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Abstract In this paper we study the existence of almost automorphic solutions for a class
of linear neutral functional differential equations with finite delay and values in a Banach
space. We show that the existence of an almost automorphic mild solution is related to the
approximate controllability of a distributed control system. We applied our results to establish
the existence of an almost automorphic solution for a neutral wave equation with delay.
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1 Introduction

Motivated by the fact that abstract neutral functional differential equations (abbreviated
ANFDE) arise in many areas of applied mathematics, this type of equations has received
much attention in recent years [9,12,17,22–24,38]. In particular, the problem of the exis-
tence of almost periodic and almost automorphic solutions has been considered by several
authors. We refer the reader to the papers [1,5,6,13–16,19,20,27–29,32] and references
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394 H. R. Henríquez, C. Cuevas

listed therein for recent information on this subject. Our objective in this paper is to establish
the existence of almost automorphic mild solutions for a class of first order linear ANFDEs.

The notion of almost automorphic function was introduced by Bochner in [8] to avoid
some assumptions of uniform convergence that arise when using almost periodic functions.
From that time the theory of almost automorphic functions has been studied by numerous
authors. In connection with differential equations, the great importance from both the applied
and theoretical points of view of the existence of periodic solutions is well known. How-
ever, either because models are only an approximation of reality or due to numerical errors,
in practice it is impossible to verify whether a solution is exactly periodic. The concept of
almost automorphic function allows relaxing some assumptions to obtain solutions that have
properties similar to those of a periodic function. The reader can see Definition 2.2 for the
concept of almost automorphic function.

Throughout this work, we denote by X a complex Banach space endowed with a norm
‖·‖. Henceforth we represent by A the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators (T (t))t≥0 on X , and C stands for the space of continuous
functions C([−r, 0]; X), r > 0, provided with the norm of uniform convergence. We will
be concerned with the existence of almost automorphic solutions to the equation

d

dt
D(xt ) = AD(xt ) + L(xt ) + f (t), t ∈ R, (1.1)

where x(t) ∈ X , the function xt : [−r, 0] → X , that denotes the segment of x(·) at t , is
given by xt (θ) = x(t + θ), D, L : C → X are bounded linear maps, and f : R → X is an
appropriate function. This equation, and also the initial value problem

d

dt
D(xt ) = AD(xt ) + L(xt ) + f (t), t ≥ σ, (1.2)

xσ = ϕ (1.3)

for σ ∈ R, have been studied by several authors. Equation (1.1) and problem (1.2)–(1.3)
arise in references [25,26,39,40]. From these early works, both Eq. (1.1) and the initial
value problem (1.2)–(1.3) have been studied by several authors. Some papers are devoted to
establishing general properties such as well posed of the equation, the existence of solutions,
properties of the solution operator, etc. [2,4,33], while other work is oriented at establishing
specific properties like the existence of almost periodic and almost automorphic solutions
[2,3,5,6,15,20,27]. In addition, some papers consider equations with finite delay [2–6,20]
while others are concerned with equations with infinite delay, both in phase spaces defined
axiomatically [15,27] and in concrete function spaces [33]. A usual condition to obtain these
results is that the semigroup generated by A is uniformly exponentially stable and immedi-
ately compact.

Our aim in this paper is to use the theory developed in [2–4] and also the well establish
mathematical control theory for distributed control systems to show that for a wide class of
equations of type (1.1) there exist almost automorphic mild solutions though the semigroup
T (·) is not uniformly exponentially stable and not compact.

As a model we consider the wave equation with delay

∂2

∂t2 (w(ξ, t) − d0w(ξ, t − r)) + β
∂

∂t
(w(ξ, t) − d0w(ξ, t − r))

= ∂2

∂ξ2 (w(ξ, t) − d0w(ξ, t − r)) +
π∫

0

0∫

−r

p(ξ, η, θ)
∂

∂t
w(η, t + θ)dθdη + b(ξ, t), (1.4)
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Almost automorphy for abstract neutral differential equations 395

w(0, t) = w(π, t) = 0, (1.5)

for 0 ≤ ξ ≤ π and t ∈ R, where β, d0 ∈ R, and the scalar functions p : [0, π] × [0, π] ×
[−r, 0] → R and b : [0, π ] × R → R satisfy appropriate conditions.

