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Abstract In this paper, we establish sufficient conditions for an asymptotically linear
elliptic boundary value problem to have at least seven solutions. We use the mountain pass
theorem, Lyapunov–Schmidt reduction arguments, existence of solutions that change sign
exactly once, and bifurcation properties. No symmetry is assumed on the domain or the
non-linearity.
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1 Introduction

In the quest for multiple solutions to equations without symmetries, a central role is played
by the equation

{
�u + λ f (u) = 0 in �,

u = 0 on ∂�,
(1)
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608 A. Castro et al.

where � ⊂ R
N , N > 2, is a bounded and smooth domain, and f : R → R is a function

of class C1. We denote by 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · the sequence of eigenvalues
of −� with zero Dirichlet boundary condition in �, and by {ϕk}k∈N a corresponding com-
plete orthonormal sequence of eigenfunctions in the Sobolev space H1

0 (�). We assume that
f (0) = 0 and that

(f1) f ′(0) ≤ 0
(f2) lim|t |→∞ f ′(t) = 1
(f3) t f ′′(t) > 0 for all t ∈ R − {0}.

Our main result is:

Theorem 1.1 If k ≥ 3 andλk < λk+1 then there exists ε > 0 such that ifλ ∈ (λk+1, λk+1+ε)
then (1) has at least seven solutions.

Corollary 1.2 If λ = λk+1 then (1) has at least five solutions.

The existence of three solutions for problems such as (1) was established in [6]. The results
of [6] were extended in [7] using Morse theory. Also the results in [6] were extended in [3]
to prove the existence of five solutions. Using the minmax principle developed in [4], further
description of such five solutions was established in [5]. The main minmax principle proved
in [4] was in turn motivated by the ideas in [14]. For a recent result on the existence of four
solutions to problem (1) when f is superlinear and λ is near an eigenvalue, the reader is
referred to [13]. When f is an odd function, using Liusternik-Schnierelmann methods one
can establish that (1) has 2k+1 solutions (see [12]). For related results where the Morse index
of solutions to (1) is estimated and used to find additional solutions, the reader is referred to
[1,2,8,9].

Our proofs use extensively the Lyapunov–Schmidt reduction method, critical groups and
Morse indices. We take advantage of the maxmin characterization of a solution obtained
using the Lyapunov–Schmidt reduction method to establish estimates on the L∞ norm of
such a solution depending on the location of λ with respect to λk and λk+1 (see Sect. 4). The
proofs of Theorem 1.1 and Corollary 1.2 are found in Sect. 6.

2 Preliminaries

Let H1
0 (�) denote the Hilbert space of square integrable functions having generalized first-

order partial derivatives in L2(�). We denote by ‖ · ‖ the norm in this space and by ‖ · ‖p

the norm in L p(�), 1 ≤ p ≤ +∞. The Euclidean norm in R
N will be denoted by | · |.

The solutions to (1) are the critical point of the functional Jλ : H1
0 (�) → R defined by

Jλ(u) =
∫
�

(
1

2
|∇u|2 − λF(u)

)
dx,

where F(ξ) = ∫ ξ
0 f (s) ds. Because of (f2), J ∈ C2 (see [12]) and, moreover,

D J (u) v = 〈∇ J (u), v〉 =
∫
�

(∇u · ∇v − λ f (u) v) dx, ∀u, v ∈ H1
0 (�), (2)

〈
D2 J (u) v,w

〉 =
∫
�

(∇v · ∇w − λ f ′ (u) vw
)

dx, ∀u, v, w ∈ H1
0 (�). (3)
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Existence of seven solutions 609

We assume the critical points of J to be isolated. Without this assumption, problem (1)
has infinitely many solutions. In Sect. 7, we clarify the nature of such solutions.

We recall that, if u0 is a critical point of J , the Morse index of J at u0 is the maximal
non-negative integer m(J, u0), or m(u0), such that there exists an m(J, u0)-dimensional sub-
space of H1

0 (�) on which D2 J (u0) is negative-definite. The augmented Morse index ma(u0)

is defined in a similar fashion, changing “negative-definite” by non-positive definite in the
previous definition (see Sect. 3).

