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Abstract We consider the regularization of linear inverse problems by means of the min-
imization of a functional formed by a term of discrepancy to data and a Mumford-Shah
functional term. The discrepancy term penalizes the L2 distance between a datum and a
version of the unknown function which is filtered by means of a non-invertible linear oper-
ator. Depending on the type of the involved operator, the resulting variational problem has
had several applications: image deblurring, or inverse source problems in the case of com-
pact operators, and image inpainting in the case of suitable local operators, as well as the
modeling of propagation of fracture. We present counterexamples showing that, despite this
regularization, the problem is actually in general ill-posed. We provide, however, existence
results of minimizers in a reasonable class of smooth functions out of piecewise Lipschitz
discontinuity sets in two dimensions. The compactness arguments we developed to derive the
existence results stem from geometrical and regularity properties of domains, interpolation
inequalities, and classical compactness arguments in Sobolev spaces.
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362 M. Fornasier et al.

1 Introduction

Free-discontinuity problems describe situations where the solution of interest is defined by
a function and a lower dimensional set consisting of the discontinuities of the function [20].
Hence, the derivative of the solution is assumed to be a ‘small’ function almost everywhere
except on sets where it concentrates as a singular measure. This is the case, for instance,
in crack detection from fracture mechanics or in certain digital image processing problems
(e.g., segmentation, denoising, deblurring, inpainting).

On the one hand, one of the best-known examples of free-discontinuity models is pro-
vided by the so-called Mumford-Shah functional [32] whose minimizers approximate a given
bounded datum and are smooth everywhere except on a discontinuity surface. The theory of
existence of minimizers in SBV for the classical Mumford-Shah functional has been exten-
sively explored [3]. The proof of existence of minimizers is based on a deep compactness
result in SBV by Ambrosio [2], which requires L∞ boundedness of minimizing sequences,
typically obtained by truncation arguments when the datum u0 is also assumed in L∞, com-
bined with additional regularity arguments obtained by De Giorgi et al. [21]. The results have
been generalized by Leaci [29] also for unbounded datum, but with at least a suitable high
integrability. As the introduction of this latter work suggests, the interest for the case of an
unbounded datum may come from the general consideration that Mumford-Shah-type mod-
els can be regarded as a possible schematization of many problems in mathematical physics
other than image processing, in which both volume and surface energies are present.

On the other hand, it is also of great practical interest to be able to recover functions that
are piecewise smooth also from partial information, provided, for instance, by suitable linear
measurements via a singular operator, i.e., an operator which is not necessarily boundedly
invertible. Actually, a Mumford-Shah regularization term is also used in image processing
for modeling inpainting problems [22]. We analyse specifically these variational problems
in Sect. 5. Furthermore, it has been widely used in practice as a regularization method, see,
e.g., [6,22,34,35], as an alternative to total variation minimization [17,40,42], often with
some advantages (see, e.g., Fig. 1 and [6] for a problem of deblurring/deconvolution as also
analyzed in Sect. 4 below).

Also the finite-dimensional setting (derived from the discretization of the functional, e.g.,
by finite differences or finite elements [25,33]) has been recently widely explored. It has
been shown in [25] that discrete linear inverse free-discontinuity problems always admit
minimal solutions. In the same paper, some interesting segmentation properties of the dis-
crete functional have been enlightened, and it has been proved that global minimizers are
always isolated, while local ones can form a continuum. It is worth noticing, however, that
although minimizers always exist, their computation is an NP-hard problem [1]. Perhaps this
reflects the difficulties one encounters in the infinite-dimensional setting to prove existence
of minimizers, as we clarify below, essentially due to lack of coerciveness.

Despite all these contributions in applications and in numerical methods, however, not
many analytic results are so far available concerning Mumford-Shah functionals with dis-
crepancy terms involving singular operators and/or unbounded datum, modeling inverse
problems, and the mentioned fine techniques [2,21,29] seem not to apply straightforwardly
in general. As we clarify in the first part of this paper, without additional constraints, the
sole regularization by Mumford-Shah functionals is in fact not sufficient for the existence
of minimizers. Perhaps the earliest contribution to the analysis of linear inverse free-dis-
continuity problems appeared in [39]. In this general setting, it seemed difficult to obtain
the L∞ boundedness required by the compactness result by Ambrosio, and in [39], the
authors resumed it simply by assuming that the interesting solutions are in balls of L∞.
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Existence of minimizers of the Mumford-Shah 363

Fig. 1 The case of a known (9-pixel horizontal motion) blur kernel. Top-left: Corrupted blurred image.
Top-right: Restoration using total variation regularization. Bottom-left: Restoration using Mumford-Shah reg-
ularization. Bottom-right: Segmentation produced by applying the Mumford-Shah regularization. In this case,
Mumford-Shah regularization gives sharper and better visual quality result than total variation minimization.
This figure is reproduced from [6] with kind permission of the authors

Moreover, while looking quite natural in the case of image processing, this restriction does
not always fit to some other situations of interest where this regularization has been used.
This is the case of some inverse problems, where one is simultaneously interested in both the
reconstruction of a density distribution (which, as a mathematical object, can be in principle a
measure) and the extraction of its segmentation properties. For instance, in the recent papers
[34] and [35], the authors, who constrain the model to the search for competitors within the
set of piecewise constant solutions, consider a Mumford-Shah regularization for the inverse
problem of determining a mass density from X-ray measurements, so that a singular operator
T , precisely the Radon transform of the unknown density, appears. A priori a density can
be highly concentrated, having a large L∞ norm, not necessarily estimable a priori. As an
example, some issues coming from the planning of surgery are borrowed. In this specific
application, it is perhaps still possible to recover an a priori bound on the competitors from
empirical considerations. Nevertheless, for being cautious, the authors preferred to keep a
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more general point of view on the problem, not imposing such a bound, and to recover instead
the existence of solutions by adding topological regularity constraint on the partitions of the
reference set � induced by the discontinuities of the competitors

In the same spirit, also in some works concerning the so-called inverse gravimetric prob-
lem, stabilizing functionals have been considered, which do not penalize sharp features of the
solution and permit reconstruction of non-smooth density functions. We refer, for instance,
to the work [10], where the unknown is related to the observed datum by a partial differential
equation constraint (in particular, the operator T appearing in our notation is the convolution
with a derivative of the Newtonian potential), and, alternatively to our approach, the total
variation functional plays the role of the regularizing term. In the opinion of the authors, a
good motivation for this approach comes from the fact that geological structures often have
sharp contrasts (discontinuities) in properties; therefore, a smooth reconstruction is some-
what incorrect. Actually, this problem falls in a very general and well-known class of inverse
problems, the so-called inverse source problems (see, e.g. [5]). In these problems, a mass,
or heat, or electromagnetic source has to be reconstructed from linear measurements that
are usually encoded by a convolution operator. This represents a field where, as mentioned
before, regularization terms involving free discontinuities are a natural choice. Moreover, at
least from an abstract point of view, allowing for unbounded data and solutions, that may
correspond for instance to (approximations of) point sources, is surely meaningful. As a
concrete example, one should consider the detection of hidden highly compact astronomical
masses (neutron stars, black holes etc.) from gravitational effects [41]. In this case, the mass
can be highly concentrated in space and it is not possible to impose a priori a bound on its
density magnitude.

This finally leads us to the purpose of the present paper. Its aim is actually two-fold. First
of all, in Sect. 2, we show that without imposing further restrictions on the competitors, there
is in general no hope of getting existence of a minimizer for a Mumford-Shah functional
with singular operators. In particular, Example 2.1 deals with a situation where this kind of
regularization has been widely employed, that is, when T is a convolution with an integral
kernel.

Secondly, under additional restrictions on the class of admissible discontinuities, which
are strongly suggested by our counterexamples as natural constraints, we eventually pro-
vide new existence results of minimizers for some linear inverse problems regularized with
Mumford-Shah-like functionals. In particular, we consider the two-dimensional case, i.e.,
d = 2, and we seek for such minimizers in the class introduced by Rondi in the recent works
[36–38] on inverse crack and conductivity problems. There he introduced a new reasonable
class of competitors, formed by smooth functions out of piecewise Lipschitz discontinuity
sets. As we want to keep a strong formulation of the problems, differently from previous
approaches [39] we address linear problems on L p and we do not try to resume L∞ bounded-
ness in order to apply Ambrosio’s results. In particular, in our setting, we will not require any
high integrability of the datum, hence excluding the direct applicability of Leaci’s extensions
[29]. Instead, we can resume compactness/coerciveness by exploiting the special structure
of the linear measurements, geometrical and regularity properties of domains, interpolation
inequalities, and classical compactness arguments in Sobolev spaces W 1,p . While a precise
class of functions (with additional geometrical properties) for being the natural solution space
for the Mumford-Shah functional with singular operators is still elusive, our results constitute
a first step indicating some necessary restrictions and sufficient properties.

We address two specific classes of singular operators. First of all, we deal with the case
where T is a nonlocal compact operator, with the additional requirement of injectivity (this
assumption has proved to be crucial for this kind of problems, see, e.g., [35]). Then, we
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Existence of minimizers of the Mumford-Shah 365

provide a proof of existence of minimizers also for the case of local operators. We stress
that, in this second case, the proof is simpler, since a L p

loc-uniform estimate of minimizing
sequences (that is, due to the gradient bound, compactness in the Deny-Lions space L1,p)
is enough to provide lower semicontinuity of the discrepancy term. Nonetheless, the rest of
the proof of Theorem 5.2 clarifies that a priori stability assumptions on the discontinuity sets
cannot be completely dropped in order to obtain an existence result.