Throughout this work we denote by L(X) the Banach algebra of bounded linear operators
defined on X and by X∗ the dual space of X . For a linear operator A with domain D(A) and
range R(A) in X , we represent by σ(A) (resp. σp(A), ρ(A)) the spectrum (resp. point spec-
trum, resolvent set) of A. For λ ∈ ρ(A) we denote by R(λ, A) = (λI − A)−1 the resolvent
operator of A [21].

For the necessary concepts related with the abstract Cauchy problem and the theory of
strongly continuous semigroup of operators we refer to Engel and Nagel [18] and Pazy
[35]. We only mention here a few concepts and results directly related to our development.
Let (G(t))t≥0 be a strongly continuous semigroup defined on a Banach space X with
infinitesimal generator AG . We say that (G(t))t≥0 is strongly stable if G(t)x → 0, t →
∞, for all x ∈ X , and we say that (G(t))t≥0 is uniformly exponentially stable if
‖G(t)‖ → 0, t → ∞. Moreover, we employ the terminology and notations for spec-
tral bound s(AG), growth bound ω0(G) and essential growth bound ωess(G) from [18].
Specifically, s(AG) = sup{Re(λ) : λ ∈ σ(AG)}; ω0(G) = limt→∞ ln ‖G(t)‖

t and

ωess(G) = limt→∞ ln ‖G(t)‖ess
t , where the symbol ‖ · ‖ess denotes the essential norm of

an operator. Consequently, in terms of these notations, semigroup (G(t))t≥0 is uniformly
exponentially stable if, and only if, ω0(G) < 0.

For completeness we also regard here that a strongly continuous semigroup
(G(t))t≥0 is said to be immediately compact if G(t) is a compact operator for all t > 0
and that (G(t))t≥0 is said to be quasi-compact if there is t0 > 0 and a compact operator R
such that ‖G(t0) − R‖ < 1. We collect in the following lemma two fundamental results [18,
Corollary IV.2.11, Proposition V.3.5] for our further development.

Lemma 1.1 The following conditions are fulfilled.

(i) The semigroup (G(t))t≥0 is quasi-compact if and only if ωess(G) < 0.
(ii) ω0(G) = max{ωess(G), s(AG)}.

This paper is organized as follows. In Sect. 2 we have collected some technical results
about spectral properties of ANFDE of type (1.2), most of which are included in [2–4]; in
Sect. 3 we apply these properties to study the existence of almost automorphic solutions of
ANFDE of type (1.1), and in the last Section 4 we have included an application of our results
to the neutral wave equation.

2 Preliminaries

Throughout the rest of this paper A : D(A) ⊆ X → X is the infinitesimal generator of
a semigroup of bounded linear operators (T (t))t≥0 on X , and L , D : C → X are bounded
linear maps. We assume that D is defined by

D(ϕ) = ϕ(0) −
0∫

−r

[dθ N (θ)]ϕ(θ),

where N : [−r, 0] → L(X) is a map of bounded variation and non-atomic at zero (see [24]
for the terminology). Moreover, f : R → X is a continuous function. We refer to [2–4] for
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396 H. R. Henríquez, C. Cuevas

the basic properties of the Eq. (1.2). We only mention here that problem (1.2)–(1.3) has a
unique mild solution x = x(·, σ, ϕ, f ). This means that x : [σ − r,∞) → X is a continuous
function that verifies (1.3) and the restriction of x(·) on [σ,∞) satisfies the integral equation

Dxt = T (t − σ)Dϕ +
t∫

σ

T (t − s)(L(xs) + f (s))ds, t ≥ σ. (2.1)

In particular, if x(·, ϕ) denotes the mild solution of the homogeneous problem

d

dt
D(xt ) = AD(xt ) + L(xt ), t ≥ 0, (2.2)

x0 = ϕ, (2.3)

then the solution operator (V (t))t≥0 defined by V (t)ϕ = xt (·, ϕ) is a strongly continuous
semigroup of bounded linear operators on C (see [2]). We will represent by AV its infinites-
imal generator. Moreover, it is well known that (V (t))t≥0 satisfies the following translation
property.