3 One-sign solutions

Let us note that (1) has a positive and a negative solution when λ > λ1. This is a well-known
consequence of the Mountain Pass Theorem. For the sake of completeness, we outline a proof
of this result (see [3,7,10,12]). Let f + : R → R be the function defined in the following
way: f +(t) := f (t), for t ≥ 0, and f +(t) := f ′(0)t , for t < 0. Let J+

λ : H1
0 (�) → R be

the functional defined by

J+
λ (u) =

∫
�

(
1

2
|∇u|2 − λF+(u)

)
dx,

where F+(ξ) = ∫ ξ
0 f +(s) ds. Because of (f1)–(f2), J+

λ satisfies the hypotheses of the
Mountain Pass Theorem. Thus, J+

λ has a critical point u+ of mountain pass type. That is,
there exists U neighborhood of u+ such that if V ⊂ U is neighborhood of u+, then{u ∈
B; J (u) < J (u+) is not connected. By the Strong Maximum Principle, u+ > 0 in� and u+
is a critical point of mountain pass type of Jλ. A negative solution u− is obtained in a similar
fashion and the outline is complete.

Also, by Theorem 2 of [11], if W+ (respectively, W−) is a region containing u+ (respec-
tivley, u−) and no other critical point, then

d(∇ J,W+, 0) = −1 (4)

(respectively, d(∇ J,W−, 0) = −1). See also (3.10) of [3].

4 An augmented Morse index k solution

Let us recall a global version of the Lyapunov–Schmidt reduction method. We refer the reader
to [6] for details.

Lemma 1 Let H be a real Hilbert space and let J : H → R be a function of the class
C2(H,R). Let X and Y be closed subspaces of H such that H = X ⊕ Y . Suppose there
exists c > 0 such that

〈D2 J (u)y, y〉 ≥ c‖y‖2
H ; ∀u ∈ H ∀y ∈ Y. (5)

Then:

(i) There exists a function φ : X → Y , of the class C1, such that

J (x + φ(x)) = min
y∈Y

J (x + y).
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610 A. Castro et al.

Moreover, given x ∈ X, φ(x) is the unique element of Y such that

〈∇ J (x + φ(x)), y〉 = 0 ∀y ∈ Y. (6)

(ii) Functional J̃ : X → R, defined by J̃ (x) := J (x + φ(x)) for x ∈ X, is of class C2.
Moreover,

D J̃ (x)h = 〈∇ J̃ (x), h
〉 = 〈∇ J (x + φ(x)), h〉 ∀x, h ∈ X. (7)

(iii) Given x ∈ X, x is a critical point of J̃ if and only if u = x + φ(x) is a critical point
of J .

(iv) If x0 ∈ X is an isolated critical point of J̃ , then the local Leray-Schauder degree is
preserved under reduction, i.e.,

dloc
(∇ J̃ , x0

) = dloc(∇ J, u0).

Let λ ∈ (λk, λk+1), X is the subspace of H1
0 (�) generated by {ϕ1, . . . , ϕk} and Y is

the closed subspace of H1
0 (�) generated by {ϕk+1, . . . , }. Due to (f2)–(f3), Jλ satisfies (5)

with c = 1 − (λ/λk+1) > 0. Also limx∈X,‖x‖→+∞ Jλ(x) = −∞. Since J̃λ(x) ≤ J (x), J̃λ
attains it maximum value at some xλ. Therefore, the Eq. (1) has a non-zero solution vλ =
xλ + φλ(xλ) ≡ v that satisfies

Jλ(v) = max
x∈X

(
min
y∈Y

Jλ(x + y)

)
. (8)

In addition, the augmented Morse index of J at v is k and its local degree is (−1)k (see
[6] and [3] for further details).

The following lemma allows us to distinguish vλ from the solutions u−, u+ discussed in
Sect. 3. Similar ideas are used to distinguish solutions that change sign exactly once from
higher Morse index solutions, see Lemma 7.

Lemma 2 If dim(X) ≥ 2 then vλ is not a critical point of mountain pass type.

Proof Let vλ = xλ + yλ with xλ ∈ X and yλ ∈ Y . Since any neighborhood of vλ contains a
neighborhood of the form Aε = {x + y; ‖x − xλ‖ < ε, ‖y − φ(x)‖ < ε}, it is sufficient to
prove that Bε ≡ {u ∈ Aε; Jλ(u) < Jλ(vλ)} is connected.

