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Abstract Recently, some of the authors designed an algorithm, named the dhLV algorithm,
for computing complex eigenvalues of a certain class of band matrix. The recursion formula
of the dhLV algorithm is based on the discrete hungry Lotka–Volterra (dhLV) system, which
is an integrable system. One of the authors has proposed an algorithm, named the multiple
dqd algorithm, for computing eigenvalues of a totally nonnegative (TN) band matrix. In this
paper, by introducing a theorem on matrix eigenvalues, we first show that the eigenvalues of a
TN matrix are also computable by the dhLV algorithm. We next clarify the asymptotic behav-
ior of the discrete hungry Toda (dhToda) equation, which is also an integrable system, and
show that a similarity transformation for a TN matrix is given through the dhToda equation.
Then, by combining these properties of the dhToda equation, we design a new algorithm,
named the dhToda algorithm, for computing eigenvalues of a TN matrix. We also describe
the close relationship among the above three algorithms and give numerical examples.
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1 Introduction

Several integrable systems have profound relationships with various algorithms. In [29],
Symes finds that one step of the Q R algorithm, an algorithm for computing matrix eigen-
values, corresponds to the time evolution of the continuous-time Toda equation. Hirota’s
discretization technique [9] leads to the discrete-time version of the Toda equation,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q(n+1)
k = q(n)

k − e(n+1)
k−1 + e(n)

k , k = 1, 2, . . . , m,

e(n+1)
k = e(n)

k

q(n)
k+1

q(n+1)
k

, k = 1, 2, . . . , m − 1,

e(n)
0 ≡ 0, e(n)

m ≡ 0, n = 0, 1, . . . ,

(1)

where q(n)
k , e(n)

k denote the values of qk, ek at the discrete time n, respectively. The discrete
Toda equation (1) is exactly the recursion formula of Rutishauser’s quotient difference (qd)
algorithm [28] for the eigenvalues of a symmetric tridiagonal matrix. It is to be remarked that
in [26], Rutishauser himself derives the continuous-time Toda equation from the recurrence
formula of the qd algorithm to investigate its asymptotic behavior. The qd algorithm can be
viewed as the special case of the general L R algorithm where the given matrix is tridiagonal
[27]. The qd algorithm actually gives the eigenvalues of the tridiagonal matrix in the generic
case. Therefore, the qd algorithm and the L R algorithm were the predecessors of the Q R
algorithm. Rutishauser’s original qd algorithm is now called the progressive qd (pqd). Several
variants of the qd algorithm such as dqd and oqd are discussed in [22] as methods for finding
eigenvalues with high relative accuracy. The potential use of these variants for the accurate
computation of the eigenvalues of totally nonnegative (TN) band matrices is evaluated by
Koev in [16]. Other applications of the qd algorithm (1) have also been observed in various
fields; these applications include the BCH-Goppa decoding [20] and the Laplace transfor-
mation [19]. In [18], it is shown that the qd algorithm (1) is related to the ε-algorithm for
accelerating the convergence rate of a sequence.

Another integrable discrete system yielding numerical algorithms related to matrix eigen-
values and singular values is the discrete Lotka–Volterra (dLV) system, which is an integrable
discrete-time system. In [12,13], Iwasaki and Nakamura design an algorithm for computing
singular values based on the dLV system, which is as follows [10]:

{
u(n+1)

k (1 + δ(n+1)u(n+1)
k−1 ) = u(n)

k (1 + δ(n)u(n)
k+1), k = 1, 2, . . . , 2m − 1,

u(n)
0 ≡ 0, u(n)

2m ≡ 0, n = 0, 1, . . . ,
(2)

which is a time discretization of the continuous-time Lotka–Volterra (LV) system, where δ(n)

denotes the nth discrete step size and u(n)
k denotes the number of the kth species at the discrete

time
∑n−1

j=0 δ( j). The LV system was originally used to describe the struggle for survival of
2m − 1 species among which the kth species preys upon the (k + 1)th species and is in turn
preyed upon by the (k − 1)th species [33]. The dLV system (2) also arises from the discrete
Toda equation (1) through the Miura transformation:
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⎧
⎨

⎩

q(n)
k = 1

δ(n)

(
1 + δ(n)u(n)

2k−2

) (
1 + δ(n)u(n)

2k−1

)
, k = 1, 2, . . . , m,

e(n)
k = δ(n)u(n)

2k−1u(n)
2k , k = 1, 2, . . . , m − 1.

(3)

A remarkable property of the dLV system (2) is that, for a suitable initial u(0)
k , the dLV vari-

able u(n)
2k−1 converges to the square of a singular value of some bidiagonal matrix as n → ∞.

This asymptotic convergence immediately gives an algorithm, named the dLV algorithm,
for computing singular values. In [4], the dLV algorithm is reviewed by Chu. In order to
accelerate the convergence rate, Iwasaki and Nakamura in [14] introduce shift of origin into
the dLV algorithm. The shifted version of the dLV algorithm is called the modified dLV with
shift (mdLVs) algorithm.

The LV system is naturally extended to the continuous-time hungry LV (hLV) system by
considering the case where the kth species preys not only on the (k +1)th species but also on
the (k + 2)th, (k + 3)th, . . . , (k + M)th ones [2,11]. The hLV system with M = 1 coincides
with the LV system. A time discretization [21] of the hLV (dhLV) system for n = 0, 1, . . . is
given as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(n+1)
k

M∏

j=1

(
1 + δ(n+1)u(n+1)

k− j

)
= u(n)

k

M∏

j=1

(
1 + δ(n)u(n)

k+ j

)
,

k = 1, 2, . . . , Mm,

u(n)
1−M ≡ 0, . . . , u(n)

0 ≡ 0, u(n)
Mm+1 ≡ 0, . . . , u(n)

Mm+M ≡ 0,

(4)

where Mk := (M +1)k − M and the notation k, δ(n), and u(n)
k in (4) is the same as that in the

dLV system (2). From the dhLV system (4), Fukuda et al. in [5] derive an algorithm, named
the dhLV algorithm, for computing complex eigenvalues of a band matrix. In [32], Yamam-
oto and Fukaya propose an algorithm, named the multiple dqd algorithm, for computing the
eigenvalues of TN band matrices [1], for which all the minors are nonnegative. TN matrices
appear in many branches of mathematics involving applications, including combinatorics,
probability, stochastic processes, and inverse problems [3,6,7,15]. It is also shown in [32]
that the multiple dqd variables correspond to those of the dhLV.