Lemma 2.1 [2] Under the preceding conditions,

[V (t)ϕ](θ) =
{ [V (t + θ)ϕ](0), t + θ ≥ 0,

ϕ(t + θ), t + θ ≤ 0.

To establish the variation of constants formula for (1.2), we consider the space X×C provided
with the product norm, and the operator ÃV defined on

D( ÃV ) = {(z, ϕ) : z = ϕ(0), ϕ ∈ C1([−r, 0], X), D(ϕ) ∈ D(A)}
by

ÃV (z, ϕ) = (AD(ϕ) + L(ϕ) − D(ϕ′), ϕ′).

We also define J : X → X × C by J (z) = (z, 0). We need to consider the following
condition.
(H1) For every z ∈ D(A) and λ ∈ C, D(eλθ z) ∈ D(A).

The following result has been established in [2, Theorem 16].

Lemma 2.2 Assume that (H1) holds. Then the mild solution of (1.2)–(1.3) is given by

xt = V (t − σ)ϕ + lim
λ→∞

t∫

σ

V (t − s)λR(λ, ÃV )(J f (s))ds, t ≥ σ.

We denote by (W (t))t≥0 the solution operator corresponding to L = 0 in (2.2). It is clear
that (W (t))t≥0 is given by

[W (t)ϕ](θ) =
⎧⎨
⎩

v(t + θ), −t ≤ θ ≤ 0,

ϕ(t + θ), −r ≤ θ < −t,

where v(·) satisfies the problem

Dvt = T (t)Dϕ, t ≥ 0,

v0 = ϕ.
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Almost automorphy for abstract neutral differential equations 397

System (2.2) is said to be (asymptotically) stable if the semigroup (V (t))t≥0 is uniformly
exponentially stable. Consequently, it follows from Lemma 1.1 that the study of the asymp-
totic stability of system (2.2) is reduced to the study of the spectral properties of the solution
semigroup (V (t))t≥0.

Definition 2.1 Operator D is said to be stable if the solution of the problem

Dyt = 0,

y0 = ϕ ∈ ker(D),

is exponentially stable.

To simplify the text we introduce the following condition.
(H2) Let D0 : C → X be the linear operator given by

D0(ϕ) =
0∫

−r

[dθ N (θ)]ϕ(θ).

Then the spectral radius re(D0) < 1.
The following property is an immediate consequence of the definitions.

Lemma 2.3 Assume that condition (H2) holds. Then D is stable. If further, the semigroup
(T (t))t≥0 is uniformly exponentially stable, then the semigroup (W (t))t≥0 is also uniformly
exponentially stable.

2.1 Asymptotic behavior of the solution semigroup

We are in a position to establish the first result about asymptotic behavior of the solution
semigroup.

Theorem 2.1 Assume that condition (H2) holds, the semigroup (T (t))t≥0 is uniformly expo-
nentially stable and that the operator T (t)L : C → X is compact for all t > 0. Then the
semigroup (V (t))t≥0 is quasi-compact.

Proof We define the operator U (t) : C → C for t ≥ 0 by

[U (t)ϕ](θ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t+θ

0
T (t + θ − s)L(V (s)ϕ)ds, −t ≤ θ ≤ 0,

0, −r ≤ θ < −t.

It is clear from (2.1) that

V (t) = W (t) + U (t), t ≥ 0,

which implies that U (t) is a bounded linear operator. It follows from Lemma 2.3 that the
semigroup (W (t))t≥0 is uniformly exponentially stable. Moreover, from [30, Theorem 1] we
can assert that U (t) is a compact operator. ��
Remark 2.1 There are many interesting situations in which the semigroup (T (t))t≥0

is not compact but the operator T (t)L : C → X is compact for t > 0. Next we men-
tion two general cases:

123



398 H. R. Henríquez, C. Cuevas

(i) The operator L : C → X is compact. For instance, L(ϕ) = ∑k
i=1 Aiϕ(−ri ), where

Ai : X → X , i = 1, . . . , k, are compact linear operators, or

L(ϕ) =
0∫

−r

η(θ)ϕ(θ)dθ,

where η : [−r, 0] → L(X) is a map continuous for the norm of operators and η(θ) is
a compact operator for each −r ≤ θ ≤ 0. As a matter of fact, this property is verified
under more general conditions in η.

