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Abstract Based on the different kinds of auxiliary operators and corresponding operator
relations, we will present conditions which characterize the invertibility of matrix Wiener–
Hopf plus Hankel operators having different Fourier symbols in the class of almost periodic
elements. To reach such invertibility characterization, we introduce a new kind of factor-
ization for AP matrix functions. Additionally, under certain conditions, we will obtain the
one-sided and two-sided inverses of the matrix Wiener–Hopf plus Hankel operators in study.
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1 Introduction

The main goal of the present work is to obtain invertibility criteria for matrix Wiener–Hopf
plus Hankel operators with (possibly different) almost periodic Fourier symbols (and acting
between L2 Lebesgue spaces), as well as to derive formulas for the (lateral) inverses of these
operators.

We would like to point out that partial results are already known in this line of research.
In [13], a characterization for the left-, right-, and two-sided invertibility of certain matrix
Wiener–Hopf plus Hankel operators has already been obtained. This was done for Fourier
symbols in the Wiener subclass of the almost periodic algebra, and under the condition that a
certain almost periodic matrix-valued function (constructed from the initial Fourier symbols
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of the Hankel and Wiener–Hopf operators) must admit a numerical range bounded away from
zero. In a different way, for weaker situations like the Fredholm property, several results are
also already known. However, these strongly depend on the type of Fourier symbols and on
particular conditions imposed on the symbols. This is the case of matrix Wiener–Hopf plus
Hankel operators with (possibly different) Fourier symbols in the C∗-algebra of semi-almost
periodic elements (which naturally include the almost periodic functions), where in [14] con-
ditions to ensure the Fredholm property were obtained (but under the assumption that certain
auxiliary matrix functions admit right AP factorizations [6]). Other works which include
almost periodic symbols but under stronger constrains (like the circumstance of having equal
symbols in the Wiener–Hopf and the Hankel operators) can be found in [8–10,12,20].

It is also clear that much more additional works could be referred as important contribu-
tions to the understanding of the structure of that kind of operators (cf. the pioneering works
[3–5,7,17,18,22] and the references therein)—even if in a more classical or, sometimes,
indirect way. For example, the classical work of Power [21] includes the study of the spectra
and essential spectra of Hankel operators by investigating the C∗-algebra generated by the
Toeplitz and Hankel operators (in the two cases of piecewise continuous symbols and almost
periodic symbols).

Let us now identify—in a mathematical way—the main objects of this work. We will
consider matrix Wiener–Hopf plus Hankel operators denoted by

WΦ1 + HΦ2 : [
L2+(R)

]N → [
L2(R+)

]N
, (1)

with WΦ1 and HΦ2 being matrix Wiener–Hopf and Hankel operators defined by

WΦ1 = r+F−1Φ1F : [
L2+(R)

]N → [
L2(R+)

]N
, (2)

HΦ2 = r+F−1Φ2F J : [
L2+(R)

]N → [
L2(R+)

]N
, (3)

respectively (where for convenience Φ j stands for the matrix function and for the multi-
plication operator, as well). We consider L2(R) to be the usual space of square integrable
Lebesgue measurable functions on the real line R, and L2(R+) the corresponding one in
the positive half-line R+ = (0,+∞). The subspace of L2(R) formed by all functions sup-
ported in the closure of R+ is being denoted by L2+(R). Similarly, the subspace of L2(R)

formed by all functions supported in the closure of R− = (−∞, 0) will be denoted by
L2−(R). In addition, F denotes the Fourier transformation, r+ represents the operator of

restriction from
[
L2+(R)

]N
into

[
L2(R+)

]N
, J is the reflection operator given by the rule

Jϕ(x) = ϕ̃(x) = ϕ(−x), x ∈ R, Φ1 and Φ2 ∈ [L∞(R)]N×N are the so-called Fourier
matrix symbols.