Let x1+y1 ∈ Bε, x2+y2 ∈ Bε. Since, for i = 1, 2, Jλ(xλ+yi ) ≥ Jλ(xλ+yλ) = Jλ(vλ)we
have xi �= xλ for i = 1, 2. Since dim(X) ≥ 2, B = {x ∈ X; ‖x − xλ‖ ∈ (0, ε)} is connected.
Hence, there exists a continuous function σ : [0, 1] → B such that σ(0) = x1, σ (1) = x2.
Since J̃ attains a strict local maximum at xλ and xλ �∈ B, Jλ(σ (t)+ φ(σ(t))) = J̃λ(σ (t)) <
J̃λ(xλ) = Jλ(xλ + yλ). From (5), Jλ(xi + (1 − s)yi + sφ(xi )) ≤ Jλ(xi + yi ) < Jλ(xλ + yλ)
for all s ∈ [0, 1]. Hence,

σ1(t) =
⎧⎨
⎩

x1 + y1 + (s + 1)(φ(x1)− y1) s ∈ [−1, 0]
σ(s)+ φ(σ(s)) s ∈ [0, 1]
x2 + φ(x2)+ (s − 1)(y2 − φ(x2)) s ∈ [1, 2]

(9)

defines a continuous path in Bε connecting x1 + y1 with x2 + y2. This proves that Bε is
connected. Hence, vλ is not a critical point of mountain pass, proving the lemma. ��
Lemma 3 For v = vλ as in (8) we have

lim
λ→λk+ ‖vλ‖∞ = +∞. (10)

Proof Assuming to the contrary, there exists a sequence {μ j } j in (λk, λk+1) converging to
λk and a real number m such that ‖vμ j ‖∞ ≤ m for all j ′s. From (f2) to (f3), we see that
m1 ≡ max{ f ′(u); |u| ≤ m} < 1. Hence, for j , sufficiently large |μ j f ′(v j (x))| ≤ m1μ j <

123



Existence of seven solutions 611

λk . Hence, D2 Jμ j (vμ j ) is positive definite on the closed subspace of H1
0 (�) spanned by

{ϕk, ϕk+1, . . .} which contradicts that v j has augmented Morse index k. This proves the
lemma. ��
Lemma 4 There exists a real number M such that if λ ∈ ((λk + λk+1)/2, λk+1) then

max{‖vλ‖, ‖vλ‖∞} ≤ M. (11)

Proof Let λk < α ≤ β < λk+1. Because F(t) ≥ 0 for all t ∈ R,

Jβ(vβ) = max
x∈X

⎛
⎝min

y∈Y

∫
�

( |∇(x + y)|2
2

− βF(x + y)

)
dζ

⎞
⎠

≤ max
x∈X

⎛
⎝min

y∈Y

∫
�

( |∇(x + y)|2
2

− αF(x + y)

)
dζ

⎞
⎠

= Jα(vα). (12)

Also, for λ ∈ (λk, λk+1],

Jλ(vλ) = max
x∈X

⎛
⎝min

y∈Y

∫
�

( |∇(x + y)|2
2

− λF(x + y)

)
dζ

⎞
⎠

≥ min
y∈Y

∫
�

( |∇(y)|2
2

− λF(y)

)
dζ

≥ min
y∈Y

∫
�

( |∇(y)|2
2

− λ
y2

2

)
dζ

≥ 0. (13)

Let vλ = xλ + yλ with xλ ∈ X, yλ ∈ Y . From (f2), we see that F(t) = t2/2 − G(t) with
G(t) ≥ 0 for all t ∈ R and lim|t |→∞ G(t)/t2 = 0.

From the definition of G, we see that there exists a positive number M1 such that

G(t) ≤ λk+1 − λk

8λk+1
t2 + M1 for all t ∈ R. (14)

Now for λ ∈ [(λk+1 + λk)/2, λk+1), we have

0 ≤ Jλ(vλ) ≤ Jλ(xλ)

=
∫
�

(
|∇(xλ)|2

2
− λ

x2
λ

2
+ λG(xλ)

)
dζ

≤ 1

2

(
1 − λ

λk

)
‖xλ‖2 +

∫
�

λG(xλ)dζ.

≤
(

1

2

(
1 − λk + λk+1

2λk

)
+ λk+1 − λk

8λk

)
‖xλ‖2 + λk+1|�|M1

≤ λk − λk+1

8λk
‖xλ‖2 + λk+1|�|M1, (15)

which proves that xλ is bounded.
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Now we write yλ = yλ,1 + yλ,2 with �yλ,1 + λk+1 yλ,1 = 0 and
∫
�

yλ,1 yλ,2dζ = 0.
Letting λ̄ = (λk + λk+1)/2, we have

Jλ̄(vλ̄) ≥ Jλ(vλ)