(ii) A more general situation is the following. Assume that there exists a topological
decomposition of X = X0 ⊕ X1, where Xi are invariant spaces under T (t), and X1

has finite dimension. Let P0 be the projection on X0 with kernel X1. If T (t)P0 L is
compact, then the product T (t)L is also compact.

Combining Theorem 2.1 with Theorem V.3.7 in [18] we can establish the following
property of asymptotic behavior for the solution semigroup associated to the homogeneous
problem (2.2)–(2.3).

Corollary 2.1 Assume that condition (H2) holds, the semigroup (T (t))t≥0 is uniformly expo-
nentially stable and that the operator T (t)L : C → X is compact for all t > 0. Then the
semigroup (V (t))t≥0 is uniformly exponentially stable if and only if sup Reσp(AV ) < 0.

Remark 2.2 Assume that semigroup (V (t))t≥0 is quasi-compact. In this case the set
 = {λ ∈ σ(AV ) : Re(λ) ≥ 0} is finite and consists of poles of R(·, AV ) with finite
algebraic multiplicity [18, Theorem V.3.7]. Therefore, the space C is decomposed as

C = P ⊕ Q, (2.4)

where P and Q are spaces invariant under V (t) and the space P is the range of the
spectral projection �P corresponding to . Consequently, P consists of the generalized
eigenvectors corresponding to the eigenvalues λi ∈ . Specifically, if  = {λ1, λ2, . . . , λm},
then

P = m⊕
i=1

ker(λi I − AV )ki (2.5)

for certain ki ∈ N. We denote by V P (t), (respectively, V Q(t)) the restriction of V (t) on P

(respectively, on Q). Similarly, AP
V and AQ

V represent the restrictions of AV on P and Q,
respectively. Since P is a space of finite dimension d , the semigroup (V P (t))t≥0 is uniform-
ly continuous and AP

V is a bounded linear operator defined on P. Let ϕ1, ϕ2, . . . , ϕd be a
basis of P. We set � = (ϕ1, ϕ2, . . . , ϕd). It has been proved in [3, Theorem 11] that there
is a d ×d matrix G such that V P (t)� = �eGt , for t ≥ 0, and σp(G) = . Let � be the dual
basis of � associated with decomposition (2.4), so that 〈�,�〉 = I . Under these conditions,
it has been established in [3, Theorem 16] that there exists x∗ = col(x∗

1 , x∗
2 , . . . , x∗

d ) ∈ X∗d

such that the projection x P
t = �P xt on P of the solution of (1.1) is given by x P

t = �z(t),
where the d-vector z(t) = 〈�, xt 〉 satisfies the ordinary differential equation

z′(t) = Gz(t) + 〈x∗, f (t)〉, t ∈ R. (2.6)

2.2 Almost automorphic functions

On the other hand, in this work we employ the concept of almost automorphic functions in
the sense of Bochner [8].
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Almost automorphy for abstract neutral differential equations 399

Definition 2.2 A continuous function f : R → X is called almost automorphic if for every
sequence of real numbers (s′

n)n∈N there exists a subsequence (sn)n∈N ⊂ (s′
n)n∈N such that

g(t) := limn→∞ f (t + sn) is well defined for each t ∈ R, and f (t) = limn→∞ g(t − sn) for
each t ∈ R.

For the properties of almost automorphic functions we refer the reader to [34]. We only
mention here that the range of an almost automorphic function is a relatively compact set.
Hence, the function g involved in the Definition 2.2 is bounded and measurable. We denote
by AA(X) the space consisting of all almost automorphic functions with values in X . The
space AA(X) endowed with the supremum norm is a Banach space.