In this work, the entries of the matrices Φ1 and Φ2 will belong to the algebra AP of
almost periodic functions, i.e., the smallest closed subalgebra of L∞(R) that contains all the
functions eλ (λ ∈ R), where eλ(x) = eiλx , x ∈ R:

AP := algL∞(R){eλ : λ ∈ R}.
Moreover, we will be also using the notation

AP+ := algL∞(R){eλ : λ ≥ 0}, AP− := algL∞(R){eλ : λ ≤ 0}
for these two subclasses of AP (which are still closed subalgebras of L∞(R)).

The reminder part of this paper is organized as follows. Section 2 contains some auxil-
iary information mostly on operator identities for Wiener–Hopf plus Hankel operators and
inverses of particular operators. In Sect. 3, we obtain our main results by using operator
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relations and introducing a specific matrix factorization. In Sect. 4, we present an example
of the applicability of the main results in Section 3.

2 Operator identities for Wiener–Hopf plus Hankel operators

Let �0 denotes the zero extension operator from the space
[
L2(R+)

]N
into the space

[
L2+(R)

]N
,

�0 : [
L2(R+)

]N → [
L2+(R)

]N
. (4)

We will denote by χ± the canonical projections (considered as multiplication operators) of
[
L2(R)

]N
onto

[
L2±(R)

]N
, respectively.

Considering H2±(R) := F L2±(R), the orthogonal projections of
[
L2(R)

]N
onto

[
H2±(R)

]N

are given by

P := Fχ+F−1 : [
L2(R)

]N → [
H2+(R)

]N
,

Q := Fχ−F−1 : [
L2(R)

]N → [
H2−(R)

]N

(where the operator P is also usually referred to as the Riesz projection).
We will be also using the spaces H∞± (R) consisting in all the elements of L∞(R) that are

non-tangential limits of bounded and analytic functions in C± := {z ∈ C : ±�m(z) > 0}.
We will now give some basic formulas for Wiener–Hopf plus Hankel operators in view

of taking profit of certain factorization properties for such operators. The next proposition is
based on [17, pp. 51] and [18, pp. 71].

Proposition 1 Let Φ, Ψ ∈ [L∞(R)]N×N and w ∈ C
N×N such that w2 = IN×N . Then,

WΦΨ + HΦΨ w = (WΦ + HΦw)�0(WΨ + HΨ w) + HΦw�0(WwΨ̃ w−Ψ + HwΨ̃ −Ψ w). (5)

Proof First, recall two well-known formulas from the theory of Wiener–Hopf-Hankel oper-
ators (cf., e.g., [6]):

WΦΨ = WΦ�0WΨ + HΦ�0 HΨ̃ , (6)

HΦΨ = WΦ�0 HΨ + HΦ�0WΨ̃ . (7)

Having also in mind that w ∈ C
N×N and w2 = IN×N , it follows

WΦΨ + HΦΨ w = WΦ�0WΨ + HΦ�0 HΨ̃ + WΦ�0 HΨ w + HΦ�0WΨ̃ w

= WΦ�0(WΨ + HΨ w) + HΦ�0(WΨ̃ w + HΨ̃ )

= WΦ�0(WΨ + HΨ w) + HΦw�0(WwΨ̃ w + HwΨ̃ )

= (WΦ + HΦw)�0(WΨ + HΨ w) + HΦw�0(WwΨ̃ w−Ψ + HwΨ̃ −Ψ w),

which is the desired identity.

Theorem 1 Let Φ, Ψ, Θ ∈ [L∞(R)]N×N , and w ∈ C
N×N such that w2 = IN×N .

If Φ ∈ [H∞− (R)]N×N and Θ = wΘ̃w, then we have the factorization

WΦΨ Θ + HΦΨ Θw = WΦ�0(WΨ + HΨ w)�0(WΘ + HΘw). (8)
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Proof Using formula (5), we have

WΦΨ Θ + HΦΨ Θw = (WΦ + HΦw)�0(WΨ Θ + HΨ Θw)

+HΦw�0

(
W

w̃Ψ Θw−Ψ Θ
+ H

w̃Ψ Θ−Ψ Θ

)
.

Recalling that HΦ = 0 if Φ ∈ [
H∞− (R)

]N×N , we obtain

WΦΨ Θ + HΦΨ Θw = WΦ�0(WΨ Θ + HΨ Θw).