= 1

2

∫
�

(|∇(xλ)|2 − λx2
λ

)
dζ + (1 − λ/λk+1)‖yλ,1‖2

+1

2

∫
�

(|∇(yλ,2)|2 − λy2
λ,2)dζ +

∫
�

λG(vλ)dζ

≥ 1

2

⎛
⎝∫
�

(|∇(xλ)|2 − λx2
λ

)
dζ +

[
1 − λ

λk+ j+1

]
‖yλ,2‖2

⎞
⎠ , (16)

where j is the multiplicity of λk+1. Since ‖xλ‖ is bounded, ‖yλ,2‖ is also bounded. Replacing
this in (16) and using that 1 − λ/λk+1 > 0 yields that

∫
�

G(vλ)dζ is also bounded. Since
lim|t |→∞ G(t) = +∞ and the yλ,1’s belong to a finite dimensional subspace, we see that
‖yλ,1‖ is bounded. Thus, ‖vλ‖ is bounded. By standard regularity theory for second-order
elliptic operators we have ‖vλ‖∞ is bounded, which proves the lemma. ��

Lemma 5 For λ = λk+1 the Eq. (1) has an augmented Morse index k solution.

Proof Let {μ j } j be a sequence in [(λk +λk+1)/2, λk+1) converging to λk+1. From Lemma 4,
we may assume that the sequence {vμ j } converges weakly in H1

0 (�) and strongly in L2(�).
Hence, {λ j f ◦ vμ j } converges in L2(�). Thus, by the regularity properties of second-order
elliptic operators, {vμ j } converges strongly in H1

0 (�) to some element v. Thus, for each
ψ ∈ H1

0 (�),

0 = lim
j→∞

∫
�

(〈∇vμ j ,∇ψ〉 − μ j f (vμ j )ψ)dζ

=
∫
�

(〈∇v,∇ψ〉 − λk+1 f (v)ψ)dζ (17)

Thus, v is a solution to (1) with λ = λk+1.
From Lemma 4, ‖v‖∞ ≤ M . Since m2 ≡ max{| f ′(t)|; |t | ≤ 2M + 1} < 1, for y ∈ Y ,

we have

〈D2 Jλk+1(v)y, y〉 =
∫
�

(|∇ y|2 − λk+1 f ′(v)y2) dζ

≥
∫
�

(|∇ y|2 − λk+1m2 y2) dζ

> 0. (18)

Therefore, v is a critical point of Jλk+1 and ma(Jλk+1 , v) ≤ k.
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Existence of seven solutions 613

On the other hand, if x ∈ X ,

〈D2 Jλk+1(v)x, x〉 =
∫
�

(|∇x |2 − λk+1 f ′(v)x2) dζ

= lim
j→∞

∫
�

(|∇x |2 − λk+1 f ′(vλ j )x
2) dζ

≤ 0. (19)

Hence, ma(Jλk+1 , v) = k, which proves Lemma 5. ��
Let δ > 0 be such that λk+1(1 − δ) > (λk + λk+1)/2. Let α+ > 0 be the solution to

f (α+) = (1 − δ)α+, and α− < 0 the solution to f (α−) = (1 − δ)α− (see (f3)). We define

A = max

{
(1 − δ)α2+

2
− F(α+),

(1 − δ)α2−
2

− F(α−)
}
. (20)

Let n > 1 be an integer such that

1 − 1

n
> max

{
f ′(α+), f ′(α−)

}
,

n

n − 1
λk ≤ λk+1 ≤ (n − 1)λk+ j+1

n
. (21)

Let β+ > α+ be such that f ′(β+) = (n −1)/n, and β− < α− such that f ′(β−) = (n −1)/n.
We then define f̂n(t) ≡ f̂ (t) = f (t) for t ∈ (β−, β+), f̂ (t) = f (β+)+(n−1)(t −β+)/n

for t ≥ β+, and f̂ (t) = f (β−) + (n − 1)(t − β−)/n for t ≤ β−. Let F̂(t) = ∫ t
0 f̂ (s)ds.

Thus, for any n,

F̂(t) ≥ (1 − δ)t2

2
− A ∀t ∈ R. (22)

Since f̂ ′(t) ≤ (n −1)/n for all t, F̂(t) ≤ (n −1)t2/(2n)− (t −1)((n −1)/n − f (1)) for
t ≥ 1. Similarly, F̂(t) ≤ (n − 1)t2/(2n)+ (t + 1)((n − 1)/n − f (−1)) for t ≤ −1. Hence,
there exists a > 0, b ∈ R, independent of n, such that

F̂(t) ≤ (n − 1)t2

2n
− a|t | + b for all t ∈ R. (23)

Since | f̂ (u)| ≤ | f (u)| ≤ |u| for all u ∈ R, by elliptic regularity theory, there exists K > 0
(independent of n) such that if λ ∈ (0, λk+ j+1), where j is the multiplicity of the eigenvalue
λk+1, and u is a solution to {