To complete this section, we establish formally the following concept.

Definition 2.3 A continuous function x : R → X is said to be a mild solution of the Eq.
(1.1) if for each σ ∈ R the restriction x : [σ,∞) → X is a mild solution of the Eq. (1.2)
with initial condition xσ at t = σ .

3 Existence of almost automorphic solutions

In this section we turn our attention to the existence of almost automorphic solutions of Eq.
(1.1). Throughout this section we assume that A, D and L satisfy the general conditions
considered in Sect. 2 and that f : R → X is a continuous function.

If the semigroup (V (t))t≥0 is quasi-compact, we can apply the properties and notations
introduced in Remark 2.2 in relation to the homogeneous Eq. (2.2). In particular, decompo-
sition (2.5) does not depend on the compactness of the semigroup (T (t))t≥0. In what follows
we set  = {λ ∈ σp(AV ) : Re(λ) ≥ 0}. Moreover, since in our case A generates a strongly
continuous semigroup on X , the concept of mild solution as defined in (2.1) (see also [4]),
and the concept of integral solution as defined in [2,3] coincide. Therefore, we can use the
results in [3] for the concept of mild solution. The following result has been established in
[3, Theorem 16]. In this statement we use the notations introduced in Remark 2.2.

Lemma 3.1 Assume that conditions (H1) and (H2) hold. Assume further that the semigroup
(T (t))t≥0 is uniformly exponentially stable and the operator T (t)L is compact for t > 0. If
x : R → X is a mild solution of (1.1) on R, then z(t) = 〈�, xt 〉 is a solution of the differential
equation

z′(t) = Gz(t) + 〈x∗, f (t)〉, t ∈ R. (3.1)

Conversely, if f is a bounded function on R and z(·) is a solution of (3.1) on R, then the
function x : R → X given by

x(t) =
⎡
⎣�z(t) + lim

n→∞

t∫

−∞
V Q(t − s)�Qn R(n, ÃV )(J f (s)) ds

⎤
⎦ (0), t ∈ R, (3.2)

is a mild solution of (1.1) on R.

Now we are in a position to establish the main result of this work.

Theorem 3.1 Assume that conditions (H1) and (H2) hold. Assume further that the semi-
group (T (t))t≥0 is uniformly exponentially stable and the operator T (t)L is compact for
t > 0. Let f : R → X be an almost automorphic function. If Eq. (1.1) has a bounded mild
solution on R

+, then it has an almost automorphic mild solution.
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400 H. R. Henríquez, C. Cuevas

Proof Let x(·) be the mild solution of (1.1) given by (3.2). Since z(t) satisfies Eq. (3.1) and
σp(G) ⊆ {λ ∈ C : Re(λ) ≥ 0}, then z(·) is bounded on R. It follows from [34, Theorem 2.4]
that z(·) is an almost automorphic function. On the other hand, we denote

Y (t) = lim
n→∞

t∫

−∞
V Q(t − s)�Qn R(n, ÃV )(J f (s)) ds, t ∈ R, (3.3)

then we can write

Y (t) = lim
n→∞

∞∫

0

V Q(s)�Qn R(n, ÃV )(J f (t − s)) ds, t ∈ R.

We denote

Y n(t) =
t∫

−∞
V Q(t − s)�Qn R(n, ÃV )(J f (s)) ds, t ∈ R n ∈ N.

Let (s′
k) be an arbitrary sequence of real numbers. Since f is almost automorphic, there exists

a subsequence (sk) ⊂ (s′
k) such that limk→∞ f (t +sk) = g(t) and limk→∞ g(t −sk) = f (t)

pointwise on R. Consequently, if we fix t ∈ R, we can affirm that limk→∞ f (t − s + sk)

= g(t − s) for each s ∈ R. Since X0 is a bounded linear map, we also have that
limk→∞ X0 f (t − s + sk) = X0g(t − s), and

Y n(t + sk) =
∞∫

0

V Q(s)�Qn R(n, ÃV )(J f (t − s + sk)) ds.