The box and ball system (BBS) was introduced by Takahashi and Matsukidaira in [24]
by considering the viewpoint of integrable systems. The BBS represents the movement of a
finite number of balls in an array of boxes. The rule of the BBS is that the leftmost ball moves
to the nearest empty box to the right. The dynamics of the BBS is related to the discrete Toda
equation (1). Tokihiro et al. in [25] propose a different BBS, named the numbered BBS,
in which balls are numbered from 1 to M so that they can be distinguished by their index.
The numbered BBS requires that first the leftmost ball with index 1 is moved to the nearest
empty box to the right, and then, this procedure is repeated for balls with index 2, 3, . . . , M .
The numbered BBS is also associated with the integrable discrete hungry Toda (dhToda)
equation,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(n+M)
k = Q(n)

k + E (n)
k − E (n+1)

k−1 , k = 1, 2, . . . , m,

E (n+1)
k = Q(n)

k+1 E (n)
k

Q(n+M)
k

, k = 1, 2, . . . , m − 1,

E (n)
0 := 0, E (n)

m := 0,

(5)

which is regarded as an extension of the discrete Toda equation (1). Tokihiro, Nagai, and
Satsuma predicted that the dhToda equation (5) has some interesting relationship with matrix
eigenvalues. However, to the best of our knowledge, the dhToda equation (5) has not been
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shown to be related to any particular type of matrix, much less been used to achieve a new
algorithm for computing matrix eigenvalues.

The main purpose of the present paper is twofold. First, its purpose is to clarify that
the eigenvalues of a banded Hessenberg TN matrix are computable by the dhLV algorithm.
Second, a new algorithm for these types of matrix eigenvalue problems is designed using a
matrix representation and an asymptotic analysis of the dhToda equation (5). The relation-
ship among the three algorithms—the dhLV algorithm, the algorithm based on the dhToda
equation (5), and the multiple dqd algorithm—is also shown, and some numerical examples
are given.

There are several algorithms that can be used to compute the eigenvalues of a banded
Hessenberg TN matrix. For example, the BR algorithm by Geist et al. [8] is an efficient iter-
ative algorithm for computing the eigenvalues of a banded Hessenberg matrix. It is a variant
of the L R iteration with pivoting, but is designed to roughly preserve the banded form to
minimize the computational cost. However, as with many other algorithms, it can compute
only large eigenvalues to high relative accuracy. In contrast, as will be shown by numerical
experiments, our algorithm can compute the smallest eigenvalues to high relative accuracy by
exploiting the TN structure. In addition, the TN structure enables us to prove the global con-
vergence of our algorithm. Koev also proposes an algorithm for computing the eigenvalues
of a TN matrix to high relative accuracy [16]. In his algorithm, the input TN matrix is first
reduced to a tridiagonal matrix by a sequence of dqd transformations, and the eigenvalues
of the resulting tridiagonal matrix are computed by the dqds (dqd with shift) algorithm. In
contrast, our algorithm operates directly on the input TN matrix and transforms it to an upper
triangular matrix without destroying the banded Hessenberg structure. We expect that the
latter approach is advantageous when the bandwidth is small.

This paper is organized as follows. In Sect. 2, we briefly explain how to derive the dhLV
algorithm proposed in [5] from the dhLV system (4). We expand the class of matrices to
which the dhLV algorithm is applicable by considering a similarity transformation. And
then, with the help of a theorem in [31] on matrix eigenvalues, we show as a special case
that eigenvalues of a TN matrix are computable by the dhLV algorithm. We also clarify the
relationship of the dhLV algorithm with the multiple dqd algorithm. In Sect. 3, we investigate
a matrix representation, named the Lax form, for the dhToda equation (5) and the asymptotic
behavior of the dhToda variables as time variable n → ∞. Based on the dhToda equation
(5), we design a new algorithm for eigenvalues of a TN matrix. In addition, we describe the
relationship of the dhLV algorithm, the algorithm designed in Sect. 3, and the multiple dqd
algorithm. In Sect. 4, we confirm the theoretical results in Sects. 2 and 3 through a number
of numerical examples. Finally, we give concluding remarks in Sect. 5.

2 dhLV algorithm for band matrices

A matrix A is said to be TN if every minor of A is nonnegative [1]. The main purpose of this
section is to show that the eigenvalues of certain TN matrices are computable by the dhLV
algorithm proposed in [5]. The dhLV algorithm and its basic properties are briefly reviewed
in Sect. 2.1. In Sect. 2.2, we describe a different aspect of the dhLV algorithm. Not only the
band matrices L (n) + d I appearing in Sect. 2.1 but also the TN matrices in Sect. 2.2 are
shown to be the targets for the dhLV algorithm. A theorem on matrix eigenvalues [31] plays
a key role in this proof. In Sect. 2.3, we explain the multiple dqd algorithm designed in [32]
for computing the eigenvalues of TN matrices. We also clarify the relationship between the
dhLV algorithm and the multiple dqd algorithm.
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Here, to assist the reader’s understanding, we describe the target matrices of the dhLV
algorithm appearing in the following subsections for the simple case where M = 2 and
m = 3. The dhLV algorithm was originally shown in [5] to be applicable for computing the
eigenvalues of the band matrix

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 l1
1 0 0 l2

1 0 0 l3
1 0 0 l4

1 0 0 l5
1 0 0 l6

1 0 0 l7
1 0 0

1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)

where l1 > 0, l2 > 0, . . . , l7 > 0. The similarity transformation by D = diag(1, α1, α1α2,

. . . , (α1α2 · · · α8)) leads to L̂ := DL D−1, whose (i + 1, i) and (i, i + 2) entries are αi and
li/(αiαi+1 · · · α8), respectively. It is easily expected that we can get the eigenvalues of the
extended L̂ through computing the eigenvalues of L by the dhLV algorithm. Moreover, by
a suitable permutation matrix P , we can transform L into

B := PL P−1 =
⎛

⎝
L1

R2

R1

⎞

⎠ , (7)

where

L1 :=
⎛

⎝
l1
1 l4

1 l7

⎞

⎠ , R1 :=
⎛

⎝
1 l3

1 l6
1

⎞

⎠ , R2 :=
⎛

⎝
1 l2

1 l5
1

⎞

⎠ .

According to [31], the eigenvalues of B are clearly related to those of A := L1R1R2. Since
L1, R1, and R2 are TN matrices, A is also. The above discussion implies that the eigen-
values of the TN matrix are computable by using the dhLV algorithm. Of course, the dhLV
algorithm is related to the multiple dqd algorithm in terms of computing the eigenvalues of
a TN matrix.

2.1 dhLV system and band matrix eigenvalues

We first survey some important properties of the dhLV system, which are the basis of the
dhLV algorithm. One of the essential properties of integrable systems is a matrix represen-
tation called the Lax form. Although the Lax form is an idea that arises from the study of
integrable systems, it is useful to reconsider it from the viewpoint of matrix analysis. The Q R
and qd algorithms are actually related to integrable systems, specifically, the Toda equation
and the discrete Toda equation (1), respectively, through the Lax form. The dLV algorithm
was designed with the help of a Lax form for the dLV system [12,13].
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A Lax form for the dhLV system (4) is presented in [30] as follows.

R(n)L (n+1) = L (n)R(n), (8)
M

︷ ︸︸ ︷

L (n) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 U (n)
1

1 0 . . . 0 U (n)
2

1
. . .