�u + λ f̂ (u) = 0 in �,

u = 0 on ∂�,
(24)

then

‖u‖∞ ≤ K‖u‖2. (25)

Since A, a, b, and K are independent of n, in addition to (21), we may assume that

K 4λN
k+ j+1C N+2

(
λk+ j+1δ4A|�|λk

2aλ1(λk+1 − λk)
+ (A + b)|�|

)N+2

<

(
1

6
min{−β−, β+}

)4

, (26)

where C is the constant given by imbedding of H1
0 (�) into L2N/(N−2)(�). That is

‖u‖L2N/(N−2) ≤ C‖u‖ for all u ∈ H1
0 (�). (27)
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Let

Ĵλ(u) =
∫
�

( |∇u|2
2

− λF̂(u)

)
dζ, (28)

Thus, for ‖u‖∞ ≤ min{β+,−β−}, u is a critical point of Ĵλ if and only if u is a critical point
of Jλ. Now, for each λ ∈ (nλk/(n − 1), nλk+1/(n − 1)), the functional Ĵλ has a critical point
vλ satisfying

Ĵλ(vλ) = max
x∈X

(
min
y∈Y

Ĵλ(x + y)

)
, (29)

Hence, by (22) and (29),

0 ≤ Ĵλ(vλ) ≡ Ĵλ(xλ + yλ) ≤ Ĵλ(xλ)

=
∫
�

( |∇xλ|2
2

− λF̂(xλ)

)
dζ

≤
∫
�

(
|∇xλ|2

2
− λ(1 − δ)x2

λ

2

)
dζ + A|�|. (30)

Hence, for λ ≥ λk+1,

‖xλ‖2 ≤ 2A|�|λk

λ(1 − δ)− λk
≤ 4A|�|λk

λk+1 − λk
≡ M. (31)

This and the definition of vλ give for λ ∈ [λk+1, nλk+1/(n − 1)),

Ĵλ(xλ) ≥ Ĵλ(vλ)

=
∫
�

( |∇(xλ + yλ)|2
2

− λ(n − 1)

2n

(
x2
λ + y2

λ

) + a|vλ|
)

dζ − b|�|

≥
∫
�

(
|∇xλ|2

2
− λ(n − 1)x2

λ

2n
+ a|vλ|

)
dζ − b|�|. (32)

This and (30) yield

‖vλ‖1 ≤ 1

2a
λ(δ − (1/n))‖xλ‖2 + (A + b)|�|

≤ 1

2aλ1
λk+ j+1δM + (A + b)|�|

≡ M1. (33)

Therefore, by Holder’s inequality and the continuous imbedding of H1(�) into L2N/(N−2)(�)

(see 27)

‖vλ‖2
2 =

∫
�

|vλ|4/(N+2)|vλ|2N/(N+2)dζ

≤
⎛
⎝∫
�

|vλ|
⎞
⎠

4/(N+2) ⎛
⎝∫
�

|vλ|2N/(N−2)dζ

⎞
⎠
(N−2)/(N+2)

≤ M1C‖vλ‖2−4/(N+2). (34)

123



Existence of seven solutions 615

Since vλ satisfies (1),

‖vλ‖2 =
∫
�

λ f̂ (vλ)vλdζ ≤ λk+ j+1‖vλ‖2
2. (35)

Combining (34) and (35), we conclude that

‖vλ‖2 ≤ λ
N/4
k+ j+1(M1C)(N+2)/4. (36)

Hence (see 25, 26, 33), we see that

‖vλ‖∞ ≤ 1

6
min{−β−, β+} ≡ M2 for all λ ∈ λ ∈ [λk+1, nλk+1/(n − 1)). (37)

This proves that, for each λ ∈ [λk+1, nλk+1/(n−1)), vλ is a solution to (1) and its augmented
Morse index is k.

Also for each λ ∈ (nλk/(n −1), nλk+1/(n −1)) let φλ : X ≡ 〈ϕ1, . . . , ϕk〉 −→ Y ≡ X⊥
be as in Lemma 1 for the functional Ĵλ defined as above. For later purposes, we state the
following lemma that says that φλ is also L∞-continuous.

Lemma 6 For all x ∈ X, φλ(x) ∈ L∞(�). Moreover, given x0 ∈ X and η > 0, there exists
ε > 0 such that

‖x − x0‖ < ε ⇒ ‖φλ(x)− φλ(x0)‖∞ < η.