Now, relaying on the property of Θ and using (5) once again, we will have that

WΦΨ Θ + HΦΨ Θ = WΦ�0 [(WΨ + HΨ w)�0(WΘ + HΘw)

+HΨ w�0(WwΘ̃w−Θ + HwΘ̃−Θw)
]

= WΦ�0(WΨ + HΨ w)�0(WΘ + HΘw).

For a unital algebra X , we shall denote by GX the group of invertible elements.

Theorem 2 Let Φe ∈ G[L∞(R)]N×N such that Φe = wΦ̃ew, with w ∈ C
N×N and w2 =

IN×N . Then, WΦe + HΦew is invertible with inverse being the following operator

�0

(
W

Φ−1
e

+ H
Φ−1

e w

)
�0 : [L2(R+)]N → [L2+(R)]N .

Proof First, observe that

(W
ΦeΦ

−1
e

+ H
ΦeΦ

−1
e w

)�0 = (WIN×N + Hw)�0 = r+�0 = I[L2(R+)]N .

Recalling (5), we obtain that
(

W
ΦeΦ

−1
e

+ H
ΦeΦ

−1
e w

)
�0 = (WΦe + HΦew)�0

(
W

Φ−1
e

+ H
Φ−1

e w

)
�0

+HΦew�0

(
W

w
˜
Φ−1

e w−Φ−1
e

+ H
w

˜
Φ−1

e −Φ−1
e w

)
�0. (9)

Because Φe = wΦ̃ew, we obtain that w
˜
Φ−1

e w − Φ−1
e = 0 and w

˜
Φ−1

e − Φ−1
e w = 0. It

follows that (9) is equivalent to

WIN×N + Hw = (
WΦe + HΦew

)
�0

(
W

Φ−1
e

+ H
Φ−1

e w

)

and thus

I[L2(R+)]N = (
WΦe + HΦew

)
�0

(
W

Φ−1
e

+ H
Φ−1

e w

)
�0.

Similarly, we have that

�0

(
W

Φ−1
e

+ H
Φ−1

e w

)
�0

(
WΦe + HΦew

) = I[L2(R+)]N .

Hence, we have explicitly shown that WΦe + HΦew is invertible and its inverse is given by
the formula:

�0

(
W

Φ−1
e

+ H
Φ−1

e w

)
�0 : [

L2(R+)
]N → [

L2+(R)
]N

.
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3 Invertibility of Wiener–Hopf plus Hankel operators with AP symbols

3.1 Auxiliary operators and operator relations

In order to relate operators and to transfer certain operator properties between the related
operators, we will be also using the known notion of equivalence after (one-sided) extension
relation between bounded linear operators. In view of this, let us first recall the corresponding
notion.

Two bounded linear operators acting between Banach spaces, e.g., T : X1 → X2 and
S : Y1 → Y2, are said to be equivalent after (one-sided) extension [1,15] if there are invertible
bounded linear operators E and F such that

[
T 0
0 IZ

]
= E SF, (10)

for some additional Banach space Z and where IZ represents the identity operator in Z . This
is an important operator relation which—in particular—allows the transfer of invertibility
properties between the related operators. Namely, it directly follows from (10) that if two
operators are equivalent after one-sided extension, then they belong to the same invertibility
class. More precisely, one of these operators is invertible, left-invertible or right-invertible, if
and only if the other operator enjoys the same property. A bit more general is the (two-sided)
equivalence after extension relation where S is extended in a similar way as T [1]. However,
this is not needed here.

Moreover, for the readers familiar with the notion of Schur coupling [2], it is also inter-
esting to observe that if (10) holds true, then T and S are Schur coupled.

Although the next proposition is basically known from [17, Theorem 3.2], we choose to
present in here a direct and simple proof of it.

