕ− 1
λ Φ 1

λ
(u′) and ψ− 1

μ Φ 1
μ
(v′), are

equal to −y and −x , respectively. Conversely, if (u, v) is an eventually positive decreasing

solution of (11) and we set x = −ψ− 1
μ Φ 1

μ
(v′) and y = −ϕ− 1

λ Φ 1
λ
(u′), then (x, y) ∈ DS

and x [1] = −u, y[1] = −v. Hence, with the use of these relations, it holds

(x, y) is a strongly decreasing solution of (1)
�

(u, v) is a strongly decreasing solution of (11).
(12)

It is easy to see that the roles which are played by the integrals I1 and I2 for system (1) are
played by the integrals I3 and I4, respectively, for system (11).

3 Main results

In this central section, we show that strongly decreasing solutions of (1) are regularly varying
provided the coefficients are regularly varying and the indices and powers in nonlinearities
satisfy certain assumptions. We also derive an asymptotic formula and give several comments,
applications, and comparisons with existing results. From now on, we always assume (2).

For a function f ∈ RV(ϑ) we denote

L f (t) = f (t)/tϑ .
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We set

Λ = 1

αβ − λμ

and

ν = Λ
(
β(α − γ + 1 + σ)+ λ(β − δ + 1 + �)

)
,

ω = Λ
(
α(β − δ + 1 + �)+ μ(α − γ + 1 + σ)

)
. (13)

Further, we denote

ν[1] = (ν − 1)α + γ, ω[1] = (ω − 1)β + δ. (14)

Theorem 2 Assume

ν < 0, ω < 0, ν[1] < 0, ω[1] < 0. (15)

Then SDS �= ∅. Further, for every (x, y) ∈ SDS, there hold (x, y) ∈ RV(ν)× RV(ω) and

x(t) ∼
(

K1 K
λ
α

2

)αβΛ
tνL1(t), y(t) ∼

(
K2 K

μ
β

1

)αβΛ
tωL2(t) (16)

as t → ∞, where

K1 = −1

ν
(−ν[1]) 1

α

, K2 = −1

ω
(−ω[1]) 1

β

, (17)

and

L1 =
(

LβϕLλψ

Lβp Lλq

)Λ
∈ SV, L2 =

(
Lμϕ Lαψ
Lμp Lαq

)Λ
∈ SV.

Remark 1 (i) Theorem 2 has a partial converse, which reads as follows.
If (x, y) ∈ SDS ∩ (RV(τ ) × RV(ζ )), then τ = ν, ζ = ω, ν ≤ 0, ω ≤ 0, ν[1] ≤
0, ω[1] ≤ 0.
If the assumption (2) on regular variation of the coefficients are strengthened to the
asymptotic equivalences p(t) ∼ a1tγ , q(t) ∼ a2tδ , ϕ(t) ∼ a3tσ , ψ(t) ∼ a4t� as
t → ∞, a1, a2, a3, a4 ∈ (0,∞), then the inequalities for ν, ω, ν[1], ω[1] are strict.

(ii) Under the assumptions of Theorem 2, the quasiderivatives of a strongly decreasing
solution (x, y) of (1) satisfy

−x [1](t) ∼

(
K2 K

μ
β

1

)αβΛλ

−ν[1] tν
[1]

Lϕ(t)L
λ
2(t) ∈ RV

(
ν[1])

−y[1](t) ∼

(
K1 K

λ
α

2

)αβΛμ

−ω[1] tω
[1]

Lψ(t)L
μ
1 (t) ∈ RV

(
ω[1]) .

(iii) The asymptotic formula (16) can be alternatively written in terms of the coefficients,
see (4), where

C1 = (K1 K λ/α
2 )αβ/(αβ−λμ), C2 = (K2 Kμ/β

1 )αβ/(αβ−λμ).
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(iv) If the components of a (decreasing) regularly varying solution to (1) are eventually con-
vex, then they are both normalized regularly varying. Note that the eventual convexity
of decreasing solutions of (1) can be guaranteed, for example, by p(t) = q(t) = 1.

(v) The assumptions of Theorem 2 can be replaced by any of the following inequalities

� + 1 < min

{
0, δ − β, δ − β − β

λ
(σ + 1), δ − β − β

λ
(σ + 1 + α − γ )

}
(18)

or

σ + 1 < min

{
0, γ − α, γ − α − α

μ
(� + 1), γ − α − α

μ
(� + 1 + β − δ)

}
(19)

or

α − γ < min

{
0,− α

μ
(� + 1),− α

μ
(� + 1 + β − δ),− α

μ
(� + 1 + β − δ)− αβ

λμ
(σ + 1)

}
(20)

or

β − δ < min

{
0,−β

λ
(σ + 1),−β

λ
(σ + 1 + α − γ ),−β

λ
(σ + 1 + α − γ )− αβ

λμ
(� + 1)

}
, (21)

and the statement remains valid. Moreover, the following equivalence among the suf-
ficient conditions hold:

(15) ⇔ (18) or (19) or (20) or (21). (22)

As an example of typical setting, assume P = Q = ∞. Then, necessarily α ≥ γ and
β ≥ δ; the sufficient condition (15) reduces to

ν < 0, ω < 0. (23)

Indeed, ν[1] = να − α + γ ≤ να < 0. Similarly, we obtain ω[1] < 0.
Another example of a typical situation is when

∫∞
a ϕ(t) dt = ∫∞

a ψ(t) dt = ∞ is
assumed. This condition impliesσ+1 ≥ 0, �+1 ≥ 0, and (15) reduces to ν[1] < 0, ω[1] < 0.