Proof For a given x ∈ X, φλ(x) ∈ Y satisfies∫
�

(∇φλ(x) · ∇ y − f (x + φλ(x))y )dζ = 0 ∀y ∈ Y. (38)

This means that, in the weak sense, φλ(x) ∈ H1
0 (�) satisfies

−�(φλ(x)) = PY ( f (x + φλ(x)) (39)

where PY : L2(�) → Y ⊂ L2(�) is the projection operator. Using that f is Lipschitzian
(see (f2)) and standard regularity theory for elliptic operators, a boot-strap argument shows
that φλ(x) ∈ L∞(�). Similarly, given x, x0 ∈ X, φλ(x)− φλ(x0) ∈ H1

0 (�) satisfies

−�(φλ(x)− φλ(x0)) = PY ( f (x + φλ(x))− f (x0 + φλ(x0))). (40)

The same kind of arguments and the continuity of φλ : X −→ Y ⊂ H1
0 (�) imply the second

assertion of Lemma 6. ��
Given λ ∈ [λk+1, nλk+1/(n − 1)), we assume that vλ is an isolated critical point of Ĵλ.

Hence, there exists ε0 = ε0(λ) such that

Ĵλ(vλ) = Ĵλ(xλ + φλ(xλ)) > Ĵλ(x + φλ(x)) ∀x ∈ Dε0(xλ) ∩ X (41)

and Dε0(xλ) ∩ X = {
u ∈ H1

0 (�) : ‖u − xλ‖ < ε0
} ∩ X contains no other critical point of

x �→ Jλ(x + φλ(x)). We observe that without our assumption of isolation of this critical
point, there would exist infinitely many solutions of (1).

By applying Lemma 6, there exists ε1 ∈ (0, ε0) such that

‖x − xλ‖ < ε1 ⇒ ‖x + φλ(x)− vλ‖∞ <
1

6
min{−β−, β+}. (42)
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5 A Morse index 2 solution

First, we note that, for λ > λ2, (f1)–(f3) imply the hypotheses Theorem 1.3 of [5]. Hence,
we have:

Theorem 5.1 If λ > λ2 the Eq. (1) has a solution wλ that changes sign exactly once and
whose Morse index is two. If isolated its local degree is +1.

Let vλ as defined in the previous section. In order to distinguish wλ from vλ for λ ∈
[λk+1, nλk+1/(n − 1)) (see 8), we recall how wλ is obtained and characterized in [5]. Let us
take m ∈ N such that

max{−β−, β+} < m. (43)

Let σ ∈ (1, 1 + 2/N ) and let us define function f ∗ = f ∗
m : R → R by f ∗(t) = f (t)

for t ∈ [−m,m], f ∗(t) = f (m) + f ′(m)(t − m) + (t − m)σ for t ≥ m, and f ∗(t) =
f (−m) + f ′(−m)(t + m) − |t + m|σ for t ≤ −m. Let F∗(t) = ∫ t

0 f ∗(s)ds. We consider
functional

J ∗
λ (u) =

∫
�

( |∇u|2
2

− λF∗(u)
)

dζ. (44)

Because of the results of [5] (see Lemmas 2.1, 2.2 and 2.3), there exist a solution wλ of
(1) and ε2 ∈ (0, ε1) such that

(a) If W := span
{
w+
λ , w

−
λ

}
,

J ∗
λ (wλ + w) < J ∗

λ (wλ) ∀w ∈ W ∩ Dε2(0)

and D2 J ∗
λ (wλ) is negative-defined on W .

(b) There exists δ = δ(ε2) > 0 such that, if Z := W ⊥,

J ∗
λ (wλ + w + z) < J ∗

λ (wλ) ∀w ∈ W ∩ ∂Dε2(0) ∀z ∈ Z ∩ Dδ(0).

(c) There exists a continuous function ψ : Z ∩ Dδ(0) −→ W ∩ Dε2(0) such that, for each
z ∈ Z ∩ Dδ(0),

J ∗
λ (wλ + ψ(z)+ z) = max

w∈W∩Dε2 (0)
J ∗
λ (wλ + w + z) > J ∗

λ (wλ).

(d) If cW > 0 is a constant such that ‖.‖L∞ ≤ cW ‖.‖ in W ,

cW ε2 <
1

6
min{−β−, β+}.