Proposition 2 Let Φ1, Φ2 ∈ [L∞(R)]N×N . The Wiener–Hopf plus Hankel operator WΦ1 +
HΦ2 : [L2+(R)]N → [L2(R+)]N is equivalent after one-sided extension with WΨ + HΨ w :
[L2+(R)]2N → [L2(R+)]2N , where

Ψ =
[

Φ1 Φ2

0 I

]
, w =

[
0 I
I 0

]
. (11)

Proof A direct computation yields
[

WΦ1 + HΦ2 0
0 I[L2+(R)]N

]
=

[
r+ −WΦ2 − HΦ1

0 I[L2+(R)]N

]
�0(WΨ + HΨ w) ,

which shows the equivalence after one-sided extension between WΦ1 + HΦ2 and WΨ + HΨ w

simply because E =
[

r+ −WΦ2 − HΦ1

0 I[L2+(R)]N

]
�0 is an invertible bounded linear operator.

3.2 Matrix AP asymmetric factorization

We introduce now a new kind of AP factorization, the AP asymmetric factorization with
respect to w ∈ C

N×N (motivated by other types of asymmetric factorizations; cf. [9–11,16–
19]).

Definition 1 Let Φ ∈ G AP N×N and w ∈ C
N×N such that w2 = IN×N . We say that Φ

admits an AP asymmetric factorization with respect to w if it can be represented in the form

Φ = Φ− DΦe ,
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where Φ− ∈ GAPN×N− , Φe = wΦ̃ew and D = diag[eλ1 , . . . , eλN ], λ j ∈ R. The num-
bers λ j are called the partial indices of the factorization. If λ1 = . . . = λN = 0, then the
factorization is referred to as a canonical AP asymmetric factorization with respect to w.

3.3 Invertibility criteria

Considering a bounded linear operator T : X → Y , acting between Banach spaces, we
recall that T is normally solvable if I mT is closed (Theorem of Hausdorff). For a normally
solvable operator T , the deficiency numbers of T are given by n(T ) := dim KerT and
d(t) := dim CokerT . If at least one of the deficiency numbers is finite, then the operator
is said to be a semi-Fredholm operator. Additionally, we also recall that a normally solv-
able operator T is said to be: (i) properly n-normal if n(T ) is finite and d(T ) is infinite;
(ii) properly d-normal if d(T ) is finite and n(T ) is infinite.

Theorem 3 Let us assume that Φ1, Φ2 ∈ G AP N×N , w =
[

0 I
I 0

]
and that Ψ =

[
Φ1 Φ2

0 I

]
admits an AP asymmetric factorization with respect to w, Ψ = Ψ− DΨe,

with Ψ− ∈ G AP2N×2N− , Ψe ∈ G[L∞(R)]2N×2N such that Ψe = wΨ̃ew and D =
diag[eλ1 , . . . , eλ2N ].
(a) If there exist positive and negative partial indices λi (i = 1, . . . , 2N), then WΦ1 + HΦ2

is not semi-Fredholm;
(b) If λi ≤ 0, for all i = 1, . . . , 2N, and if for at least one index i we have λi < 0, then

WΦ1 + HΦ2 is properly d-normal and right-invertible.
(c) If λi ≥ 0, for all i = 1, . . . , 2N, and if for at least one index i we have λi > 0, then

WΦ1 + HΦ2 is properly n-normal and left-invertible.
(d) If λi = 0, for all i = 1, . . . , 2N, then WΦ1 + HΦ2 is two-sided invertible.

Proof To prove this theorem, we initially make use of the fact that WΦ1 + HΦ2 is equivalent
after one-sided extension with WΨ + HΨ w , which allows us to transfer the above-mentioned
regularity properties from the operator WΨ + HΨ w to the operator WΦ1 + HΦ2 (within the
present context, by regularity properties of a certain operator we mean that properties that
depend on the kernel and cokernel of this operator).

Let Φ1, Φ2 ∈ GAPN×N , Ψ =
[

Φ1 Φ2

0 I

]
such that Ψ admits an AP asymmetric fac-

torization with respect to w:

Ψ = Ψ− DΨe,

with Ψ− ∈ GAP2N×2N− , D = diag[eλ1 , . . . , eλ2N ], and Ψe = wΨ̃ew.
From (8), we have that

WΨ + HΨ w = WΨ−�0(WD + HDw)�0(WΨe + HΨew), (12)

where WΨ− is invertible because Ψ− ∈ GAP2N×2N− and WΨe + HΨew are also invertible due
Theorem 2.

