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Abstract We extend the concept of linked twist maps to a 3D setting and develop a global
geometrical method to detect the presence of complex dynamics. Our approach, which is
based on a recent variant of the theory of topological horseshoes, provides an analytical
proof of “chaos” which does not involve small/large parameter techniques and is robust with
respect to small perturbations. An application is given to a predator-prey system in R

3 with
a Beddington-DeAngelis functional response.
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1 Introduction

The celebrated theory of Smale’s horseshoe [37,38] provides a very important and useful geo-
metrical tool to detect chaotic dynamics for some classes of homeomorphisms. The horseshoe
map is an elegant and simple example of a diffeomorphism acting on a square and possessing
an invariant set where the given map is conjugated to a Bernoulli shift. The appearance of
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164 A. Ruiz-Herrera, F. Zanolin

Smale’s horseshoe structures in several different situations, like the restricted three body
problem or the homoclinic tangles [28], has stimulated many researchers toward the inves-
tigation of situations where horseshoe-type dynamics take place (possibly in a generalized
sense). In this setting, an interesting construction arises in the study of the so-called linked
twist maps (indicated also as LTMs, for brevity). A linked twist map is the composition of
two twist maps which act onto two overlapping annuli A1 and A2. On each annulus Ai we
have a map φi which leaves invariant the boundaries and rotates points about its center by an
angle that increases with the radial coordinate. The presence of chaotic dynamics occurs for
φ

j
2 ◦ φk

1 , with suitable choices of j and k. LTMs were investigated by many authors, starting
with Devaney [12]. Preliminary studies involving such a kind of geometry can be traced back
to the works of Bowen, Braun, Easton, Thurston (see the Introduction in [12]). As pointed
out by the referee, LTMs are special dynamical systems since they are one of the very few
explicit examples in which complex dynamics occur on sets of positive measure. This fact
has motivated the research on these maps also in connection to ergodic theory [7,34,49].
From the point of view of the applications, geometrical configurations associated to LTMs
appear in very different contexts, like celestial mechanics [2, p. 235], [28, p. 90], motions of
particles in a magnetic field, the study of diffeomorphisms of surfaces or, more recently, in
the analysis of fluid mixing [43,47]. With this respect, the past three decades have witnessed
a growing interest in this area of research. We refer to [25,40] for recent contributions as
well as a list of pertinent references.

The classical notion of LTMs is naturally associated to mappings acting on an invariant
2D surface. In particular, the cases of the plane, the torus, and the two-sphere have been
studied in [39]. However, only few extensions of the linked twist map construction have
been obtained in three or higher dimensions. See [42] for a recent contribution and also [46]
for a discussion of some related geometries. In this paper, we propose an extension of this
theory to dynamical systems in R

3. The geometrical situation we want to discuss is that of a
mapping which can be represented as the composition of two homeomorphisms �1 and �2

having the following behavior.
For �1, we assume there exists a topological cylinder C1 such that

• C1 as well as its upper and lower faces C U
1 , C L

1 are positively invariant for �1;
• �1 satisfies a twist condition with respect to C U

1 and C L
1 , in the sense that, for a suit-

ably chosen system of polar coordinates, there is a gap between the rotation numbers
associated to �1|C U

1
and �1|C L

1
.

For �2, we assume there exists a topological cylinder C2 such that

• C2 as well as its inner and outer boundary surfaces C I
2 , C O

2 are positively invariant for
�2;

• �2 satisfies a twist condition with respect to C I
2 and C O

2 , in the sense that, relatively to
the axis of the cylinder, there is a gap between the rotation numbers associated to�2|C I

2

and �2|C O
2

.

Under these conditions, together with additional assumptions on the intersection of C1 and
C2 (see Fig. 1) as well as on the compression of �2 along some natural directions, we can
prove the presence of complex dynamics for the map�2 ◦�1 on a suitable subset of C1 ∩C2.

The abstract topological theorems guaranteeing the presence of such chaotic-like dynam-
ics are given in Sect. 2. A concrete example of a 3D dynamical system with this geometry is
given in Sect. 3. More precisely, we consider a predator-prey model in a periodically varying
environment described by an equation of the form
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Chaotic dynamics in 3D systems 165

Fig. 1 The linked configuration studied in this paper. Consider two cylinders with axes of symmetry parallel
to the coordinate axes x and z, respectively, and with an intersection like in the figure

⎧
⎨

⎩

x ′
1 = x1(α(t)− a(t)x1)+ f12(t, x1, x2, x3)x2 + f13(t, x1, x2, x3)x3

x ′
2 = x2(β(t)− b(t)x2)− f21(t, x1, x2, x3)x1 + f23(t, x1, x2, x3)x3

x ′
3 = x3(γ (t)− c(t)x3)− f31(t, x1, x2, x3)x1 − f32(t, x1, x2, x3)x2

(1.1)

where all the functions are T -periodic in the time variable and a(t), b(t), c(t) are nonneg-
ative. Our system is motivated by the classical results of Beddington and DeAngelis on 2D
predator-prey system [5,11] as well as to the developments of such a model in the periodic
case [10]. Accordingly, the functions fi j are defined as

fi j (t, x1, x2, x3) = ai j (t)xi

1 + Ai j (t)x1 + Bi j (t)x2 + Ci j (t)x3

with ai j (t), Ai j (t), Bi j (t), Ci j (t) ≥ 0.
There is a broad literature dealing with chaotic dynamics for differential systems using

different tools such as estimates on Lyapunov exponents, the Mel’nikov or the Sil’nikov
methods, properties of ergodicity or mixing associated to some invariant measures, the Con-
ley-Ważewki theory or some fixed point indices, just to mention a few different approaches
(see, for instance [4,14,30,35,41] for some significant examples and applications). Imple-
mentations of these methods to concrete ODE systems often require, from the theoretical
point of view, some asymptotic estimates involving the consideration of small/large parame-
ters or, in the applied side, to rely on computer-assisted proofs. Our approach is topological
in nature and involves the study of some geometric properties of the Poincaré map associated
to Eq. (1.1). The advantage of this method is that we do not require any hyperbolicity con-
dition and we are able to impose precise lower bounds on the coefficients which are easily
computable in terms of the equations. In the past 15 years, a great deal of research work
has been devoted to study possible extensions of the classical Smale’s horseshoe theory to
a topological setting, that is keeping some important aspects of the horseshoe geometry for
a given map, without using conditions on the derivatives [6,50]. Such developments of the
theory of topological horseshoes have been successfully applied in the planar context or for
some higher dimensional Hamiltonians (see [1,8,32,48] and the references therein). Apart
from the classical results of Smale and Alekseev, up to now, fewer applications in higher
dimensions, especially in the non-Hamiltonian setting, like in case of (1.1), are available.
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166 A. Ruiz-Herrera, F. Zanolin

Another meaningful property in our results is the robustness with respect to small perturba-
tions. From the point of view of the applications, this feature is quite relevant since in the
process of modeling in biology, small errors must be always considered.