Let c := cλ = J ∗
λ (wλ) and ε3 > 0 such that ε3 <

1
2 min{ε2, δ} and

‖x − xλ‖ ≤ ε3 ⇒ ‖φλ(x)− φλ(xλ)‖ < 1

2
min{ε2, δ}. (45)

Lemma 7 If vλ = wλ and

σ : [0, 1] −→ ∂Dε3(wλ) ∩ W = {wλ + w ∈ W : ‖w‖ = ε3} ⊂ H1
0 (�)

a parametrization of ∂Dε3(wλ) ∩ W , then σ is homotopic to a point (or contractible) in the
set

E := (
J ∗
λ

)−1
(−∞, c) ∩ {wλ + w + z : w ∈ W ∩ Dε2

(0), z ∈ Z ∩ Dδ(0)}.
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Proof Given t ∈ [0, 1], let us write σ(t) = σX (t)+ σY (t), where σX (t) (respectively σY (t))
is the projection of σ(t) on X (respectively on Y ). First, we observe that for every s ∈ [0, 1],

‖σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))‖∞ ≤ ‖(1 − s)(σ (t)− wλ)‖∞
+‖s[wλ − (σX (t)+ φλ(σX (t)))]‖L∞ + ‖wλ‖L∞ . (46)

Since ‖σX (t)− xλ‖ ≤ ‖σ(t)− wλ‖ = ε3 < ε1, because of the (37), (42), (46) and (d),

‖σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))‖L∞ ≤ 1

2
min{−β−, β+}. (47)

Let h : [0, 1] × [0, 1] −→ H1
0 (�) be defined by h(s, t) = σX (t) + [(1 − s)σY (t) +

sφλ(σX (t))]. By definition (see 28, 43 and 44) Jλ(u) = Ĵλ(u) = J ∗
λ (u) if ‖u‖L∞ <

min{−β−, β+}. From this, (47) and (a),

c = Jλ(wλ) = J ∗
λ (wλ) > J ∗

λ (σ (t)) = Ĵλ(σ (t)). (48)

The convexity of Ĵλ on Y implies that

Ĵλ(σ (t)) ≥ Ĵλ (σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))) . (49)

Then, because of (47),

Ĵλ (σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))) = J ∗
λ (h(s, t)) . (50)

From (48–50), we conclude that h(s, t) ∈ (
J ∗
λ

)−1
(−∞, c) for every (s, t). To prove that

h(s, t) ∈ E , it suffices to show that

‖σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))− wλ‖ < min{ε2, δ}. (51)

From our choice of ε3 (see 45),

‖σX (t)+ ((1 − s)σY (t)+ sφλ(σX (t)))− wλ‖ ≤ ‖σX (t)− xλ‖
+‖(1 − s)(σY (t)− φλ(xλ)))‖ + ‖s[φλ(σX (t))− φλ(xλ))]‖

≤ ‖σ(t)− wλ‖ + (1 − s)‖σ(t)− wλ‖ + s‖φλ(σX (t))− φλ(xλ))‖
< ε3 + (1 − s)ε3 + s

1

2
min{ε2, δ} ≤ min{ε2, δ}. (52)

We observe that h(0, ·) = σ(·) and h(1, ·) = σX (·) + φλ(σX (·)). Hence, it suffices to
prove that this curve is homotopic to a point in E . Since σX : [0, 1] −→ X ∩ Dε3(xλ) \ {xλ}
is a closed curve and dim X ≥ 3, σX is homotopic to a point in X ∩ Dε3(xλ) \ {xλ}. Let
k : [0, 1] × [0, 1] −→ X ∩ Dε3(xλ) \ {xλ} be a homotopy connecting σX to a point. Define
H : [0, 1] × [0, 1] −→ H1

0 (�) by

H(s, t) = k(s, t)+ φλ(k(s, t)).

This is a homotopy between h(1, ·) = σX (·)+φλ(σX (·)) and a point. To complete the proof
of the lemma, it simply remains to verify that H([0, 1]×[0, 1]) ⊂ E . If (s, t) ∈ [0, 1]×[0, 1],
then because of (41),

c = Ĵλ(wλ) > Ĵλ(H(s, t)). (53)

Also, since k(s, t) ⊂ X ∩ Dε3(xλ) ⊂ X ∩ Dε1(xλ), as a consequence of (42) we have

‖k(s, t)+ φλ(k(s, t))‖L∞ <
1

3
min{−β−, β+}. (54)
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Hence, c > Ĵλ(H(s, t)) = J ∗
λ (H(s, t)). The fact that H(s, t) ∈ E is again a consequence of

(45) since k(s, t) ∈ X ∩ Dε3(xλ), which completes the proof. ��
Theorem 5.2 For all λ ∈ [λk+1, nλk+1/(n − 1)), vλ �= wλ.