Although the issue is not addressed in the present paper, it could be of some interest to
explore whether it is possible to obtain similar existence results for any bounded linear oper-
ator, as it holds in finite dimensions [25] where no coerciveness is in fact used. There suitable
modifications of the Frank-Wolfe theorem [7], valid presently only in finite dimension, could
be exploited. In this latter context, we also stress that our results give a further explanation,
perhaps alternative to the one proposed in [25], of the successful use of this regularization in a
numerical setting, since actually a finite element discretization reduces the range of compet-
itors to piecewise smooth functions outside of singular sets that preserve the cone property
of the complementary domain, as required by the existence results presented in this paper.
However, this does not necessarily hold uniformly with respect to the mesh size, reflecting
the possible lack of existence of minimizers in infinite-dimensional settings.

Actually, the counterexamples we present in the paper can be interpreted as a final con-
clusion of this direction of research. Nevertheless, we hope that the analysis, that we carry
on throughout the work, could serve for further exploration of linear ill-posed problems with
regularization terms involving free discontinuities.

The paper is organized as follows. In Sect. 2, we introduce our notations and we present
our counterexamples to the existence of minimizers. Moreover, Example 2.3 clarifies that
we cannot expect to recover the nondegeneracy properties, that we need in order to prove
an existence result, by trying to regularize the functional with the simple addition of pure
geometrical terms involving the mean curvature of the discontinuity set (in the case of the
classical Mumford-Shah functional, such a generalization has been studied in [18] and [12]).
In Sect. 3, we recall classical notions of regularity of domains with a few relative results,
useful for our analysis. We introduce the Rondi’s class of admissible discontinuities, which
are essentially piecewise Lipschitz continuous sets, with some additional stability properties
to avoid degeneracies. We further recall certain interpolation inequalities for Sobolev spaces,
involving compact subdomains. We then introduce our variational model for linear inverse
free-discontinuity problems, specifically for local singular operators and compact injective
operators. Sections 4 and 5 are devoted to the proofs of existence of minimizers for such
variational problems in Rondi’s classes of solutions. Section 6 collects a few open problems
which stem from this analysis and previous results appeared in [25]. We conclude the paper
with an Appendix which collects the technical proofs of the interpolation inequalities of
Sect. 3.

2 Statement of the model and counterexamples to existence of solutions

2.1 Notation

We denote by | · | and 〈·, ·〉 the usual Euclidean norm and scalar product in R
2. We denote

by dist the Euclidean distance in R
2 and by Bρ(x0) ⊂ R

2 the open ball centered at x0 with
radius ρ.

For any subset A of R
2, we denote by A the closure of A and by ∂ A the topological bound-

ary of A. The diameter of A is defined by diam(A) = sup{dist(x, y) : x, y ∈ A}. For any
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set A, χA will be the characteristic function of A, that is, χA(x) = 1 if x ∈ A, χA(x) = 0
if x /∈ A. Given two sets A, B ⊆ R

2 by A ⊂⊂ B, we mean that A is a compact set
contained in B. The Hausdorff distance between two closed sets C and K is defined as
dH(C, K ) = inf{r > 0 : C ⊂ (K )r , K ⊂ (C)r }, where for any set A ⊆ R

2 and any r > 0
we denote

(A)r = {x ∈ R
2 : dist(x, A) < r},

dist(·, A) denoting the distance function from the set A.
We denote by meas(B) the Lebesgue measure of the measurable set B ⊆ R

2, by H1 the
one-dimensional Hausdorff measure in R

2. We will use the standard notation for the Lebesgue
and Sobolev spaces L p and W k,p , as well as for the spaces Ck of k-continuously differentiable
functions. For any bounded open set A ⊂ R

2, we write L1,p(A) as the following Deny-Lions
space:

L1,p(A) = {u ∈ L p
loc(A) : ∇u ∈ L p(A;R2)

}
.

For the properties of Deny-Lions spaces, we refer the reader to [30]. Let A be a measurable
subset of R

2. Given u ∈ L1(A), we denote

u(A) = 1

meas(A)

∫

A

u(x)dx .

Moreover, if A is bounded, connected, open, and with locally Lipschitz boundary (see Sect.
3.1 below), 1 ≤ p < ∞, and if u ∈ W 1,p(A), then there exists a constant C = C(A) such
that the following Poincaré-Wirtinger inequality holds: 7.7, pag. 380 in [3]):

‖u − u(A)‖L p(A) ≤ C‖∇u‖L p(A). (1)

Let L > 0 be a fixed constant; we say that � is an L-Lipschitz arc if, up to a rigid transfor-
mation,

� = {(x, y) ∈ R
2 : −a/2 ≤ x ≤ a/2, y = ϕ(x)

}
,

where 0 < a and ϕ : R → R is a Lipschitz function with Lipschitz constant bounded by
L and such that ϕ(0) = 0. The points (a/2, ϕ(a/2)) and (−a/2, ϕ(−a/2)) will be called
the endpoints of the arc �. For x1, x2, x3 ∈ R

2, we denote ̂x1 x2 x3 the angle formed by
the segments conv{x1, x2} and conv{x2, x3}, and for two segments �1 and �2 intersecting
at an endpoint V , we denote �̂1V �2 their angle formed at V . In the following, � denotes a
bounded open subset of R

2.

2.2 A Mumford-Shah functional with singular operators in two space dimensions

Assume 1 < p <∞. Let D be the domain of pairs (u, K ) defined by

D = {(u, K ) : u ∈ W 1,p(� \ K ); K ∈ C(�)}, (2)

where C(�) denotes the class of closed subsets of �. Let u0 ∈ L2(�) and for K fixed
let T : L p(�) → L2(�) be a linear and continuous operator. We define the functional
E : D→ [0,+∞] as follows:

E (u, K ) = ‖T u − u0‖2
L2(�)

+ λ

∫

�\K
|∇u(x)|pdx + αH1(K ), (3)
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Existence of minimizers of the Mumford-Shah 367

where λ, α are positive weights. In this paper, we limit our analysis to operators T mapping
onto L2(�), corresponding to discrepancy terms ‖T u − u0‖2

L2(�)
associated with Gaussian

noise in a Baysian description of the inverse problem [19].
Our first goal is to show that without restricting K to a smaller class of closed subsets of

� with additional geometrical properties, the minimization of (3) over D may be in general
an ill-posed problem.

2.3 A counterexample to existence of minimizers

In the following counterexample, we assume that T is a convolution operator. This is a
remarkable case from the point of view of the applications (see, for instance [6]). It is worth
noticing that ill-posedness happens for a generic choice of the datum u0 and that this exam-
ple also applies to the weak formulation of the problem in spaces of functions of bounded
variation for our problem, see [3].

Example 2.1 Let p = 2, λ = α = 1 and assume that, for any u ∈ L2(�), T u is defined as
the convolution with a uniformly continuous kernel ϕ ∈ L1(R2):

(T u)(x) = (ϕ ∗ u)(x) =
∫

�

u(ξ)ϕ(x − ξ)dξ, x ∈ �.

We also require that the convolution kernel ϕ is symmetric, so that the operator T is a
self-adjoint operator from L2(�) to L2(�), and that T is injective. By well-known results
of functional analysis, these two conditions imply that the range of T is a dense subset of
L2(�). We claim that

inf{E (u, K ) : (u, K ) ∈ D} = 0 , (4)

where D is defined by (2). It is then obvious that, if u0 is not in the range of the operator T ,
there is no minimizing pair (u, K ) ∈ D.

To prove (4), it suffices to show that for every v ∈ L2(�), we have
∫

�

|(T v)(x)− u0(x)|2 dx ≥ inf E . (5)

We will show actually that (5) holds true for any convolution operator T . In fact, only if we
also assume that the range of T is dense, then it suffices to take the infimum of the left-hand
side of (5) over all v ∈ L2(�) to obtain (4).

To prove this, we fix v ∈ L2(�) and we construct a sequence of piecewise constant
functions vk , whose jump set Kk is for every k a finite union of spheres (thus, a closed set),
satisfying the following assumptions

∇vk = 0 in � \ Kk

H1(Kk)→ 0 as k →+∞
vk ⇀ v weakly−∗ in Mb(�)

(6)

where Mb(�) denotes the space of bounded Radon measures. The construction of such vk’s
can be done as follows. First, we can take a sequence of atomic measures μk , supported for
every k on a finite set of points Pk := {x1

k , ..., xnk
k } with nk going to +∞ when k → +∞,

such that

μk ⇀ v weakly−∗ in Mb(�).

123



368 M. Fornasier et al.

Then, we define

vk(x) =
nk∑

i=1

1

|Bi
k |

μk({xi
k})χBi

k
(x) ,

where μk({xi
k}) is the (nonzero) value of the measure μk at the singleton {xi

k} and Bi
k are

disjoint spheres of center xi
k and radius r i

k ≤ 2−nk .
It is easy to check that (6) holds. Obviously T vk → T v in the sense of distributions.

By uniform continuity of the convolution kernel ϕ, the sequence T vk is equicontinuous;
therefore, the Ascoli-Arzelà theorem yields actually that T vk → T v uniformly in �. Since
(vk, Kk) is an admissible pair for E , taking into account (6), we finally get

inf E ≤ E (vk)→
∫

�

|(T v)(x)− u0|2 dx,

as k goes to +∞, so that claim (5) is proved.

Remark 2.2 In the general case where the convolution operator T may be not injective, or
not self-adjoint, we observe that (5) implies at least that if a minimizing pair (ũ, K̃ ) exists,
then K̃ is empty, ∇ũ = 0 a.e., and ũ is a constant function. Indeed, if we assume the exis-
tence of such a minimizing pair (ũ, K̃ ), and in particular ũ ∈ L2(�), from (5) with a trivial
majorization we get

inf E = E (ũ, K̃ ) ≤
∫

�

|(T ũ)(x)− u0(x)|2 dx ≤ E(ũ, K̃ ).

But then H1(K̃ ) = 0 and
∫
�\K̃ |∇ũ|2(x) = 0, which means that ũ is a constant.