Thus, (12) shows us an equivalence relation between WΨ + HΨ w and WD + HDw .
We will now consider the corresponding appropriate cases separately:

(i) Suppose that at least some of the partial indices are greater that zero, some of them
may be equal to zero and some of them are less than zero; for instance (without loss
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of generalization):

λ1, . . . , λi > 0, λi+1 = · · · = λ j = 0 and λ j+1, . . . , λ2N < 0

(for some i ≥ 1, i + 1 ≤ j < 2N ). This means that

WD + HDw = WD(I + wJ )

= diag
[
Weλ1

, . . . , Weλi
, Weλi+1

, . . . , Weλ j
, Weλ j+1

, . . . , Weλ2N

]
(I + wJ )

= diag
[
Weλ1

, . . . , Weλi
, r+, . . . , r+, Weλ j+1

, . . . , Weλ2N

]
(I + wJ ).

Employing Gohberg-Feldman-Coburn-Douglas Theorem [6, Theorem 2.28], we have
that Weλ1

, . . . , Weλi
are properly n-normal and left-invertible, and Weλ j+1

, . . . , Weλ2N

are properly d-normal and right-invertible. Thus, WD + HDw is not semi-Fredholm
and from the equivalence relations between WΦ1 + HΦ2 , WΨ + HΨ w and WD + HDw ,
it also follows that WΦ1 + HΦ2 is not semi-Fredholm in this case.

(ii) Suppose now that λi ≤ 0, for all i = 1, . . . , 2N . This implies that D ∈ AP2N×2N− .
Since AP2N×2N− = AP2N×2N ∩ [H∞− (R)]2N×2N , it holds that D ∈ [H∞− (R)]2N×2N

and hence, WD + HDw = WD . Thus, in this case, WΨ + HΨ w is equivalent to WD . If
we employ the Gohberg-Feldman-Coburn-Douglas Theorem to each the operators in
the main diagonal of the operator WD , it follows the assertion (b) of the theorem.

(iii) Part (c) can be deduced from the reasoning in (ii) by passing to adjoints.
(iv) If all partial indices are zero, we have that WD + HDw is equivalent to the identity

operator which is two-sided invertible – obtaining therefore the assertion (d).

3.4 Formulas for the inverses

Theorem 4 If Ψ ∈ GAP2N×2N (defined in (11)) admits an AP asymmetric factorization

with respect to w =
[

0 I
I 0

]
,

Ψ = Ψ− DΨe ,

with D = diag[eλ1 , . . . , eλ2N ], then

(WΨ + HΨ w)− = �0(W
Ψ −1

e
+ H

Ψ −1
e w

)�0WD−1�0W
Ψ −1−

�0 : [L2(R+)]2N → [L2+(R)]2N (13)

is the:

(i) inverse of WΨ + HΨ w, if λ1 = · · · = λ2N = 0;
(ii) the right-inverse of WΨ + HΨ w , if λi ≤ 0 for all i = 1, . . . , 2N;

(iii) the left-inverse of WΨ + HΨ w , if λi ≥ 0 for all i = 1, . . . , 2N.

Proof From the hypothesis, we have Ψ = Ψ− DΨe, where Ψ− ∈ G AP2N×2N− , Ψe = wΨ̃ew

and D = diag[eλ1 , . . . , eλ2N ].
(i) If λ1 = · · · = λ2N = 0, then

(WΨ + HΨ w)− = �0(W
Ψ −1

e
+ H

Ψ −1
e w

)�0W
Ψ −1−

�0 : [L2(R+)]2N → [L2+(R)]2N (14)
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and from (12) it follows

(WΨ + HΨ w)(WΨ + HΨ w)− = WΨ−�0
(
WΨe + HΨew

)
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)

�0W
Ψ −1−

�0

= WΨ−�0W
Ψ −1−

�0

= I[L2(R+)]2N ,

due to the use of Theorem 2 and due to the fact that Ψ− ∈ GAP2N×2N− .
In addition, by the same reason,

(WΨ + HΨ w)−(WΨ + HΨ w) = �0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0W

Ψ −1−
�0WΨ−�0

(
WΨe + HΨew

)

= I[L2+(R)]2N .