. . .
. . .

. . .
. . .

. . . U (n)
Mm

. . .
. . . 0
. . .

. . .
...

1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
(9)

R(n) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V (n)
1

0 V (n)
2

... 0
. . .

0
...

. . .
. . .

δ(n) 0
. . .

. . .

. . .
. . .

. . .
. . .

δ(n) 0 . . . 0 V (n)
Mm+M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

︸ ︷︷ ︸
M

(10)

U (n)
k := u(n)

k

M∏

j=1

(
1 + δ(n)u(n)

k− j

)
, (11)

V (n)
k :=

M∏

j=0

(
1 + δ(n)u(n)

k− j

)
. (12)

The equality in (8) is equivalent to the dhLV system (4).
Assume that

0 < u(0)
k < K0, k = 1, 2, . . . , Mm, (13)

where K0 is some positive constant. Then, it is obvious from (12) that V (n)
k ≥ 1 in R(n) for

k = 1, 2, . . . , Mm + M . Hence, there exists an inverse matrix of R(n), and so (8) can be
transformed to give

L (n+1) = (R(n))−1L (n)R(n). (14)

This is a similarity transformation from L (n) to L (n+1). Namely, the eigenvalues of
L (n) are invariant under the time evolution from n to n + 1. Therefore, the matrices
L (0), L (1), L (2), . . . are similar to each other. For the identity matrix I and an arbitrary
constant d , the matrices L (0) + d I, L (1) + d I, L (2) + d I, . . . are also similar.
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There exist other important invariants under the time evolution of dhLV systems. For
example, the sums and the products of variables U (n)

k ,

Mm∑

k=1

U (n)
k =

Mm∑

k=1

U (n+1)
k , (15)

m∏

k=1

U (n)
Mk

=
m∏

k=1

U (n+1)
Mk

, (16)

are invariant. From the assumption (13), it follows that 0 <
∑Mm

k=1 U (0)
k < K1 and 0 <

∏m
k=1 U (0)

Mk
< K2, where K1 and K2 are positive constants. Making use of (15) and (16), we

derive 0 < u(n)
k < K for a positive constant K . The asymptotic behavior of u(n)

k given (13)
is

lim
n→∞ u(n)

Mk
= ck, k = 1, 2, . . . , m, (17)

lim
n→∞ u(n)

Mk+p = 0, k = 1, 2, . . . , m − 1, p = 1, 2, . . . , M, (18)

where c1, c2, . . . , cm are positive constants such that

c1 ≥ c2 ≥ · · · ≥ cm . (19)

See [5] for the proof of (15), (16) and (17), (18) with (19).
Next, we explain how to apply the dhLV system (4) to matrix eigenvalue computation.

Obviously, from (11), (12) and (17), (18), the limits of U (n)
k and V (n)

k also exist as n → ∞.
The limit of the matrix L (n) + d I is given by

L (d) := lim
n→∞(L (n) + d I )

=

⎛

⎜
⎜
⎜
⎝

L1(d)

EM L2(d)

. . .
. . .

EM Lm(d)

⎞

⎟
⎟
⎟
⎠

, (20)

where Lk(d) and EM are (M + 1) × (M + 1) block matrices

Lk(d) :=

⎛

⎜
⎜
⎜
⎝

d ck

1 d
. . .

. . .

1 d

⎞

⎟
⎟
⎟
⎠

, EM :=

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · 0 1
. . . 0

. . .
...

0

⎞

⎟
⎟
⎟
⎟
⎠

. (21)

It is of significance that, by cofactor expansion,

det(λI − L (d)) =
m∏

k=1

det(λI − Lk(d)),

det(λI − Lk(d)) = (λ − d)M+1 − ck .

Thus, the characteristic polynomial of L (d) is given as

det(λI − L (d)) =
m∏

k=1

[
(λ − d)M+1 − ck

]
.
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Consequently, we obtain the eigenvalues λk,� of L (0) + d I as follows.

λk,� = c
1

M+1
k

[

exp

(
2π i

M + 1

)]�

+ d, k = 1, 2, . . . , m, � = 0, 1, . . . , M. (22)

Namely, the eigenvalues of L (0) + d I are given by using the (M + 1)th root of ck derived
from the time evolution of the dhLV system (4). Since, for a sufficiently large N , u(N )

Mk
is

a good approximation to ck , the (M + 1)th root of u(n)
Mk

can be used to approximate the

eigenvalues of L (0) + d I .
The above discussion is a brief review of [5]. Next, we will expand the applicable range

of the dhLV algorithm. Let us introduce a diagonal matrix

D := diag
(
1, α1, α1α2, . . . , (α1α2 · · · αMm+M−1)

)
, (23)

with arbitrary positive constants α1, α2, . . . , αMm+M−1. Then, the similarity transformation
by D yields

L̂ (n) + d I := D(L (n) + d I )D−1 (24)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d Û (n)
1

α1 d
. . .

α2
. . . Û (n)

Mm

. . .
. . .

. . .
. . .

αMm+M−1 d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (25)

where Û (n)
k = U (n)

k /(αk+1αk+2 · · · αk+M−1). Obviously, the eigenvalues of L̂ (n) +d I coin-
cide with those of L (n)+d I . Hence, the eigenvalues of L̂ (0)+d I are given as (22) if the initial
U (0)

1 , U (0)
2 , . . . , U (0)

Mm
, as a function of Û (0)

1 , Û (0)
2 , . . . , Û (0)

Mm
and α1, α2, . . . , αMm+M−1,

are set such that

U (0)
k = Û (0)

k (αkαk+1 · · · αk+M−1). (26)

The dhLV algorithm for computing the eigenvalues of L̂ (0) + d I is as follows.

dhLV algorithm for L̂ (0) + d I
01: for k := 1, 2, . . . , Mm do
02: U (0)

k = Û (0)
k

∏M−1
j=0 αk+ j

03: end for
04: for k := 1, 2, . . . , Mm do
05: u(0)

k = U (0)
k /

∏M
j=1

(
1 + δ(0)u(0)

k− j

)

06: end for
07: for n := 1, 2, . . . , nmax do
08: for k := 1, 2, . . . , Mm do
09: u(n+1)

k := u(n)
k

[∏M
j=1

(
1 + δ(n)u(n)

k+ j

)
/
∏M

j=1

(
1 + δ(n+1)u(n+1)

k− j

)]

10: end for
11: end for
12: for k := 1, 2, . . . , m do
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13: for � := 1, 2, . . . , M + 1 do

14: λk,� := M+1
√

u(n)
Mk

{cos[2�π/(M + 1)] + i sin[2�π/(M + 1)]} + d
15: end for
16: end for

Lines 7 through 11 of the dhLV algorithm are repeated until maxk �=M1,M2,...,Mm uk ≤ eps or
n > nmax is satisfied for a sufficiently small eps > 0.