2.4 Counterexample with additional geometrical terms

As our further analysis will clarify, existence of minimizers for the functional (3) can be
achieved imposing some geometrical restrictions to the class of admissible discontinuity sets
K . As a further justification to our approach, we briefly show that these restrictions cannot be
recovered by minimization of a functional whose geometrical part contains additional energy
terms of curvature type. This one is a natural generalization to the Mumford-Shah functional
([12,18]) which excludes the applicability of the previous counterexample.

We confine our analysis to the dimension 2, and for any family C of W 2,2 curves, we
define

G (C) = α

∫

C

(1+ κ2(σ )) dH1(σ )+ β #P(C), (7)

where κ(σ ) is the curvature at any point σ of C, P(C) is the set of the endpoints of the curves
in the family C , and α, β are positive parameters. The choice of the endpoints is free, except
for the fact that transversal intersections between curves can happen only at endpoints (so,
if two curves meet transversally, we are obliged to split them). In [18], a family C is defined
to be admissible if for any couple of curves γi and γ j in C

γi (s) = γ j (t)⇒ γ̇i (s) = γ̇ j (t) (8)

whenever s and t are in the interior of the domain of definition of γi and γ j , respectively.
Tangential intersection must be allowed for semicontinuity reasons. Observe that the case
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i = j is not excluded in (8), so that also tangential self-intersections are allowed. The pres-
ence of the term β #P(C) implies that the value of the functional G on an admissible family
C of curves can depend on the chosen parametrization. To avoid this, denoting by [C] the
image of the family C , one can consider

G0(C) = inf{G (C ′) : [C ′] = [C]}, (9)

and try to minimize the functional

F (u, C) :=
∫

�

|(T u)(x)− u0(x)|2 dx + λ

∫

�\C
|∇u|2(x) dx + G0(C) (10)

over all admissible families C and all u ∈ W 1,2(� \ C). In the case where T is the identity
operator, existence of minimizers has been shown in [18] (see also [12], where the func-
tional (10) has been studied from the point of view of �-convergence relaxation). With these
additional terms, it is easy to check that the contribution of the jump sets considered in
Example 2.1 explodes, also using for instance squares in place of circles. Still, the following
counterexample, which is modeled after the previous one, easily shows that also in this case,
we cannot hope for an existence result without imposing some a priori restrictions on the
competitors.

Example 2.3 Let p = 2, λ = α = β = 1 and assume that T is a convolution with a uni-
formly continuous kernel ϕ ∈ L1(R2). � is a smooth connected bounded open set containing
0 as an interior point and we choose a datum u0(x) = μϕ(x) where the positive parameter
μ is chosen in such a way that

min

⎧
⎨

⎩

∫

�

|(T u)(x)− μϕ(x)|2 dx +
∫

�

|∇u(x)|2 dx : u ∈ W 1,2(�)

⎫
⎬

⎭
> 2. (11)

We remark that this choice is always possible. Indeed by the Poincaré-Wirtinger inequality,
it is easy to show that the minimum problem considered in (11) has a solution with nonzero
minimum value for every choice of μ. Actually, no injectivity of T is needed here, since, if T
annihilates constants, we can take a mean-free minimizing sequence. By the homogeneity of
the functional is then possible to choose μ in a way that (11) is satisfied. To stress this choice
of the datum, we will use throughout this example the notation Fμ,ϕ for the functional F
defined by (10) with u0(x) = μϕ(x).

For every k ∈ N, we consider Ck := γ k
1 ∪ γ k

2 , where γ k
1 is simply the segment [0, 1

k ]
oriented by the horizontal axis (Fig. 2) and γ k

2 := (s, ϑk(s)) with 0 ≤ s ≤ 1
k and

ϑk(s) := sin(kπs)

k2 . (12)

Fig. 2 The construction in
Example 2.3
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By easy computations,

|ϑ̇k(s)| ≤ π

k
and |ϑ̈k(s)| ≤ π2

for every 0 ≤ s ≤ 1
k . We then immediately get that

lim
k→+∞G0(Ck) = 2, (13)

where G0 is defined by (7) and (9).
We now define �k as the connected component of �\Ck enclosed by Ck and the functions

uk(x) :=
⎧
⎨

⎩

μ

|�k | if x ∈ �k

0 otherwise.

It is easily seen that uk ⇀ μδ0 weakly−∗ in the space of bounded Radon measures so that,
arguing as in Example 2.1, we have (T uk)(x) → μϕ(x) uniformly with respect to x ∈ �.
As ∇uk = 0 in � \ Ck we conclude, using (13), that

inf Fμ,ϕ ≤ lim
k→+∞Fμ,ϕ(uk, Ck) = 2. (14)

Now, let us assume by contradiction that a minimizer (ũ, C̃) with ũ ∈ W 1,2(�\ C̃) exists.
If C̃ is the empty family of curves, then ũ ∈ W 1,2(�) so that (11) and (14) immediately give

Fμ,ϕ(ũ, C̃) > 2 ≥ inf Fμ,ϕ ,

a contradiction. Thus, C must contain at least a curve γ . We define L(γ ) the length of γ and
K (γ ) the integral of the square of the curvature along γ .

If γ is not closed, then it has 2 endpoints, so that G0(C̃) ≥ 2. But then, since ũ ∈ L2(�),
using also (14) it must be

Fμ,ϕ(ũ, C̃) ≥
∫

�

|(T ũ)(x)− μϕ(x)|2 dx + G0(C̃) > 2 ≥ inf Fμ,ϕ ,

again a contradiction.
If γ is a regular closed curve (that is, its endpoints join smoothly, hence #P(γ ) = 0), by

[8, Lemma 3.1], we have

L(γ )K (γ ) ≥ 4π2 ,

which yields L(γ )+ K (γ ) ≥ 2
√

2π and finally

Fμ,ϕ(ũ, C̃) > G0(C̃) ≥ 2
√

2π > 2 ≥ inf Fμ,ϕ ,

so that the only possibility is that γ is closed but not regular. In this last case, it has en
endpoint, then

#P(C̃) ≥ 1. (15)

By [18, Section 3], we have

L(γ )K (γ ) ≥ 1.

Using this last inequality, (14), (15), and arguing as before, we find a contradiction, so that
the nonexistence of a minimizer is proved.
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3 A suitable class of discontinuities

This section, which is also a preliminary one, is devoted to introducing the Rondi’s class
of admissible discontinuities. This will turn out to be a suitable setting for our minimiza-
tion problem, which, in the light of the previous fundamental examples, cannot be much
relaxed. Eventually, we discuss some useful interpolation inequalities in Sobolev spaces that
are needed in order to develop suitable compactness arguments.

3.1 Geometrical properties of domains

For the sake of clarity, we collect here useful notions of regularity of domains. For more
details see, e.g., Chapter I, Section 2 in [43].

We say that � is starshaped with respect to a ball Bρ(x0) contained in � if � is starshaped
with respect to each point of this ball, i.e., every point in � can be reached by a segment fully
included in � and originated by any point in Bρ(x0).

We say that � has the cone property with respect to a fixed finite cone C if each point
x ∈ � is the vertex of a finite cone Cx contained in � and congruent to C .

We say that � has the locally Lipschitz boundary property if each point x ∈ ∂� has a
neighborhood Ux such that ∂� ∩Ux is the graph of a Lipschitz continuous function.

It is well known that domains with the locally Lipschitz boundary property have the cone
property, while the converse is not true in general. However, we have the following result due
to Gagliardo [27] which states that the cone property “almost” implies the locally Lipschitz
boundary property.

Theorem 3.1 (Gagliardo) Assume that � is a bounded open subset of R
2 with the cone

property. Then � is a finite union of domains with the locally Lipschitz boundary property.

There are also similar relationships between domains with the cone property and starshaped
domains.

Lemma 3.2 If � is the union of an arbitrary family of domains Gα , each starshaped with
respect to a ball BR(xα) ⊂ � of a fixed radius R > 0, then for each r < R there exists
a finite number of domains �� (1 ≤ � ≤ M) starshaped with respect to balls of radius r ,
contained in ��, and such that � =⋃M

�=1 ��.

Note in particular that a domain � with the cone property is necessarily arbitrary union of
starshaped domains with respect to balls with a fixed radius. Hence, � with the cone property
with respect to a cone C containing a ball BR(x) is necessarily a finite union of starshaped
domains with respect to balls of radius r , for r < R. The proof of this lemma can be found,
e.g., in [30, Section 1.1.9] and it is based on a greedy packing principle. In particular, it is
important to notice that the number M = M(r, R, D) of starshaped subdomains �� depends
on the radii r, R > 0 and D = diam(�). In fact, the proof implies the construction of a
sequence Br (x1), . . . , Br (xM ) of balls in � with mutual distance of the centers larger than
R − r > 0.

3.2 Rondi’s class of admissible discontinuities

We consider a class of compact sets introduced by Rondi in [38]. For any positive constants
L > 0, δ > 0 and 0 < c < 1, we define the following class B(�) = B(�, L , δ, c) of
compact subsets of R

2. We say that B ∈ B(�, L , δ, c) if and only if B ⊂ �, there exists a
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Fig. 3 Example of set a
K ∈ B(�) which does not allow
for the cone property for � \ K .
We depict two arcs �i and � j
with a common endpoint V .
While � j is simply a segment, �i
is the graph of the Lipschitz
function

positive integer n, depending on B, such that

B =
n⋃

i=1

�i , �i L-Lipschitz arc for all i ∈ {1, . . . , n},

and the following conditions are satisfied

(i) for any i, j ∈ {1, . . . , n} with i �= j , we have that either �i ∩ � j is not empty or
dist(�i , � j ) ≥ δ;

(ii) for any i, j ∈ {1, . . . , n}with i �= j , if �i ∩� j is not empty, then �i ∩� j is a common
endpoint V . Moreover, for any x ∈ �i we have dist(x, � j ) ≥ c|x − V |;

(iii) for any i ∈ {1, . . . , n} we have that either �i ∩ ∂� is not empty or dist(�i , ∂�) ≥ δ;
(iv) for any i ∈ {1, . . . , n}, if �i ∩ ∂� is not empty, then �i ∩ ∂� is an endpoint V of �i .