Proof Suppose vλ = wλ for some λ ∈ [λk+1, nλk+1/(n − 1)). Because of Lemma 7, the
function σ : [0, 1] −→ ∂Dε3(wλ) ∩ W = {wλ +w ∈ W : ‖w‖ = ε3} can be extended to a
continuous function

σ̃ : D1(wλ) ∩ W −→ E .

Let us write σ̃ (T ) = wλ + σ̃W (T ) + σ̃Z (T ) where T ∈ D1(wλ) ∩ W . Hence, σ̃W (T ) ∈
W ∩ Dε2

(0) and σ̃Z (T ) ∈ Z ∩ Dδ(0). Let G : [0, 1] × (D1(wλ)∩ W ) −→ E be defined by

G(s, T ) = wλ +
[
(1 − s )̃σW (T )+ sε2

(
ψ (̃σZ (T ))− σ̃W (T )

‖ψ (̃σZ (T ))− σ̃W (T )‖
)]

+ σ̃Z (T ). (55)

From (c) and (d) above, we see that ‖ψ(̃σZ (T )) − σ̃W (T )‖ �= 0. Hence, G is well-
defined and continuous. Also, for each T ∈ D1(wλ) ∩ W,G(0, T ) = σ̃ (T ) and G(1, T ) ∈
{wλ + w + z : w ∈ W ∩ ∂Dε2(0) and z ∈ Z ∩ Dδ(0)}. Hence, G(0, D1(wλ) ∩ W ) is
homotopic to S1

W , which is a contradiction, which proves that vλ �= wλ.

6 Proof of Theorem 1.1 and Corollary 1.2

Let λ ∈ [λk+1, nλk+1/(n − 1)). From Sect. 3 and Theorem 5.1, we see that (1) has four
solutions; u0 = 0, a positive solution u1, a negative solution u2, and a solution u3 = wλ that
changes sign exactly once. As established in [5], Theorem 1.2, the local degree of ∇ Jλ at u3

is +1. From Sect. 4, we see that (1) has a solution u4 = vλ whose augmented Morse index is
k. Since k ≥ 3, from Lemma 2 and Theorem 5.2, u4 �∈ {0, u1, u2, u3}.

Let j be the multiplicity of the eigenvalue λk+1. For λ ∈ (λk+1, λk+ j+1), arguing as in (8),
we see that (1) has a solution zλ with augmented Morse index k+ j and local degree (−1)k+ j .
Moreover, limλ→λk+1 ‖zλ‖ = +∞ (Lemma 3). Hence, there exists ε ∈ (0, λk+1/(n − 1))
such that ‖zλ‖ > M2 for λ ∈ (λk+1, λk+1 + ε) (see 37). Also, by Lemma 2 and Theorem
5.2, zλ is not a critical point of mountain pass type or a solution that changes sign exactly
once. Thus, zλ ≡ u5 �∈ {0, u1, . . . , u4}.

From (f1), if B is a sufficiently large ball, d(∇ Jλ, B, 0) = (−1)k+ j . Letting η > 0 be
such that the only critical point of ∇ Jλ in the ball centered at ui with radius η is ui , by the
excision property of the Leray Schauder degree we have

d
(
∇ Jλ, B − ∪5

i=0 B(ui , η)
)

= d(∇ Jλ, B, 0)−
5∑

i=0

d
(
∇ Jλ,∪5

k=0 B(ui , η), 0
)

= (−1)k+ j −
5∑

i=0

d(∇ Jλ, B(ui , η), 0)

= (−1)k+ j −
(

1 + (−1)+ (−1)+ 1 + (−1)k + (−1)k+ j
)

= (−1)k . (56)

Here, we have also used that Jλ has a strict local minimum at u0 = 0 and (4). Hence,
by the existence property of the Leray-Schauder degree, J has a seventh critical point u6 ∈
B − ∪5

k=0 B(ui , η). This proves Theorem 1.1.
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For λ = λk+1 the solutions 0, u+, u−, vλ, wλ persist, which proves Corollary 1.2. ��

7 Non-isolated solutions

Double checking the above developments, one notes that the existence of a positive solu-
tion, a negative solution, and a solution that changes sign exactly once is independent of the
assumption that the solutions are non-isolated. Also the Morse index k + j solution may be
chosen larger in norm that those that change sign exactly once as they are uniformly bounded
while those of Morse index k+ j tend to ∞ as λ > λk+1 approaches λk+1. Thus, we conclude
that when we assume the solutions to (1) to be non-isolated not only it has infinitely many
solutions but also at least five of them are geometrically different: 0, a positive solution, a
negative solution, a solution that changes sign exactly once, and a Morse index k+ j solution.
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