We can also quite easily observe how the “mixed” cases, for instance,
∫∞

a p− 1
α (s) ds =

∞,
∫∞

a q− 1
β (s) ds < ∞, or

∫∞
a ϕ(t) dt = ∞,

∫∞
a ψ(t) dt < ∞, can be covered by our

results as well.
Our results can be applied also in some special situations where the coefficients of

(1) are not regularly varying, by means of a change of the independent variable. Let
s = ζ(t), where ζ is a differentiable function such that ζ ′(t) �= 0 on [a,∞). Set
(w, z)(s) = (x, y)(ζ−1(s)), ζ−1 being the inverse of ζ . Since d/dt = ζ ′(t)d/ds, system
(1) is transformed into the system

{ d
ds

(
p̂(s)Φα

( dw
ds

)) = ϕ̂(s)Φλ(z),

d
ds

(
q̂(s)Φβ

( dz
ds

)) = ψ̂(s)Φμ(w),
(24)

where

p̂ := (p ◦ ζ−1) ·Φα(ζ ′ ◦ ζ−1), q̂ := (q ◦ ζ−1) ·Φβ(ζ ′ ◦ ζ−1),

ϕ̂ := ϕ ◦ ζ−1

ζ ′ ◦ ζ−1 , ψ̂ := ψ ◦ ζ−1

ζ ′ ◦ ζ−1 .
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Asymptotics of decreasing solutions 845

Clearly, (24) is of the form (1) and is subhomogeneous. If ζ is unbounded with ζ ′ > 0 and
such that p̂, q̂, ϕ̂, ψ̂ ∈ ⋃ϑ∈R

RV(ϑ), then our results can be applied to (24). To illustrate a
possible application, take, for example,

p(t) = eγ t h1(t), q(t) = eδt h2(t), ϕ(t) = eσ t h3(t), ψ(t) = e�t h4(t),

where γ, δ, σ, � ∈ R and hi ∈ ⋃ϑ∈R
RV(ϑ), i = 1, 2, 3, 4. In such a case, we can set

ζ(t) = et . Thus, t = ln s and [a,∞) is transformed into another right half-line. We then get

p̂(s) = sγ+αH1(s) ∈ RV(γ + α), where H1 := h1 ◦ ln,

since H1 ∈ RV(γ1 · 0) = RV(0) = SV, γ1 being the index of regular variation of h1.
Similarly,

q̂ ∈ RV(δ + β), ϕ̂ ∈ RV(σ − 1), ψ̂ ∈ RV(� − 1).

Consequently, Theorem 2 can directly be applied to system (24) and hereby to the original
system through the transformation.

Our results give also useful information about asymptotic form of radial solutions to the
partial differential system{

div
(‖∇u‖α−1∇u

) = ϕ̄(‖z‖)|v|λ−1v,

div
(‖∇v‖β−1∇v) = ψ̄(‖z‖)|u|μ−1u

(25)

in an exterior domain in R
N , N ≥ 2, where ϕ̄(t) = t σ̄ L ϕ̄ (t) ∈ RV(σ̄ ), ψ̄(t) = t �̄Lψ̄ (t) ∈

RV(�̄). If we assume

ν̄ := Λ(β(α + 1 + σ̄ )+ λ(β + 1 + �̄)) < 0,

ω̄ := Λ(α(β + 1 + �̄)+ μ(α + 1 + σ̄ )) < 0,

N < min{1 − (ν̄ − 1)α, 1 − (ω̄ − 1)β},
then the existence of a positive (strongly) decreasing radial solution of (25) is guaranteed,
and any such a solution (u, v) satisfies

lim‖z‖→∞
u(z)

|z|ν̄LβΛϕ̄ (‖z‖)LλΛ
ψ̄
(‖z‖)

=
(

K̄1 K̄
λ
α

2

)αβΛ
,

lim‖z‖→∞
v(z)

|z|ω̄LμΛϕ̄ (‖z‖)LαΛ
ψ̄
(‖z‖) =

(
K̄2 K̄

μ
β

1

)αβΛ
,

where

K̄1 = −
(
ν̄ ((1 − ν̄)α − N + 1)

1
α

)−1
, K̄2 = −

(
ω̄ ((1 − ω̄)β − N + 1)

1
β

)−1
.

Indeed, a radial function (u(z), v(z)) is a solution of (25) in Σa = {z ∈ R
N : ‖z‖ ≥ a}

if and only if (x(t), y(t)), t = ‖z‖, given by (x(‖z‖), y(‖z‖)) = (u(z), v(z)), satisfies the
ordinary differential system{(

t N−1Φα(x ′)
)′ = t N−1ϕ̄(t)Φλ(y),(

t N−1Φβ(y′)
)′ = t N−1ψ̄(t)Φμ(x),

(26)

t ≥ a. System (26) has the same structure as (1), with p(t) = q(t) = t N−1, ϕ(t) =
t N−1ϕ̄(t), ψ(t) = t N−1ψ̄(t). Thus γ = δ = N − 1, L p(t) = Lq(t) = 1, σ = N − 1 + σ̄ ,
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846 S. Matucci, P. Řehák

� = N − 1 + �̄, Lϕ(t) = L ϕ̄ (t), Lψ(t) = Lψ̄ (t). Applying Theorem 2 to system (26) and
going back to the original variables, we get the result.

Note that if Theorem 2 was obtained just for system (1) with p(t) = q(t) = 1, then,
after a suitable transformation of the independent variable, only partial systems of the form
(25) satisfying the conditions α = β and α + 1 > N would be detectable. Arbitrariness
of p, q and of the convergence or divergence of the integrals in (3) enable us to omit these
restrictions. Moreover, our general setting allows us to consider even more general partial
differential systems where the leading coefficients are formed by elliptic matrices of certain
special forms.

For some other information concerning related partial differential systems, see, for exam-
ple, [4,5] and the references in [5,23]. Recall that systems similar to (25) are sometimes in
the literature called as of Lane–Emden type.