2.2 dhLV algorithm for TN matrix

We show here that the eigenvalues of a TN matrix are computable by the dhLV algorithm. It
has already been reported in [5] that, as is described in Sect. 2.1, the band matrix L (n) +d I is
a target for the dhLV algorithm. Of course, L (n) +d I is not TN for general d . For simplicity,
we hereinafter discuss the case where d = 0.

Let us introduce a technique for matrix permutation, which is a special case of [31].
Let P be the permutation matrix such that PL (n) is the matrix given by interchanging the
[(k − 1)(M + 1) + j]th and [( j − 1)m + k]th rows of L (n) for j = 1, 2, . . . , M + 1 and
k = 1, 2, . . . , m. Namely, P is the matrix whose (( j − 1)m + k, (k − 1)(M + 1) + j)
entries are 1 and the others are 0. Since L (n) P−1 is the matrix given by interchanging the
[(k − 1)(M + 1) + j]th and [( j − 1)m + k]th columns of L (n), it follows that

B(n) := PL (n) P−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L
(n)
1

R
(n)
M

. . .

R
(n)
2

R
(n)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (27)

where

L
(n)
1 =

⎛

⎜
⎜
⎜
⎜
⎝

U (n)
M1

1 U (n)
M2

. . .
. . .

1 U (n)
Mm

⎞

⎟
⎟
⎟
⎟
⎠

, (28)

R
(n)
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 U (n)
M2− j

1
. . .

. . . U (n)
Mm− j
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (29)

To consider matrix eigenvalues, we use the following theorem.

Theorem 1 (Watkins [31]) The nonzero complex number λ is an eigenvalue of X if and
only if its kth roots λ1/k, λ1/kω, λ1/kω2, . . . , λ1/kωk−1 are all eigenvalues of X̂ , where
ω = exp(2π i/k) and
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X = Xk Xk−1 · · · X1 ∈ Cm×m, X j ∈ Cm×m, j = 1, 2, . . . , k, (30)

X̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Xk

X1

X2
. . .

Xk−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (31)

Let k = M + 1 in Theorem 1. Then, B(n) in (27) has the same form as X̂ in (31). The
blocks R

(n)
M , R

(n)
M−1, . . . , R

(n)
1 and L

(n)
1 correspond to X1, X2, . . . , X M and X M+1, respec-

tively. Thus, A (n) := L
(n)
1 R

(n)
1 R

(n)
2 · · · R(n)

M has the same form as X in (30). Let us assume

that U (n)
1 , U (n)

2 , . . . , U (n)
Mm

, appearing in R
(n)
1 , R

(n)
2 , . . . , R

(n)
M and L

(n)
1 , are positive. Obvi-

ously, L
(n)
1 , R

(n)
1 , R

(n)
2 , . . . , R

(n)
M are the TN matrices, and so A (n) is also. As is shown

in Sect. 2.1, the eigenvalues of B(n) are the (M + 1)th roots of c1, c2, . . . , cm . Hence, the
eigenvalues of A (n) are c1, c2, . . . , cm . In the case where A (n) is decomposed as A (n) =
L

(n)
1 R

(n)
1 R

(n)
2 · · · R(n)

M , the eigenvalues of A (n) are accordingly computed by the dhLV
algorithm.

In [1], it is shown that any strictly sign-regular matrix has real and distinct eigenvalues.
TN matrices are strictly sign-regular. In other words, TN matrices do not have multiple eigen-
values. Since A (n) is a TN matrix, it is concluded that c1, c2 . . . , cm are distinct. From (19),
we have the following theorem.

Theorem 2 Let u(0)
k > 0 for k = 1, 2, . . . , Mm. As n → ∞, the dhLV variable u(n)

Mk
con-

verges to ck , where

c1 > c2 > · · · > cm . (32)

More precisely, ck is the eigenvalue of the TN matrix A (0).

It is to be noted that (32) also holds in the eigenvalue computation of L̂ (0) +d I . The discus-
sion in this subsection implies the sorting property (32), which is stronger than c1 ≥ c2 ≥
· · · ≥ cm , that of (19).

2.3 Relationship with multiple dqd algorithm

Recently, one of the authors proposed the multiple dqd algorithm for computing eigenvalues
of a TN band matrix [32].

Let L1, L2, . . . , LmL and R1, R2, . . . , Rm R be the m × m lower and upper bidiagonal
matrices, respectively, defined by

L j =

⎛

⎜
⎜
⎜
⎝

q j,1

1 q j,2
. . .

. . .

1 q j,m

⎞

⎟
⎟
⎟
⎠

, R j =

⎛

⎜
⎜
⎜
⎜
⎝

1 e j,1

1
. . .

. . . e j,m−1

1

⎞

⎟
⎟
⎟
⎟
⎠

, (33)

where q j,1, q j,2, . . . , q j,m > 0 and e j,1, e j,2, . . . , e j,m−1 > 0. Then, the target matrix of the
multiple dqd algorithm is represented as

ATN = L1L2 · · · LmL R1 R2 · · · Rm R . (34)

Since it is obvious that L1, L2, . . . , LmL and R1, R2, . . . , Rm R are TN matrices, so is ATN

[23]. Besides being a TN matrix, ATN has no multiple eigenvalues. The basic idea of the
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multiple dqd algorithm is to employ the dqd algorithm mL × m R times for one L R transfor-
mation of ATN. See [32] for the details concerning the appropriate convergence theorem.

Let us consider the case where mL = 1, m R = M in the multiple dqd algorithm. Note
that L j and R j in (33) have the same form as L

(n)
j in (28) and R

(n)
j in (29), respectively.

Then, the form of ATN in (34) coincides with that of A (n) = L
(n)
1 R

(n)
1 R

(n)
2 · · · R(n)

M .
The target TN matrix of the dhLV algorithm is accordingly equal to that of the multiple

dqd algorithm with mL = 1 and m R = M .

3 dhToda equation and matrix eigenvalue

We here investigate some properties of the dhToda equation (5) and then design a new algo-
rithm for computing matrix eigenvalues in terms of the dhToda equation (5). The dhToda
equation (5) with M = 1 is the discrete Toda equation (1), which has a close relationship
to the qd algorithm for tridiagonal matrix eigenvalues. It is known that the discrete Toda
equation (1) is just the recursion formula of the qd algorithm. And so it is no surprise that
the dhToda equation (5) is also related to matrix eigenvalue problems. The main purpose of
this section is to design a matrix eigenvalue algorithm in terms of the dhToda equation (5).

The dqd algorithm is an improved version of the qd algorithm and is algebraically equiva-
lent to the qd algorithm. The dqd algorithm differs from the qd algorithm in that its recursion
formula, called the differential form, has no subtraction. In other words, the dqd algorithm
employs the differential form of the discrete Toda equation (1). In Sect. 3.1, we first derive a
differential form of the dhToda equation, and we next show the positivity and the asymptotic
behavior of the dhToda variables. In Sect. 3.2, based on the differential form of the dhToda
equation, we finally design a new algorithm for computing eigenvalues. In Sect. 3.3, we also
give relationships of the dhToda algorithm with the dhLV and the multiple dqd algorithms.