2 Topological tools

In this section, we describe the topological tools and the notion of chaos which are used in
the paper. We present our results for a discrete dynamical system determined by a homeo-
morphism � defined on a compact set X ⊂ R

N . In our applications, � will be the Poincaré
map associated to a first-order differential system in R

3 and X will be homeomorphic to a
solid cylinder.

A development of the topological setting for the Smale horseshoe was originally given
by Moser in his book and is based on the joint seminars of Conley and Moser at New York
university in 1969–1970 [28, p. 62]. Generalizations of Moser’s results to higher dimensions
were widely explored in the book of Wiggins [46] as well. Our approach is closely related
to the work of Kennedy and Yorke [20] with a special emphasis to the detection of periodic
points, an aspect of the theory which does not fit in the general setting of metric spaces
considered in [20].

We say that� is chaotic if there exists a compact set� ⊂ X which is invariant for� (that
is �(�) = �) and such that �|� is semiconjugate to the Bernoulli shift σ on two symbols.
More precisely, there exists g a continuous and surjective map so that the diagram

� �

	2 	2

��

�
g

�
g

�
σ

commutes. Moreover, we impose two additional conditions:

(i) If (si )i∈Z is a k-periodic sequence (that is si+k = si for some k ≥ 1), there exists a
k-periodic sequence (wi )i∈Z ∈ �Z, satisfying wi+1 = �(wi ) and such that g(w0) =
(si )i∈Z.

(ii) � = cl(Per �),

where (Per �) is the set of periodic points of � in �.
We recall that 	2 = {0, 1}Z is the set of the two-sided sequences of two symbols, with

the distance

d(ξ ′, ξ ′′) :=
+∞∑

i=−∞

|s′
i − s′′

i |
2|i |+1 , for ξ ′ = (s′

i )i , ξ
′′ = (s′′

i )i

and the Bernoulli shift σ is defined by

σ : 	2 → 	2, σ
(
(si )i∈Z

) = (si+1)i∈Z.

We notice that a map which is chaotic according to our definition is also chaotic in the
sense of Block and Coppel and also in the coin tossing sense [3, Remarks 3.2], [22]. As
a consequence, we have that � has positive topological entropy (see [45] for the pertinent
definitions). Besides these properties that are typically assumed as an evidence of chaotic
behavior, we stress the special role played by the periodic points of � in our definition. We
recall that just the semiconjugation with the shift map does not guarantee, in general, the

123



Chaotic dynamics in 3D systems 167

existence of periodic points for� (see [9] and [20] for specific examples). In the recent years,
several investigations have been devoted to the development of topological tools for proving
the presence of complex dynamics accompanied by periodic points of each order. We recall
[50] and [51], for some papers where similar definitions of chaos are considered.

After having defined the notion of chaos which is involved in our paper, now we introduce
the main definitions and topological tools that are necessary in our approach.

By an oriented cylinder of R
N we mean a set which is the product of a closed ball in R

N−1

with a compact interval and where we have put in evidence two opposite faces. Just to start
with a generic example (up to homeomorphism), let us consider a cylinder of the form

C = BR × [0, 1],
where BR is the closed ball of center the origin and radius R > 0 in R

N−1. The base and the
top of the cylinder will be denoted by C −

0 = BR × {0} and C −
1 = BR × {1}. We also call an

oriented cylinder the pair

C̃ := (C ,C −),

with

C − := C −
0 ∪ C −

1 .

Let K be a (nonempty) compact subset of C and let � : C → R
N be a continuous map. We

say that the pair (�, K ) has the stretching along the paths property with respect to C and
write

(�, K ) : C̃ �−→C̃ ,

if, for every (continuous) path γ : [t0, t1] → C such that γ (t0) ∈ C −
0 and γ (t1) ∈ C −

1 (or
γ (t0) ∈ C −

1 and γ (t1) ∈ C −
0 ), there exists a subinterval [s0, s1] of [t0, t1] for which we have

that

γ (t) ∈ K , for all t ∈ [s0, s1];
�(γ (t)) ∈ C , for all t ∈ [s0, s1];
�(γ (s0)) and �(γ (s1)) belong to different components of C −.

If K0 and K1 are two (nonempty) compact and disjoint subsets of C such that

(�, Ki ) : C̃ �−→C̃ , for i = 0, 1,

then we also write

(�, K0, K1) : C̃ �−→C̃ .

The above definitions easily extend to the case in which the stretching property is satisfied
between two different (oriented) cylinders.

The next theorem relates the previous concepts with our definition of chaos. Although
the proof can be deduced from some results and arguments in [33], we prefer to give a
self-contained proof with all the details for the reader’s convenience.

Theorem 2.1 Let C̃ , K0 and K1 be as above and let � : C → R
N be a homeomorphism

(onto its image). Suppose that (�, K0, K1) : C̃ �−→C̃ . Then, � is chaotic.

Proof Preliminarily to any further discussion, we observe that it is not restrictive to assume
that

�(K0 ∪ K1) ⊂ C . (2.1)
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168 A. Ruiz-Herrera, F. Zanolin

In fact, if we replace the sets K0 and K1 by the new compact sets K0 ∩�−1(C ) and K1 ∩
�−1(C ), we can easily check that the stretching along the paths property is satisfied with
respect to these new sets. Therefore, from now we assume (2.1) along the proof.

First of all, we prove the existence of a fixed point for the map � in K0 as well as in K1.
We shall consider, for the moment, only the case of the set K0 (the other case is completely
similar). By the Tietze extension theorem, we define a new continuous map �̃ : C → C as
a continuous extension to C of�|K0 . Our goal is to prove that �̃ has at least a fixed point in
K0 and so a fixed point of � is found.

The equation x = �̃(x), with x = (x1, . . . , xN ) and �̃ = (�̃1, . . . , �̃N ), is written as a
system of the form

{
y − φ(y, w) = 0
w − ψ(y, w) = 0

(2.2)

where φ = (�̃1, . . . , �̃N−1), ψ = �̃N and y = (x1, . . . , xN−1), w = xN .
Let PR : R

N−1 → BR be the radial projection onto the ball in R
N−1 and define

φ∗(y, w) := φ(PR(y), w), for all y ∈ R
N−1, w ∈ [0, 1].