In the remaining part of this section, we apply Theorem 2 to some particular cases of (1)
and compare our results with existing literature. Consider first the widely studied fourth-order
equation

x ′′′′ = ψ(t)Φμ(x). (27)

Equations of these forms have been studied in a slightly related manner, for instance, in [2,6].
Practically under the same setting as in this paper, Eq. (27) was analyzed in [14]; the case
with opposite sign assumption on ψ is discussed in [15]. The below-mentioned observations
can be easily extended to more general fourth-order equations (like (5)), but for comparison
purposes, we take the form (27), which appears quite frequently in the literature. We assume
ψ ∈ RV(�) and μ > 0. This equation is equivalent to system (1), where we set α = β =
λ = 1 and p(t) = q(t) = ϕ(t) = 1. Then, γ = δ = σ = 0, L p(t) = Lq(t) = Lϕ(t) = 1,
and Λ = 1/(1 − μ). The subhomogeneity assumption reads as μ < 1. Further,

ν = � + 4

1 − μ
, ω = � + 2 + 2μ

1 − μ
, ν[1] = � + 3 + μ

1 − μ
, ω[1] = � + 1 + 3μ

1 − μ
.

A strongly decreasing solution x of (27) is such that

lim
t→∞ x(t) = lim

t→∞ x ′(t) = lim
t→∞ x ′′(t) = lim

t→∞ x ′′′(t) = 0.

It is easy to see that in order (15) to be fulfilled, it is sufficient to take � < −4. Alternatively,
we can check how (18) is verified (this is the only one among conditions (18), (19), (20),
(21) that can be satisfied in this situation). Thus, under the assumptions 0 < μ < 1 and
� < −4, Theorem 2 assures that (27) possesses a strongly decreasing solution, and for any
such a solution x , it holds

x(t) ∼
(

(1 − μ)4t�+4 Lψ(t)∏4
i=1[� + i + (4 − i)μ]

) 1
1−μ

as t → ∞. This result extends [14, Theorem 8], since it gives a precise asymptotic formula
for SDS solutions, and it holds for any SDS solution of (27). Indeed, under the same
assumptions, in [14, Theorem 8] is proved that (27) possesses a solution x satisfying

m

(
(1 − μ)4t�+4 Lψ(t)∏4
i=1[� + i + (4 − i)μ]

) 1
1−μ

≤ x(t) ≤ M

(
(1 − μ)4t�+4 Lψ(t)∏4
i=1[� + i + (4 − i)μ]

) 1
1−μ

for some positive constants m,M . We point out that a quite different approach than in our
paper is used in [14].
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In [21], we considered system (1), where we assumed p(t) = 1 = q(t), ϕ(t) ∼ c1tσ and
ψ(t) ∼ c2t� with c1, c2 ∈ (0,∞). Under the condition

σ + 1 + α < 0, � + 1 + β < 0. (28)

we showed that SDS �= ∅ and that any (x, y) ∈ SDS satisfies

(x, y)(t) ∼ (k1tν, k2tω) as t → ∞
where

kλμ−αβ
1 = αββλ|ν|αβ |ν − 1|β |ω|βλ|ω − 1|λc−β

1 c−λ
2 ,

kλμ−αβ
2 = αμβα|ν|αμ|ν − 1|μ|ω|αβ |ω − 1|αc−μ

1 c−α
2 .

Since every function which is asymptotically equivalent to a power function is trivially
regularly varying, it is clear that this result is a special case of Theorem 2 (with P = Q = ∞).
Moreover, the sufficient condition (28) is stronger than (23), which, in this case, reduces to
β(α + 1 + σ)+ λ(β + 1 + �) < 0. Observe how condition (28) corresponds to Tanigawa’s
integral existence condition (9) stated in [23]. Indeed, for f (t) such that f (t) ∼ tϑ , it holds

∞∫
f (s) ds < ∞ if and only ifϑ < 0, (29)

while for a more general f ∈ RV(ϑ), the convergence of
∫∞ f (s) ds is possible also with

ϑ = 0; see also Proposition 1–4. The fact that the coefficients of the system in [21] are trivially
regularly varying enabled us to apply the so-called asymptotic equivalence theorem, and we
obtained the result by making a comparison with an (explicitly solvable) system which has
precise power coefficients. That approach does not work in the present more general setting.

From our results for system (1) we can also obtain the asymptotic formula for strongly
decreasing solutions to scalar second-order equations of the form

(p(t)Φα(x
′))′ = ϕ(t)Φλ(x), (30)

where p ∈ RV(γ ) and ϕ ∈ RV(σ ), under the conditions α > λ and

σ + 1 < min

{
γ − α,

λ

α
(γ − α)

}
. (31)

Indeed, if α > λ, it is known that (30) has strongly decreasing solutions if

∞∫
a

⎛
⎝ 1

p(t)

∞∫
t

ϕ(s) ds

⎞
⎠

1
α

dt < ∞, (32)

or

∞∫
a

ϕ(t)

⎛
⎝

∞∫
t

1

p
1
α (s)

ds

⎞
⎠
λ

dt < ∞, (33)

holds, see, for instance, [3, Proposition 2]. Notice that (31) implies (32) if γ ≤ α, while it
implies (33) if γ > α. If x is a strongly decreasing solution of (30), then (x, x) ∈ SDS
for system (1), in which we take p(t) = q(t), ϕ(t) = ψ(t), α = β, and λ = μ. The
subhomogeneity condition is implied by α > λ. Further,

ν = ω = α − γ + σ + 1

α − λ
, and ν[1] = ω[1] = λ(α − γ )+ α(σ + 1)

α − λ
,
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and condition (15) (or equivalently condition (19)) reduces to (31). Then, in view of Theo-
rem 2, under (31), there hold x ∈ RV(ν) and

x(t) ∼
(

tα−γ+σ+1Lϕ(t)

(−ν)α(−ν[1])L p(t)