Moreover, for any x ∈ �i , we have dist(x, ∂�) ≥ c|x − V |.

Remark 3.3 One would intuitively expect that, for K ∈ B(�) and for � being a domain
with locally Lipschitz boundary, the domain � \ K has the cone property. Unfortunately, in
general this is not true as the example depicted in Fig. 3 shows: there we illustrate two arcs
�i and � j with a common endpoint V . While � j is simply a segment, �i is the graph of the
Lipschitz function given by

�i (ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

2−k−2, |ξ − 2−k | ≤ 2−k−3

2ξ + (2−k−1 − 2−k+1), 2−k − 2−k−2 ≤ ξ ≤ 2−k − 2−k−3

−2ξ + (2−k−1 + 2−k+1), 2−k + 2−k−3 ≤ ξ ≤ 2−k + 2−k−2

0, elsewhere .

for ξ ∈ [0, 1] and k ∈ N. When the angle π −2�̂i V � j , where �̂i V � j ≈ arcsin (c) (note that
c < 1) is the angle formed at any junction V of two Lipschitz arcs �i and � j , is too large,
more precisely larger than the angle (roughly given by π − 2 arctan(L)) at the vertex of any
finite cone C subtended by the arcs, then it is impossible to cover the area (� \ K )∩ Bρ(V )

with an arbitrary union of congruent cones with vertices at any x ∈ (� \ K ) ∩ Bρ(V ).
Hence, in order to ensure that domains of the type � \ K , for K ∈ B(�), have the cone
property, we need to assume that c is large enough, and elementary geometrical observations
require roughly arctan(L) � arcsin(c), where L is the Lipschitz constant of the Lipschitz
arcs �i . We clarify how these formulas are more precisely derived in Lemma 3.4 below.
Moreover, according to Theorem 3.1 any such domain will be a finite union of subdomains
with locally Lipschitz boundaries and, according to Lemma 3.2, it will be also a finite union
of subdomains starshaped with respect to balls of a certain radius r . In particular, the radii
r = r(L , c, δ) > 0 of such balls and the number M = M(L , c, δ, D) of such starshaped
domains will depend only on L , c, δ, and possibly on D = diam(�).
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Fig. 4 Simplified situation
where �1 is a segment and �2 is
a Lipschitz curve

Fig. 5 Two cones CL and Cα̂ are
subtended by �2 at the same
point ξ and their difference is the
union of two oblique cones

In the following, we assume that � is a bounded open subset of R
2 with locally Lipschitz

boundary and that the parameters L , c of Rondi’s class have been always chosen in such a
way that � \ K is a domain with the cone property. The following result provides explicit
sufficient conditions on the constants L , c, for such property to hold.

Lemma 3.4 Assume that 0 < c < 1 is sufficiently large and L > 0 sufficiently small, more
precisely the following inequality is satisfied:

c > sin(5 arctan(L)). (16)

Then � \ K has the cone property for all K ∈ B(�) = B(�, L , δ, c).

Remark 3.5 Note that condition (16) imposes implicitly an upper bound L < tan
(

π
10

)

< 0.33 for the Lipschitz constant.

Proof First of all note that it is sufficient to analyze the case K = �1∪�2 and {V } = �1∩�2

is a common endpoint of the two L-Lipschitz arcs �1, �2. We divide the proof into two steps.
Step 1. One of the two arcs is a segment.
Assume for the moment to be again in the situation of Fig. 3, i.e., �1 is a segment and �2

is a Lipschitz curve. Clearly, we can assume �2 fully contained in a cone delimited by two
segments �i

2 and �e
2 originating from V with angle α(L) = 2 arctan(L), to be conservative.

Moreover, without loss of generality, we assume that �i
2 is the abscissa of the coordinate

system for which �2 is an L-Lipschitz function. In fact, the case when this is not verified
is even more advantageous in terms of ensuring the cone property. We sketch the described

situation in Fig. 4. We denote α̂ = ̂
�1V �i

2, the angle formed by the segments �1 and �i
2 at

the endpoint V . We note now that there exists a cone CL subtended by �2 and with angle
γ1 = 2( π

2 − arctan(L)) = π − 2 arctan(L) at every point ξ of the curve �2, see Fig. 5.
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Fig. 6 The general situation of
K = �1 ∪�2 and {V } = �1 ∩�2
where both �1 and �2 are
L-Lipschitz arcs. We would like
to establish distance relationships
between �1 and �2 by arguing on
their respective delimiting cone

Let us also consider another cone Cα̂ subtended by �2 at the same point ξ and with angle
γ2 = 2( π

2 − α̂) and let us assume γ2 < γ1, see again Fig. 5. Note that in this case, CL \Cα̂ is a
set formed by two oblique cones of nonzero angles at the vertex ξ . It is a simple observation
to note that one of these two external and oblique cones can be transported along the curve
�2 in such a way to make ξ coinciding with V , the endpoint of �2 and �1, without ever
intersecting the boundaries of the region limited by the curves �1 and �2. Hence in this case,
� \ K has the cone property. The condition γ2 < γ1 is equivalent to

α̂ > arctan(L). (17)

These observations also clarify the counterexample in Fig. 3 and Remark 3.3.
Step 2. The general situation.
We would like to show now that also for K = �1 ∪ �2 and {V } = �1 ∩ �2 where both

�1 and �2 are L-Lipschitz arcs we can reduce the verification of the cone property of � \ K
to the case of Step 1. For doing that we will show that �1 and �2 are both in a cone region
delimited by two pairs of segments, respectively, (�i

1, �
e
1) and (�i

2, �
e
2) originating from V

and with an angle α(L) = 2 arctan(L), to be conservative, where �e
1, �

e
2 are the external

boundaries of the cone regions; moreover, we will show that for c < 1 large enough and
L > 0 small enough, more precisely for c and L satisfying (16), �i

1, �
i
2 (the internal seg-

ments) form an angle α̂ = α̂(L , c) and α̂ > arctan(L). We depict the described geometrical
situation in Fig. 6. Without loss of generality, we assume α̂ ≥ 0, i.e., that the two cones
limited by (�i

1, �
e
1) and (�i

2, �
e
2) do not intersect. In fact, with a similar argument as the one

given below, we can always reduce the problem to such a case. We argue by contradiction,
and we suppose that

α̂ ≤ arctan(L). (18)

Let us fix x ∈ �2 and

ŷ = arg min
ξ̂∈�e

1

|x − ξ̂ |.

We denote S = conv{x, ŷ} the segment which connects x and ŷ. Now we define y ∈ S ∩�1.
We refer the reader to Fig. 6 for helping the understanding of the described situation. Since
K ∈ B(�), we have dist(x, �1) ≥ c|x − V |; hence, from (16), it follows

dist(x, �1) > |x − V | sin(5 arctan(L)). (19)
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By geometrical construction

d(x, �1) ≤ |x − y| ≤ |x − ŷ| and |x − ŷ| = |x − V | sin(θ), (20)

where θ = x̂V ŷ. Since θ ≤ α̂ + 2α(L) = α̂ + 4 arctan(L), using (18), we get

dist(x, �1) ≤ |x − V | sin(α̂ + 4 arctan(L)) ≤ |x − V | sin(5 arctan(L))

which contradicts (19). We conclude that α̂ > arctan(L). From this geometrical situation,
one can simply argue as in Step 1 by considering, for example, the segment �i

1 and the
Lipschitz arc �2 only. ��
3.3 Interpolation inequalities for Sobolev spaces involving compact subdomains

In this section, we recall a classical interpolation inequality for Sobolev norms involving
relatively compact subdomains, and we present a generalization which is tailored to Rondi’s
class and will be useful in our analysis.

Lemma 3.6 Assume 1 ≤ p <∞. Let A ⊂ R
2 be an open and bounded domain having the

cone property with respect to a cone C , and let D be an open set such that D ⊂⊂ A and D
has nonempty intersection with all the connected components of A. Then for u ∈ L1,p(A)

we have

‖u‖L p(A) ≤ η
(‖∇u‖L p(A) + ‖u‖L p(D)

)
,

where η is a positive constant which depends essentially only on C and D = diam(A), but
not on u.

Lemma 3.6 in particular implies that the Sobolev space W 1,p(A) and the Deny-Lions space
L1,p(A) coincide for A having the cone property. The interested reader can refer to the proof
of this lemma in [30, Section 1.1.11]; however, we include a detailed proof of it in the Appen-
dix where we specifically make clearer the dependence of η on C and D = diam(A) only.
In particular, these arguments are useful in order to show the following stability result.

Proposition 3.7 Assume 1 ≤ p <∞. Let K ∈ B(�) and let (Kh)h ⊂ B(�) be a sequence
of sets converging to K in the Hausdorff metric as h → +∞. Let (uh)h ⊂ L1,p(� \ Kh)

be a sequence of functions. If D ⊂⊂ � \ K and D has nonempty intersection with all the
connected components of � \ K , then, for h large enough, it holds

‖uh‖L p(�) ≤ η
(‖∇uh‖L p(�\Kh) + ‖uh‖L p(D)

)
,

where η is a constant independent of h.

The proof of this proposition follows directly from Lemma 3.6 and it is also postponed to
the Appendix.