Moreover, since (V Q(t))t≥0 is a uniformly exponentially stable semigroup, we infer that
there exist constants M̃, α > 0 such that

‖V Q(s)�Q(J f (t − s + sk))‖ ≤ M̃e−αs sup
t∈R

‖ f (t)‖

and the function defined by the right hand side of the above inequality is integrable on [0,∞).
Now, applying the Lebesgue Dominate Convergence theorem ([34, Theorem 1.9]), we get

lim
k→∞ Y n(t + sk) =

∞∫

0

V Q(s)�Qn R(n, ÃV )(Jg(t − s)) ds := Xn(t)

for each t ∈ R. We can apply the same argument to obtain that

lim
k→∞ Xn(t − sk) = Y n(t),

for each t ∈ R, which shows that the function Y n(·) is almost automorphic.
On the other hand, using again that the semigroup (V Q(t))t≥0 is uniformly exponentially

stable and the range of f is relatively compact [34, Theorem 1.31], we can assert that the
convergence in (3.3) is uniform for t ∈ R, which implies that Y (·) is also almost automorphic.

��
We next state several immediate consequences of Theorem 3.1. In these statements we con-
sider properties of semigroups which arise frequently in applications.
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Corollary 3.1 Assume that conditions (H1) and (H2) hold. Assume that (T (t))t≥0 is a group
uniformly exponentially stable and that the operator L is compact. Let f : R → X be an
almost automorphic function. If Eq. (1.1) has a bounded mild solution on R

+, then it has an
almost automorphic mild solution.

Corollary 3.2 Assume that conditions (H1) and (H2) hold. Assume that the semigroup
(T (t))t≥0 is eventually norm continuous, that sup Re(σ (A)) < 0, and that the operator
T (t)L is compact for t > 0. Let f : R → X be an almost automorphic function. If Eq. (1.1)
has a bounded mild solution on R

+, then it has an almost automorphic mild solution.

Corollary 3.3 Assume that conditions (H1) and (H2) hold. Assume that A is a bounded linear
operator such that sup Re(σ (A)) < 0, and that the operator L is compact. Let f : R → X
be an almost automorphic function. If Eq. (1.1) has a bounded mild solution on R

+, then it
has an almost automorphic mild solution.

The condition that the semigroup (T (t))t≥0 is uniformly exponentially stable is some-
what demanding. However, we can apply the well established mathematical control theory to
avoid this condition. Specifically, it is well known that there are many important non-delayed
distributed control systems modeled by the equation

x ′(t) = Ax(t) + Bu(t), (3.4)

where B : C
m → X is a linear map, which are stabilizable. We refer to [10,11,37] for a

discussion of this subject. Briefly, this means that there is a feedback control u = Fx , where
F : X → C

m is a bounded linear map, such that the system

x ′(t) = (A + B F)x(t)

is uniformly asymptotically stable or, equivalently, the semigroup generated by A + B F is
uniformly exponentially stable. Since B is a compact map, then K = B F : X → X is also
a compact linear operator. We summarize this property in the following concept.

Definition 3.1 The semigroup (T (t))t≥0 is said to be compact-stabilizable if there exists
a compact linear operator K : X → X such that the semigroup generated by A + K is
uniformly exponentially stable.

Corollary 3.4 Assume that conditions (H1) and (H2) hold. Assume further that the semi-
group T (·) is compact-stabilizable and that the operator T (t)L is compact for t > 0. Let
f : R → X be an almost automorphic function. If Eq. (1.1) has a bounded mild solution on
R

+, then it has an almost automorphic mild solution.