) 1
α−λ

(34)

as t → ∞. If, in Eq. (30), additionally we assume p(t) = 1 and ϕ(t) ∼ tσ (thus ϕ is
trivially regularly varying), then the just described result reduces to the relevant part of
[10, Theorem 4.4] by Kamo and Usami; notice that their proof is based on the asymptotic
equivalence theorem. Our results turn out to be new in the second-order equation setting
even when compared with [17]. Indeed, in [17, Theorem 2.2] is proved that the equation
(Φα(x ′))′ = ϕ(t)Φλ(x) possesses a positive decreasing solution satisfying

m

(
tα+σ+1Lϕ(t)

(−ν)α(−ν[1])

) 1
α−λ

≤ x(t) ≤ M

(
tα+σ+1Lϕ(t)

(−ν)α(−ν[1])

) 1
α−λ

for some positive constants m,M , where in ν, ν[1] one has γ = 0, and ϕ ∈ RV(σ ), α > λ,
σ < −α − 1 are assumed.

Further related results for scalar second-order equations were obtained by Marić [20],
who considered the equation x ′′ = ϕ(t)F(x), where ϕ is regularly varying (at infinity) and
F is regularly varying at zero of index λ; the superlinearity condition 1 < λ is assumed
there. Other related results have been obtained by Kusano and Manojlović in [11,12] for the
equation x ′′ + r(t)F(x) = 0, where r is regularly varying (at infinity) and F = Φλ or F
is regularly varying at zero of index λ, under the sublinearity condition 1 > λ, and in [13],
where the existence of slowly varying solutions and regularly varying solutions of index 1
is studied both in the superlinear and in the sublinear case. Note that the potential in the last
mentioned works is of the opposite sign than those in the formerly mentioned works.

Finally, for completeness, we mention several other works which are somehow related
to the above-presented ones. Increasing solutions have been studied deeper for singular
Emden–Fowler-type systems rather than for regular ones; see, for example, [18] and the
references therein. An asymptotic theory of such systems in the framework of regular variation
can be a topic for a future research. There are quite many works devoted to study of half-
linear differential equations (ordinary as well as functional ones) in the framework of regular
variation. However, they can usually use different methods than in more general, quasilinear
case, see e.g. [9,24]. A higher-order quasilinear two-term differential equation is studied, for
example, in [22], and a generalization of some results from [2] is obtained. The theory of
regular variation was applied to the study of odd-order equations in [16]. Somehow, related
asymptotic formulas for solutions to n-th-order equations were derived in [7]. The two-term
equation can be written as a system of the form

x ′
i = −ai (t)Φαi (xi+1), i = 1, . . . , n, (35)

where xn+1 means x1. We stress that nonlinear two-term differential equations which are
included in (35) can be of arbitrary order (even as well as odd). In addition, (35) covers
systems analogous to (1), where, instead of two equations, we can have k second-order
equations, k ∈ N. Similar systems of two or more second-order equations are considered,
for example, in [5]. We believe that our methods can be modified and extended to general
systems of the form (35).
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Asymptotics of decreasing solutions 849

4 Proofs

Proof of Theorem 1 Case I. Assume I1(a) < ∞, and let t0 ≥ a be sufficiently large, such
that

I1(t0) <
1

2
. (36)

For every n ∈ N, let�n ⊆ C[t0,∞)×C0[t0,∞) denote the set of functions (x, y) satisfying

1

n
≤ x(t) ≤ 2, 0 ≤ y(t) ≤ 2μ/β

∞∫
t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ) dτ

⎞
⎠

1
β

dr, (37)

for every t ≥ t0. Let Tn : �n → C[t0,∞) × C0[t0,∞) be the map defined by Tn(x, y) =
(Fn y,Gn x), where

(Fn y)(t) = 1

n
+

∞∫
t

⎛
⎝ 1

p(r)

∞∫
r

ϕ(τ)yλ(τ ) dτ

⎞
⎠

1
α

dr,

(Gn x)(t) =
∞∫

t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ)xμ(τ) dτ

⎞
⎠

1
β

dr.

Notice that the assumption I1(a) < ∞ assures that Tn is well defined on�n for every n ∈ N;
further, the following estimates hold, taking account of (36), (37), and of the subhomogeneity
condition αβ > λμ:

1

n
≤ Fn y(t) ≤ 1

n
+ 2

μλ
αβ I1(t0) < 1 + 2

μλ
αβ

1

2
< 2,

0 ≤ Gn x(t) ≤ 2μ/β
∞∫

t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ) dτ

⎞
⎠

1
β

dr,

for every t ≥ t0. Hence, Tn maps �n into itself, for every n ∈ N. The Schauder–Tychonoff
fixed-point theorem can be applied to obtain the existence of a fixed point (xn, yn) of Tn in
�n , n ∈ N. Notice that (xn, yn) is a positive moderately decreasing solution of (1), satisfying
the asymptotic conditions limt→∞ xn(t) = 1/n, limt→∞ yn(t) = 0, limt→∞ x [1]

n (t) =
0, limt→∞ y[1]

n (t) = 0. Therefore, we have constructed a sequence {(xn, yn)} of positive
decreasing solutions of (1), defined on [t0,∞), which is uniformly bounded, since for every
n ∈ N it holds

0 ≤ xn(t) ≤ 2, 0 ≤ yn(t) ≤ 2μ/β
∞∫

t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ) dτ

⎞
⎠

1
β

dr, t ≥ t0.
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The estimates

0 ≤ −x ′
n(t) ≤ 2

μλ
αβ

⎛
⎜⎜⎝ 1

p(t)

∞∫
t

ϕ(s)

⎛
⎜⎝

∞∫
s

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ) dτ

⎞
⎠

1
β

dr

⎞
⎟⎠
λ

ds

⎞
⎟⎟⎠

1
α

0 ≤ −y′
n(t) ≤ 2μ/β

⎛
⎝ 1

q(t)