3.1 Properties of dhToda equation

Let us begin our analysis by deriving a differential form without subtraction from the dhToda
equation (5). Let us introduce a new variable D(n)

k defined by

D(n)
1 := Q(n)

1 ,

D(n)
k := Q(n)

k − E (n+1)
k−1 , k = 2, 3, . . . , m.

Then, by combining this definition with (5), we obtain the relationship between D(n)
k and

D(n)
k+1,

D(n)
k+1 = Q(n)

k+1

Q(n+M)
k

D(n)
k .

Note that the ratio Q(n)
k+1/Q(n+M)

k also appears in the second equation of (5). Moreover, let

F (n)
k+1 := Q(n)

k+1

Q(n+M)
k

.
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Then, the differential form without subtraction of (5) is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(n+M)
k = E (n)

k + D(n)
k , k = 1, 2, . . . , m,

E (n+1)
k = F (n)

k+1 E (n)
k , k = 1, 2, . . . , m − 1,

D(n)
k+1 = F (n)

k+1 D(n)
k , D(n)

1 = Q(n)
1 , F (n)

k+1 = Q(n)
k+1

Q(n+M)
k

.

(35)

Though the recursion formula employed in (35) is different from that in (5), the sequences of
Q(n)

k and E (n)
k generated by (35) coincide with those by (5). The differential form (35) is useful

for clarifying the positivity of the dhToda variables Q(n)
k and E (n)

k . If Q(0)
k , Q(1)

k , . . . , Q(M−1)
k

for k = 1, 2, . . . , m and E (0)
k for k = 1, 2, . . . , m − 1 are positive, then Q(M)

k and E (1)
k are

also positive. For n = 1, 2, . . ., by induction, we obtain the following proposition on the
positivity of the dhToda variables.

Proposition 1 Let Q(0)
k > 0, Q(1)

k > 0, . . . , Q(M−1)
k > 0 for k = 1, 2, . . . , m and E (0)

k > 0

for k = 1, 2, . . . , m − 1. Then, the variables Q(n)
k , E (n)

k , and D(n)
k in the differential form

(35) satisfy the positivity conditions

Q(n)
k > 0, k = 1, 2, . . . , m, n = M, M + 1, . . . , (36)

E (n)
k > 0, k = 1, 2, . . . , m − 1, n = 1, 2, . . . , (37)

D(n)
k > 0, k = 1, 2, . . . , m, n = 0, 1, . . . . (38)

With the help of Proposition 1, we have a theorem on an asymptotic convergence of the
dhToda variables Q(n)

k and E (n)
k as n → ∞.

Theorem 3 Let Q(0)
k > 0, Q(1)

k > 0, . . . , Q(M−1)
k > 0 for k = 1, 2, . . . , m and E (0)

k > 0

for k = 1, 2, . . . , m − 1. As n → ∞, the limits of Q(n)
k and E (n)

k are given by

lim
n→∞

M−1∏

j=0

Q(n− j)
k = Ck, k = 1, 2, . . . , m, (39)

lim
n→∞ E (n)

k = 0, k = 1, 2, . . . , m − 1, (40)

where Ck is a nonnegative constant and C1 ≥ C2 ≥ · · · ≥ Cm .

Proof We first give a proof of (40). Let us sum both sides of the first equation of (5) over
the superscripts, from 0 to n:

n∑

j=0

Q( j+M)
k =

n∑

j=0

Q( j)
k +

n∑

j=0

E ( j)
k −

n∑

j=0

E ( j+1)
k−1 . (41)

In order to consider the limit n → ∞, we may assume that n > M without loss of generality.
Noting that Q(M)

k , Q(M+1)
k , . . . , Q(n)

k appear on both sides of (41), we derive

n∑

j=n−M+1

Q( j+M)
k =

M−1∑

j=0

Q( j)
k +

n∑

j=0

E ( j)
k −

n∑

j=0

E ( j+1)
k−1 . (42)
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From Proposition 1, it is obvious that
∑n

j=n−M+1 Q( j+M)
k > 0. This implies that the right-

hand side of (42) is positive. Hence, it follows that

n∑

j=0

E ( j+1)
k−1 <

M−1∑

j=0

Q( j)
k +

n∑

j=0

E ( j)
k . (43)

The case where k = m and n → ∞ in (43) with
∑∞

j=0 E ( j)
m = 0 leads to, for positive

constants K̄0,

∞∑

j=1

E ( j)
m−1 <

M−1∑

j=0

Q( j)
m < K̄0. (44)

Successively, by considering the cases where k = m −1, m −2, . . . , 1, we have, for positive
constant K̄m−k ,

∞∑

j=0

E ( j)
k < K̄m−k, k = m − 1, m − 2, . . . , 1. (45)

From E (n)
k > 0, it is concluded that E (n)

k → 0 as n → ∞.
We next prove (39) with the help of (40). Let n = � × M + j in the first equation of (5);

then

Q((�+1)×M+ j)
k = Q(�×M+ j)

k + E (�×M+ j)
k − E (�×M+ j+1)

k−1 . (46)

Moreover, let us sum both sides of (46) over � from �1 to �2 − 1, where �2 ≥ �1. Then, it
follows that

Q(�2×M+ j)
k = Q(�1×M+ j)

k +
�2−1∑

�=�1

E (�×M+ j)
k −

�2−1∑

�=�1

E (�×M+ j+1)
k−1 . (47)

By combining this with E (n)
k > 0, we derive

∣
∣
∣Q(�2×M+ j)

k − Q(�1×M+ j)
k

∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣

�2−1∑

�=�1

E (�×M+ j)
k

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

�2−1∑

�=�1

E (�×M+ j+1)
k−1

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∞∑

�=�1

E (�×M+ j)
k

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∞∑

�=�1

E (�×M+ j+1)
k−1

∣
∣
∣
∣
∣
∣
. (48)

Noting that the right-hand side of (48) converges to zero as �1 → ∞, we have

lim
�1,�2→∞ |Q(�2×M+ j)

k − Q(�1×M+ j)
k | = 0, (49)

which implies that
{

Q(0×M+ j)
k , Q(1×M+ j)

k , Q(2×M+ j)
k , . . .