Now we take a radius r > R and treatw as parameter. Observe that, for eachw ∈ [0, 1], all the
fixed points ofφ∗(·, w) are contained in BR . Therefore, there are no zeros of I

RN−1−λφ∗(·, w)
on ∂Br for every λ ∈ [0, 1] and by standard properties of the Brouwer degree in R

N−1, we
conclude that

deg(I
RN−1 − φ∗(·, w), intBr , 0) = 1, for all w ∈ [0, 1].

The Leray-Schauder Fundamental Theorem [23] (see also [26, Theorem 2.2] for a modern
statement of this theorem) ensures the existence of a continuum S ⊂ intBr ×[0, 1] of solution
pairs (y, w) of the equation y − φ∗(y, w) = 0, such that S projects onto [0, 1] along the
w-component. By the definition of φ∗, we have that S ⊂ C and therefore

y = φ(y, w), for all (y, w) ∈ S.

Moreover, we know that

S ∩ C −
0 �= ∅, S ∩ C −

1 �= ∅.
For any ε ∈ ]0, r − R[ we take an open ε-neighborhood U(ε) of S made by a finite union of
open balls of radius ε centered at some points of S. The set U(ε) is open and arcwise con-
nected. Therefore, there exists a continuous map γε : [0, 1] → U(ε) so that, if we denote by
γ
(1)
ε (t) the vector of the first (N −1)-components of γε(t) and by γ (2)ε (t) the last component

of γε(t), we deduce that

γε(0) ∈ C −
0 , γε(1) ∈ C −

1 and γ (2)ε (t) ∈ [0, 1], for all t ∈ [0, 1].
The image γε([0, 1]) is not necessarily contained in C ; however, we easily obtain such a
property if we replace γε(t) by the path

γ̂ε : [0, 1] � t �→ (PR(γ
(1)
ε (t)), γ (2)ε (t)).

We can apply now the stretching along the paths assumption on γ̂ε to conclude that there
exists an interval [s′

0, s′′
0 ] ⊂ [0, 1] such that

γ̂ε(t) ∈ K0, for all t ∈ [s′
0, s′′

0 ]
�(γ̂ε(t)) ∈ C , for all t ∈ [s′

0, s′′
0 ];
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�(γ̂ε(s′
0)) and �(γ̂ε(s′′

0 )) belong to different components of C −
0 ∪ C −

1 .

Moreover, by the first of the above properties and the definition of �̃ as an extension of�|K0 ,
we have that �(γ̂ε(t)) = �̃(γ̂ε(t)), for each t ∈ [s′

0, s′′
0 ].

Evaluating w−ψ(y, w) along the points of γ̂ε(t) for t ∈ [s′
0, s′′

0 ], we are lead to consider

the continuous function [s′
0, s′′

0 ] � t �→ γ
(2)
ε (t)−ψ(γ̂ε(t)) which is nonnegative at one side

of the interval and nonpositive on the other side. Hence there exists a point (yε, wε) = γ̂ε(t̄ε),
for some t̄ε ∈ [s′

0, s′′
0 ] such that wε − ψ(yε, wε) = 0 with (yε, wε) ∈ K0. Letting ε → 0+

and using the compactness of K0, we deduce the existence of a point (y∗, w∗) ∈ K0 ∩ S
which is a fixed point for the map �. As already remarked at the beginning of the proof, a
similar argument allows to find a fixed point for � in K1.

Having proved the existence of fixed points for � in K0 and in K1, we now focus our
attention on the periodic points. Let s := (s0, s1, . . . , sm) be a (m + 1)-tuple with si ∈ {0, 1}
for each i = 0, . . . ,m and such that s0 = sm . We look for a periodic point z of � such that,
setting

z0 = z, zi+1 = �(zi ), for all i = 0, . . . ,m − 1, (2.3)

we have

zm = z0 (2.4)

with

zi ∈ Ksi , for all i = 0, . . . ,m. (2.5)

To this end, we define the set

K (s) := {x ∈ Ks0 : �(i)(x) ∈ Ksi , for all i = 1, . . . ,m}.
Since the stretching along the paths property is preserved by compositions,

(�(m), K (s)) : C̃ �−→C̃ .

Therefore, by the first part of the proof applied to �(m) (the mth iterate of �), we have that
there exists a fixed point z of�(m) with z ∈ K (s). By the definition of K (s) and for s0 = sm ,
we conclude that z satisfies conditions (2.3), (2.4), and (2.5).

Until now, no assumption of homeomorphism for � has been used; therefore, the conti-
nuity of � is enough to guarantee the existence of fixed points and periodic points.

We introduce now the set

I :=
∞⋂

i=−∞
�i (K ), for K := K0 ∪ K1.

The set I ⊂ C is compact and invariant for �. A point x belongs to I if and only if its orbit
for � is contained in K . Hence, for every x ∈ I, and every i ∈ Z, either �(i)(x) ∈ K0 or
�(i)(x) ∈ K1. Accordingly, to each point x ∈ I we can associate (in a unique manner) a
two-sided sequence of integers

g(x) = (si )i∈Z

with si = 0 or si = 1, according to the fact that �(i)(x) ∈ K0 or �(i)(x) ∈ K1.
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By definition, the map g : I → 	2 is well defined, uniformly continuous, and the diagram

I I

	2 	2

��

�
g

�
g

�
σ

commutes. Moreover, by the previous step in the proof, for any periodic sequence ξ =
(si )i∈Z ∈ 	2 there exists a periodic point z ∈ Ks0 ∩ I such that g(z) = ξ . Hence, if we
denote by Per(�) the set of periodic points for � in I and by Per(σ ) the set of two-sided
periodic sequences in {0, 1}, we have that g maps Per(�) onto Per(σ ), and, by density, g is
also surjective from I onto 	2. Finally, for

� := cl
(
Per(�)

)
,

we conclude that � is chaotic according to our definition. ��
Remark 2.1 In the language of the paper of Kennedy et al. [19], the stretching along the path
property is a way to express the fact that the arcs in C connecting C −

0 to C −
1 are family of

expanders for {K0, K1} (with respect to�). Moreover, the lower and upper faces C −
0 to C −

1
of our cylinder play the role of the sets end0 and end1 in [20] and our assumptions imply
Kennedy and Yorke’s horseshoe hypothesis with crossing number two. Hence, the existence
of an invariant set I such that �|I is semiconjugate with the shift on two symbols could
be deduced from results in [19] and [20] (see also [21] for some recent extensions). On the
other hand, our special configuration allows also to obtain a theorem on the existence of
fixed points on K0 and K1 (see the first part of our proof) as well as the existence of periodic
points of every order. These extra properties are, in general, not guaranteed by the above
quoted papers. For a more detailed discussion of the consequences of our definition of chaos
(also including sensitive dependence and transitivity), as well for a comparison with other
approaches, we refer to [27, Theorem 2.2].