∞∫
t

ψ(τ) dτ

⎞
⎠

1
β

assure that also the sequence {(x ′
n, y′

n)} is uniformly bounded, and therefore, {(xn, yn)} is
locally equicontinuous on [t0,∞). By the Ascoli-Arzelà theorem, there exists a subsequence
of {(xn, yn)} which converges to a limit function (x0, y0), uniformly on compact subsets of
[t0,∞). Simple calculations show that (x0, y0) satisfies

x0(t) =
∞∫

t

⎛
⎝ 1

p(r)

∞∫
r

ϕ(τ)yλ0 (τ ) dτ

⎞
⎠

1
α

dr,

y0(t) =
∞∫

t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ)xμ0 (τ ) dτ

⎞
⎠

1
β

dr,

that is, (x0, y0) is a solution of (1), with

lim
t→∞ x0(t) = lim

t→∞ y0(t) = lim
t→∞ x [1]

0 (t) = lim
t→∞ y[1]

0 (t) = 0.

To prove that (x0, y0) ∈ SDS, it is sufficient to show that x0(t) > 0, y0(t) > 0 on [t0,∞)

and that it can be extended to the whole interval [a,∞). This part of the proof is analogous
to the corresponding one in the proof of [23, Theorem 2.2], and it is omitted.

Case II. Assume I2(a) < ∞, and let t0 ≥ a be sufficiently large, such that I2(t0) < 1/2.
Analogously to the proof of Case I, for every n ∈ N, we can define the set Ω̂n ⊆ C[t0,∞)×
C0[t0,∞) as the set of functions (x, y) satisfying

0 ≤ x(t) ≤ 2λ/α
∞∫

t

⎛
⎝ 1

p(r)

∞∫
r

ϕ(τ) dτ

⎞
⎠

1
α

dr,
1

n
≤ y(t) ≤ 2,

for every t ≥ t0, and the map T̂n : Ω̂n → C[t0,∞) × C0[t0,∞), T̂n(x, y) = (F̂n y, Ĝn x),
where

(F̂n y)(t) =
∞∫

t

⎛
⎝ 1

p(r)

∞∫
r

ϕ(τ)yλ(τ ) dτ

⎞
⎠

1
α

dr,

(Ĝn x)(t) = 1

n
+

∞∫
t

⎛
⎝ 1

q(r)

∞∫
r

ψ(τ)xμ(τ) dτ

⎞
⎠

1
β

dr.

We easily get T̂n(Ω̂n) ⊆ Ω̂n , and also the other parts of the proof follow similar arguments
to the ones in the proof of Case I.
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Asymptotics of decreasing solutions 851

Case III. Assume I3(a) < ∞. By means of the reciprocity principle, this case corresponds to
Case I for the reciprocal system (11), and therefore, there exist strongly decreasing solutions
of (11). In view of (2), the assertion follows.

Case IV. Assume I4(a) < ∞. Similar to the previous case, this assumption corresponds to
Case II for the reciprocal system (11), and therefore, there exist strongly decreasing solutions
of (11) and thus of (1), in view of (2). ��
Proof of Theorem 2 First, we show that

(15) implies (18) or (19) or (20) or (21). (38)

Since in the subsequent part of this proof the statement of Theorem 2 is shown to be guaranteed
by any of the conditions (18) or (19) or (20) or (21), the result follows. Observe

sgnν = sgn
[
β(α − γ )+ λ(β − δ)+ β(σ + 1)+ λ(� + 1)

]
,

sgnω = sgn
[
μ(α − γ )+ α(β − δ)+ μ(σ + 1)+ α(� + 1)

]
,

sgnν[1] = sgn
[
λμ(α − γ )+ λα(β − δ)+ αβ(σ + 1)+ λα(� + 1)

]
,

sgnω[1] = sgn
[
μβ(α − γ )+ μλ(β − δ)+ μβ(σ + 1)+ αβ(� + 1)

]
.

Thus, any of the conditions ν < 0, ω < 0, ν[1] < 0, ω[1] < 0 implies that at least one of the
inequalities

α − γ < 0 or β − δ < 0 or σ + 1 < 0 or � + 1 < 0 (39)

holds. One can proceed in such a way that we distinguish the cases where just one or just
two or just three or all the inequalities in (39) hold:

I. Only one inequality in (39) holds. Assume, for example,�+1 < 0,σ+1 ≥ 0, β−δ ≥ 0,
and α − γ ≥ 0. From ν < 0, we have

� + 1 < δ − β − β

λ
(σ + 1 + α − γ ) ≤ δ − β − β

λ
(σ + 1) ≤ δ − β.

Thus, we get (18). Similarly, σ + 1 < 0 with ω < 0 implies (19), α − γ < 0 with ν[1] < 0
implies (20), and β − δ < 0 with ω[1] < 0 implies (21).

II. Two inequalities in (39) hold. Assume, for instance, σ +1 < 0, �+1 < 0, α−γ ≥ 0
and β − δ ≥ 0. Either of conditions ν < 0, ω < 0 implies α − γ + σ + 1 < 0 or
β − δ + � + 1 < 0, see (13). Assume, for instance, that the former inequality holds. From
ω < 0 we have,

σ + 1 < γ − α − α

μ
(� + 1)+ α

μ
(δ − β) ≤ γ − α − α

μ
(� + 1).

Thus (19) follows. Similarly, if β − δ + � + 1 < 0, condition ν < 0 leads to (18). The case
where σ +1 ≥ 0, �+1 ≥ 0, α−γ < 0 and β−δ < 0 simply follows from the “reciprocity
argument,” which is based on the relations among the coefficients of (1) and (11), and yields
(20) or (21). The remaining four cases where two inequalities in (39) hold can be shown
similarly; in particular, if β− δ < 0 and �+ 1 < 0 hold, then (18) follows, if α− γ < 0 and
σ + 1 < 0 then (19) is satisfied, α−γ < 0, �+ 1 < 0 imply (20), and β− δ < 0, σ + 1 < 0
imply (21).