}
is a Cauchy sequence. Since

{
Q(0×M+ j)

k , Q(1×M+ j)
k , Q(2×M+ j)

k , . . .
}

is a real positive sequence, it follows that Q(�×M+ j)
k ,

for each j , converges to some nonnegative constant Ck, j as � → ∞. It is concluded that
∏M−1

j=0 Q(n− j)
k converges to some nonnegative constant Ck = ∏M−1

j=0 Ck, j as n → ∞.
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We finally show the inequality conditions of Ck for k = 1, 2, . . . , m. From the second
equation of the dhToda equation (5),

E (n)
k = E (0)

k

n−1∏

N=0

Q(N )
k+1

Q(N+M)
k

= E (0)
k

n′
∏

�=0

Q
(�)
k+1

Q
(�+1)
k

, (50)

where Q
(�)
k = ∏M−1

j=0 Q(�×M− j)
k and n > n′ ∈ N. Note that since E (0)

k is bounded and

limn→∞ E (n)
k = 0 for k = 1, 2, . . . , m − 1, from (50) we have

lim
n→∞

n∏

�=0

Q
(�)
k+1

Q
(�+1)
k

= 0, k = 1, 2, . . . , m − 1. (51)

If lim�→∞ Q
(�)
k+1/Q

(�+1)
k > 1, this would contradict (51). From (39), we obtain

Ck ≥ Ck+1, k = 1, 2, . . . , m − 1. (52)


�
To summarize, setting initial values of the dhToda variables appropriately yields that as n
grows larger,

∏M−1
j=0 Q(n− j)

k and E (n)
k , assuming Q(n)

k > 0 and E (n)
k > 0, converge to some

nonnegative constant and zero, respectively. It is emphasized here that, as n → ∞, the limit
of Q(n)

k does not exist. This asymptotic behavior does not appear in the discrete Toda, the
dLV, and the dhLV variables.

3.2 dhToda algorithm for a TN matrix

In order to find the conserved quantities for the dhToda equation, we consider the Lax form,

L(n+1) R(n+M) = R(n)L(n), (53)

L(n) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
E (n)

1 1

E (n)
2

. . .

. . . 1
E (n)

m−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (54)

R(n) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q(n)
1 1

Q(n)
2 1

. . .
. . .

. . . 1
Q(n)

m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (55)

Let us introduce the matrix, given by the matrix products of L(n) and R(n), R(n+1), . . . ,

R(n+M−1),

A(n) := L(n) R(n+M−1) R(n+M−2) · · · R(n+1) R(n). (56)
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Note here that the entries of A(n) consist of the dhToda variables. Then, from (53), we derive
A(n+1) = R(n) A(n)(R(n))−1, which implies that the eigenvalues of A(n) are invariant under
the time evolution from n to n + 1. So, it should be emphasized here that A(n), for any n, has
the same eigenvalues as A(0).

In [25], the conserved quantities of so-called numbered box and ball systems are presented
based on the Lax form (53) for the dhToda equation (5). Since the eigenvalues of A(n) are
invariant, conserved quantities of the dhToda equation (5) are given by

Tr{(A(n)) j }, j = 1, 2, . . . , m. (57)

The authors of [25] suggest that the dhToda equation (5) has an interesting relationship with
matrix eigenvalues. However, to the best of our knowledge, no matrix eigenvalue algorithm
has been derived from the dhToda equation (5).

Now, we design a new algorithm for computing eigenvalues of m × m band matrix
A(0) given by the matrix products of lower bidiagonal L(0) and upper bidiagonal
R(M−1), R(M−2), . . . , R(0) such that A(0) = L(0) R(M−1) R(M−2) · · · R(0). If m > M , then
the form of A(n) is as follows.

M
︷ ︸︸ ︷

A(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ · · · ∗ 1

∗ ∗ · · · ∗ . . .

∗ . . .
. . . 1

. . .
. . . ∗
. . .

. . .
...

∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (58)

where ∗ denotes a nonzero entry. The (i, i + M) entry of A(n) is fixed as 1, and the other
nonzero entries consist of the dhToda variables Q(n)

k and E (n)
k . If m ≤ M, A(n) is the upper

Hessenberg form without the entries fixed as 1. In both cases, the eigenvalues of A(0) are
computable with the dhToda equation (5), as is shown in the following theorem.

Theorem 4 Let Q(0)
k > 0, Q(1)

k > 0, . . . , Q(M−1)
k > 0 for k = 1, 2, . . . , m and E (0)

k > 0

for k = 1, 2, . . . , m − 1. Then, Ck = limn→∞
∏M−1

j=0 Q(n− j)
k for k = 1, 2, . . . , m coincide

with the eigenvalues of A(0).

Proof As is shown in the proof of Theorem 3, the subsequence
{

Q(0×M+ j)
k , Q(1×M+ j)

k ,

Q(2×M+ j)
k , . . .

}
is a Cauchy sequence for all k = 1, 2, . . . , m and j = 1, 2, . . . , M . Obvi-

ously, the Cauchy sequence
{

Q(0×M+ j)
k , Q(1×M+ j)

k , Q(2×M+ j)
k , . . .

}
is bounded. For arbi-

trary k and n, Q(n)
k is also bounded.

By combining the above with the convergence of E (n)
k shown in Theorem 3, we find that

the (i + 1, i) entry of A(n), written as E (n)
i

∏M−1
j=0 Q(n+ j)

i , converges to zero as n → ∞. Let

(A(n)
k )i,i be the diagonal (i, i) entry of A(n)

k = L(n) R(n+M−1) R(n+M−2) · · · R(n+M−k). Then,

(A(n)
k )i,i is given by
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(A(n)
k )i,i = E (n)

i−1

M−1∏

j=M+1−k

Q(n+ j)
i−1 + Q(n+M−k)

i (A(n)
k−1)i,i , k = 2, 3, . . . , M,

(A(n)
0 )i,i = 1, (A(n)

1 )i,i = E (n)
i−1 + Q(n+M−1)

i .

Noting that A(n)
M = A(n), we derive from the limit of E (n)

k in (40) and the boundedness of

Q(n)
k that the limit of the diagonal entry is Ck = limn→∞

∏M−1
j=0 Q(n− j)

k . Consequently, as

n → ∞, the matrix A(n) converges to the upper triangular matrix

lim
n→∞ A(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 ∗ · · · ∗ 1

C2 ∗ · · · ∗ . . .

. . .
. . .

. . . 1
. . .

. . . ∗

. . .
. . .

...