We remark that the assumptions in Theorem 2.1 can be suitably modified in order to
produce a result which is stable with respect to small perturbations of the map �. With this
purpose, we have

Corollary 2.1 Let C , K0, and K1 be as above and let � : C → R
N be a homeomorphism

(onto its image). Suppose that (�, K0, K1) : C̃ �−→C̃ , with

K0, K1 ⊂ BR×]0, 1[ and �(K0) ∩ C , �(K1) ∩ C ⊂ intBR × [0, 1].
Then, there exists ε > 0 such that every homeomorphism � : C → �(C ) is chaotic,
provided that

||�(x)−�(x)|| ≤ ε, for all x ∈ C .

Theorem 2.1 and Corollary 2.1 are stable by homeomorphisms deforming the domain.

3 Chaotic dynamics in 3D predator-prey systems

Motivated by the classical predator-prey model with Beddington-DeAngelis functional
response (see [5,10,11,29]), we consider a system of the form

⎧
⎨

⎩

x ′
1 = x1(α(t)− a(t)x1)+ f12(t, x1, x2, x3)x2 + f13(t, x1, x2, x3)x3

x ′
2 = x2(β(t)− b(t)x2)− f21(t, x1, x2, x3)x1 + f23(t, x1, x2, x3)x3

x ′
3 = x3(γ (t)− c(t)x3)− f31(t, x1, x2, x3)x1 − f32(t, x1, x2, x3)x2

(3.1)
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where all the functions are T -periodic in the time variable, a(t), b(t), c(t) are nonnegative,
and the functions fi j are defined as

fi j (t, x1, x2, x3) = ai j (t)xi

1 + Ai j (t)x1 + Bi j (t)x2 + Ci j (t)x3

with ai j (t), Ai j (t), Bi j (t), Ci j (t) ≥ 0. From the proof, we will see that our results can be
easily adapted to the cases when in system (3.1) the nonlinearities are like those considered
in [36, p. 224] or [31, p. 248].

From a biological point of view, the previous system describes the evolution of three
species sharing the same seasonally varying environment. The behavior of each species can
be summarized in the following way:

• The species x1 is a predator for x3 and x2.
• The species x2 is a prey for x1 and a predator for x3.
• The species x3 is a prey for x1 and x2.

In many biological situations, the seasonal dependence is expressed as a switching between
two or more regimes, where each regime is described by an autonomous system. In popula-
tion dynamics as well as in epidemiology, such kind of equations have been widely studied
and are known as systems with seasonal succession [13,15,16]. For instance, these systems
naturally appear when the behavior of some species alternates between different states (like
migration, hibernation, or breeding periods), see [13,15–18,24].

In this framework, a particular case of (3.1) is given by the T -periodic differential equation
defined as

⎧
⎨

⎩

x ′
1 = x1(−α1 + a12

x2
1+x3

)

x ′
2 = x2(β1 − a21x1)

x ′
3 = 0

for all t ∈ [nT, nT + T1[ (3.2)

⎧
⎨

⎩

x ′
1 = x1(−α2 + a13x3)

x ′
2 = x2(β2 − x2)

x ′
3 = x3(γ2 − a31x1)

for all t ∈ [nT + T1, (n + 1)T [, (3.3)

where all the parameters are strictly positive. For convenience, we introduce the notation (S)
to denote the above T -periodic system made by (3.2)–(3.3) and set

T2 := T − T1.

It is easy to check that system (S) is a particular case of (3.1). For instance, α(t) is the
T -periodic function defined as −α1 if t ∈ [0, T1[ and as −α2 if t ∈ [T1, T [.

Our goal is to illustrate how the construction presented in the Introduction appears in (S)
and so in (3.1). With this respect, the following results hold.

Proposition 3.1 Fix all the parameters in (S) except γ2 and assume that

0 < β2 <

(

1 + α2

2a13

)
α1

a12
. (3.4)

Then, there exist γ ∗
2 , T ∗

1 , and T ∗
2 (γ2) so that if γ2 > γ ∗

2 , T1 > T ∗
1 , and T2 > T ∗

2 (γ2), the
Poincaré map associated to (S) is chaotic.

Remark 3.1 In the proof, we estimate γ ∗
2 , T ∗

1 , and T ∗
2 (γ2) depending on the coefficients of

the system.
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Theorem 3.1 Fix all the parameters in (S) verifying the conditions of Proposition 3.1, i.e.,
assume (3.4) and γ2 > γ ∗

2 , T1 > T ∗
1 , T2 > T ∗

2 (γ2). Then, there exists ε > 0 such that if
the distance in L1

T between the previous parameters in (S) and the coefficients of (3.1) is
smaller than ε, the Poincaré map associated to (3.1) is chaotic.

Given two T -periodic integrable functions f (t) and g(t), their distance in L1
T is given by

∫ T
0 | f (t)− g(t)| dt . In our setting, the ε-assumptions in Theorem 3.1 mean that

T1∫

0

|α(t)− a1| dt +
T∫

T1

|α(t)− a2| dt < ε, (3.5)

and so on (for the other coefficients). Recall that the Poincaré map is defined as

� : R
3+ −→ R

3+
p �→ x(T, p),

where x(t, p) is the maximal solution of the system with initial condition at p. We have
employed the notation

R
3+ = {(x1, x2, x3) : xi ≥ 0, for i = 1, 2, 3}.

We observe that the functions satisfying conditions of form (3.5) are not necessary “piece-
wise constant” and they can be taken as smooth as we like.

4 Proofs

4.1 Proof of Proposition 3.1

We split the proof of Proposition 3.1 into four steps. More precisely, we start by presenting
some preliminary results on the classical Lotka-Volterra model in the planar case. Secondly,
we build the 3D regions needed in our construction of linked cylinders and introduce a par-
allelepiped where we apply the topological results of Sect. 2. Finally, we check the validity
of the stretching along the path conditions by studying the Poincaré maps associated to (S).

Step 1: Geometric properties of the classical planar Lotka-Volterra system.
As a first step, we give two geometric lemmas concerning the trajectories of the system

{
x ′

1 = x1(−A + Bx2)

x ′
2 = x2(C − Dx1).

(4.1)

Recall that all the nontrivial orbits of this system are closed curves surrounding the equilib-
rium point (C/D, A/B). These curves have the expression

E(x1, x2) = k > min E = E(C/D, A/B),

for the energy function

E(x1, x2) := Dx1 − C log x1 + Bx2 − A log x2.