The cases where three or four inequalities in (39) hold are trivial.
Now we show that SDS �= ∅. In view of (38), we may assume that, for instance, (18)

happens. Inequality (18) implies that I1 is well defined and converges, and thus SDS �= ∅
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by Theorem 1. Indeed, � + 1 < 0 implies the convergence of
∫∞

r ψ(τ) dτ (see the 4th item
in Proposition 1) and by (6) there is c > 0 such that

∫∞
r ψ(τ) dτ ≤ cr�+1Lψ(r), r ≥ a.

Using the same arguments and the just obtained estimate, the inequalities in (18) imply that
all other integrals in I1 including the I1 itself are well defined and converge. Similarly, we
get that (19) implies I2(a) < ∞, (20) implies I3(a) < ∞, and (21) implies I4(a) < ∞.

For the remaining part of the proof, we will make use repeatedly of the integral form of
(1) for strongly decreasing solutions. Let (x, y) ∈ SDS; integrating both equations in (1)
and taking into account that x [1](∞) = y[1](∞) = 0, we get

− x [1](t) =
∞∫

t

ϕ(s)yλ(s) ds, −y[1](t) =
∞∫

t

ψ(s)xμ(s) ds. (40)

Integrating again, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t) =
∫ ∞

t

⎛
⎝ 1

p(s)

∞∫
s

ϕ(u)Φλ(y(u)) du

⎞
⎠

1/α

ds,

y(t) =
∫ ∞

t

⎛
⎝ 1

q(s)

∞∫
s

ψ(u)Φμ(x(u)) du

⎞
⎠

1/β

ds,

(41)

where we have used that x(∞) = y(∞) = 0.
In the next step, we show that for any (x, y) ∈ SDS there exist c1, c2, d1, d2 ∈ (0,∞)

such that

c1tνL1(t) ≤ x(t) ≤ c2tνL1(t), d1tωL2(t) ≤ y(t) ≤ d2tωL2(t) (42)

for large t . Assume first (18), and take any (x, y) ∈ SDS. For brevity, we will not mention
the phrase “for large t” repeatedly. From (41), since x is decreasing, we get

x(t) ≤ x
λμ
αβ (t)

∞∫
t

⎛
⎝ 1

sγ L p(s)

∞∫
s

uσ Lϕ(u)

×
⎛
⎜⎝

∞∫
u

⎛
⎝ 1

τ δLq(τ )

∞∫
τ

r�Lψ(r) dr

⎞
⎠

1
β

dτ

⎞
⎟⎠
λ

du

⎞
⎟⎟⎠

1
α

ds, (43)

where the improper integrals converge due to (18). Applying (6) repeatedly (which is possible
since the respective indices are always less than −1), starting with the most inner integral,
we find k1, k2 ∈ (0,∞) such that

x(t) ≤ k1x
λμ
αβ (t)L

1
αβΛ

1 (t)

∞∫
t

⎛
⎜⎜⎝s−γ

∞∫
s

uσ

⎛
⎜⎝

∞∫
u

⎛
⎝τ−δ

∞∫
τ

r�dr

⎞
⎠

1
β

dτ

⎞
⎟⎠
λ

du

⎞
⎟⎟⎠

1
α

ds

= k2x
λμ
αβ (t)L

1
αβΛ

1 (t)tν/(αβΛ),
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and so x(t) ≤ c2tνL1(t), for some c2 ∈ (0,∞), follows. To find an upper estimate for y, we
use the just obtained estimate for x , which plugged into the second equation of (41) yields

y(t) ≤
∞∫

t

⎛
⎝ 1

q(s)

∞∫
s

ψ(u)cμ2 uνμLμ1 (u)

⎞
⎠

1
β

ds

=
∞∫

t

⎛
⎝ 1

sδLq(s)

∞∫
s

u�+μνcμ2 Lψ(u)L
μ
1 (s) du

⎞
⎠

1
β

ds

≤ d2t
�+μν+1−δ

β
+1
(

Lψ(t)L
μ
1 (t)

Lq(t)

) 1
β

= d2tωL2(t)

for some d2 ∈ (0,∞). Note that the convergence of all integrals and the applicability of (6)
are assured by �+μν < −1 and (�+μν+ 1 − δ)/β = ω− 1 < −1. If, instead of (18), we
assume (19), then we proceed in an analogous way, where first we establish an upper estimate
for y, and then we utilize it in estimating x . We will also need estimates for −x [1],−y[1].
Notice that the following identities hold:

λω + σ + 1 = (ν − 1)α + γ = ν[1],
μν + � + 1 = (ω − 1)β + δ = ω[1]. (44)

From (40), applying the just obtained estimates for x, y, and the relations (44), we have that
there are k3, k4 ∈ (0,∞) such that

− x [1](t) ≤ k3tν
[1]

Lϕ(t)L
λ
2(t), −y[1](t) ≤ k4tω

[1]
Lψ(t)L

μ
1 (t) (45)

for large t . Clearly, all improper integrals in auxiliary computations converge, and, moreover,
(6) can be applied.

Recall that all the above estimates were made just for the case when (18) or (19) holds.
The upper estimates when (20) or (21) happens follow by the reciprocity principle. Indeed,
(20) and (21) play in (11) the same role as (18) and (19) in (1). Let u = −x [1] and v = −y[1].
Define ν̃, ω̃, L̃1, L̃2 by means of (11) as ν, ω, L1, L2, respectively, are defined by means of
(1). In view of (2), arguing as in the previous case, we find c̃2, d̃2 ∈ (0,∞) such that

u(t) ≤ c̃2t ν̃ L̃1(t), v(t) ≤ d̃2t ω̃ L̃2(t) (46)

for large t . Since ν̃ = ν[1], ω̃ = ω[1], L̃1 = LϕLλ2, L̃2 = Lψ Lμ1 , (46) yields (45), from
which we easily obtain the upper estimates for x and y displayed in (42).