3.4 Existence of minimizers in the Rondi’s class

In the following, except when explicitly required differently, we assume 1 < p <∞. Let D
be the domain of pairs (u, K ) defined by

D = {(u, K ) : u ∈ W 1,p(� \ K ); K ∈ B(�)}.
Let u0 ∈ L2(�) and for K fixed let T : X → L2(�) be a linear and continuous operator,
where X ∈ {W 1,p(� \ K ), L p(�)}. We define the functional E : D → [0,+∞] as in (3).
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As anticipated, in this paper, we limit our analysis to operators T mapping onto L2(�). Nev-
ertheless, at the cost of additional technicalities, one may want to consider also discrepancy
terms in L p(�), i.e., ‖T u − u0‖p

L p(�), for 1 < p < ∞. In the following, we assume more
specifically that the operator T belongs to one of the following two cases:

(i) (Nonlocal operator)for 1 < p < ∞, we assume that T : L p(�) → L2(�) is a
compact and injective operator.

(ii) (Local operator) for a fixed K ∈ B(�), and for 2 ≤ p < ∞, we define T : W 1,p

(� \ K )→ L2(�) as the first-order differential operator

T u = a0 · u + a1 · ∂u

∂x1
+ a2 · ∂u

∂x2
,

where ai ∈ L∞(�) for i = 0, 1, 2.

Remark 3.8 Examples of operators belonging to the case (i) can be found, for instance, by
considering convolution with suitable integral kernels (e.g., Green’s functions of elliptic
operators on the bounded domain �). This explains why we address this case as the one of
nonlocal operators. Moreover, let D ⊂ � be a set of positive measure and p ≥ 2. Then the
operator T defined by

T u = χ�\D · u for all u ∈ W 1,p(� \ K ),

is an example of operator belonging to the class (ii) for a0 = χ�\D and a1 = a2 ≡ 0. Let
us also observe that in this special case, if the datum u0 ∈ L∞, as it is the case in image
inpainting [22] or in variational models for fracture [26], then it is possible to apply classical
truncation arguments (see formula (7.21) pag. 350 in [3]) to show that also a minimizer u has
to be in L∞, and one may resume well-known compactness results in SBV [2,21]. However,
if u0 is simply assumed in L2 (but not with higher integrability which may allow to apply
Leaci’s extension [29]), also the case of such local operators is again nontrivial.

The main result of the paper is proving the existence of a minimizer (u, K ) of the functional
E in the domain D, when T belongs to either the classes (i) and (ii).

4 Existence of minimizers for nonlocal operators

In this section, we prove the existence of minimizers of the functional E in the domain D
when the operator T belongs to the class (i). A remarkable difficulty in the proof is that the
the operator T may fail to be lower semicontinuous with respect to the convergence in the
Deny-Lions space L1,p; therefore, we have to recover a uniform L p estimate of minimizing
sequences, which stems from Proposition 3.7.

Theorem 4.1 Assume 1 < p <∞. Let the bounded operator T : L p(�)→ L2(�) belong
to the case (i). Then there exists a pair (u, K ) ∈ D that minimizes the functional E over the
domain D.

Proof Without loss of generality, we set λ = α = 1.
Let M = inf(u,K )∈D E (u, K ) ≥ 0 and let ((uh, Kh))h ⊂ D denote a minimizing sequence
for the functional E , i.e.,

lim
h→+∞ E (uh, Kh) =M .
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Step 1. Limit of the sequence of sets Kh.
Using properties (i)-(iv) of sets B ∈ B(�), it follows that there exists an integer N0,

depending on �, L , δ and c only, such that for any B ∈ B(�, L , δ, c), with B =⋃n
i=1 �i , �i

an L-Lipschitz arc for any i = 1, . . . , n, we have that n ≤ N0 (see Section 3 of [38]). Hence,
there exist a subsequence

(
Khk

)
k and an integer N ≤ N0, independent of both h and k, such

that

Khk =
N⋃

i=1

�i
hk

, �i
hk

L-Lipschitz arc for all i ∈ {1, . . . , N }, for all k ∈ N. (21)

Moreover, possibly extracting a finite number of further subsequences, we may assume:

(a) for any i, j ∈ {1, . . . , N } with i �= j , we have that either �i
hk
∩ �

j
hk

is empty for any

k ∈ N, or �i
hk
∩ �

j
hk

is a common endpoint Vhk for any k ∈ N;

(b) for any i ∈ {1, . . . , N }, we have that either �i
hk
∩∂� is empty for any k ∈ N or �i

hk
∩∂�

is an endpoint Vhk of �i
hk

for any k ∈ N.

The class of sets B(�) is compact with respect to the Hausdorff distance (see Section 3 of
[38]). Hence, possibly extracting a further subsequence, there exists a set K ∈ B(�) such
that

lim
k→+∞ dH(Khk , K ) = 0. (22)

Using again properties (i)-(iv) of sets B ∈ B(�), we have

K =
N⋃

i=1

�i , �i L-Lipschitz arc for all i ∈ {1, . . . , N },

and

�i
hk
→ �i as k →+∞, for all i ∈ {1, . . . , N }, (23)

in the sense of the Hausdorff metric.
Step 2. Uniform L p estimate of a minimizing sequence.
In this step, we prove that without loss of generality, we can assume the following claim:

the sequence uhk is weakly compact in L p(�). (24)

Indeed, if this is not the case, we can argue as follows.
As a first simple observation, the set � \ K has a finite number N̂ of connected components,
which we denote by A� for � = 1, . . . , N̂ . Then, using properties (a) and (b) of sets Khk and
(23), we have

� \ Khk =
N̂⋃

�=1

A�
k, for all k ∈ N,

where the sets A�
k ⊂ � are open and connected for any � = 1, . . . , N̂ and any k ∈ N. Then,

we have

A�
k → A� as k →+∞, for all � ∈ {1, . . . , N̂ }, (25)
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in the sense of the Hausdorff metric. Now, for every � = 1, . . . , N̂ , we consider a smooth
connected set D� ⊂⊂ A� so that for k sufficiently large we can also assume that D� ⊂⊂ A�

k .
We put

D :=
N̂⋃

�=1

D�

and we define

vhk := uhk −
N̂∑

�=1

ū�
kχA�

k
, (26)

where ū�
k is the mean value of the functions uhk over the sets D�. Clearly, the functions vhk

belong to the space W 1,p(� \ Khk ), and ∇vhk = ∇uhk . We now apply Proposition 3.7 and
the Poincaré-Wirtinger inequality to get

‖vhk‖L p(�) ≤ η
(‖∇uhk‖L p(�\Khk ) + ‖vhk‖L p(D)

)

≤ η
(‖∇uhk‖L p(�\Khk ) +

N̂∑

�=1

‖uhk − ū�
k‖L p(D�)

)

≤ η
(‖∇uhk‖L p(�\Khk ) +

N̂∑

�=1

C�‖∇uhk‖L p(�\Khk )

)
,

where C� are the Poincaré constants of the sets D�. It immediately follows that there exists
a constant C independent of k such that

‖vhk‖L p(�) ≤ C(M + 1). (27)

The following section of the proof is inspired by [35, Section 3]. For fixed k, we define
the N̂ -dimensional subspaces Yk of L2(�) by

Yk := span{χA�
k
, � = 1, . . . , N̂ }.

and we consider

ŵk := arg min

⎧
⎨

⎩

∫

�

|(T w)(x)+ (T vhk )(x)− u0(x)|2 dx : w ∈ Yk

⎫
⎬

⎭
.

Observe that, since T is injective, it is also coercive when it is restricted to the finite-dimen-
sional space Yk , even if the coercivity constant may depend on k. Therefore, existence and
uniqueness of ŵk can be easily proved (see [35, Proposition 7]). Notice that being Yk a linear
space, 0 ∈ Yk and

∫

�

|(T ŵk)(x)+ (T vhk )(x)− u0(x)|2 dx ≤
∫

�

|(T vhk )(x)− u0(x)|2 dx . (28)

Now, clearly vhk +ŵk ∈ W 1,p(�\Khk ), and∇(vhk +ŵk) = ∇uhk . With this, by minimality
of ŵk , and since uhk − vhk ∈ Yk , we easily get

E (vhk + ŵk, Khk ) ≤ E (uhk , Khk ) (29)

for every k.
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Since the operator T is compact, possibly extracting a subsequence, by (27) we can assume
that there exists g ∈ L2(�) such that

‖T vhk − g‖L2(�) → 0 (30)

as k tends to infinity. We now consider

w̃k := arg min

⎧
⎨

⎩

∫

�

|(T w)(x)+ g(x)− u0(x)|2 dx : w ∈ Yk

⎫
⎬

⎭
.

Again, we observe that, by minimality of w̃k in Yk and 0 ∈ Yk , we have
∫

�

|(T w̃k)(x)+ g(x)− u0(x)|2 dx ≤
∫

�

|g(x)− u0(x)|2 dx . (31)

As before, vhk + w̃k ∈ W 1,p(� \ Khk ), and ∇(vhk + w̃k) = ∇uhk . With this, by Cauchy-
Schwarz inequality, we get

E (vhk + w̃k, Khk ) = ‖T w̃k + g − g + T vhk − u0‖2
L2(�)

+
∫

�\Khk

|∇uhk |p +H1(Khk )

≤
(
‖T w̃k+g − u0‖2

L2(�)
+‖T vhk−g‖2

L2(�)
+2‖T vhk−g‖L2(�)‖T w̃k + g − u0‖L2(�)

)

+
∫

�\Khk

|∇uhk |p +H1(Khk ).

By using (31) and the minimality of w̃k , we can estimate the latter expression by

≤
(
‖T w̃k + g − u0‖2

L2(�)
+ ‖T vhk − g‖2

L2(�)
+ 2‖T vhk − g‖L2(�)‖g − u0‖L2(�)

)

+
∫

�\Khk

|∇uhk |p +H1(Khk )

≤
(
‖T ŵk + g − u0‖2

L2(�)
+ ‖T vhk − g‖2

L2(�)
+ 2‖T vhk − g‖L2(�)‖g − u0‖L2(�)

)

+
∫

�\Khk

|∇uhk |p +H1(Khk ).