In the sequel, when we write Eα(·, ·), for α one of the coefficients A, B,C, D, we mean the
energy E defined above in which we allow α to vary and keep all the other three coefficients
fixed.
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Fig. 2 An illustration of Lemma 4.1

Lemma 4.1 Consider system (4.1) with A, B, D fixed positive parameters and the rectangle

S = [x0 − l1, x0 + l1] ×
[

A

B
− l2,

A

B
+ l2

]

⊂ intR2+

for x0, l1, l2 satisfying 0 < l1 < x0 and 0 < l2 <
A
B . Then, there exists a constant � >

D(x0 + l1) such that for every C > �, we have that solutions (x(t), y(t)) of system (4.1)
with initial conditions at (x0 − l1

2 ,
A
B ) and at (x0 + l1

2 ,
A
B ) leave the rectangle S across the

sides [x0 − l1, x0 + l1] × { A
B − l2} and [x0 − l1, x0 + l1] × { A

B + l2}.
A possible lower bound for � is given by (x0 + l1)(D + 4B2l2

2
(A−Bl2)l1

).

Proof As long as (x1, x2) ∈ S, we have the following estimate
∣
∣
∣
∣
dx1

dx2

∣
∣
∣
∣ =

∣
∣
∣
∣
x1(−A + Bx2)

x2(C − Dx1)

∣
∣
∣
∣ ≤ |x0 + l1|Bl2

| A
B − l2|(C − D(x0 + l1))

= K .

Now it is clear that if 2Kl2 <
l1
2 , the property of the lemma holds. ��

Figure 2 illustrates the previous fact.

Lemma 4.2 Consider system (4.1) with A,C, D fixed positive parameters and suppose that
B ∈ [�1, �2] with 0 < �1 < �2. Given y0, l satisfying 0 < y0 − l < y0 + l and �2(y0 + l) <
A, there exists ε̂ > 0 so that for all 0 < ε ≤ ε̂ we have that the solution (x(t), y(t)) of
system (4.1) with initial condition at

( C
D , y0 + 3l

4

)
(resp. at

( C
D , y0 − 3l

4

)
) leaves the rectangle

[ C
D − ε, C

D + ε] × [y0 + l
2 , y0 + l] (resp. the rectangle [ C

D − ε, C
D + ε] × [y0 − l, y0 − l

2 ]),
across the sides { C

D − ε}× [y0 + l
2 , y0 + l] and { C

D + ε}× [y0 + l
2 , y0 + l] ( across the sides

{ C
D − ε} × [y0 − l, y0 − l

2 ] and { C
D + ε} × [y0 − l, y0 − l

2 ]).
We can take ε̂ = min{

√
lC(A−�2(y0+l))

16D2(y0+l )
, C

2D }.
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Proof The proof is totally analogous to the previous one and we omit it. ��
Step 2: Construction of the topological parallelepiped.

In this step, we consider system (S), namely
⎧
⎨

⎩

x ′
1 = x1(−α1 + a12

x2
1+x3

)

x ′
2 = x2(β1 − a21x1)

x ′
3 = 0

for t ∈ [0, T1[ (4.2)

and
⎧
⎨

⎩

x ′
1 = x1(−α2 + a13x3)

x ′
2 = x2(β2 − x2)

x ′
3 = x3(γ2 − a31x1)

for t ∈ [T1, T [. (4.3)

The dynamics of this system can be described in the following way. We follow the trajectories
of (4.2) for t ∈ [0, T1[, those of (4.3) for t ∈ [T1, T [, and then we repeat the same transition
in a T -periodical manner. We are interested only in solutions starting from points in the
interior of the first octant. Note that following the orbits of (4.3) along the interval [T1, T ] is
the same as following such orbits for t ∈ [0, T2]. Accordingly, if we denote respectively by
�1 and �2 the Poincaré maps for system (4.2) (from t = 0 to t = T1) and for system (4.3)
(from t = 0 to t = T2), the Poincaré map (after time T ) for the whole system is given by

� := �2 ◦�1.

Observe that �1 and �2 (and hence also �) are well defined on intR3+.
Once these comments have been done, we properly start the construction of the parallelepi-
ped. The set of the equilibrium points in intR3+ for system (4.2) is given by the curve

L :=
{(

β1

a21
,
α1(1 + x3)

a12
, x3

)

: x3 > 0

}

.

Every horizontal plane x3 = constant > 0 is invariant for the solutions of system (4.2), and
on this plane, we have a classical Lotka-Volterra predator-prey equation with a global center

at the point ( β1
a21
,
α1(1+x0

3 )

a12
). Therefore, for any point q0 := (x0

1 , x0
2 , x0

3 ) �∈ L and for any
τ > 0, we can define a rotation number in the following way:

rot(q0, τ ) := 1

2π

τ∫

0

(
x2(t; q0)− α1(1+x0

3 )

a12

)
X1(t)−

(
x1(t; q0)− β1

a21

)
X2(t)

(
x1(t; q0)− β1

a21

)2 +
(

x2(t; q0)− α1(1+x0
3 )

a12

)2 dt,

where

X1(t) := x1(t; q0)(−α1 + a12
x2(t; q0)

1 + x0
3

), X2(t) := x2(t; q0)(β1 − a21x1(t; q0))

and (x1(t; q0), x2(t; q0), x0
3 ) is the solution of system (4.2) departing at time t = 0 from the

initial point q0.
The rotation number counts the number of winds around the equilibrium point in the plane

x3 = x0
3 of the solution (x1(t; q0), x2(t; q0), x0

3 ) along the time interval [0, τ ] in the clock-
wise sense. Since the trajectories of (4.2) wind clockwise, rot(q0, τ ) is a strictly increasing
function of τ for any q0 �∈ L . Moreover, if we denote by P(q0) the fundamental period of
the periodic solution (x1(t; q0), x2(t; q0), x0

3 ) of (4.2), we have that for a positive integer m,

rot(q0, τ ) ≶ m ⇐⇒ τ ≶ m P(q0)
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holds. Next we study the dependence on the period of the orbits with respect to x0
2 , x0

3 and
so, by the previous comments, the dependence on the rotation number with respect to these
variables. To this end, we use a result of Waldvogel [44] about the monotonicity of the period
as a function of the energy for the Lotka-Volterra systems. In order to enter into the setting
of [44], we make a change of variables and move the equilibrium point of the system

{
x ′

1 = x1(−α1 + a12
x2

1+x0
3
)

x ′
2 = x2(β1 − a21x1)

(4.4)

to the new point (1, 1). More precisely, setting

y1 := a21

β1
x1, y2 := a12

α1(1 + x0
3 )

x2,

we transform (4.4) into the equivalent system
{

y′
1 = −α1 y1(1 − y2)

y′
2 = β1 y2(1 − y1)

(4.5)

The solution of (4.4) starting at the point (β1/a21, x0
2 ) corresponds to that of system (4.5)

starting at the point (1, a12x0
2/α1(1+x0

3 )) and, obviously, their period is the same. The energy
of such a solution (y1(t), y2(t)) of (4.5) is

h = h(Y ) := β1 + a12Y − α1 log(a12Y/α1), for Y := x0
2/(1 + x0

3 ).