(ii) If λi ≥ 0, i = 1, . . . , 2N , then

(WΨ + HΨ w)−(WΨ + HΨ w)

= �0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0WD−1�0W

Ψ −1−
�0WΨ−�0(WD + HDw)�0

(
WΨe + HΨew

)

= �0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0WD−1�0(WD + HDw)�0

(
WΨe + HΨew

)

= �0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0

(
WΨe + HΨew

)

= I[
L2+(R)

]2N .

To obtain this last result, we use the fact that Ψ− ∈ GAP2N×2N− , and λi ≥ 0. This, in
particular, yields

�0WD−1�0(WD + HDw)�0 = �0
(
WD−1 D + HD−1 Dw

)
�0

= �0(WI + Hw)�0

= �0WI �0

= �0

(cf. Proposition 1).
(iii) If λi ≤ 0, i = 1, . . . , 2N , then (having in mind that Ψ−, D ∈ AP2N×2N− ) it follows:

(WΨ + HΨ w)(WΨ + HΨ w)− = WΨ−�0WD�0
(
WΨe + HΨew

)
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0WD−1�0W

Ψ −1−
�0

= WΨ−�0WD�0WD−1�0W
Ψ −1−

�0

= WΨ−�0W
Ψ −1−

�0

= I[L2(R+)]2N .

Using the equivalence after one-sided extension relation between WΦ1 + HΦ2 and WΨ +
HΨ w , and Theorem 4, we are in position to derive the representation of the one-sided and
two-sided inverses of WΦ1 + HΦ2 .

Within the framework of bounded linear operators

V = [Vi j ]2
i, j=1 : [L2+(R)]2N → [L2+(R)]2N ,
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with Vi j : [L2+(R)]N → [L2+(R)]N , we will use the notation Ri j (V ) := Vi j .

Corollary 1 If Ψ ∈ GAP2N×2N [defined in (11)] admits an AP asymmetric factorization
with respect to w, Ψ = Ψ− DΨe, having D = diag[eλ1 , . . . , eλ2N ], then

(WΦ1 + HΦ2)
− = R11

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R11

(
�0WD−1

)
R11

(
�0W

Ψ −1−

)
�0

+R12

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R22

(
�0WD−1

)
R21

(
�0W

Ψ −1−

)
�0

: [L2(R+)]N → [L2+(R)]N (15)

is the:

(i) inverse of WΦ1 + HΦ2 if λ1 = · · · = λ2N = 0;
(ii) the right-inverse of WΦ1 + HΦ2 , if λi ≤ 0 for all i = 1, . . . , 2N;

(iii) the left-inverse of WΦ1 + HΦ2 , if λi ≥ 0 for all i = 1, . . . , 2N.

Proof From Proposition 2, we have that WΦ1 + HΦ2 is equivalent after one-sided extension
with WΨ + HΨ w and the corresponding operator relation is given, e.g., in the following
explicit form:

[
WΦ1 + HΦ2 0
0 r+

]
=

[
r+ −WΦ2 − HΦ1

0 r+

]
�0(WΨ + HΨ w).

Therefore,

[
WΦ1 + HΦ2 0

0 r+

]−
= (WΨ + HΨ w)−

[
r+ −WΦ2 − HΦ1

0 r+

]−1

,

and so

(WΦ1 + HΦ2)
− = R11

(
(WΨ + HΨ w)−

[
r+ WΦ2 + HΦ1

0 r+

])
�0

= R11
(
(WΨ + HΨ w)−r+

)
�0.