By adding and subtracting T vhk , using again Cauchy-Schwarz inequality, and (28), we can
further conclude the estimate

(
‖T ŵk + g − u0‖2

L2(�)
+ ‖T vhk − g‖2

L2(�)
+ 2‖T vhk − g‖L2(�)‖g − u0‖L2(�)

)

+
∫

�\Khk

|∇uhk |p +H1(Khk )

≤ E (vhk + ŵk, Khk )+ 2‖T vhk − g‖2
L2(�)

+ 2‖T vhk − g‖L2(�)(‖T vhk − u0‖L2(�) + ‖g − u0‖L2(�)).
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Eventually, an application of (29) to the previous estimate yields

E (vhk + w̃k, Khk ) ≤ E (uhk , Khk )

+2‖T vhk − g‖2
L2(�)

+ 2‖T vhk − g‖L2(�)(‖T vhk − u0‖L2(�) + ‖g − u0‖L2(�)).

Thanks to (30) and the boundedness of (‖T vhk − u0‖L2(�) + ‖g − u0‖L2(�)) due to (27),
we conclude that (vhk + w̃k, Khk ) is a minimizing sequence for E . Using (25), the strong
L p-compactness of w̃k follows from the results in [35, Section 3]. Together with (27), this
shows that we can assume that the claim (24) holds true, replacing if necessary the sequence
uhk with vhk + w̃k .

Step 3. Compactness and lower semicontinuity results.
By (24), there exists a function u ∈ L p(�) and a subsequence, still denoted by

(
uhk

)
k ,

such that uhk ⇀ u weakly in L p(�) as k → +∞. By compactness of the operator T , this
immediately gives

lim
k→+∞‖T uhk − u0‖2

L2(�)
= ‖T u − u0‖2

L2(�)
. (32)

We denote by �ρ a net of open sets such that

�ρ ⊂⊂ � \ K and �ρ ↗ � \ K (33)

as ρ → 0. From (25), for fixed ρ > 0 and for k large enough, we have �ρ ⊂⊂ � \ Khk ;
therefore,

∫

�ρ

|∇uhk |pdx ≤
∫

�\Khk

|∇uhk |pdx ≤ E (uhk , Khk ) ≤M + 1. (34)

As uhk ⇀ u weakly in L p(�), by (34) we have that uhk ⇀ u weakly in W 1,p(�ρ), and by
the weak lower semicontinuity of the L p norm, we get

M + 1 ≥ lim inf
k→+∞

∫

�\Khk

|∇uhk |pdx ≥ lim inf
k→+∞

∫

�ρ

|∇uhk |pdx ≥
∫

�ρ

|∇u|pdx .

Since the net of sets
(
�ρ

)
ρ

invades � \ K , by letting ρ → 0+, we get

M + 1 ≥ lim inf
k→+∞

∫

�\Khk

|∇uhk |pdx ≥
∫

�\K
|∇u|pdx . (35)

Since u ∈ L p(�), this gives in particular that u ∈ W 1,p(� \ K ). As K ∈ B(�), we then
conclude that(u, K ) ∈ D.

From (21), we have that the number of connected components of the compact sets Khk is
uniformly bounded by a constant N that is independent of k. It follows that the Hausdorff
measure H1(Khk ) is lower semicontinuous with respect to the Hausdorff convergence (22)
of the sets Khk to the set K (see Theorem 3.18 of [23]):

lim inf
k→+∞H1(Khk ) ≥ H1(K ). (36)

Using the compactness result, together with (32), (35), and (36), the application of the direct
method of the Calculus of Variations completes the proof of the theorem. ��
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5 Existence of minimizers for local operators

In this section, we prove the existence of minimizers of the functional E in the domain D
when the operator T belongs to the class (i). We stress that the proof in this case is simpler
than in the case of nonlocal operators, since now the operator T is lower semicontinuous
with respect to the convergence in the Deny-Lions space. Existence can be achieved through
an application of the direct method in this space and a localization technique, together with
the observation that when K belongs to the Rondi’s class, � \ K has the cone property and
the Deny-Lions space L1,p(� \ K ) coincides with W 1,p(� \ K ). In particular, since only a
L p

loc estimate is actually needed, the uniform estimate of Proposition 3.7 is not required, and
we only rely on Lemma 3.6.

5.1 On differential operators and their locality properties

We now turn to first-order differential operators of the type:

T u = a0 · u + a1 · ∂u

∂x1
+ a2 · ∂u

∂x2
,

where ai ∈ L∞(�) for i = 0, 1, 2. Linear operators of this type are found, for instance, in
the study of linear conservation laws with rough coefficients, i.e., in the analysis of equations
of the type:

∂u

∂t
+ div(b · u) = u0, (37)

where b ∈ [L∞(�)]2 and div(b) ∈ L∞(�), see, e.g., [9]. In fact, we may write div(b · u) =
a0 · u + a1 · ∂u

∂x1
+ a2 · ∂u

∂x2
, where a0 = ∂b1

∂x1
+ ∂b2

∂x2
and ai = bi , i = 1, 2. Hence, mini-

mizers of (3) may be used as a regularization of rough solutions of (37). Here ∂u
∂xi

, i = 1, 2
are the partial derivatives of the distribution u in weak sense. In the following, we would
like to remind a few properties of these operators with respect to Sobolev spaces W 1,p , for
2 ≤ p <∞.

If A ⊂ � ⊂⊂ R
2, then T can be defined on W 1,p(�) (resp. on W 1,p(A)), the weak

derivatives are taken on � (resp. on A), i.e., with respect to smooth test functions compactly
supported on � (resp. on A). Hence, in weak sense, the operator T depends on the domain
of the functions on which it is applied. Nevertheless, if u ∈ W 1,p(�) then its restriction u|A
on A belongs to W 1,p(A) and

(T u)|A = T u|A, (38)

where on the right-hand side, T is applied on a function defined on the domain A (with weak
derivatives defined accordingly). This is called the locality property of T .

Observe now that the functional (for simplicity α = λ = 1)

E (u, K ) = ‖T u − u0‖2
L2(�)

+
∫

�\K
|∇u|p +H 1(K ),

is understood for T as operating on W 1,p(�\K ). Hence, changing K essentially means also
changing T , and to be more precise, we should write T ≡ TK , as depending on K . However,
for each K fixed T = TK is a bounded linear operator on W 1,p(� \ K ).

Let us further note that, given K1, K2 ∈ B(�), and ∅ �= A ⊂ (� \ K1) ∩ (� \ K2), then,
in force of the locality property of T , for every u ∈ W 1,p(A) which is restriction on A of
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both ui ∈ W 1,p(� \ Ki ), i = 1, 2,

T u ≡ (TK1 u1)|A = (TK2 u2)|A,

is a well-defined L2 function on A. In other words, the function T u ∈ L2(A) essentially
does not depend on the Ki ’s. Moreover, if A is an extension domain in �, i.e., there exists a
bounded extension operator E : W 1,p(A)→ W 1,p(�), u �→ Eu, such that (Eu)|A = u and
‖Eu‖W 1,p(�) ≤ CA‖u‖W 1,p(A), then it follows that TK = T := T ◦ E can be understood as
a bounded linear operator on W 1,p(A), independent of K , as soon as A ⊂ � \ K .

We would like to use the previous observations now to derive a certain lower semiconti-
nuity property of ‖TK u − u0‖L2 which will turn out to be useful in the following. Let (Kh)

be a sequence in B(�), K ∈ B(�), and

dH(Kh, K )→ 0, h →∞.

We define �ρ as in (33), then �ρ ⊂⊂ � \ Kh for h large enough. Note further that, without
loss of generality, we can assume �ρ to be an extension domain. If (uh)h converges weakly
to u in W 1,p(�ρ) for uh ∈ W 1,p(�\ Kh) and u ∈ W 1,p(�\ K ), then we have the following
relevant inequalities

lim inf
h→∞ ‖TKh uh − u0‖L2(�) ≥ lim inf

h→∞ ‖TKh uh − u0‖L2(�ρ) ≥ ‖TK u − u0‖L2(�ρ). (39)

According to the observations above, here we have heavily used the fact that T does not
depend on Kh or K as soon as its image is restricted on L2(�ρ); hence, by the extension
property of �ρ, T is a bounded operator on W 1,p(�ρ), independent of Kh or K . Moreover,
since uh converges weakly to u in W 1,p(�ρ) then by boundedness of T also T uh converges
weakly to T u in L2(�ρ) and the last inequality follows from the lower semicontinuity of the
L2 norm with respect to the weak convergence.

5.2 Existence result

We need the following lemma.

Lemma 5.1 Assume 1 ≤ p < ∞. Let A be a bounded, connected, open subset of R
2 with

locally Lipschitz boundary, u ∈ W 1,p(A), and let T : W 1,p(A) → L2(A) be a linear and
continuous operator. Let us assume that

‖T u − u0‖2
L2(A)

+
∫

A

|∇u(x)|pdx ≤ H ,

where H is a positive constant. Then we have

α := |u(A)| · ‖T χA‖L2(A) ≤ β,

where

β := γ + (γ 2 +H
)1/2

, γ := H 1/pC(A)‖T ‖W 1,p→L2 + ‖u0‖L2(A), (40)

where C(A) is the constant of inequality (1).

Proof For reader’s convenience we sketch the proof which follows the lines of Step 1 of
the proof of [42, Proposition 3.1]. Let w = u(A)χA and v = u − w. Then v(A) = 0 and
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∫
A |∇v(x)|pdx = ∫A |∇u(x)|pdx ≤ H . By the Poincaré-Wirtinger inequality (1) we obtain
‖v‖L p(A) ≤ C(A)H 1/p. We also have

H ≥‖T u − u0‖2
L2(A)

≥ ‖T w‖L2(A)

[‖T w‖L2(A)−2(‖T ‖W 1,p→L2‖v‖L p(A) + ‖u0‖L2(A))
]

≥ α(α − 2γ ).