Proof It follows from our hypotheses that there exists a compact linear operator K : X → X
such that the semigroup (T̃ (t))t≥0 generated by A1 = A + K is uniformly exponentially
stable. Equation (1.1) can be written

d

dt
Dxt = (A + K )Dxt + L1(xt ) + f (t)

= A1 Dxt + L1(xt ) + f (t), (3.5)

where the operator L1 : C → X is given by

L1(ϕ) = L(ϕ) − K D(ϕ).
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Moreover,

T̃ (t)L1(ϕ) = T̃ (t)L(ϕ) − T̃ (t)K D(ϕ). (3.6)

Since K is a compact operator, we can assert that the operator defined by the second term on
the right hand side of (3.6) defines a compact operator. Similarly, it is well known [35] that

T̃ (t)x = T (t)x +
t∫

0

T̃ (t − s)K T (s)xds

and arguing as in the proof of Theorem 2.1, we get that T̃ (t)L is a compact operator. Conse-
quently, T̃ (t)L1 is a compact operator, and we can affirm that Eq. (3.5) satisfies the hypotheses
of Theorem 3.1. ��

Combining this result with the stabilizability criteria established in [10,37,36], we can
present some results for the existence of almost automorphic solutions of Eq. (1.1) in terms
of the controllability of the system (3.4). The system (3.4) is said to be approximately con-
trollable in finite time if for every x1 ∈ X and ε > 0 there exist t1 > 0 and a control function
u ∈ L1([0, t1], C

m) such that ‖x(t1) − x1‖ ≤ ε, where x(·) is the mild solution of (3.4)
with initial condition x(0) = 0. In [10,31] the reader can find criteria for the approximate
controllability of special classes of systems of type (3.4).

In the next result we assume that there is a topological decomposition X = X0⊕X1, where
Xi are invariant subspaces under A, and X1 is a finite dimensional space. Let (Ti (t))t≥0 be
the restriction of the semigroup (T (t))t≥0 on Xi for i = 0, 1. Combining the Corollary 3.4
with [11, Corollary 3.33] we obtain the following result.

Corollary 3.5 Assume that conditions (H1) and (H2) hold. Let f : R → X be an almost
automorphic function. Assume further that the following conditions hold:

(a) The semigroup (T0(t))t≥0 is uniformly exponentially stable.
(b) System (3.4) is approximately controllable in finite time.
(c) The operator T (t)L is compact for t > 0.
(d) The Eq. (1.1) has a bounded mild solution on R

+.

Then the Eq. (1.1) has an almost automorphic mild solution.

In [10,37,36] the reader can find many systems that satisfy the conditions considered in the
statement of Corollary 3.5. Similarly, combining Corollary 3.4 with the results in [7], we get
the following consequence of the controllability.

Corollary 3.6 Assume that X is a Hilbert space, (T (t))t≥0 is a contraction semigroup such
that T (t0) is compact for some t0 > 0 and conditions (H1) and (H2) hold. Let f : R → X be
an almost automorphic function. Assume further that the following conditions are fulfilled:

(a) System (3.4) is approximately controllable in finite time.
(c) The operator T (t)L is compact for t > 0.
(d) The Eq. (1.1) has a bounded mild solution on R

+.

Then the Eq. (1.2) has an almost automorphic mild solution.

Proof It follows from [7, Theorem 3.4.1] that the semigroup (S(t))t≥0 generated by A−B B∗
is strongly stable. Since

S(t)x = T (t)x −
t∫

0

S(t − s)B B∗T (s)xds,
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we get that S(t0) is compact. Now using [7, Theorem 1.4.6] we get that S(t) is uniformly
stable. Therefore, the semigroup (T (t))t≥0 is stabilizable, and the assertion is a consequence
of Corollary 3.4. ��

4 Applications

In this section we apply our results to study the existence of almost automorphic solutions
of the abstract neutral wave equation.

Let H be a real Hilbert space and let r > 0. We consider the abstract neutral wave equation

d2

dt2 Dxt + β
d

dt
Dxt + ADxt = L

(
d

dt
xt

)
+ f (t), t ∈ R, (4.1)

where x(t) ∈ H , β > 0, A is a positive self adjoint operator with domain D(A) such that

〈Ax, x〉 ≥ k‖x‖2, ∀x ∈ D(A),

for some constant k > 0, L : C([−r, 0], H) → H is a bounded linear map, and f : R → H
is a continuous function. We consider D(A1/2) endowed with the graph norm, and we will
assume that D : C([−r, 0], H) → H is a bounded linear operator which satisfies the fol-
lowing conditions:

(i) D(ϕ) = ϕ(0) − D0(ϕ), where D0 : C([−r, 0], H) → H is a bounded linear map
with ‖D0‖ < 1 and D0 : C([−r, 0], D(A1/2)) → D(A1/2) is also a bounded linear
map with ‖D0‖ < 1.