Now we prove lower estimates for x, y; here, everything works in the same way no
matter which of conditions (18) or (19) or (20) or (21) happens. For brevity, we sometimes
omit arguments; again, all estimates are made for sufficiently large values of arguments. Set
z = −xx [1] and w = −yy[1]. Then, from (1),

−z′ = x ′ pΦα(x ′)+ xϕyλ = z

(
− x ′

x
+ ϕyλ

p(−x ′)α

)
,

−w′ = y′qΦβ(y′)+ yψxμ = w

(
− y′

y
+ ψxμ

q(−y′)β

)
.
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Denote

ξ1 = 2αβ + αβμ+ αλμ+ αμ+ βμ+ β + μ,

ξ2 = 2αβ + αβλ+ βλμ+ αλ+ βλ+ α + λ.

Consider the three pairs of conjugate numbers pi , qi (i = 1, 2, 3), which are given by

p1 = ξ1/(α(β + βμ+ λμ+ μ)), q1 = ξ1/(αβ + β + μ+ βμ),

p2 = ξ2/(β(αλ+ λ+ λμ+ α)), q2 = ξ2/(αβ + αλ+ α + λ),

p3 = (ξ1 + ξ2)/ξ1, q3 = (ξ1 + ξ2)/ξ2.

It is not difficult to verify that the numbers pi , qi (i = 1, 2, 3) satisfy the equalities

μ

q2q3
− 1

p1 p3
= 1

αp1 p3
− 1

q1 p3
= λ

q1 p3
− 1

p2q3
= 1

βp2q3
− 1

q2q3
.

Denote

ξ = μ

q2q3
− 1

p1 p3
+ 1

Let k5, k6 ∈ (0,∞) be such that k5 ≤ min{p1, q1, p2, q2} and k6 ≤ k5 min{p3, q3}. Then,
in view of the above identities for z′ and w′, applying the Young inequality at three places,
we get

(zw)′ = −z′w − zw′ = zw

(−x ′

x
+ ϕyλ

−x [1] + −y′

y
+ ψxμ

−y[1]

)

≥ k5zw

⎛
⎝
(−x ′

x

) 1
p1
(
ϕyλ

−x [1]

) 1
q1 +

(−y′

y

) 1
p2
(
ψxμ

−y[1]

) 1
q2

⎞
⎠

≥ k6zw

(−x ′

x

) 1
p1 p3

(
ϕyλ

−x [1]

) 1
q1 p3

(−y′

y

) 1
p2q3

(
ψxμ

−y[1]

) 1
q2q3

= k6zwxξ−1 yξ−1
(
−x [1])ξ−1 (−y[1])ξ−1

p
− 1
αp1 p3 q

− 1
βp2q3 ϕ

1
q1 p3 ψ

1
q2q3

= k6(zw)
ξ p

− 1
αp1 p3 q

− 1
βp2q3 ϕ

1
q1 p3 ψ

1
q2q3 . (47)

It is easy to verify that the assumption of subhomogeneity is equivalent to 1 − ξ > 0.
Integrating inequality (49) from t to ∞, taking into account that z(t) → 0 and w(t) → 0 as
t → ∞, and applying (6), we find k7, k8 ∈ (0,∞) such that

(z(t)w(t))1−ξ ≥ k7

∞∫
t

s
σ

q1 p3
+ �

q2q3
− γ
αp1 p3

− δ
βp2q3

×L
1

q1 p3
ϕ (s)L

1
q2q3
ψ (s)L

− 1
αp1 p3

p (s)L
− 1
βp2q3

q (s) ds

≥ k8 t
σ

q1 p3
+ �

q2q3
− γ
αp1 p3

− δ
βp2q3

+1
L

1
q1 p3
ϕ (t)L

1
q2q3
ψ (t)

×L
− 1
αp1 p3

p (t)L
− 1
βp2q3

q (t). (48)
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From the upper estimates for x, y, x [1], y[1] obtained in the previous part of this proof, we
get

(z(t)w(t))1−ξ = x1−ξ (t)
(
−x [1](t)

)1−ξ
y1−ξ (t)

(
−y[1](t)

)1−ξ

≤ k9x1−ξ (t)t (1−ξ)(ν[1]+ω+ω[1])
(

Lϕ(t)L
λ+1
2 (t)Lψ(t)L

μ
1 (t)

)1−ξ
(49)

for some k9 ∈ (0,∞). Combining now (49) and (49) and extracting x , after a series of tedious
computations, we find c1 such that x(t) ≥ c1tνL1(t). Similar arguments lead to the existence
of d1 ∈ (0,∞) such that y(t) ≥ d1tωL2(t).

Now, we show that strongly decreasing solutions have regularly varying components
with particular indices. Take any (x, y) ∈ SDS and any ϑ ∈ (0,∞). Denote M∗ =
lim inf t→∞ x(ϑ t)/x(t), M∗ = lim supt→∞ x(ϑ t)/x(t). In view of (42) and the fact that
L1 ∈ SV , we find M1,M2 ∈ (0,∞) such that

M1 ≤ c1L1(ϑ t)ϑν

c2 L1(t)
≤ x(ϑ t)

x(t)
≤ c2 L1(ϑ t)ϑν

c1L1(t)
≤ M2

for all large t . Hence, M∗,M∗ ∈ (0,∞). In view of (41), the L’Hospital rule yields

M∗ = lim inf
t→∞

∫∞
ϑ t

(
1

p(s)

∫∞
s ϕ(u)yλ(u) du

)1/α
ds

∫∞
t

(
1

p(s)