Solving the latter inequality for nonnegative values of α yields

0 ≤ |u(A)| · ‖T χA‖L2(A) = α ≤ γ + (γ 2 +H
)1/2 = β.

��
Theorem 5.2 Assume 2 ≤ p <∞ and let the operator T belong to the case (i). Then, there
exists a pair (u, K ) ∈ D that minimizes the functional E over the domain D.

Proof Without loss of generality we set λ = α = 1. Let M = inf(u,K )∈D E (u, K ) ≥ 0 and
let ((uh, Kh))h ⊂ D denote a minimizing sequence for the functional E , i.e.,

lim
h→+∞ E (uh, Kh) =M . (41)

We use the same notations as in the proof of Theorem 4.1. The proof of Step 1 is the same
as in Theorem 4.1.

Step 2. Construction of a partition of the set �.
Arguing as in Theorem 4.1, we write

� \ K =
N̂⋃

�=1

A�,

where A� ⊂ � is an open and connected set for any � = 1, . . . , N̂ and

� \ Khk =
N̂⋃

�=1

A�
k, for all k ∈ N, (42)

where the sets A�
k ⊂ � are open and connected for any � = 1, . . . , N̂ and any k ∈ N. We

recall that we have

A�
k → A� as k →+∞, for all � ∈ {1, . . . , N̂ }, (43)

in the sense of the Hausdorff metric.
We define the open sets �ρ as in (33). We can assume that they have the locally Lipschitz

boundary property and choose ρ > 0 small enough in such a way that we have

�ρ =
N̂⋃

�=1

A�
ρ,

where the sets A�
ρ are open, connected, and satisfy A�

ρ ⊂ A� for any � = 1, . . . , N̂ .
Then there exists k0 ∈ N such that k0 = k0(ρ) and, using (23), we have

Khk ∩�ρ = ∅ for all k ≥ k0,

and

uhk ∈ W 1,p(A�
ρ) for all � ∈ {1, . . . , N̂ } and for all k ≥ k0. (44)
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Step 3. Uniform L p
loc estimate of uhk when a0 �= 0 in L∞(A�) for any �.

If a0 �= 0 in L∞(A�) for any � = 1, . . . , N̂ , then for any � there exists an open set J � with
the following properties: (i) J � ⊂ A�; (ii) if v ∈ W 1,p(A�) is such that v(x) = 1 if x ∈ J �,
then (T v)|J � �= 0 in L2(J �).

Let us fix a connected component A�
ρ of �ρ . We may assume ρ > 0 small enough in such

a way that we have J � ⊂ A�
ρ . Let v ∈ W 1,p(A�) be such that v(x) = 1 if x ∈ A�

ρ . Then, by
using the locality property of the operator T , we have

(T v)|J � = T v|J � ,

from which it follows, being v(x) = 1 if x ∈ J �,

α�
ρ := ‖T v|A�

ρ
‖L2(A�

ρ ) ≥ ‖T v|A�
ρ
‖L2(J �) = ‖T v|J �‖L2(J �) = ‖(T v)|J �‖L2(J �) �= 0. (45)

Using again the locality property of T for any k ∈ N, we have

‖T uhk − u0‖2
L2(�)

≥ ‖T uhk − u0‖2
L2(A�

ρ )
= ‖T uhk |A�

ρ
− u0‖2

L2(A�
ρ )

,

from which, for k large enough, we find

‖T uhk − u0‖2
L2(A�

ρ )
+
∫

A�
ρ

|∇uhk |pdx ≤ ‖T uhk − u0‖2
L2(�)

+
∫

�\Khk

|∇uhk |pdx

≤ M + 1.

Hence, we can apply Lemma 5.1 to the set A�
ρ and, using (45), for k large enough, we find

|uhk (A�
ρ)| ≤ β�

ρ

α�
ρ

, (46)

where, using (40), the positive constant β�
ρ is given by

β�
ρ = γ �

ρ +
(
γ �
ρ

2 +M + 1
)1/2

, γ �
ρ = (M + 1)1/pC(A�

ρ)‖T ‖ + ‖u0‖L p(A�
ρ ),

C(A�
ρ) being the constant of the Poincaré-Wirtinger inequality (1) evaluated for the set A�

ρ .
Since for k large enough we have

‖∇uhk‖L p(A�
ρ ) =

⎛

⎜
⎜
⎝

∫

A�
ρ

|∇uhk |pdx

⎞

⎟
⎟
⎠

1/p

≤
⎛

⎜
⎝

∫

�\Khk

|∇uhk |pdx

⎞

⎟
⎠

1/p

≤ (M + 1)1/p, (47)

by using the Poincaré-Wirtinger inequality and (46), we find

‖uhk‖L p(A�
ρ ) ≤ ‖uhk − uhk (A�

ρ)‖L p(A�
ρ ) +

(
meas(A�

ρ)
)1/p |uhk (A�

ρ)|

≤ C(A�
ρ)‖∇uhk‖L p(A�

ρ ) +
(

meas(A�
ρ)
)1/p |uhk (A�

ρ)|

≤ C(A�
ρ)(M + 1)1/p +

(
meas(A�

ρ)
)1/p β�

ρ

α�
ρ

.

Eventually we get

‖uhk‖L p(A�
ρ ) ≤ C�

ρ, (48)
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for any � ∈ {1, . . . , N̂ }, where C�
ρ is a positive constant dependent on both � and ρ, but

independent of k.
Step 4. Compactness and lower semicontinuity results.
Arguing as in Step 3 of the proof of Theorem 4.1, we find that (34) holds again. By this

and (48), the sequence
(
uhk

)
k is uniformly bounded in W 1,p(�ρ) with respect to k for any

ρ small enough. Since the sequence of sets
(
�ρ

)
ρ

invades � \ K , by letting ρ → 0+ and a

diagonal argument we get that there exists a function u ∈ W 1,p
loc (� \ K ) and a subsequence,

still denoted by
(
uhk

)
k for simplicity, such that uhk ⇀ u weakly in W 1,p(�ρ) for every ρ

small enough and uhk → u pointwise a.e. on � as k →+∞.
Arguing as in the proof of (35), we then get

M + 1 ≥ lim inf
k→+∞

∫

�\Khk

|∇uhk |pdx ≥
∫

�\K
|∇u|pdx . (49)

In particular,∇u ∈ L p(�\K ). We already know that u ∈ W 1,p
loc (�\K ); therefore, it follows

u ∈ L p
loc(� \ K ) and u ∈ L1,p(� \ K ). Since � \ K has the cone property, Lemma 3.6

implies that L1,p(� \ K ) coincides with W 1,p(� \ K ), so that u ∈ W 1,p(� \ K ). Moreover,
being K ∈ B(�) implies (u, K ) ∈ D.

Then, by the lower semicontinuity of the term ‖T u − u0‖2
L2(�ρ)

with respect to the weak

convergence in W 1,p(�ρ) for any ρ > 0 small enough and, according to (39), we have

lim inf
k→+∞ ‖T uhk − u0‖2

L2(�)
≥ lim inf

k→+∞ ‖T uhk − u0‖2
L2(�ρ)

≥ ‖T u − u0‖2
L2(�ρ)

,

from which, by letting ρ → 0+ we get

lim inf
k→+∞ ‖T uhk − u0‖2

L2(�)
≥ ‖T u − u0‖2

L2(�)
. (50)

Arguing as in the proof of (36), we get

lim inf
k→+∞H1(Khk ) ≥ H1(K ). (51)

From (49), (50), and (51), a straightforward application of the direct method of the Cal-
culus of Variations gives that the pair (u, K ) ∈ D minimizes E over the domain D.

Step 5. We consider the case a0 = 0 in L∞(A�) for some �.
In the following,

(
uhk

)
k denotes again the subsequence obtained at the end of Step 2. Let

us fix a connected component A� of � \ K such that a0(x) = 0 for x ∈ A� a.e.
Let E� denote an open set having the locally Lipschitz boundary property such that

E� ⊂⊂ A�. Let ρ > 0 be such that E� ⊂⊂ A�
ρ and let k be large enough such that A�

ρ ⊂⊂ A�
k .

The function uhk ∈ L2(�) for all k ∈ N and the average value uhk (E�) is finite for any
k, though not necessarily uniformly bounded with respect to k. Now we define the function
ũhk by means of

ũhk (x) =
{

uhk (x)− uhk (E�) if x ∈ A�
k

uhk (x) if x /∈ A�
k .