(ii) If x ∈ D(A), then D0(eλθ x) ∈ D(A), and if x ∈ D(A1/2), then D0(eλθ x) ∈ D(A1/2).

Introducing the Hilbert space H = D(A1/2) × H with inner product
〈[

x1

y1

]
,

[
x2

y2

]〉
= 〈

A1/2x1, A1/2x2〉 + 〈
y1, y2〉 ,

we can write (4.1) as the first order system

d

dt
D̃wt = AD̃wt + L̃(wt ) + f̃ (t),

where w(t) =
[

x(t)
x ′(t)

]
∈ H, the operator A =

[
0 I
−A −β

]
is defined on D(A) = D(A)

× D(A1/2), operators L̃, D̃ : C([−r, 0], H) → H are given in block form by

L̃ =
[

0 0
0 L

]
, D̃ =

[
D 0
0 D

]
,

and f̃ (t) =
[

0
f (t)

]
.

It is known that A generates a strongly continuous group (G(t))t≥0 on H. Consequently,
the group (G(t))t≥0 is not compact. Moreover, if Re(μ) > 0, then μ ∈ ρ(−A) and
‖R(μ,−A)‖ ≤ C

|μ| . Hence, for every λ ∈ C with Re(λ) > 0 we have that λ ∈ ρ(A),

(λI − A)−1 =
[

(λ + β)R(λ(λ + β),−A) R(λ(λ + β),−A)

−AR(λ(λ + β),−A) λR(λ(λ + β),−A)

]
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and ‖(λI −A)−1‖ ≤ C , where C > 0 is a generic constant. Thus, under the above conditions,
it follows from [18, Theorem V.1.11] that (G(t))t≥0 is uniformly exponentially stable.

The following property is an immediate consequence of Corollary 3.1.

Corollary 4.1 Under the above conditions, let f : R → H be an almost automorphic func-
tion. Assume that L is a compact operator, and that Eq. (4.1) has a bounded mild solution
on R

+. Then Eq. (4.1) has an almost automorphic mild solution.

In particular, if we choose β, d0, b(·) and p(·) appropriate, we can establish the following
result.

Corollary 4.2 Assume that β > 0, |d0| < 1, the function p : [0, π] × [0, π] × [−r, 0] → R

is continuous and b : [0, π ] × R → R is a function that satisfies the conditions:

(a) For each t ∈ R, the function b(·, t) ∈ L2([0, π ]).
(a) There exists a positive function γ ∈ L2([0, π ]) such that |b(ξ, t)| ≤ γ (ξ) for all t ∈ R.
(a) For each ξ ∈ [0, π], the function b(ξ, ·) : R → R is almost automorphic uniformly for

ξ ∈ [0, π].
If problem (1.4)–(1.5) has a bounded mild solution on R

+, then problem (1.4)–(1.5) has an
almost automorphic mild solution.

Proof We set X = L2([0, π ]). It is immediate from our hypotheses that the function
f : R → X given by f (t) = b(·, t) is almost automorphic. Besides, it is also clear that
L : C([−r, 0], X) → X defined by L(ϕ)(ξ) = ∫ π

0

∫ 0
−r p(ξ, η, θ)ϕ(η, θ)dθdη is a compact

linear operator. On the other hand, the operator A given by Az = d2

dξ2 z(ξ) on the domain

D(A) = {z ∈ H2([0, π]) : z(0) = z(π) = 0} satisfies the conditions considered in Corol-
lary 4.1 and the group generated by A is uniformly exponentially stable. Finally, the operator
D(ϕ) = ϕ(0) − d0ϕ(−r) satisfies conditions (i) and (ii) introduced at the beginning of this
section. Therefore, the assertion is a consequence of Corollary 4.1. ��
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