∫∞
s ϕ(u)yλ(u) du

)1/α
ds

≥ ϑ lim inf
t→∞

(
p(t)

∫∞
ϑ t ϕ(s)y

λ(s) ds

p(ϑ t)
∫∞

t ϕ(s)yλ(s) ds

) 1
α

≥ ϑ1− γ
α lim inf

t→∞

(
ϑϕ(ϑ t)yλ(ϑ t)

ϕ(t)yλ(t)

) 1
α

≥ ϑ1− γ
α

+ 1
α
+ σ
α lim inf

t→∞

⎛
⎜⎝
∫∞
ϑ t

(
1

q(s)

∫∞
s ψ(u)xμ(u) du

)1/β
ds

∫∞
t

(
1

q(s)

∫∞
s ψ(u)xμ(u) du

)1/β
ds

⎞
⎟⎠

λ
α

≥ ϑ1− γ
α

+ 1
α
+ σ
α

+ λ
α lim inf

t→∞

(
q(t)

∫∞
ϑ t ψ(s)x

μ(s) ds

q(ϑ t)
∫∞

t ψ(s)xμ(s) ds

) λ
αβ

≥ ϑ
1− γ

α
+ 1
α
+ σ
α

+ λ
α
− δλ
αβ lim inf

t→∞

(
ϑψ(ϑ t)xμ(ϑ t)

ψ(t)xμ(t)

) λ
αβ

≥ ϑ
1− γ

α
+ 1
α
+ σ
α

+ λ
α
− δλ
αβ

+ λ
αβ

+ �λ
αβ M

λμ
αβ∗ , (50)

and so M∗ ≥ ϑν . Similarly, we obtain M∗ ≤ ϑν . This implies limt→∞ x(ϑ t)/x(t) = ϑν , and
since ϑ was arbitrary positive, we get x ∈ RV(ν). Using the same ideas, we get y ∈ RV(ω).
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Now, we derive the asymptotic formula (16). We have x(t) = tνLx (t), y(t) = tωL y(t),
where Lx , L y ∈ SV . From the first equation in (41), with the use of (6) and (44) we obtain

tνLx (t) =
∞∫

t

⎛
⎝ 1

sγ L p(s)

∞∫
s

uσ Lϕ(u)u
ωλLλy(u) du

⎞
⎠

1
α

ds

∼
∞∫

t

(
Lϕ(s)Lλy(s)

L p(s)
· sσ+ωλ+1−γ

−σ − ωλ− 1

) 1
α

ds

∼
(

Lϕ(t)Lλy(t)

L p(t)

) 1
α

tνK1 (51)

as t → ∞. Similarly, from the second equation in (41),

L y(t) ∼
(

Lψ(t)L
μ
x (t)

Lq(t)

) 1
β

K2 (52)

as t → ∞. Combination of (51) with (52) yields

Lx (t) ∼
(

K1 K
λ
α

2

)αβΛ
L1(t), L y(t) ∼

(
K2 K

μ
β

1

)αβΛ
L2(t)

as t → ∞, that is, (16). ��
Proof of Remark 1 (i) The proof is based on a similar application of the L’Hospital rule as
that in (50):

ϑτ = lim
t→∞

x(ϑ t)

x(t)
= · · · = ϑ

1− γ
α

+ 1
α
+ σ
α

+ λ
α
− δλ
αβ

+ λ
αβ

+ �λ
αβ

+ τλμ
αβ ,

from which we simply obtain τ = ν. The equality ζ = ω follows by the same ideas. The
inequalities ν ≤ 0, ω ≤ 0, ν[1] ≤ 0, ω[1] ≤ 0 are the consequences of the properties of
regularly varying functions. Indeed, if at least one of this inequalities fails to hold, then the
relevant solution component which has just this index of regular variation could not tend
to zero by the 3rd item in Proposition 1, and this is a contradiction. The strictness of the
inequalities in the case when the coefficients are asymptotically equivalent to power func-
tions is clear because of the obvious behavior of power functions as integrands in improper
integrals; see also discussion in Sect. 3.

(ii) The formulae follow from the integral form (40) applying (6).
(iv) Let (x, y) ∈ SDS ∩ (RV(ν)× RV(ω)). Then x(t) = tνLx (t) with L ∈ SV and

t x ′(t)
x(t)

= ν + t L ′
x (t)

Lx (t)
.

Because of (7), where we set f = x and g = −x ′ (note that g decreases due to convexity
of x), we get t x ′(t)/x(t) → ν as t → ∞. Thus t L ′

x (t)/Lx (t) → 0 as t → ∞. By the
representation theorem, Lx ∈ NSV , i.e., x ∈ NRV(ϑ). Similarly we obtain y ∈ NRV(ω).

(v) The first claim of this item follows by a closer examination of the proof of Theorem 2,
and it is based on the implication (38). We thus get one direction of the equivalence (22).
Concerning the opposite direction, we show only that (18) implies (15); the other implications
follow similarly. Thus assume (18). Then, we immediately get ν < 0. By observing that
ω[1] = (� + 1) + μν, since both the summands are negative by (18), we get ω[1] < 0. To
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prove ν[1] < 0, we use the identities (44) and the inequality � + 1 < δ − β − β(σ + 1)/λ,
which is implied by (18):

ν[1] = σ + 1 + λ+ λ

β
(ω[1] − δ)

< σ + 1 + λ+ λ

β

(
δ − β − β

λ
(σ + 1)+ μν − δ

)

= σ + 1 + λ− λ− (σ + 1)+ λμ

β
ν = λμ

β
ν < 0.

Similarly, with the use of � + 1 < δ − β and (44), we get

λω = λ+ λ

β
(ω[1] − δ) = λ+ λ

β
(� + 1 + μν − δ)

< λ+ λ

β
(δ − β + μν − δ) = λν

β
ν < 0,

which implies ω < 0. ��
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