Cm−1 ∗
Cm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (59)

and the diagonal entries Ck for k = 1, 2, . . . , m are the eigenvalues of A(0). 
�
Let us recall here that Ck ≥ 0 for k = 1, 2, . . . , m in Theorem 3. Moreover, using that

A(0) are nonsingular in Theorem 4, we see that Ck > 0 for k = 1, 2, . . . , m.
Suppose that the positive sequences {E (0)

1 , E (0)
2 , . . . , E (0)

m−1} and {Q(0)
1 , Q(0)

2 , . . . , Q(0)
m },

{Q(1)
1 , Q(1)

2 , . . . , Q(1)
m }, . . . , {Q(M−1)

1 , Q(M−1)
2 , . . . , Q(M−1)

m } are given. Then, from (54)–
(56), we have the band matrix A(0). Theorem 4 claims that, for sufficiently large
n,

∏M−1
j=0 Q(n− j)

k becomes an approximate eigenvalue of A(0) through the dhToda equa-
tion (5). The above procedure for matrix eigenvalues is called the dhToda algorithm and is
shown below.

dhToda algorithm
01: for n := 0, 1, 2, . . . , nmax do
02: D(n)

1 = Q(n)
1

03: for k := 1, 2, . . . , m − 1 do
04: Q(n+M)

k = E (n)
k + D(n)

k

05: F (n)
k+1 = Q(n)

k+1/Q(n+M)
k

06: E (n+1)
k = F (n)

k+1 E (n)
k

07: D(n)
k+1 = F (n)

k+1 D(n)
k

08: end for
09: Q(n+M)

m = D(n)
m

10: end for
11: for k := 0, 1, 2, . . . , m do
12: Ck = ∏M−1

j=0 Q(n− j)
k

13: end for

The values M and m are given from the form of A(0), and the parameter nmax is set as the
maximum iteration number. The inequality maxk E (n)

k < eps is employed as the stopping
criterion, where eps > 0 is sufficiently small.
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In concluding this subsection, we discuss the possibility of incorporating shift of origin
to accelerate convergence into the dhToda algorithm. Starting from the expression (56) for
A(n+M) and using (53) repeatedly, we have

A(n+M) = L(n+M) R(n+2M−1) R(n+2M−2) · · · R(n+M+1) R(n+M)

= R(n+M−1)L(n+M−1) R(n+2M−2) · · · R(n+M+1) R(n+M)

...

= R(n+M−1) R(n+M−2) · · · R(n+1) R(n)L(n)

= (L(n))−1 A(n)L(n). (60)

This shows that the transformation from A(n) to A(n+M) can be viewed as one step of the
L R algorithm. Hence, we can introduce the shift s(n) as follows:

A(n) − s(n) I = L(n) R(n+M−1) R(n+M−2) · · · R(n+1) R(n) − s(n) I = L (n)R(n), (61)

A(n+M) = (L (n))−1 A(n)L (n). (62)

Here, the rightmost-hand side of (61) is the L R decomposition of the left-hand side. In this
modified transformation, if we compute A(n) − s(n) I explicitly and then compute its L R
factors, small eigenvalues can suffer from loss of accuracy. This is because small relative
error in the matrix element of A(n) −s(n) I generally causes large relative error in the smallest
eigenvalues [16]. Fortunately, thanks to the implicit L theorem for the L R algorithm, we can
compute the L R transformation (62) without forming A(n) − s(n) I explicitly. To develop a
shifted dhToda algorithm based on this idea, however, we still need to solve a few problems.
For example, the condition imposed on s(n) to ensure positivity of the bidiagonal factors
must be clarified. Also, an efficient strategy for determining the shift based on the bidiagonal
factors must be developed. We are currently investigating these problems, and they will be
the subjects of our next paper.

3.3 Relationships with dhLV and multiple dqd algorithms

We next clarify the relationship of the dhToda algorithm to the dhLV algorithm. Let us intro-
duce the block matrix B(n) ∈ Rm(M+1)×m(M+1), composed of the matrices L(n) in (54) and
R(n+M−1), . . . , R(n+1), R(n) in (55), such that

B(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L(n)

R(n+M−1)

R(n+M−2)

. . .

R(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (63)

Let us recall here the permutation technique shown in Sect. 2.2. We consider the inverse of
the permutation. Since the permutation matrix P is such that P B(n) is the matrix given by
interchanging the [( j −1)m + k]th and [(k −1)(M +1)+ j]th rows of B(n), P
 is such that
P
 B(n) is the matrix given by interchanging the [(k −1)(M +1)+ j]th and [( j −1)m +k]th
rows of B(n). It follows that
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P−1 B(n) P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

S(n)
1 J

H (n)
1 S(n)

2
. . .

. . .
. . . J

H (n)
m−1 S(n)

m

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (64)

S(n)
k :=

⎛

⎜
⎜
⎜
⎝

0 1
Q(n+M−1)

k 0
. . .

. . .

Q(n)
k 0

⎞

⎟
⎟
⎟
⎠

, (65)

H (n)
k :=

⎛

⎜
⎜
⎜
⎝

0 · · · 0 E (n)
k

0 · · · 0 0
...

...
...

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

, J :=

⎛

⎜
⎜
⎜
⎝

0
1 0

. . .
. . .

1 0

⎞

⎟
⎟
⎟
⎠

. (66)

The band matrix P−1 B(n) P in (64) has the same form as L̂ (n) in (25), whose eigenvalues are
computable by the dhLV algorithm. Just as in the discussion in Sect. 2.2, the band matrices
A(n) in (58) and B(n) in (63) correspond to the matrices X and X̂ in Theorem 1, respectively.
So, it follows that all the eigenvalues of B(n) are given as the (M +1)th roots of those of A(n).
On the other hand, B(n) and P−1 B(n) P in (64) are similar and have the same eigenvalues.
Thus, it is concluded that all the eigenvalues of P−1 B(n) P are given as the (M + 1)th roots
of those of A(n). Namely, the target matrix of the dhLV algorithm becomes that of the dhToda
algorithm by a suitable initial setting.

The dhToda algorithm is also related to the multiple dqd algorithm. By comparing L(n)

in (54) and R(n) in (55) with L j , R j in (33), we see that the transpose of L(n) and R(n) have
the same forms as R j and L j , respectively. So, let

(L(0))
 = R1, (R(0))
 = L1, (R(1))
 = L2, . . . , (R(M−1))
 = L M .

Let us recall that A(0) = L(0) R(M−1) R(M−2) · · · R(0) is the target matrix of the dhToda
algorithm. Then, the transpose of A(0) is

(A(0))
 = (R(0))
(R(1))
 · · · (R(M−1))
(L(0))


= L1L2 · · · L M R1.

This implies that the target matrices of the dhToda algorithm and the multiple dqd algorithm
with mL = M, m R = 1 are similar to each other.

4 Numerical experiments

In this section, we numerically confirm our results shown in the previous sections. Numeri-
cal experiments have been carried out on a computer with the following specifications: OS,
Windows XP; CPU, Genuine Intel (R) CPU L2400 @ 1.66 GHz; RAM, 2 GB; compiler,
Microsoft(R) C/C++ Optimizing Compiler Version 15.00.30729.01.
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As an example matrix, we adopt the TN matrix A0 = L(0) R(2) R(1) R(0) with

L(0) =

⎛

⎜
⎜
⎝

1
2 1

2 1
2 1

⎞

⎟
⎟
⎠ , R(0) = R(1) = R(2) =

⎛

⎜
⎜
⎝

5 1
5 1

5 1
5

⎞

⎟
⎟
⎠ .

Note here that M = 3 and m = 4 in our dhLV and the dhToda algorithms. We first discuss
the behavior of the dhToda variables Q(n)

k and E (n)
k . See also [5] for the behavior of the

dhLV variables u(n)
k . From Fig. 1, it is clear that, as is stated in Theorem 3, E (n)

k converges to

zero. Figure 2 shows that the behavior of Q(n)
k gradually becomes periodic as n grows larger.