An easy computation shows that h(Y ) is strictly increasing for Y > α1
a12

and strictly decreas-
ing for Y < α1

a12
. At this moment, we can use [44, Theorem 2] which guarantees that the

period function for system (4.5) is strictly monotone with respect to h and, from this fact and
using (3.4), we can conclude that for

0 < l̃ <

(

1 + α2

2a13

)
α1

a12
− β2, l̃ <

β2

2
, l̃ <

β2α2

2(a13 + α2)
,

the rectangle

S := [β2 − l̃, β2 + l̃] × [α2/2a13, 3α2/2a13]
has the following properties.

(i) S ⊂ {(x2, x3) : α1 > a12
x2

1+x3
},

(ii) min
x0

2 ∈[β2−l̃,β2+l̃]
P(β1/a21, x0

2 , 3α2/2a13)

︸ ︷︷ ︸
P∗

>

P∗
︷ ︸︸ ︷

max
x0

2 ∈[β2−l̃,β2+l̃]
P(β1/a21, x0

2 , α2/2a13).

The first property about S is clear from the choice of the parameter l̃. By the same choice, we
also deduce that min{x0

2/(1 + x0
3 ) : x0

2 ∈ [β2 − l̃, β2 + l̃], x0
3 = α2/2a13} > max{x0

2/(1 +
x0

3 ) : x0
2 ∈ [β2 − l̃, β2 + l̃], x0

3 = 3α2/2a13} and this yields i i) using Waldvogel theorem and
the fact that the energy is decreasing on Y for Y < α1/a12. After these preliminary remarks,
we can introduce the cylindrical set

Cyl :=
⋃

x0
2 ∈[β2−l1,β2+l1]

{(x1, x2, x3) : x3 ∈ [λ1, λ2], Ex3(x1, x2) = Ex3(β1/a21, x0
2 )},
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Fig. 3 The section of the cylinder Cyl with the resulting block Bε̂

for

l1 := 3

4
l̃, λ1 := α2

2a13
, λ2 := 3α2

2a13
.

The set Cyl lies between the horizontal planes x3 = λ1 and x3 = λ2. If we cut Cyl with a
plane x3 = x0

3 ∈ [λ1, λ2], we obtain an annular region which is filled by all the periodic
orbits of system (4.4) passing through the interval of initial points {(β1/a21, x0

2 ) : for x0
2 ∈

[β2 − l1, β2 + l1]}. The condition i i) says that every trajectory of system (4.2) that departs
form a point of the upper face Cyl ∩ {x3 = λ2} of Cyl has a period which is strictly larger
than the period of an arbitrary trajectory departing from the lower face Cyl ∩ {x3 = λ1}. We
also notice that Cyl, as well as all its slices Cyl ∩ {x3 = constant}, is an invariant set under
system (4.2).

From the cylindrical set just defined, we select now a vertical block which is the part of
Cyl lying between two vertical planes parallel to the plane x1 = β1/a21. Namely, we define
the set

Bε̂ := {(x1, x2, x3) ∈ Cyl : x1 ∈ [(β1/a21)− ε̂, (β1/a21)+ ε̂]}
where ε̂ comes from Lemma 4.2 for the parameters

A = α1, B ∈
[

a12
1+3α2/2a13

, a12
1+α2/2a13

]
, C = β1, D = a21, y0 = β2, and l = l̃ (see Fig. 3).

By construction, Bε̂ has exactly two connected components. Between these two compo-
nents, we take the one which contains the rectangle

{(β1/a21, x2, x3) : x2 ∈ [β2 − l1, β2 + l1], x3 ∈ [λ1, λ2]}
and call it Bε̂. Finally, using again Lemma 4.2 we find inside the set Bε̂ a parallelepiped of
the form (see Fig. 4)

R := [(β1/a21)− ε̂, (β1/a21)+ ε̂] × [β2 − (l̃/2), β2 + (l̃/2)] × [λ1, λ2].
Our goal will be to prove that the cylinder Cyl contains a horseshoe for � with suitable

times T1 and T2 using the stretching property for the paths. In this proof, the set R will be
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Fig. 4 The parallelepiped R inside the chosen component of Bε̂

involved too. Notice that all the introduced parameters in the proof can be exactly computed
depending on the coefficients of the system and they do not depend on γ2.

Step 3: Stretching property for system (4.2).
First of all, we give a name to the lower and upper sides of Bε̂ and also select two lateral
faces of such a set. Namely, we define

B−
0 := Bε̂ ∩ {(x1, x2, x3) : x3 = λ1}, B−

1 := Bε̂ ∩ {(x1, x2, x3) : x3 = λ2}
and

F− := Bε̂ ∩
{

(x1, x2, x3) : x1 = β1

a21
− ε̂

}

, F+ := Bε̂ ∩
{

(x1, x2, x3) : x1 = β1

a21
+ ε̂

}

.

In this step, we determine a lower bound for T1 and prove that there exist two compact sets
Hk1 , Hk2 ⊂ Bε̂ so that

(�1, Hk1 , Hk2) : B̃ε̂ �−→F̃

where B̃ε̂ = (Bε̂ ,B
−) with B−

ε̂
= B−

0 ∪ B−
1 and F̃ = (F ,F−) with F = Bε̂,

F− = F− ∪ F+.
By the construction of Bε̂ , we know that

P(q0) ≥ P∗, for all q0 ∈ B−
1 , P(q1) ≤ P∗, for all q1 ∈ B−

0 .

On each plane x3 = x0
3 , with x0

3 ∈ [λ1, λ2], we introduce a system of polar coordinates
with center at (β1/a21, α1(1 + x0

3 )/a12) and count the angles in the clockwise sense starting
from the half-line {(β1/a21, x2) : x2 ≤ α1(1 + x0

3 )/a12}. Each section of Bε̂ with the plane
x3 = x0

3 lies in the angular region between −π/2 and π/2. Moreover, if we denote by θ(τ, q)
the angular coordinate at time τ > 0 of the solution of (4.2) departing from q ∈ Bε̂ , we
deduce

θ(τ, q) = θ(0, q)+ 2π rot(q, τ ) ∈ [2π rot(q, τ )− π/2, 2π rot(q, τ )+ π/2]. (4.6)
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Fix

T1 ≥ 5P∗ P∗

P∗ − P∗ . (4.7)

Let m∗ = m∗(T1) be the least integer such that

m∗ ≥ T1

P∗
.

Then

rot(q0, T1) ≤ m∗, for all q0 ∈ B−
1 .