By construction, we have (̃uhk , Khk ) ∈ D. Since ũhk (E�) = 0 for any k, by using the
Poincaré-Wirtinger inequality (1) and (47), we have:

‖ũhk‖L p(E�) ≤ C(E�)‖∇ũhk‖L p(E�) ≤ C(E�)(M + 1)1/p,

C(E�) being the constant of the inequality evaluated for the set E�.
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As A�
ρ is a connected set having the locally Lipschitz boundary property, then it has also

the cone property, so that using Lemma 3.6 and (47), we have

‖ũhk‖L p(A�
ρ ) ≤ η�

ρ

(
‖∇ũhk‖L p(A�

ρ ) + ‖ũhk‖L p(E�)

)
≤ η�

ρ(1+ C(E�))(M + 1)1/p,

from which it follows,

‖ũhk‖L p(A�
ρ ) ≤ C�

ρ,

where η�
ρ and C�

ρ are positive constants dependent on both � and ρ, but independent of k.
We repeat the above argument for each connected component A� of �\K , � = 1, . . . , N̂ ,

such that a0 = 0 in L∞(A�). Eventually, using also the results of Step 3, we obtain a sequence
of functions

(
ũhk

)
k such that

‖ũhk‖L p(�ρ) ≤ Cρ,

where Cρ is a positive constant dependent on ρ, but independent of k.
Now, arguing as in Step 4, there exist a function ũ ∈ W 1,p(� \ K ) and a subsequence,

still denoted by
(
ũhk

)
k for simplicity, such that ũhk → ũ pointwise a.e. on � and ũhk ⇀ ũ

weakly in W 1,p(�ρ) for any ρ > 0 small enough, as k →+∞.
Since ∇uhk = ∇ũhk in � \ Khk , with the same argument used in Step 4 to prove (49), we

get that

lim inf
k→+∞

∫

�\Khk

|∇uhk |pdx ≥
∫

�\K
|∇ũ|pdx . (52)

Moreover, we observe that, for every � such that a0(x) = 0 for x ∈ A� a.e., by the construction
of ũhk , we have

T ũhk = a1(x)
∂ ũhk

∂x1
+ a2(x)

∂ ũhk

∂x2
= a1(x)

∂uhk

∂x1
+ a2(x)

∂uhk

∂x2
= T uhk

for a.e. x ∈ A�
k ∩ A�. Using (43), we get that A�

ρ ⊂ (A�
k ∩ A�) for k large enough, therefore

T ũhk = T uhk

for a.e. x ∈ �ρ . Together with the lower semicontinuity of the term ‖T u − u0‖2
L2(�ρ)

with

respect to the weak convergence in W 1,p(�ρ) for any ρ > 0 small enough, and according
to (39), this yields

lim inf
k→+∞ ‖T uhk − u0‖2

L2(�)
≥ lim inf

k→+∞ ‖T uhk − u0‖2
L2(�ρ)

= lim inf
k→+∞ ‖T ũhk − u0‖2

L2(�ρ)
≥ ‖T ũ − u0‖2

L2(�ρ)
,

from which, by letting ρ → 0+, we get

lim inf
k→+∞ ‖T uhk − u0‖2

L2(�)
≥ ‖T ũ − u0‖2

L2(�)
. (53)
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Using (41), (51), (52), and (53), by the chain of inequalities

M = lim inf
k→+∞ E (uhk , Khk )

≥ lim inf
k→+∞

∫

�\Khk

|∇uhk |pdx + lim inf
k→+∞ ‖T uhk − u0‖2

L2(�)
+ lim inf

k→+∞H1(Khk )

≥
∫

�\K
|∇ũ|pdx + ‖T ũ − u0‖2

L2(�)
+H1(K ) = E (̃u, K ),

the proof is concluded. ��

6 Conclusions and open problems

In this section, we would like to collect a few interesting open problems that stem from the
analysis provided by this paper and recent numerical results obtained in [1,25].

(i) We addressed two specific classes of linear operators. However, when the problem is
discretized by means of finite differences or finite elements, solutions exist for every
linear problem [25], despite the lack of coercivity also in the finite-dimensional set-
ting. We wonder whether the NP-hardness of the finite-dimensional problem [1] is
related to the difficulties one encounters in the analysis in the continuous setting.

(ii) In relationship to (ii), it is completely open also the �-convergence of the finite dis-
crete problem to the continuous problem, as a generalization of results provided for
the classical Mumford-Shah functional by Chambolle et al. [14–16]. In particular, it
would be already very interesting to understand whether minimizers of the discrete
problems can converge to minimizers of the continuous problem, if they do belong to
a Rondi’s class.

(iii) Numerical methods for minimizing the Mumford-Shah functional have been source
of a large amount of results, see [4,11,13,16,31] for prominent approaches in this
setting. For linear inverse free-discontinuity problems, the proved NP-hardness [1]
makes the issue even more challenging. We address the interested reader to a new
approach recently introduced in [25], which relates discrete linear inverse free-dis-
continuity problems and sparse recovery problems [24].

7 Appendix

This section is devoted to the proof of Lemma 3.6 and Proposition 3.7. We have first to recall
the following integral representation formula, which is proved in [30, Theorem 1.1.10.1].

Theorem 7.1 Assume 1 ≤ p < ∞. Let � ⊂ R
2 be a bounded domain starshaped with

respect to a ball Bρ(x0) ⊂ �, and let u ∈ L1,p(�). Then for almost all x ∈ �

u(x) = ρ−2
∫

Bρ(x0)

ϕ(y/ρ)u(y)dy +
∑

|α|=1

∫

�

fα(x; r, θ)

r

∂α

∂yα
u(y)dy, (54)
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where r = |y − x |, θ = y−x
|y−x | , ϕ ∈ C∞c (B1(x0)), and fα are bounded functions

| fα| ≤ K
D

ρ
,

where K is a constant independent of u,�, and D = diam(�).

A few observations are in order. The Riesz potential operator which appears in the right-
hand side

�[v](x) =
∫

�

v(y)

|y − x |dy, x ∈ �,

is known to be bounded on L p(�) (see pag. 152 and following pages in [28], and the proof
of Lemma in [30, Section 1.1.11]); let us denote its norm N (�). Note that if � ⊂ �̃ then
N (�) ≤ N (�̃). In fact any function v ∈ L p(�) can be trivially identified by zero extension
with a function in L p(�̃). Moreover, we stress that also the function ϕ depends neither on u
nor on �.

7.1 Proof of Lemma 3.6

Assume without loss of generality that A is connected and D ⊂⊂ A is a ball. Let A� be
any subdomain of A starshaped with respect to a ball as constructed in Lemma 3.2 and let
Br (x�) be the corresponding ball. We now construct a finite family of intersecting balls such
that B(0) = Br (x�),∅ �= B(i) ∩ B(i+1) ⊃ Bρ(xi+1

i ), for a fixed ρ < r , and B(M) = D. Note
that A� is starshaped with respect to the ball Bρ(x1

0 ) ⊂ B(0) ∩ B(1). Hence, we can apply the
integral formula (54) and for u ∈ L1,p(A) we write

∫

A�

|u(x)|pdx≤2p−1
∫

A�

ρ−2p

∣
∣
∣
∣
∣

∫

Bρ(x1
0 )

ϕ(y/ρ)u(y)dy

∣
∣
∣
∣
∣

p

dx

+ 22(p−1)
∑

|α|=1

∫

A�

∣
∣
∣
∣

∫

A�

fα(x; r, θ)

r

∂α

∂yα
u(y)dy

∣
∣
∣
∣

p

dx

≤2p−1ρ
−(2p− p

q ) meas(A�)

⎛

⎜
⎜
⎝

∫

B1(x1
0 )

|ϕ(y)|qdy

⎞

⎟
⎟
⎠

p
q
⎛

⎜
⎜
⎝

∫

Bρ(x1
0 )

|u(y)|pdy

⎞

⎟
⎟
⎠

+ 22(p−1)

(
K

D

ρ

)p

N (A�)p
∑

|α|=1

∫

A�

∣
∣
∣
∣

∂α

∂yα
u(y)

∣
∣
∣
∣

p

dy,

where 1
p + 1

q = 1, D = diam(A), and N (A�) is the norm of the integral operator as

mentioned above. Actually, we can estimate N (A�) ≤ N (A). In short, we obtain

‖u‖L p(A�) ≤ η�
(‖∇u‖L p(A�) + ‖u‖L p(B(0)∩B(1))

)
,

where η� = η�(meas(A), ρ−1, D, N (A)) is an increasing function of its explicit parameters.
(As it will be clear in the following, this explicit expression is particularly useful to show the
stability result of Proposition 3.7.) Similarly, we can show that

‖u‖L p(B(i)∩B(i−1)) ≤ η�
(‖∇u‖L p(B(i)) + ‖u‖L p(B(i)∩B(i+1))

)
,

123



Existence of minimizers of the Mumford-Shah 389

for all i = 1, . . . , M − 1. Therefore, we can conclude by this chain of M extensions the
following interpolation inequality

‖u‖L p(A�) ≤ η
(‖∇u‖L p(A) + ‖u‖L p(D)

)
, (55)

where η = η(meas(A), ρ−1, D, N (A), M). However, let us note that the maximal number
M of intersecting balls we need to reach D from B(0) is exclusively depending on D, r , and
ρ < r . Hence, we have actually η = η(meas(A), ρ−1, D, N (A)). Now, summing over � the
inequality (55), we obtain the wanted result.

7.2 Proof of Proposition 3.7

We consider the net of sets �ρ ⊂⊂ � \ K as in (33). Note that for ρ > 0 small enough
D ⊂⊂ �ρ and �ρ ⊂⊂ � \ Kh for all h ≥ h0 sufficiently large. Hence, we can assume that
D ⊂⊂ � \ Kh for all h ≥ h0 sufficiently large and that D has nontrivial intersection with all
the connected components of � \ Kh . Moreover, we recall from Lemma 3.4 that under our
assumptions on L , c, all � \ Kh have the cone property as well as each of their connected
components, with respect to a congruent cone C , which depends only on L , c, δ, but not on
h. In particular, the radius of a ball contained in C depends only on L , c, δ, but not on h.
Applying Lemma 3.6, we obtain that for uh ∈ L1,p(� \ Kh)

‖uh‖L p(�) ≤ ηh
(‖∇uh‖L p(�\Kh) + ‖uh‖L p(D)

)
, (56)

where ηh depends on C = C (L , c, δ), Dh = diam(�\Kh) and N (�\Kh). By convergence
of Kh to K in the Hausdorff metric, we have Dh = diam(� \ Kh) → D = diam(� \ K ).
Moreover, N (� \ Kh) ≤ N (BR(0)) for any R  0. Since also C = C (L , c, δ) does not
depend on h, we eventually can conclude that ηh ≤ η with η constant independent of h.
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