From Fig. 3, it is obvious that the product p(n)
k := ∏M−1

j=0 Q(n+ j)
k converges to some positive

constant. This numerical convergence also agrees with Theorem 3.
Next, we demonstrate that, for two kinds of matrices, the eigenvalues are computable by

the dhToda and the dhLV algorithms. Let us set eps = 1.0E − 16 in both algorithms. We
introduce the block matrix

B0 =

⎛

⎜
⎜
⎝

L(0)

R(2)

R(1)

R(0)

⎞

⎟
⎟
⎠ . (67)

Fig. 1 Graph of the iteration
number n (x-axis) and

E(n)
1 , E(n)

2 , E(n)
3 (y-axis) in the

dhToda algorithm. Solid line

E(n)
1 ; dotted line E(n)

2 ; and

dashed line E(n)
3
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Fig. 2 Graph of the iteration
number n (x-axis) and

Q(n)
1 , Q(n)

2 , Q(n)
3 , Q(n)

4 (y-axis)
in the dhToda algorithm. Circle

Q(n)
1 ; bigtriangledown Q(n)

2 ; star

Q(n)
3 , and cross Q(n)
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Fig. 3 Graph of the ratio of the
iteration number n to the
parameter M = 3 (x-axis) and

p(n)
1 , p(n)

2 , p(n)
3 , p(n)

4 (y-axis) in
the dhToda algorithm. Circle

p(n)
1 ; bigtriangledown p(n)

2 ; star

p(n)
3 ; and cross p(n)

4
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100

200

300
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For the suitable permutation matrix P0 shown in Sect. 3.3, the band matrix L0 := P

0 B0 P0

has two diagonals, as follows:

L0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
5 1

5 1
5 1

2 1
5 1

5 1
5 1

2 1
5 1

5 1
5 1

2 1
5

5
5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (68)

In order to get the eigenvalues of A0 and L0 with high relative accuracy, we employ the
Mathematica function eigenvalues[ ]with 100-digit arithmetic. We also use our dhLV
and dhToda algorithms in double-precision arithmetic.

Tables 1 and 2 show the eigenvalues of A0 and L0, respectively, computed by eigen-
values[ ] and our algorithms. The first column of numbers in both tables display the
results obtained by rounding eigenvalues[A0] or eigenvalues[L0] into double-
precision numbers. The computed eigenvalues by the dhLV and the dhToda algorithms,
respectively, are shown in the second and the third columns of numbers. By comparing the sec-
ond and third columns with the first column for each table, we conclude that the eigenvalues of
both matrices are computed by the dhLV and dhToda algorithms with high relative accuracy.

Finally, we give a comparison of the dhToda algorithm with the routine dhseqr in the
famous LAPACK [17] with respect to the relative accuracy of computed eigenvalues. Let us
introduce the 20-by-20 TN matrix A1 = L(0) R(7) R(6) · · · R(0), where the nonzero entries of
L(0), and R(0), R(1), . . . , R(7) are all 1. The largest and the smallest eigenvalues of A1 are
2.284895467291726E + 1 and 1.448103061761318E − 7, respectively. Figure 4 shows the
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Table 1 Computed eigenvalues of A0

Mathematica dhLV algorithm dhToda algorithm

λ1 532.35140651953578 532.35140651953509 532.35140651953520

λ2 302.15799192937254 302.15799192937277 302.15799192937300

λ3 100.36858294952133 100.36858294952130 100.36858294952131

λ4 15.122018601570330 15.122018601570332 15.122018601570332

Table 2 Computed eigenvalues of L0

Mathematica dhLV algorithm dhToda algorithm

λ1,1 4.803409376080853 4.803409376080851 4.803409376080851

λ1,2 4.803409376080853i 4.803409376080851i 4.803409376080851i

λ1,3 −4.803409376080853 −4.803409376080851 −4.803409376080851

λ1,4 −4.803409376080853i −4.803409376080851i −4.803409376080851i

λ2,1 4.169255606169454 4.169255606169454 4.169255606169455

λ2,2 4.169255606169454i 4.169255606169454i 4.169255606169455i

λ2,3 −4.169255606169454 −4.169255606169454 −4.169255606169455

λ2,4 −4.169255606169454i −4.169255606169454i −4.169255606169455i

λ3,1 3.165187545316407 3.165187545316406 3.165187545316406

λ3,2 3.165187545316407i 3.165187545316406i 3.165187545316406i

λ3,3 −3.165187545316407 −3.165187545316406 −3.165187545316406

λ3,4 −3.165187545316407i −3.165187545316406i −3.165187545316406i

λ4,1 1.971979709463506 1.971979709463506 1.971979709463506

λ4,2 1.971979709463506i 1.971979709463506i 1.971979709463506i

λ4,3 −1.971979709463506 −1.971979709463506 −1.971979709463506

λ4,4 −1.971979709463506i −1.971979709463506i −1.971979709463506i

Fig. 4 Graph of the index k of
the computed eigenvalues
λ̂1, λ̂2, . . . , λ̂20 with
λ̂1 > λ̂2 > · · · > λ̂20 (x-axis)
and the relative errors of
λ̂1, λ̂2, . . . , λ̂20 (y-axis) by the
dhToda algorithm and by the
routine dhseqr in the case
where the target matrix is A1.
Filled circle dhToda algorithm;
and asterisk, routine dhseqr
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relative errors of the eigenvalues of A1 computed by the dhToda algorithm and by the routine
dhseqr. From Fig. 4, we observe that the dhToda algorithm is preferable to the routine
dhseqr for computing eigenvalues of A1 with high relative accuracy.

5 Concluding remarks

In this paper, we first survey the dhLV algorithm in [5] derived from the integrable dhLV
system and then expand the target matrix of the dhLV algorithm by considering a TN matrix.
We next investigate properties of the integrable dhToda equation. It is found that the dhToda
variables become periodic and their products converge to matrix eigenvalues as the time
variable n → ∞. Using this asymptotic convergence, we design a new algorithm, named
the dhToda algorithm, for computing eigenvalues of a TN matrix. We describe the relation-
ship of the dhLV algorithm to the dhToda algorithm, namely, that the classes of matrices
whose eigenvalues are computable by both the dhLV algorithm and the dhToda algorithm
are essentially the same. It should be remarked here that a transformation, such as a Miura
transformation (3), from the dhLV variables to those of the dhToda or vice versa has not yet
been reported, but the dhLV algorithm is nevertheless related to the dhToda algorithm from
the viewpoint of matrix eigenvalues. It is also shown that our two algorithms are related to
the multiple dqd algorithm, which is proposed for the computation of eigenvalues of a TN
matrix in [32]. Through numerical experiments, we confirm that the dhToda variables have
the asymptotic convergence predicted theoretically and that the eigenvalues computed by
our two algorithms have high relative accuracy.
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