On the other hand, if we choose m∗ = m∗(T1) the largest integer such that

m∗ ≤ T1

P∗ ,

then we have

rot(q1, T1) ≥ m∗, for all q1 ∈ B−
0 .

Moreover, from the choice of T1 in (4.7), we know that

m∗ − m∗ ≥ 3.

As a consequence of (4.6), we also obtain

θ(T1, q0) ≤ 2m∗π + π/2, for all q0 ∈ B−
1

and

θ(T1, q1) ≥ 2m∗π − π/2, for all q1 ∈ B−
0 .

By the above estimates, for each positive integer k with

k ∈ [m∗ + 1,m∗ − 1], (4.8)

the following inclusion

[
2kπ − π

2
, 2kπ + π

2

]
⊂
[

max
q0∈B−

1

θ(T1, q0), min
q1∈B−

0

θ(T1, q1)

]

holds. At last, for any integer k satisfying (4.8), let us define the set

Hk :=
{

q ∈ Bε̂ : θ(T1, q0) ∈
[
2kπ − π

2
, 2kπ + π

2

] }
.

Observe that, by the continuity of the angular function with respect to the initial points and
the above interval inclusion, we find that the sets Hk’s are nonempty, compact, and pairwise
disjoint.

Let

γ : [0, 1] → Bε̂

be a continuous map, with γ (s) = (γ1(s), γ2(s), γ3(s)), such that

γ (0) ∈ B−
0 and γ (1) ∈ B−

1
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and consider the new path

[0, 1] � s �→ �1(γ (s)),

which represents the evolution of the points of γ (s) after the time T1 under the dynamical
system associated to (4.2). Notice that

�1(γ (s)) ∈ Cyl, for all s ∈ [0, 1]
and, for �1(γ (s)) = (�1

1(γ (s),�
1
2(γ (s),�

1
3(γ (s)), we have �1

3(γ (s)) = γ3(s), for all
s ∈ [0, 1].

We claim that for every integer k satisfying (4.8) there is an interval [s0, s1] = [sk
0 , sk

1 ] ⊂
[0, 1] such that

γ (s) ∈ Hk, for all s ∈ [s0, s1],
�1(γ (s)) ∈ Bε̂ , for all s ∈ [s0, s1]

and

�1(γ (s0)) ∈ F+, �1(γ (s1)) ∈ F−.

Indeed, recalling that θ(T1, γ (s)) is the angular coordinate at time T1 of the solution of (4.2)
departing from γ (s), we deduce

θ(T1, γ (0)) ≤ 2m∗π + π/2 < 2kπ − π/2 < 2kπ + π/2 < 2m∗π − π/2 ≤ θ(T1, γ (1)).

Consequently, we can find an interval [σ0, σ1] ⊂ [0, 1] such that

θ(T1, γ (σ0)) = −π
2

+ 2kπ, θ(T1, γ (σ1)) = π

2
+ 2kπ,

for the given integer k. Moreover, by continuity, we can also assume that

−π
2

+ 2kπ ≤ θ(T1, γ (σ0)) ≤ π

2
+ 2kπ, for all s ∈ [σ0, σ1].

Hence γ (s) ∈ Hk for all s ∈ [σ0, σ1]. Having found [σ0, σ1] we easily get [s0, s1] ⊂ [σ0, σ1]
as claimed, just by observing that the set is Bε̂ is (on each horizontal section) angularly
bounded by [−π/2, π/2].

Step 4: Stretching property for system (4.3).
In this step, we prove that there exist γ ∗

2 and T ∗
2 (γ2) so that for all γ2 > γ ∗

2 and T2 > T ∗
2 (γ2)

the following stretching property holds. Given a continuous path ζ : [s0, s1] −→ Bε̂ with
ζ(0) ∈ F− and ζ(1) ∈ F+, there exists a subinterval [s′′

0 , s′′
1 ] ⊂ [0, 1] so that

�2(ζ([s′′
0 , s′′

1 ])) ⊂ Bε̂

with

�2(γ (s′′
0 )) ∈ B−

1

�2(γ (s′′
1 )) ∈ B−

0 .

Indeed, take a continuous path ζ : [s0, s1] −→ Bε̂ with ζ(0) ∈ F− and ζ(1) ∈ F+.
First of all, we notice that, by the construction of Bε̂ (which, we recall, involved the use of
Lemma 4.2 with l = l̃) there exists a constant κ > 0 so that |x2 − β2| ≤ κ for every point
(x1, x2, x3) ∈ Bε̂ . Thus, in particular,

|ζ2(s)− β2| ≤ κ, for all s ∈ [s0, s1]
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and, from the second equation in (4.3) we easily find a precise time estimate, say T ∗(l̃), such
that for T2 ≥ T ∗(l̃) it holds that

|�2
2(ζ(s))− β2| ≤ l̃

2
, for all s ∈ [s0, s1],

where �2 = (�2
1,�

2
2,�

2
3). Having settled the behavior of �2 in its second component, we

can forget for a moment the second equation in (4.3) and study the reduced subsystem
{

x ′
1 = x1(−α2 + a13x3)

x ′
3 = x3(γ2 − a31x1),

(4.9)

For this system, we apply Lemma 4.1 with the parameters:

A := α2, B := a13, C := γ2, D := a31, x0 = β1

a21
, l1 := ε̂, l2 := α2

2a13

and the rectangle S of Lemma 4.1 takes the form

S := [(β1/a21)− ε̂, (β1/a21)+ ε̂] × [λ1, λ2].
Accordingly, we can determine a constant � such that for

γ2 > �, (4.10)

the conclusion of Lemma 4.1 holds. Recall that ε̂ does not depend on γ2. In our set-
ting, this means that each solution of (4.9) with initial point on the segment [(β1/a21) −
(ε̂/2), (β1/a21) + (ε̂/2)] × {α2/a13} leaves the rectangle S across the sides [(β1/a21) −
ε̂, (β1/a21) + ε̂] × {λ1} (in backward time) and [(β1/a21) − ε̂, (β1/a21) + ε̂] × {λ2} (in
forward time).

By the well-known phase-portrait of the Lotka-Volterra equation, in the x1 x3-plane we
have a global center which is the equilibrium point ( γ2

a31
, α2

a13
) surrounded by the energy level

lines

F(x1, x3) = k > min F = F(γ2/a31, α2/a31),

where

F(x1, x3) := a31x1 − γ2 log x1 + a13x3 − α2 log x3

is the associated energy. Then, we can introduce polar coordinates and define a rotation num-
ber (as we did before in the planes x3 = constant). More in detail, we take as a center the
equilibrium point (γ2/a31, α2/a13) and we count the angles in the clockwise sense starting
from the half-line {(x1, α2/a13) : x1 ≤ γ2/a31}. In particular, associate to any initial point
q := (x0

1 , x0
3 ), with x0

1 < γ2/a31 an initial angle between −π/2 and π/2 and denote by
ϑ(τ, q) the angle performed at the time τ > 0 by the solution of (4.9) departing from q .
Note that also the rectangle S lies in the angular region between −π/2 and π/2.