Using now Theorem 4, a straightforward computation yields

(WΦ1 + HΦ2)
− = R11

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

)
�0WD−1�0W

Ψ −1−

)
�0

= R11

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R11

(
�0WD−1

)
R11

(
�0W

Ψ −1−

)
�0

+R12

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R22

(
�0WD−1

)
R21

(
�0W

Ψ −1−

)
�0.

4 Example

In this last section, we will present an example to illustrate the results described above.
For x ∈ R, let us consider

Φ1(x) =
[

2e−e−i x +e2i x
0

ee−i x +eix
ee−i x +eix +1

]

, Φ2(x) =
[

iee−2i x
0

−iee−i x −iee−i x +1

]

. (16)
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Being clear that Φ1, Φ2 ∈ GAP2×2, let us construct the corresponding matrix Ψ :

Ψ (x) =
[

Φ1(x) Φ2(x)

0 I2×2

]
=

⎡

⎢
⎢
⎣

2e−e−i x +e2i x
0 iee−2i x

0

ee−i x +eix
ee−i x +eix +1 −iee−i x −iee−i x +1

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦. (17)

Considering Ψ− and Ψe given by

Ψ−(x) =

⎡

⎢⎢
⎢
⎣

2e−e−i x
0 i 0

0 ee−i x
0 −i

0 0 e−e−2i x
0

0 0 −e−e−2i x −1 e−e−i x −1

⎤

⎥⎥
⎥
⎦

and

Ψe(x) =

⎡

⎢
⎢
⎢
⎣

ee2i x
0 0 0

eeix
eeix +1 0 0

0 0 ee−2i x
0

0 0 ee−i x
ee−i x +1

⎤

⎥
⎥
⎥
⎦

,

for x ∈ R, we have that

Ψ = Ψ−Ψe

with Ψ− ∈ GAP2×2− , Ψe ∈ G[L∞(R)]2×2 such that Ψe = wΨ̃ew, and

w =
[

0 I2×2

I2×2 0

]
.

Therefore, it follows that Ψ admits a canonical AP asymmetric factorization with respect to
w ∈ C

2×2.
As a consequence, using Corollary 1, we conclude that the Wiener–Hopf plus Hankel

operator WΦ1 + HΦ2 (with Fourier symbols given in (16)) is two-sided invertible.
Moreover, using the same corollary, we are able to determine the inverse of WΦ1 + HΦ2 .

From (15), it follows that

(
WΦ1 + HΦ2

)−1 = R11

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R11

(
�0W

Ψ −1−

)
�0

+R12

(
�0

(
W

Ψ −1
e

+ H
Ψ −1

e w

))
R21

(
�0W

Ψ −1−

)
�0. (18)

Therefore, introducing in (18), the elements

Ψ −1
e =

⎡

⎢⎢⎢
⎣

e−e2i x
0 0 0

−e−e2i x −1 e−eix −1 0 0

0 0 e−e−2i x
0

0 0 −e−e−2i x −1 e−e−i x −1

⎤

⎥⎥⎥
⎦

Ψ −1− =

⎡

⎢⎢⎢
⎣

1
2 ee−i x

0 − i
2 ee−2i x +e−i x

0

0 e−e−i x
i ie

0 0 ee−2i x
0

0 0 ee−i x
ee−i x +1

⎤

⎥⎥⎥
⎦
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Ψ −1
e w =

⎡

⎢
⎢⎢
⎣

0 0 e−e2i x
0

0 0 −e−e2i x −1 e−eix −1

e−e−2i x
0 0 0

−e−e−2i x −1 e−e−i x −1 0 0

⎤

⎥
⎥⎥
⎦

,

we obtain the inverse of WΦ1 + HΦ2 in the following explicit form

(WΦ1 + HΦ2)
−1 = �0

[
W

e−e2i x 0
W−e−e2i x −1 W

e−ei x −1

]
�0

[ 1
2 W

ee−i x 0
0 W

e−e−i x

]
�0

= 1

2

[
�0W

e−e2i x �0 W
ee−i x �0 0

−�0 W
e−e2i x −1 �0 W

ee−i x �0 2 �0 W
e−ei x −1 �0 W

e−e−i x �0

]
.
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