We call Q∗ and Q∗ the period of the orbits of (4.9) passing through the points ((β1/a21)−
(ε̂/2), α2/a13) and ((β1/a21) + (ε̂/2), α2/a13), respectively. By the strict monotonicity of
the time-map with respect to the energy levels of the orbits, we know that

Q∗ > Q∗.

It is important to observe that for any initial point q0 = (x0
1 , x0

2 , x0
3 ), with

F(x0
1 , x0

3 ) = k∗ := F((β1/a21)− (ε̂/2), α2/a13),
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Fig. 5 The part of the region in R between the surfaces F = k∗ and F = k∗

the corresponding solution (x1(t; q0), x2(t; q0), x3(t; q0)) of (4.3) lies on the invariant sur-
face

{(x1, x2, x3) : F(x1, x3) = k∗}.
The projection of such a solution on the x1 x3-plane is a periodic orbit for (4.9) of period
Q∗ winding around the equilibrium point (a31/γ2, α2/a31). In the meantime, the second
component x2(t; q0) moves toward c2 and, as we have already seen, |x2(t; q0)− β2| ≤ l̃/2
for t ≥ T ∗(l̃). A completely similar behavior occurs for the solutions of (4.3) with an initial
point satisfying

F(x0
1 , x0

3 ) = k∗ := F((β1/a21)+ (ε̂/2), α2/a13).

These solutions lie on the surface

{(x1, x2, x3) : F(x1, x3) = k∗}
and their projection onto the x1 x3-plane are periodic orbits of (4.9) with period Q∗.

Hence, by (4.10), the path ζ considered at the beginning must cross the energy lines
F = k∗ and F = k∗, which according to Lemma 4.1 separates the left and the right sides
of the rectangle S. Figure 5 shows the domain limited by the surfaces F = k∗ and F = k∗
in R.

Then, we can find a subinterval [s′
0, s′

1] ⊂ [s0, s1] such that

F(ζ(s′
0)) = k∗, F(ζ(s′

1)) = k∗, and F(ζ(s)) ∈ [k∗, k∗], for all s ∈ [s′
0, s′

1].
Fix

T ∗
2 ≥ 4Q∗Q∗

Q∗ − Q∗ .

We proceed now like in the previous step and define �∗ as the least integer larger than or
equal to T ∗

2 /Q∗ and �∗ as the greater integer less than or equal to T ∗
2 /Q∗. By the choice of

T ∗
2 we find that �∗ − �∗ ≥ 2, and therefore, for any integer j ∈ [�∗ + 1, �∗ − 1], we have

ϑ(T ∗
2 , ζ(s

′
0)) ≤ 2�∗π + π/2 < 2 jπ − π/2 < 2 jπ + π/2 < 2�∗π − π/2 ≤ ϑ(T ∗

2 , ζ(s
′
1)).
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Since the set {ϑ(T ∗
2 , ζ(s)) : s ∈ [s′

0, s′
1]} covers the angular interval [2π j −π/2, 2π j +π/2]

and also recalling that the rectangle S is angularly bounded in the same region, we find a
subinterval [s′′

0 , s′′
1 ] ⊂ [s′

0, s′
1] such that

�2
3(ζ(s

′′
1 )) = λ1, �

2
3(ζ(s

′′
0 )) = λ2, �

2
3(ζ(s)) ∈ [λ1, λ2], for all s ∈ [s′′

0 , s′′
1 ]

and also

�2
1(ζ(s)) ∈ [β1/a21 − ε̂, β1/a21 + ε̂], for all s ∈ [s′′

0 , s′′
1 ].

Finally, we fix

T2 ≥ max{T ∗(l̃), T ∗
2 }. (4.11)

By summarizing the preceding steps, we have obtained the following: There exist two com-
pact sets Hk1 , Hk2 ⊂ Bε̂ so that

(� = �2 ◦�1, Hk1 , Hk2) : B̃ε̂ �−→B̃ε̂ .

Thus, the stretching along the paths property is proved, and by Theorem 2.1, we get the result.
��

Remark 4.1 The argument of the proof works the same (with minor modifications) if we
replace the Beddington-DeAngelis term x2

1+x3
in Eq. (4.3) with a term of the form x2k(x3)

where k(·) is a positive and strictly monotone function defined on the positive real numbers.

4.2 Proof of Theorem 3.1

The proof of our result follows from the above construction and using Corollary 2.1. To this
aim, take as K0 and K1 the following sets

H̃k1 := {q ∈ Hk1 : �1(q) ∈ Bε̂ , k∗ ≤ F (�1
1(q),�

1
3(q)) ≤ k∗}

and

H̃k2 := {q ∈ Hk2 : �1(q) ∈ Bε̂ , k∗ ≤ F (�1
1(q),�

1
3(q)) ≤ k∗},

which are slight modifications of the compact sets Hk1 and Hk2 introduced in the proof of
Proposition 3.1. ��

5 Discussion

We conclude this paper with a brief discussion about the results obtained and their biological
meaning.

The purpose of our work has been to prove analytically the presence of chaotic dynamics
in a broad class of 3D systems of predator-prey type. More precisely, under certain condi-
tions, we are able to determine explicitly a bounded region R containing two disjoint sets
K0 and K1 satisfying the coin tossing property with respect to the Poincaré map�. With this
notion we mean that, given an arbitrary two-sided sequence of symbols (sn)n∈Z ∈ {0, 1}Z,
there exists at least one point q ∈ R such that the full orbit O(q) along q reproduces the
behavior of the prescribed sequence. In order to give a hint of our concept, let us restrict to
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forward sequences and take, for instance, the sequences 010010001 . . . and 001001001 . . .
Associated to such sequences we have two points w, z ∈ R with the following properties:

w ∈ K0,�(w) ∈ K1,�
2(w) ∈ K0,�

3(w) ∈ K0,�
4(w) ∈ K1 . . .

z ∈ K0,�(z) ∈ K0,�
2(z) ∈ K1,�

3(z) ∈ K0,�
4(z) ∈ K0 . . .

If the sequence of symbols is periodic, we can find a corresponding periodic point for � as
well.

From the point of view of the applications, the presence of regions containing such chaotic
sets is quite relevant since in these sets we have phenomena of sensitive dependence. This
fact makes impossible to predict the dynamics in the future from experimental data since
small errors can cause great changes in long-time behavior.
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